Contents

CHAPTER 1: INTRODUCTION

1.1 Motivation
 1.1.1 Heterogeneity and congestion pricing
1.2 Objectives and Structure of the Thesis
1.3 Limitations

PART I: THEORETICAL PART

CHAPTER 2: CONGESTION TOLLING IN THE BOTTLENECK MODEL WITH HETEROGENEOUS VALUES OF TIME

2.1 Introduction
2.2 The Generalised Price and Demand Surface
2.3 Discrete Heterogeneity
2.4 Numerical Set-Up
2.5 No-Toll Equilibrium
 2.5.1 The Analytical Model
 2.5.2 Numerical Base-Case Results
2.6 First-Best Public Toll
 2.6.1 The Analytical Model
 2.6.2 Numerical Results
2.7 A Private Monopoly Controlling the Road
 2.7.1 The Analytical Model
 2.7.2 The Numerical Model
2.8 Second-Best Tolls
 2.8.1 The Analytical Model for a Pay-lane
 2.8.2 The Analytical Model for the Public Time-Invariant Toll
 2.8.3 The Numerical Models for the Second-Best Policies
 2.8.4 Conclusion
2.9 Sensitivity Analyses
 2.9.1 NT Equilibrium with a Uniform Value of Time Distribution
 2.9.2 Welfare Effects of an FB Toll with Different Value of Time Distributions
CHAPTER 3:
WINNING OR LOSING FROM CONGESTION PRICING

3.1. Introduction

3.2. The demand and generalised price functions
 3.2.1. The Basics
 3.2.2. Homogeneous Users
 3.2.3. Proportional Heterogeneity: an Example with Two Discrete Groups
 3.2.4. Ratio Heterogeneity: an Example with Two Discrete Groups
 3.2.5. Proportional and Ratio Heterogeneity: an Example with discrete Groups

3.3. The Full Model and Its No-Toll Equilibrium
 3.3.1 Analytical No-Toll (NT) Model
 3.3.2 Congestion Externalities and Heterogeneity
 3.3.3 Base Case Numerical Model for the No-Toll (NT) Equilibrium

3.4. Continuous Heterogeneity and First-Best Public (FB) Tolling
 3.4.1 Analytical Model for the First-Best Public (FB) Equilibrium
 3.4.2 Numerical Base Case Model for the First-Best Public (FB) Equilibrium

3.5. Continuous Heterogeneity and the Pay-Lane
 3.5.1 Analytical Pay-Lane Model
 3.5.2 Base Case Numerical Model for the Public Pay-Lane (PL)
 3.5.3 Base Case Numerical Model for the Private Pay-Lane (PPL)
 3.5.4 Concluding the Pay-Lane Models

3.6. Sensitivity Analyses
 3.6.1 Effect of Heterogeneity on the No-Toll (NT) Case
 3.6.2 Heterogeneity and First-Best Public (FB) Tolling
 3.6.3 Effect of Heterogeneity on the Public (PL) Pay-Lane
 3.6.4 Effect of Heterogeneity on the Private (PPL) Pay-Lane
 3.6.5 Concluding the sensitivity analysis

3.7. Conclusion

Appendix 3A: Numerical Solution Method for a Pay-Lane Equilibrium
CHAPTER 4: CONGESTION PRICING ON RAIL AND ROAD WITH HETEROGENEOUS VALUES OF TIME AND SCHEDULE DELAY

4.1 Introduction 76
4.2. Analytical Road Model 78
 4.2.1. Ratio Heterogeneity and Road Pricing 79
 4.2.2. Proportional Heterogeneity and Road Pricing 81
4.3. Analytical Rail Model 83
 4.3.1. Ratio Heterogeneity and Road Pricing 83
 4.3.2. Proportional Heterogeneity and Road Pricing 85
4.4. Set-Up Numerical Models 86
4.5. Numerical Pricing Model with Proportional Heterogeneity 87
 4.5.1. Base Case No-Congestion-Pricing (NCP) Equilibrium 88
 4.5.2. Base Case Congestion Pricing Equilibria and Proportional Heterogeneity 88
 4.5.3. Sensitivity Analysis 90
 4.5.4. Conclusions on Proportional Heterogeneity 92
4.6. Numerical Pricing Model with Ratio Heterogeneity 92
 4.6.1. Base case no-congestion-pricing and first-best equilibria with ratio heterogeneity 93
 4.6.2. Sensitivity Analysis 95
 4.6.3. Conclusions on Ratio Heterogeneity 96
4.7. Some Further Sensitivity Analyses 96
 4.7.1 Fixed Cost 96
 4.7.2 Price Elasticities 97
 4.7.3 Crowding Costs 97
4.8. Conclusion 97

PART II: EMPIRICAL PART

CHAPTER 5: BIASES IN WTP ESTIMATES FROM MNL DUE TO HETEROGENEITY

5.1. Introduction 104
5.2. Literature Discussion 105
5.3. Non-Symmetric Marginal Utilities 106
 5.3.1. Set-Up of the Dataset Simulations 106
5.3.2. Results of the Dataset Simulations with Non-Symmetric Heterogeneity 109

5.4. Correlation between two heterogeneous marginal utilities 111
 5.4.1. Examples of Correlated Heterogeneity in Marginal Utilities 111
 5.4.2. Set-up Dataset Simulations with Correlated Heterogeneity 111
 5.4.3. An Decreasing Relation Between Simulated Marginal Utilities 112
 5.4.4 An Increasing Relation Between Simulated Marginal Utilities 114
 5.4.5 Conclusions on the Effect of Correlated Marginal Utilities 115

5.5 Conclusion 115

CHAPTER 6: 119

CHOICE OF TRAIN TICKET

6.1 Introduction 120
6.2 Discussion of the SP Experiment 122
6.3 Utility Functions for the Choice of Train Trip 123
6.4 Methodology 125
6.5 The Fixed Parameter Estimations 126
 6.5.1 Multinomial Logit 126
 6.5.2 Nested Logit 127
 6.5.3 Final Nested Logit Estimation 128
 6.5.4 Willingness-To-Pay and Elasticities for the Final Nested Logit 130
6.6 Mixed Logit 132
6.7 Willingness-To-Pay and Elasticities for the Mixed Logit 134
6.8 Comparison of the Estimations 136
6.9 Travel-cost compensation and the Value of Time 137
6.10 Conclusion 138

CHAPTER 7: 141

CHOICE OF SEASON TICKETS IN PUBLIC TRANSPORT

7.1. Introduction 142
7.2. Discussion of the Season ticket SP Experiment 143
7.3. Methodology 144
7.4. Utility Functions for Season-ticket holders 145
7.5. MNL Estimations 146
7.6. The Nested Logit Estimation 149
7.7. Mixed Logit Estimation 151
7.8. Conclusion 154