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Abbreviations

APC Antigen presenting cell

BBB Blood brain barrier

BCR B cell receptor

CDMS Clinically definite MS

CIS Clinically isolated syndrome

CNP 2’-3’-cyclic nucleotide 3’-phosphodiesterase

CNS Central nervous system

CR Complement receptor(s)

CSF Cerebrospinal fluid

CVF Cobra venom factor

EAE Experimental allergic (autoimmune) encephalomyelitis

EM Electron microscopy

Fc�R Fc� receptor(s)

FcR� chain FcR� chain

FcR�-/- mice FcR� chain knockout mice

GalC galactosylceramide

Ig Immunoglobulin

ITAM Intracellular immunoreceptor tyrosine-based activation motif

ITIM Intracellular immunoreceptor tyrosine-based inhibitory motif

MAC Membrane attack complex, terminal complex of complement

MAG Myelin associated glycoprotein

MBP Myelin basic protein

MOG Myelin oligodendrocyte glycoprotein

MS Multiple Sclerosis

OCB Oligoclonal immunoglobulin bands

OIND Other inflammatory neurological disease

OSP Oligodendrocyte specific protein

PLP Proteolipid protein

PPMS Primary progressive MS

rMOG Recombinant MOG, derived from rat (rrMOG), mouse (rmMOG) or human

(rhMOG) sequence, representing amino acids 1-125

RRMS Relapsing remitting MS

SPMS Secondary progressive MS

Treg Regulatory T cell

Wt mice Wild-type mice
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1. Multiple sclerosis

1.1 . Clinical features, epidemiology and aetiology
Multiple sclerosis (MS) is a chronic disabling disease of the central nervous system (CNS),
mostly affecting young adults. Clinical signs are heterogeneous, including a wide variety of
motor deficits such as muscle weakness, tremor and paralysis, often accompanied by sensory
deficits, such as visual impairment. In eighty-five percent of patients MS clinically presents
between the age of 20 and 40 as episodes of loss of motor and/or sensory function (relapses),
followed by periods of complete or incomplete recovery (remission). The relapsing remitting
(RRMS) phase is usually followed by the secondary progressive phase (SPMS) where motor
and sensory deficits gradually accumulate without periods of remission (Lublin and Reingold,
1996). In fifty percent of RRMS patients this occurs within 10 years after onset of disease,
and within 25 years after onset over ninety percent of patients that started with RRMS have
developed SPMS. The RR-SP disease course occurs in women and men in a ratio of 2:1. In
fifteen percent of MS patients, disease takes a primary progressive course (PPMS) without
distinct periods of recovery. Disease onset in these patients is generally later and the rate of
deterioration is higher than in SPMS. Intriguingly, the women to men ratio in PPMS patients is
1,3:1 suggesting that underlying pathogenetic mechanisms may be somewhat different than
in RR-SPMS (Cottrell et al., 1999).
The aetiology of MS is poorly understood. Disease preferentially affects individuals of Northern
European descent with geographical differences in disease incidence ranging from 1:20.000 in
equatorial areas to 1:1000 in the Netherlands, the United Kingdom, Southern Scandinavia and
Southern Canada (Rosati, 2001). This suggests that both genetic and environmental factors
contribute to MS susceptibility.
A considerable number of genetic polymorphisms, mostly in genes related to the immune
system, have been associated with MS susceptibility (van Veen et al., 2001; van Veen et al.,
2002; van Veen et al., 2003). However, associations are usually not very strong and often not
specific for MS. The only gene unambiguously associated with MS is HLA-DR. Carriers of the
HLA-DRB1*1501 haplotype have an increased risk of developing MS. However, even in this
case the relative risk is not higher than 2-4, theoretically increasing the chance of developing
MS from maximally 1:1000 to maximally 1:250 (Dyment et al., 2004). Nevertheless, the
concordance of MS in monozygotic (female) twins is thirty percent, compared to 2-3 percent
in dizygotic twins, emphasizing the relevance of genetic background (Dyment et al., 2004). It
is obvious that the genetics of MS are complex, and linkage studies including a large number
of genes and a large number of subjects are required to identify genetic patterns of susceptibility
(Hooper-van Veen, 2003).
Environmental factors implicated in MS pathogenesis include geographical differences in exposure
to sunlight (vitamin D) and infections, particularly viral infections in childhood (Marrie, 2004).
A large number of viral infections have been associated with MS, including measles virus and
herpes viruses but again no single culprit has been identified (Granieri et al., 2001; Stuve et
al., 2004).
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1.2. Myelin and demyelination
Neuropathologically, MS is characterized by focal areas of myelin loss (plaques), where myelin
is eventually replaced by an astrogliotic scar (‘sclerosis’).
Myelin is composed of oligodendrocyte membranes tightly wrapped around axons, forming a
layer of electrical insulation (Figure 1A). Myelin sheaths, together with the nodes of Ranvier -
short sections of unmyelinated axon that separate different segments of the myelin sheath -
form a prerequisite for rapid conduction of nerve impulses over relatively long distances. In
addition, myelin supports axonal growth and axonal survival. Adjacent myelin sheaths on one
axon usually belong to different oligodendrocytes, whereas processes from a single
oligodendrocyte form myelin sheaths around a varying number of axons, ranging from 1 to 40,
depending on the area of the CNS (Baumann and Pham-Dinh, 2001). The high lipid content of
myelin causes the white appearance of myelinated areas in the brain, hence called CNS white
matter. The myelin content in the cerebral cortex and the spinal cord medulla - the CNS grey
matter - is much lower, and the myelin sheaths that are present are thinner than in white
matter.
Seventy percent of myelin dry weight consists of lipids, including cholesterol, phospholipids,
glycolipids and glycosphingolipids, particularly galactosylceramides (GalC). Myelin proteins
comprise thirty percent of myelin dry weight. In contrast to myelin lipids, most of the proteins
are myelin specific. Although the function of some myelin proteins has been studied using
specific knockout mice, the role of most myelin proteins remains obscure (reviewed by Baumann
and Pham-Dinh, 2001).
Proteolipid protein (PLP, 50% of myelin protein) and myelin basic protein (MBP, 30% of myelin
protein) are two major myelin proteins in the CNS. PLP is a transmembrane protein with loops
extending into the cytoplasmic interface and the extracellular face of the oligodendrocyte
membranes (Figure 1B). PLP is thought to be important for stabilizing membrane layers to form
compact myelin. MBP is present on the cytoplasmic interface of the oligodendrocyte membranes
(Figure 1B) and exists in a number of isoforms. ‘Shiverer’ mice have a large deletion in the MBP
gene and are unable to form dense myelin sheaths, demonstrating that MBP is important for
myelin compaction. Four percent of CNS myelin protein consists of 2'-3'-cyclic nucleotide 3'-
phosphodiesterase (CNP), a protein with unknown function. Overexpression of CNP in transgenic
mice results in aberrant oligodendrocyte membrane expansion and inability of cytoplasmic
membranes to fuse to form compact myelin (Gravel et al., 1996). Myelin associated glycoprotein
(MAG) is a quantitatively minor myelin protein (1% of myelin protein) composed of a
transmembrane domain, an intracellular signalling domain and an extracellular, glycosylated
immunoglobulin-like domain (MAG) (Figure 1B). MAG expression is dense near the nodes of
Ranvier, where it is thought to contribute to the formation of the periaxonal cytoplasmic collar
of myelin sheaths. Myelin oligodendrocyte glycoprotein (MOG) is a member of the immunoglobulin
superfamily and a minor component of myelin. Despite the long-standing assumption that
MOG was the only CNS specific myelin protein, MOG mRNA expression was recently
demonstrated in peripheral myelin although protein expression was not detected (Pagany et
al., 2003). The MOG content of myelin was originally estimated to be 0.02% of CNS myelin,
but a recent study calculated MOG to make up 2,5% of CNS white matter (Smith et al.,
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Figure 1.

Myelin and myelin proteins.

(A) Drawing of an oligodendrocyte and a myelinated axon shows wrapping of oligodendrocyte membranes

into compact myelin (adapted from Bunge, 1968). (B) Schematic representation of CNS myelin proteins in

the oligodendrocyte membrane.
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2005). MOG is a transmembrane protein with an intracellular signalling domain and an extracellular
domain that contains one glycosylation site (Figure 1B). MOG is expressed on the outermost
lamellae of compact myelin. The physiological role of MOG is unknown. MOG knockout mice
were phenotypically indistinguishable from wild type mice and no myelin changes were observed
using light microscopy or electron microscopy (Delarasse et al., 2003). Crosslinking of MOG by
anti-MOG antibodies results in activation of proteins related to the cellular stress response
and cytoskeletal stability (Marta et al., 2005). The physiological ligand for MOG, and the
relevance of MOG signalling in health and disease are unknown.
Other myelin(-associated) proteins include oligodendrocyte specific protein (OSP), myelin
associated/oligodendrocyte basic protein (MOBP), oligodendrocyte-myelin glycoprotein (OMgp),
myelin/oligodendrocyte specific protein (MOSP) and the small heat shock protein �B-crystallin
(van Noort et al., 2000; Baumann and Pham-Dinh, 2001).
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1.3. Neuropathology
MS is classically considered as a disease of the CNS white matter, characterised by focal
areas of myelin loss. However, a number of studies in the last decade have demonstrated that
lesion formation and demyelination in grey matter areas are also common (Bö et al., 2003b).
MS lesions are most abundant in optic nerves, periventricular areas, brainstem, cerebellum,
cerebral cortex and spinal cord (Lumsden, 1970). Whereas white matter lesions are
characterized by infiltration of T cells and macrophages, leukocyte infiltration and inflammation
are uncommon in grey matter lesions, suggesting that the factors contributing to MS lesion
formation may be location-dependent (Peterson et al., 2001; Bö et al., 2003a; Brink et al.,
2005). Interestingly, axonal damage and axonal loss are common in both white and grey
matter MS lesions, suggesting that both inflammatory and non-inflammatory mechanisms
contribute to the neurological dysfunction in MS (Trapp et al., 1998; Peterson et al., 2001).
White matter lesions can be subdivided dependent on the inflammatory and demyelinating
activity (van der Valk and de Groot, 2000). Inflammatory activity is characterized by the
presence of macrophages/microglia expressing high levels of HLA-DR. Demyelinating activity
is characterized by the presence of phagocytic macrophages/microglia containing intracellular
myelin proteins (MBP, PLP or Luxol Fast Blue positive particles). Active demyelinating MS
lesions show both inflammation and demyelination and are thought to represent ongoing
demyelination (Lassmann et al., 1998).

1.4. Neuroimmunology
Several paradigms have been proposed to explain the formation of MS lesions. Infiltration of
the CNS parenchyma by activated T cells directed against myelin antigens, followed by
accumulation of activated macrophages, may cause radially expanding lesions resulting in
demyelinated plaques with an inflammatory border and astrogliosis in the centre (Hartung and
Rieckmann, 1997). This hypothesis is based predominantly on results obtained in the animal
model that is used to study MS in vivo, experimental allergic encephalomyelitis (EAE).
Immunization of rodents or non-human primates with myelin antigens induces a peripheral T
cell response directed against myelin. Activated T cells migrate to the CNS, cross the blood
brain barrier (BBB) and enter the CNS parenchyma. The subsequent release of inflammatory
mediators results in activation of microglia and recruitment of monocytes from the blood.
Monocyte extravasation is an essential event for demyelination and clinical signs of EAE, as
shown by the absence of clinical EAE in macrophage-depleted animals (Huitinga et al., 1990;
Huitinga et al., 1995).
In contrast to EAE, in MS it is unknown what initiates the activation of T cells or even if
activation of T cells is a primary event. Myelin specific T cells are present in the peripheral
blood of MS patients but also in healthy donors (Sun et al., 1991b; Lindert et al., 1999;
Andersson et al., 2002). It is not exactly clear to what extent peripheral tolerance exists for
myelin antigens. Not all myelin proteins are expressed in the thymus and in some cases such
as MBP thymic expression is restricted to a different isoform, suggesting that some myelin
antigens may be regarded as non-self (Klein et al., 2000; Bruno et al., 2002). Seclusion of
myelin antigens from the periphery by the BBB has been suggested to prevent reactivation of
myelin specific T cells by ignorance under normal circumstances. However, expression of
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other myelin proteins was clearly demonstrated in the thymus and in non-immune peripheral
tissue (Derbinski et al., 2001; Bruno et al., 2002), suggesting that the inactive state of myelin
specific T cells in healthy individuals can not be explained by immunological ignorance. Recent
studies suggest that the activation of myelin specific T cells in healthy individuals is actively
suppressed by regulatory T cells (Treg) or regulatory NK cells and that the functional activity
of Treg is reduced MS patients (Takahashi et al., 2004; Viglietta et al., 2004).
One theory for the activation of myelin specific T cells is by molecular mimicry after viral
infection although superantigenic activation or bystander activation following microbial infection
have also been proposed (Bronstein et al., 1999a; Torres et al., 2001; Haring et al., 2002;
Tejada-Simon et al., 2003; Croxford et al., 2005). However, most viruses that have been
associated with MS are endemic in the normal population, suggesting that viral infection
alone is not sufficient to induce MS (Stuve et al., 2004).
Detailed analysis of active demyelinating MS lesions from patients with acute MS showed that
four different immunopathological patterns of demyelination could be identified (Lucchinetti
et al., 2000). Pattern I lesions were compatible with the classical model of T cell initiated
demyelination: lesions were centred around blood vessels and inflammatory infiltrates consisted
of T cells and macrophages with a distribution suggestive of radial expansion. Macrophages
and activated microglia were associated with degenerating myelin at the (well-defined) border
of the lesions. Pattern II was characterized by depositions of complement and immunoglobulins
at the site of active demyelination, in lesions that looked otherwise very similar to pattern I.
Patterns III and IV were characterized by oligodendrocyte loss. Demyelination in pattern III
lesions was not centred around blood vessels, and the border of the lesions was ill-defined.
Oligodendrocytes in pattern III lesions showed preferential loss of MAG immunopositivity and
were often apoptotic. Pattern IV lesions were distinct from pattern III as pattern IV lesions
showed a well-defined border, with a rim of active demyelination and apoptotic oligodendrocytes.
In pattern IV oligodendrocytes did not show preferential loss of MAG. The patterns of
demyelination were heterogeneous between patients, but not within multiple active lesions
from one patient. Thus, the heterogeneity of lesions may represent heterogeneity of
pathogenesis (Lucchinetti et al., 2000). Pattern II lesions were observed in 50-60% of patients,
suggesting a role for antibody and complement mediated demyelination in a large proportion
of MS patients. The patients included in this study all had acute MS with severe clinical
episodes, it is unknown to what extent the heterogeneity of MS lesions is observed in patients
with milder and chronic forms of MS.
Heterogeneity of MS lesions was not supported by a recent study, that suggested that
oligodendrocyte apoptosis is the primary event in MS lesion formation, later followed by T cell
infiltration and macrophage activation (Barnett and Prineas, 2004). Large areas of
oligodendrocyte apoptosis were observed in acute MS lesions, the location of which could be
linked directly to the fatal clinical event, demonstrating that these lesions were very recent.
Infiltration of T cells and macrophages was absent in these apoptotic lesions, although mild
activation of microglia and complement activation were observed. In the same patients, the
more ‘classical’ MS lesions (patterns I and II), characterised by leukocyte infiltration were
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observed as well. These lesions were suggested to represent a later stage of lesion formation,
secondary to oligodendrocyte apoptosis.
Whether initiated by primary T cell activation or oligodendrocyte apoptosis, monocyte infiltration
is thought to be an essential step in MS lesion formation. This was demonstrated in rodents
depleted of blood monocytes, where clinical signs of EAE were suppressed (Huitinga et al.,
1990; Tran et al., 1998). In addition, macrophages are the most abundant cell type in active
demyelinating MS lesions, emphasizing the central role of macrophages in demyelination.
Macrophages are thought to contribute to CNS inflammation and demyelination by the release
of inflammatory mediators and phagocytosis of myelin. Electron microscopy (EM) studies
showed that macrophages in MS lesions are in direct contact with the axons (Prineas and
Connell, 1978), and macrophage processes were observed to infiltrate between the axon and
the myelin sheath, suggesting that macrophages directly ‘eat’ myelin from the axons.
Macrophages express phagocytic receptors that directly bind myelin, such as scavenger
receptors and lectin receptors (Mosley and Cuzner, 1996). In addition, macrophages express
IgG receptors (Fc� receptors) and complement receptors that bind myelin after opsonisation
by antibodies and complement. Fc� receptors and complement are discussed in more detail
below.
Besides T cells and macrophages, a number of other cell types have been implicated in the
formation of MS lesions, including mast cells, NK cells and B cells. Of these cells, the role of B
cells in MS has been studied most extensively. A short overview of B cell development and
antibody production is provided in Box 1.1.

Box 1.1. B cells and immunoglobulins

B cells originate from lymphoid precursors in the bone marrow and account for 10-15% of blood
lymphocytes. Their main functions are production of immunoglobulins (Ig) and antigen presentation
to T cells. Antigen (Ag) specificity of B cells is determined by the B cell receptor (BCR) that consists
of a membrane bound Ig molecule associated with the Ig�/Ig� heterodimer. Mature naïve B cells
express low levels of low affinity membrane bound IgM molecules. Encounter of specific Ag induces
B cell activation and differentiation, resulting in secretion of low affinity IgM in pentameric form. B
cell activation occurs predominantly in the lymph nodes, where follicular dendritic cells, that have
captured Ag in the form of immune complexes, present Ag to B cells. Like T cells, B cells require
more than just the presence of specific Ag to become fully activated. The additional activating
signal can be provided by CD4+ T cells or by microbial Ag.

T cell-dependent B cell activation. After binding of protein Ag, B cells internalise the BCR-Ag
complex, process the Ag and present it as a peptide in MHCII molecules. Recognition of the MHC-
peptide complex by memory (but not naïve) CD4+ T cells results in activation of B cells, but also in
enhanced activation of the T cell through costimulatory interactions (such as CD40-CD40L and
B7-CD28). B cells subsequently undergo somatic hypermutation of the IgV genes, resulting in the
selection of high affinity BCR and production of high affinity antibodies (affinity maturation). In
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addition, rearrangement of the heavy chain genes results in the selection of another IgFc tail,
changing the antibody isotype from IgM to IgG, IgA or IgE (isotype switching). Isotype switching
alters antibody effector function without altering Ag specificity. Differentiation and affinity maturation
result in the generation of memory B cells that express a high affinity BCR, produce low levels of
antibody and can undergo new cycles of activation and differentiation upon reencounter with the
Ag. Alternatively, B cells may develop into end-differentiated plasma cells that have lost all surface
Ig and continuously secrete high levels of antibody.

T cell-independent B cell activation. High doses of microbial Ag (for instance bacterial
lipopolysacharide) activate B cells regardless of Ag specificity (polyclonal activation), whereas lower
doses only activate Ag specific B cells although without T cell help. The alternative route of T cell-
independent B cell activation is by repeating linear Ag that simultaneously crosslink multiple Ag
specific BCR. Isotype switching or development of memory B cells do not occur after T cell
independent B cell activation.

Antibodies and immune complexes. Immunoglobulins bind Ag in their native form, including
conformational epitopes. This is in contrast to T cells that recognize peptide antigens (linear epitopes)
in the context of MHC molecules. Binding of antibodies to soluble Ag results in the formation of
immune complexes (IC), whereas binding to particulate Ag, expressed on the surface of
microorganisms or cells, results in opsonisation of the particle, efficiently targeting the particles
removal by mononuclear phagocytes. The effector functions of immunoglobulins depend on the Ig
isotype. Binding of pentameric IgM to Ag results in efficient complement fixation, facilitating capture
and removal of the Ag by phagocytes. IgG-containing IC are capable of complement fixation and
crosslinking of leukocyte Fc� receptors (Fc�R), inducing a variety of effector functions (including
Fc�R mediated phagocytosis, Ag presentation and antibody dependent cytotoxicity). IgA antibodies
are secreted as dimers in the lumina of mucosal surfaces and mainly act as neutralising antibodies,
in blood IgA occurs as monomers with unknown function. IgE antibodies act as Ag receptors on
mast cells by Fc-mediated binding to mast cell Fc� receptors that are capable of inducing potent
inflammatory reactions after cross-linking by Ag (Peakman and Vergani, 1997; Janeway, Jr. et al.,
2001).

B cells as antigen presenting cells (APC). Although B cells are poor activators of naïve T cells,
memory B cells are potent APC that were shown to be important for the propagation of T cell
responses in several autoimmune diseases, including classically T cell mediated diseases  (Falcone
et al., 1998; Takemura et al., 2001).
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2. B cells, antibodies, Fc����� receptors and complement in MS

B cells are observed in active demyelinating MS lesions and can contribute to lesion formation
by the production of myelin specific antibodies (Baranzini et al., 1999). A recent study described
formation of ectopic B cell follicles in the meninges of MS patients, suggestive of intrathecal
differentiation of B cells and local shaping of the antibody response (Serafini et al., 2004). In
addition, expression of CXCL13, a chemokine involved in chemoattraction of B cells and
lymphoid neogenesis (Luther et al., 2000; Cupedo and Mebius, 2003), in areas of perivascular
infiltration suggests that similar processes may also occur at other locations in the MS brain
(Corcione et al., 2004). Furthermore, B cells can contribute to MS lesion formation from the
periphery, by releasing antibodies directed against myelin antigens into the circulation.
However, the role of B cells and the relevance of anti-myelin antibodies in MS is poorly
understood, despite the overwhelming evidence for B cell activation in MS and the capacity
of anti-myelin antibodies to exacerbate CNS inflammation and demyelination in vivo (Linington
et al., 1988).

2.1. CSF oligoclonal immunoglobulin bands and anti-myelin antibodies
CSF oligoclonal immunoglobulin bands (OCB) reflect intrathecal production of immunoglobulins
by specific clones of B cells, directed against antigens that are present in the CNS. Using
isoelectric focusing techniques, OCB are detected in at least ninety percent of MS patients
(McLean et al., 1990; Bourahoui et al., 2004). The presence of OCB in the CSF of patients
who present with clinically isolated syndrome (CIS) is predictive for the development of
clinically definite MS (Paolino et al., 1996). The absence of CSF OCB has been correlated with
benign disease course, whereas high intrathecal immunoglobulin production has been
associated with the most malignant forms of MS, suggesting that OCB may be clinically
relevant (Correale and de los Milagros Bassani Molinas, 2002). However, OCB are also detected
in a number of other neurological diseases, although not as consistently as in MS. In addition,
OCB in other neurological diseases are usually transient (Correale and de los Milagros Bassani
Molinas, 2002), whereas OCB in MS are persistent as shown by sequential analysis of CSF
samples  (Correale and de los Milagros Bassani Molinas, 2002; Bergamaschi et al., 2004),
suggesting ongoing intrathecal production of antibodies.
The antigen specificity of OCB in MS is largely unknown. It has been reported that OCB are
detected against MBP and viral antigens, although generally the IgG in the OCB do not
represent responses against myelin or infectious agents (Cross et al., 2001; Correale and de
los Milagros Bassani Molinas, 2002). In neurological diseases associated with the presence of
foreign antigens in the CNS, the antigen specificity of OCB is usually directed against those
foreign antigens, suggesting that OCB represent an antibody response driven by local antigens.
It is possible that OCB in MS are directed against antigens that are yet unknown (p.e. viral
antigens or modified self-antigens). OCB are not only detected in CSF, but can also be eluted
from MS lesions (Warren and Catz, 1993), suggesting that at least part of the OCB found in
the CSF are produced at the site of demyelination.
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Apart from the presence of OCB, antibodies directed against a wide range of myelin antigens
have been described in the CSF and serum of MS patients (Cross et al., 2001; Correale and
de los Milagros Bassani Molinas, 2002). The results obtained by the different laboratories are
variable, probably due to the variety of antigens and methods that are used for screening
although the differences most likely also reflect the heterogeneity of the anti-myelin antibody
response in MS patients. Myelin specific antibody responses are not specific for MS, antibodies
directed against myelin antigens are also detected in a number of other neurological diseases
(such as viral and bacterial meningitis) and healthy donors (Reindl et al., 1999). However, a
subset of MS patients appears to show an enhanced anti-myelin antibody response. The
available literature on anti-myelin antibodies in MS is extensive, therefore a selection of the
literature is summarised below.
Generally, the presence of anti-myelin antibodies in CSF is more specific for MS than the
presence of anti-myelin antibodies in serum. Enhanced CSF antibody responses against PLP,
MBP, MOG, CNP, OSP and MAG were reported in MS patients when compared to healthy
donors (Sun et al., 1991b; Warren and Catz, 1994; Sellebjerg et al., 1994; Walsh and Murray,
1998; Bronstein et al., 1999b; Andersson et al., 2002; Markovic et al., 2003). In some
studies the CSF anti-myelin antibody response correlated with active disease (Warren and
Catz, 1989), but others could not confirm this (Markovic et al., 2003). Although the CSF anti-
MBP response has been reported to be specific for MS (Warren and Catz, 1999), most studies
found production of anti-myelin antibodies in other inflammatory neurological diseases (OIND)
as well (Sellebjerg et al., 1994; Andersson et al., 2002; Markovic et al., 2003). Similar to the
OCB the CSF IgG response to myelin antigens in MS seems to be persistent, whereas in OIND
the response is usually transient (Link et al., 1990; Sellebjerg et al., 1994; Walsh and Murray,
1998).
Anti-myelin antibody responses in serum are more diverse and less specific for MS than
those in the CSF. However, serum is easier to obtain than CSF, and the use of serum facilitates
serial sampling. Therefore many groups have screened MS patients for serum antibodies
directed against myelin proteins.
Most screenings for anti-myelin antibodies were performed in search of biomarkers to
distinguish MS patients from healthy donors or to distinguish subgroups of MS patients, an
approach that has recently shown promising results (Berger et al., 2003). Elevated serum
antibody responses or enhanced numbers of B cells secreting antibodies against MAG, MOG,
PLP, �B-crystallin, MBP and CNP have been observed in MS patients when compared to
healthy donors (Sun et al., 1991a; Sun et al., 1991b; Walsh and Murray, 1998; Lindert et al.,
1999; Schmidt et al., 2001; Andersson et al., 2002; Vojdani et al., 2003; Gaertner et al.,
2004), whereas other studies reported that serum anti-myelin antibody responses in MS and
healthy donors were comparable (Xiao et al., 1991; Sellebjerg et al., 1994; Lampasona et
al., 2004).
In summary, antibody responses against a wide variety of myelin proteins have been described
in serum and CSF of MS patients, but none of these antibody specificities were specifically
associated with MS. The most consistent finding was that enhanced anti-myelin antibody
responses were restricted to a subpopulation of MS patients, supporting the hypothesis that
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different pathogenetic mechanisms play a role in different groups of MS patients (Lucchinetti
et al., 2000). One study reported that the epitope specificity of anti-MOG antibodies in MS
patients was different from healthy donors (Tejada-Simon et al., 2002). This suggests that
rather than being enhanced, anti-myelin antibody responses in MS may be directed against
different epitopes. In addition, anti-myelin antibody responses may vary in different stages
of the disease as a result of epitope spreading, as has been described for T cell epitopes in
MS (Tuohy et al., 1999). Less is known about determinant spreading of B cell epitopes,
although the phenomenon has repeatedly been described in EAE (McFarland et al., 1999;
Bischof et al., 2004). Another possibility is that it is necessary to combine the analysis of
antibody responses against multiple myelin antigens to identify an anti-myelin antibody
response specific for MS. As the combined studies performed thus far were limited to two or
three myelin antigens, this remains to be addressed in the future.

Box 1.2.  Fc����� receptors (Fc�����R)

Fc� receptors (Fc�R) efficiently combine humoral immunity with cellular immunity and innate immunity
with adaptive immunity by enabling phagocytes to selectively phagocytose antibody-opsonised
targets. In addition, co-expression of activating and inhibitory Fc�R on myeloid and lymphoid cells
provides a sensitive regulatory mechanism for activation of leukocytes (van de Winkel and Capel,
1993; Ravetch and Bolland, 2001).

Human Fc�R The human Fc�R system consists of three Fc�R subclasses, Fc�RI (CD64), Fc�RII
(CD32) and Fc�RIII (CD16), all of which are encoded by genes on chromosome 1 (1q21-24). Fc�R
belong to the Ig superfamily and contain two (Fc�RII and III) or three (Fc�RI) Ig-like extracelullar
domains, one transmembrane domain and cytoplasmic domains of variable length (van de Winkel
and Capel, 1993) (table). Fc�RIa (CD64) is a 72 kDa transmembrane protein and the only functional
human Fc�RI. Fc�RIa is a high affinity receptor that is capable of binding monomeric IgG in addition
to immune complexes (IC). For optimal surface expression and signal transduction, Fc�RI depends
on association with a dimer of the FcR� chain that contains an intracellular immunoreceptor tyrosine-
based activation motif (ITAM). In the absence of the FcR� chain, surface expression of Fc�RI is
severely reduced and most effector functions are severely impaired. Fc�RII (CD32) is a 40kDa
transmembrane protein that binds IC. Human leukocytes express two functional Fc�RII receptors,
Fc�RIIa and Fc�RIIb.  Fc�RIIa is an activating receptor that contains an intracellular ITAM, and is
independent of the FcR� chain for functional expression and signalling. Fc�RIIb is the only inhibitory
Fc�R found in humans and has an immunoreceptor tyrosine-based inhibitory motif (ITIM) in its
intracellular domain. Fc�RIII (CD16) is a 50-80 kDa protein, existing in two isoforms: Fc�RIIIa and
Fc�RIIIb both of which bind IC. Fc�RIIIa is a transmembrane receptor that is dependent on
association with a signalling molecule for functional expression. Fc�RIIIa primarily associates with
a dimer of the FcR� chain, but association with a dimer of the CD3� chain or a heterodimer of the
� and � chain is also possible (Letourneur et al., 1991). Fc�RIIIb is a glycophosphatidylinositol
(GPI) linked molecule that lacks a transmembrane domain. Fc�RIIIb is thought to capture IC without
inducing inflammation (Daeron, 1997). The cellular expression of human Fc�R is indicated in the
table
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2.2. Pathogenetic relevance of anti-myelin antibodies in MS
Although the reports on serum and CSF antibodies in MS are confusing, several lines of
evidence suggest that antibodies actively contribute to MS pathogenesis. Evidence for the
role of B cells in MS is mostly observational, however experimental studies have shown that
antibodies directed against myelin components can contribute to inflammation and more
importantly demyelination in the CNS. Studies on functional relevance of anti-myelin antibodies
have focussed on antibodies directed against MOG, mostly because the pathogenic capacity
of MOG and anti-MOG antibodies was unequivocally demonstrated in EAE (Linington et al.,
1988; Morris-Downes et al., 2002). The functional role of B cells and antibodies in EAE is
discussed in Chapter 2.
A recent study showed that serum anti-MOG antibodies in patients who present in the clinic
with CIS, are a strong predictor for rapid progression to clinically definite MS. The association
was even stronger when patients showed antibodies directed against both MOG and MBP
(Berger et al., 2003), suggesting that antibody responses against multiple myelin antigens
contribute to disease progression. Pathological examination of active demyelinating MS lesions
from a large group of early MS patients showed deposition of antibodies in fifty percent of
patients (Lucchinetti et al., 2000). Another study showed that part of the antibodies eluted
from MS plaques were specific for MBP (Bernard et al., 1981; Warren and Catz, 1993;
Wucherpfennig et al., 1997) and EM studies showed antibodies directed to MOG and MBP in
association with degenerating myelin and within phagocytic macrophages (Genain et al.,
1999). This suggests that anti-myelin antibodies are associated with myelin phagocytosis in
ongoing CNS demyelination. Antibodies can efficiently enhance myelin phagocytosis in vitro
through crosslinking of Fc� receptors (Fc�R, Box 1.2), or by activation of the complement
system (Box 1.3). Both Fc�R and complement have been implicated in the formation of MS
lesions.

2.3. Fc����� receptors in myelin phagocytosis and CNS inflammation
Microglia and perivascular macrophages, the resident macrophages of the CNS, constitutively
express Fc�RI, Fc�RII and Fc�RIII. In addition, low levels of Fc�RIII are expressed on vascular
endothelium in the CNS (Ulvestad et al., 1994). In 1981, Prineas et al. demonstrated that
macrophages located at the demyelinating edge of MS plaques showed polar capping with
surface IgG, suggestive of receptor-mediated phagocytosis of antibody-opsonised particles
(Prineas and Graham, 1981). This, in combination with enhanced expression of Fc�RI and -
II in MS lesions (Ulvestad et al., 1994) suggests that Fc�R- mediated phagocytosis contributes
to demyelination. However, colocalisation of antibodies and Fc�R in active demyelinating MS
lesions is yet to be demonstrated.
In vitro studies showed that antibodies directed against myelin antigens enhanced uptake of
myelin or myelin proteins by both macrophages and microglia in heat-inactived serum (Trotter
et al., 1986; Goldenberg et al., 1989; Smith, 1993; Van der Goes et al., 1999). Antibody-
mediated uptake of myelin proteins was formally shown to be Fc�R mediated by Abdul-Majid
et al. (2002) who showed that antibody-mediated uptake of MOG was impaired in macrophages
lacking functional expression of Fc�RI and Fc�RIII (Abdul-Majid et al., 2002).
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In addition to enhanced myelin phagocytosis, interactions between anti-myelin antibodies
and Fc�R can contribute to local inflammation in the CNS. The oxidative burst that is associated
with myelin uptake by microglia was enhanced in presence of monoclonal anti-MBP IgG
(Williams et al., 1994). In addition, crosslinking of microglial Fc�R by IgG-coated beads
induced the production of superoxide and the release of inflammatory chemokines (Song et
al., 2002; Ueyama et al., 2004). The role of antibodies and Fc�R in CNS demyelinating
disease was further addressed in vivo using different strains of B cell- and Fc�R-knockout
mice. These studies are discussed in Chapter 2.

2.4. Complement in myelin phagocytosis and CNS inflammation
Deposition of anti-myelin antibodies on myelin debris or directly on intact myelin sheaths
may result in activation of the classical pathway of complement (Box1.3). Indeed, deposition
of complement and IgG have often been observed within the same MS lesion (Gay et al.,
1997; Lucchinetti et al., 2000; Barnett and Prineas, 2004), however colocalisation studies of
complement and IgG on myelin sheaths, or in phagocytic cells, have not been performed.
Analysis of myelin phagocytosis in vitro showed that antibody-mediated phagocytosis in
fresh serum was significantly higher than in heat-inactivated serum, demonstrating cooperation
of complement- and Fc�R-mediated pathways (Van der Goes et al., 1999).
Complement can also be activated by myelin in absence of antibodies (Vanguri et al., 1982),
through direct binding of C1q and C3 to myelin proteins (van der Laan et al., 1996; Johns
and Bernard, 1997). Antibody-independent complement activation can also occur through
binding of C1q to apoptotic cells. This may have been the case in the acute MS lesions
described by Barnett et al. (2004), where extensive oligodendrocyte apoptosis was
accompanied by complement activation in absence of IgG.
Immunohistochemical studies on MS autopsy material demonstrated that active demyelinating
MS lesions typically show a diffuse pattern of immunostaining for complement proteins and
IgG, probably reflecting leakage of serum proteins through the locally disrupted blood brain
barrier (BBB). In addition, complement activation products were observed in capillary walls,
on astrocytes and occasionally on oligodendrocytes, myelin and neurons (Compston et al.,
1989; Gay and Esiri, 1991).
In areas of active demyelination, complement activation products and the terminal complex
of complement activation (MAC) were observed on myelin sheaths or within phagocytic
macrophages (Storch et al., 1998; Barnett and Prineas, 2004). In fact, deposition of
complement and IgG in active demyelinating lesions was suggested to represent a distinct
immunopathological subtype of MS (Lucchinetti et al., 2000).
Presence of complement activation products within phagocytic macrophages in active
demyelinating MS lesions suggests a role for complement in myelin phagocytosis. Indeed,
complement was shown to enhance myelin phagocytosis in vitro by opsonisation and uptake
through complement receptor 3 (CR3), but also by MAC-mediated fragmentation of myelin
particles facilitating myelin uptake by other receptors (van der Laan et al., 1996; Mosley and
Cuzner, 1996; DeJong and Smith, 1997). In addition, CR3 could mediate myelin phagocytosis
in the absence of soluble complement, presumably through direct binding of CR3 to myelin



General introduction

26

carbohydrates (Bruck and Friede, 1990a; Bruck and Friede, 1990b). Less is known on the role
for other complement receptors in myelin phagocytosis. However, expression of CR4 and the
phagocytic C1q receptor C1qRp on microglia and macrophages suggests that these receptors
may contribute to myelin uptake as well (Webster et al., 2000; Gasque et al., 2000).
The origin of complement in MS lesions is unknown. The diffuse staining pattern in active
demyelinating MS lesions is indicative of leakage from serum. However, resident brains cells
produce low levels of complement proteins under normal physiological conditions (Shen et
al., 1997; Walker et al., 1998; Thomas et al., 2000; Hosokawa et al., 2003), and expression
of complement mRNA is upregulated during neuroinflammation, such as in Alzheimer’s disease,
Huntington’s disease or bacterial meningitis (Veerhuis et al., 1996; Stahel et al., 1997;
Yasojima et al., 1999; Singhrao et al., 1999). This, in addition to the expression of complement
receptors in the CNS (Akiyama and McGeer, 1990; Gasque et al., 1996; van Beek et al.,
2003) demonstrates that a local complement-mediated inflammatory response can be induced.
It is unknown if local production of complement proteins plays a role in MS, although enhanced
CSF complement protein concentrations in MS patients (corrected for leakage from peripheral
blood) suggest intrathecal complement synthesis (Sellebjerg et al., 1998).
The question of how complement activation affects lesion formation in MS remains. Whereas
complement activation can be detrimental in acute CNS inflammation (e.g. cerebral ischaemia),
complement activation and subsequent complement-mediated uptake of �-ameloid in
Alzheimers’ disease was suggested to be beneficial (van Beek et al., 2003). Other regulatory
effects of complement on CNS cells have also been described, such as complement-induced
oligodendrocyte proliferation or complement-induced release of neural growth factors (Heese
et al., 1998; Soane et al., 1999). In vivo studies on the role of complement activation in CNS
demyelinating disease have yielded contradicting results and will be discussed in Chapter 2.

Box 1.3. The complement system

The complement system consists of a large group of plasma proteins that are inactive under normal
physiological conditions. Activation of the complement system is initiated by binding of complement
proteins to immune complexes (IC), pathogens or modified self-antigens. Binding of the first
complement component induces a cascade of reactions that results in opsonisation or lysis of
pathogens or clearance of apoptotic cells. Three pathways of complement activation have been
identified, the classical pathway, the mannan-binding lectin (MBL) pathway and the alternative
pathway (figure 1).

The classical pathway. The classical pathway is activated by binding of C1q to IC or to apoptotic
cells. In its inactive state, C1q forms a complex with C1r and C1s. This complex disintegrates upon
binding of C1q to IC, releasing C1r and C1s from the complex, thereby exposing an enzymatic site
on C1r that cleaves C1s to become an active protease. C1s then initiates a cascade of reactions,
leading to cleavage of complement C4, C2, C3 and C5. After cleavage one part of the protein is
released as an inflammatory mediator (C2a, C4a, C3a and C5a) and the other part either acts as
a new enzyme (C2b) to cleave other complement components or binds to the pathogenic or apoptotic
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surface as an opsonin (C4b, C3b). Binding of C5b to C3b to the opsonised surface initiates the
final pathway of complement that is shared by all three pathways. C5b forms a complex with C6,
C7 and C8, which inserts itself into the membrane. C9 molecules then bind to this complex and
polymerise, forming a pore in the pathogenic membrane - the membrane attack complex (MAC) -
that contributes to lysis of the pathogen.

The MBL pathway. The MBL pathway is similar to the classical pathway. In its inactive state, MBL
forms a complex with two inactive proteases, MASP-1 and MASP-2. Binding of MBL to
carbohydrates on pathogenic surfaces releases and activates MASP-1 and MASP-2, resulting in
cleavage of C4 and C2 and further activation of the complement cascade similarly to the classical
pathway.

The alternative pathway. The alternative pathway is initiated by direct binding of C3 to pathogens,
followed by activation of a series of proteins (factor B, factor D and factor P) that amplify the
response by cleaving more C3 into C3a and C3b. C5b then binds to C3b, initiating the final pathway
of complement.

Complement receptors. After complement opsonisation, pathogens or apoptotic cells can induce
leukocyte activation or phagocytosis mediated by complement receptors (CR). CR1 (CD35) is
expressed on myeloid cells and B cells and binds surface-bound C1q, C3b, C4b, MBL and the
inactivated form of C3b (iC3b). CR1 cannot directly mediate phagocytosis, but the uptake of
complement-opsonised targets under inflammatory conditions is greatly enhanced after CR1
crosslinking. B cells and follicular dendritic cells (FDC) recognize surface-bound C3d through
CR2 (CD21). CR2 forms a complex with CD19, and crosslinking of this complex by C3d-opsonised
antigens results in sustained B cell activation. CR3 (CD11b/CD18) and CR4 (CD11c/CD18) are
expressed predominantly on myeloid cells and mediate phagocytosis of C3b opsonised targets.
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3. Outline of the thesis

The role of humoral immunity in MS has received renewed attention in the last few years for
a number of reasons (Lucchinetti et al., 2000; Berger et al., 2003). Anti-myelin antibodies
are thought to contribute to MS pathogenesis in a subpopulation of patients, possibly through
crosslinking of Fc�R and complement activation, although the relative contribution of these
effector pathways is unclear and require further study. It is, at present, not possible to
identify MS patients with antibody-mediated pathology without further characterization using
immunohistochemical methods on biopsy or autopsy CNS tissue. The availability of an easier
and less invasive method to identify this subgroup of patients would provide a powerful tool
to select patients who may benefit from immunotherapy aimed at antibody-mediated disease,
such as intravenous immunoglobulins (IVIg). Development of a laboratory assay to identify
anti-myelin antibodies in serum could possibly provide such a tool, provided that the test is
able to reliably identify the pathogenically relevant antibodies.
The studies described in this thesis aimed to further elucidate the relevance of anti-myelin
antibodies, Fc�R- and complement-mediated mechanisms in MS and to identify antibodies
directed against native human myelin antigens in the serum of MS patients.
In Chapter 2 the role of humoral immunity in EAE is reviewed and in Chapter 3 we address
the role of Fc�R in the induction of EAE and antibody-mediated demyelination. The relevance
of genetic Fc�R polymorphisms for MS susceptibility is addressed in Chapter 4.  In Chapter
5 we examined the extent of complement, antibody deposition and Fc�R expression in active
demyelinating lesions in chronic MS. Chapter 6 describes a new assay to detect antibodies
directed against whole myelin in serum of MS patients. The clinical relevance of serum anti-
myelin antibodies is addressed in Chapter 7. In Chapter 8, the findings from this thesis are
summarised in the context of recent developments in MS research.
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1. Experimental Allergic Encephalomyelitis (EAE)

A wide variety of models exist to study mechanisms underlying multiple sclerosis (MS) in vivo.
CNS inflammation and demyelination can be induced in laboratory animals by immunisation
with myelin antigens (experimental allergic encephalomyelitis, EAE), by infection with neurotropic
viruses such as Theiler’s murine encephalomyelitis virus (TMEV) or mouse hepatitis virus
(MHV), or by intracerebral injection of toxins (e.g. cuprizone) (Van der Goes et al., 2001).
Immunological processes contributing to CNS inflammation and demyelination, including the
role of humoral immunity, are mostly studied in models of EAE.
EAE can be induced in a number of rodent and primate species by immunisation with CNS
homogenate or purified myelin proteins in adjuvant (active immunisation). Generally, immunisation
with myelin antigens induces a T cell mediated autoimmune response. T cells specific for
myelin antigens are activated in the periphery, migrate to the CNS, cross the blood brain
barrier (BBB) and enter the CNS parenchyma. Local re-activation of myelin specific T cells
results in the activation of microglia and perivascular macrophages and the recruitment of
peripheral blood monocytes to the CNS parenchyma. Macrophages then start a local
inflammatory and demyelinating response that results in the motor deficits that are the read-
out system for clinical EAE.
The pivotal role of T cells has been demonstrated in models of adoptive transfer EAE (passive
immunisation). Activated T cells from actively immunized animals can be isolated and transferred
to naïve animals, resulting in a CNS inflammatory and demyelinating response and clinical
signs of EAE (Trotter et al., 1985).
However, the characteristics of EAE in the different models, such as disease incidence, day of
disease onset, disease severity and the extent CNS inflammation and demyelination may
depend on the additional factors, such as the activation of the humoral immune response.
Antibodies and complement are thought to be particularly relevant for demyelination in chronic
models of EAE. In addition, the development of antibody, Fc�R and complement knockout
mice in the last decade has provided some evidence that humoral mechanisms also contribute
to the preclinical phase and the induction of EAE.
The contribution of the B cells, antibodies and complement is highly variable in the different
models of EAE, and therefore it is often difficult to compare the results obtained in the
different studies. In this chapter, we review the studies of humoral immunity in EAE and
interpret the results, focussing on the role of B cells, antibodies, Fc� receptors (Fc�R) and
complement in the induction and progression of EAE. Furthermore, we address the relevance
of Fc�R and complement in antibody-mediated demyelination.
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2. Humoral immunity in EAE – the ‘ pre-knockout’ era

2.1. Antibody-mediated demyelination
Before the development of B cell deficient mouse strains it was technically difficult to dissect
the role of T cells and B cells in the induction EAE. Therefore, the capacity of antibodies to
contribute to CNS demyelination in vivo was addressed by injecting naïve animals with anti-
myelin antibodies. The role of complement in EAE could be addressed directly by treating
animals with cobra venom factor (CVF) resulting in rapid consumption and depletion of
complement. Using a combination of these techniques, it was shown that sera of guinea pigs
with spinal cord homogenate (SCH)-induced EAE could induce demyelination in naïve rats
after intracerebral but not intravenous injection. Demyelinating activity was restricted to
serum that was drawn from guinea pigs in the chronic phase of EAE, and the demyelinating
capacity of EAE serum was abolished after complement depletion. Despite considerable
demyelination, recipient rats did not show clinical signs of EAE (Lassmann et al., 1981). These
results highlight four characteristics of antibody-mediated demyelination that were repeatedly
confirmed in later studies (Linington et al., 1988; Morris-Downes et al., 2002): (1) antibodies
can induce demyelination in vivo, (2) antibodies can not induce clinical EAE in absence of a T
cell response, (3) demyelinating antibodies are produced in the chronic phase of EAE, and (4)
complement activation contributes to antibody-mediated demyelination.
Using the same approach, Linington and Lassmann showed in 1987 that the in vivo demyelinating
capacity of guinea pig serum was correlated with the titre of anti-MOG antibodies, but not
with anti-MBP and anti-PLP antibody titres (Linington and Lassmann, 1987). Anti-MOG antibody
titres in guinea pigs with EAE increased over time, explaining that serum obtained in the
chronic, but not the acute phase of EAE, could induce demyelination. Since then, studies on
antibody-mediated demyelination have focused on anti-MOG antibodies.
Although unable to directly induce clinical EAE, anti-MOG antibodies have been shown to
exacerbate clinical signs of EAE. A single injection with anti-MOG antibodies at the onset of
acute MBP-induced EAE in rats resulted in exacerbation of clinical signs, associated with
extensive plaque-like demyelination (Schluesener et al., 1987; Linington et al., 1988). This
emphasises the demyelinating potential of anti-MOG antibodies, since demyelination in acute
rat EAE is normally restricted to small perivenous areas. Similarly, anti-MOG antibodies could
exacerbate MBP- or SCH-induced EAE in mice and MOG-induced EAE in marmosets (Schluesener
et al., 1987; Morris-Downes et al., 2002; von Budingen et al., 2004), whereas antibodies
directed against MBP, PLP and GalC failed to induce a significant exacerbation of EAE (Morris-
Downes et al., 2002).

2.2. Complement in antibody mediated exacerbation of EAE
Injection of anti-MOG antibodies in animals with acute EAE results in massive activation of
complement in areas of demyelination (Piddlesden et al., 1993). In addition to diffuse complement
staining in the CNS parenchyma, indicative of leakage of serum proteins through the BBB,
complement C9 was observed in granular deposits on myelin sheaths and within phagocytic
macrophages (Linington et al., 1989a). The in vitro capacity of anti-MOG antibodies to fix
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complement was directly related to their demyelinating potential in vivo, suggesting an essential
role for complement activation in CNS demyelination (Piddlesden et al., 1993). However, CVF
treatment could not, or not completely, abolish anti-MOG antibody induced demyelination and
leukocyte infiltration even though complement deposition was completely absent from the
lesion (Linington et al., 1989a; Piddlesden et al., 1991). Nevertheless, the clinical severity of
EAE was reduced in CVF treated animals, suggesting that complement contributes to
exacerbation of clinical signs in antibody-exacerbated EAE (Linington et al., 1989a). It is
possible that the extensive complement activation following anti-MOG antibody injection
contributes to EAE by direct induction of neuronal damage (Farkas et al., 2003), but the
extent of axonal damage was not addressed in the studies mentioned above.
CVF is a relatively crude method of complement depletion, associated with the transient
release of inflammatory mediators that may influence the results. Therefore, complement
depletion experiments were later repeated using a more sophisticated complement inhibitor,
the soluble complement receptor 1 (sCR1). Rats treated with sCR1 before and during antibody-
exacerbated EAE showed reduced clinical severity and reduced CNS inflammation and
demyelination, confirming the relevance of complement activation for antibody-exacerbated
disease (Piddlesden et al., 1994). It is unknown if sCR1 completely blocked the effect of anti-
MOG antibodies on EAE, as an EAE control group that was not treated with anti-MOG antibodies
was not included in the study. However, the incomplete inhibition of antibody-exacerbated
demyelination by CVF treatment suggests that in addition to complement, the other effector
mechanism of antibody-mediated inflammation, crosslinking of Fc�R, plays a role. This remains
to be elucidated.

2.3. Antibody-independent complement activation in EAE
Complement depletion could prevent the induction of acute EAE in Lewis rats, in both the
active immunisation model and the T-cell transfer model (Linington et al., 1989b). Anti-myelin
antibodies are virtually absent in models of acute rat EAE, suggesting that the contribution of
complement to induction of acute EAE is antibody independent. Similar to antibody-enhanced
complement activation, it is not exactly clear how direct complement activation contributes
to clinical EAE, as CVF treatment did not prevent CNS inflammation in acute EAE. The
suppressive effect of complement depletion on acute EAE could be overcome by transferring
higher numbers of encephalitogenic T cell (Linington et al., 1989b). Thus, complement activation
is not essential for the induction of acute EAE in rats, but the presence of active complement
lowers the threshold for developing clinical EAE.
In chronic EAE, complement deposition was most abundant during relapses in the chronic
phase of disease (Linington et al., 1989a). In this phase, anti-myelin antibodies are observed
as well (Sadler et al., 1991), probably explaining the enhanced complement activation in
chronic EAE. Therefore, it is unknown if antibody-independent complement activation
contributes to the chronic phase of EAE.
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3. EAE in B cell-, Fc�����R- and complement deficient mice

With the development of mouse strains genetically deficient in specific components of the
immune system, EAE research shifted from rats to mice. The role of B cells in EAE was
addressed using several strains of µMT mice, that express a disrupted IgM µ-heavy chain,
resulting in the complete absence of B cells (Kitamura et al., 1991). Antibody-mediated
effector functions were studied using mice lacking one or more Fc�R and the role of complement
was addressed using rodents lacking complement C3, C5, C6, factor B or complement regulatory
proteins. The role of humoral immunity was studied almost exclusively in MOG-induced models
of EAE, as MOG is the only myelin antigen that is alone sufficient to induce a CNS inflammatory
demyelinating response that encompasses T- and B-cell responses (Adelmann et al., 1995;
Brok et al., 2000).

3.1. Induction and progression of EAE in B cell deficient mice
The first studies of EAE in B cell deficient mice showed B cells were not essential for the
induction of clinical signs of EAE. Upon immunisation with the MBP Ac1-11 peptide, B10.PL
µMT mice (H-2u) developed monophasic EAE with similar incidence, onset and severity as wt
mice (Wolf et al., 1996). Similarly, backcrosses of B10.PL and SJL/J mice (H-2u/H-2s) developed
relapsing remitting EAE that was independent of B cells (Dittel et al., 2000). In addition
C57BL/6 µMT mice (H-2b) were fully susceptible to induction and progression of chronic EAE
after immunisation with recombinant mouse MOG (rmMOG) (Hjelmstrom et al., 1998), with
similar CNS inflammation and demyelination as wild type (Wt) mice. This suggests that B cells
and antibodies are not essential for the induction, relapses or chronic phase of EAE and that
demyelination can occur in the absence of antibodies. However, later studies showed that
the picture is not that simple, and that B cells do contribute to EAE in other models.
In the case of MOG induced EAE, the relevance of B cells for the induction of EAE is dependent
on the origin of the MOG protein. Recombinant MOG proteins derived from the rat or mouse
MOG sequence (rrMOG and rmMOG) induced full-blown EAE in µMT C57BL/6 mice, whereas in
the same mouse strain the induction of EAE with recombinant human MOG (rhMOG) was fully
dependent on B cells (Lyons et al., 1999; Oliver et al., 2003). The difference was attributed
to the poor immunogenicity of rhMOG. Due to a proline instead of a serine at amino acid
position 42, rhMOG and MOG35-55 peptides derived from the human sequence induced a less
efficient MOG specific T cell response than rMOG. Anti-MOG antibody production was comparable
in response to rhMOG and rrMOG, but in the case of rhMOG immunisation, antibodies were
critical for the induction of EAE as the T cell response alone was not sufficient (Oliver et al.,
2003). Transfer of serum anti-MOG antibodies to µMT mice (H-2b) restored susceptibility to
rhMOG EAE, with CNS inflammation and demyelination similar to Wt mice, even if serum
antibodies were administered up to 31 days after immunisation (Lyons et al., 2002). This
demonstrates that B cells contribute to rhMOG EAE through production of anti-MOG antibodies,
rather than through the APC function of B cells.
In three B cell deficient mouse strains of the H-2q haplotype (µMT DBA/1, DBA/1-xid and µMT
C57BL/10), rrMOG EAE was attenuated compared to Wt mice. The most prominent effect of B
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cell deficiency was on demyelination but not inflammation, suggesting that B cells contribute
to demyelination in H-2q mice (Svensson et al., 2002).
The capacity of mice to induce a demyelinating antibody response is related to the H2
haplotype of the mouse strain, which is thought to determine the capacity to induce antibodies
directed against native conformational epitopes of the MOG protein. Upon immunisation with
rMOG, H-2s mice produced antibodies to the native MOG that were shown to be cytolytic in
vivo. This was in contrast to H-2b mice, that failed to produce antibodies directed against
native MOG protein although production of antibodies to linear epitopes was normal (Bourquin
et al., 2003). However, although H-2s are capable of producing demyelinating antibodies, the
clinical severity of EAE in µMT mice of the H-2s background was similar to Wt H-2s mice (Dittel
et al., 2000). This does not exclude the possibility that B cell deficiency has an effect on
demyelination, but this has not been evaluated.
The capacity of anti-MOG antibodies to contribute to an existing encephalitogenic T cell
response was confirmed in a ‘knock-in’ mouse strains, genetically engineered to produce high
levels of anti-MOG antibodies. Under normal physiological conditions anti-MOG antibodies
were not pathogenic, but immunisation with rrMOG, PLP peptide or transfer of PLP specific T
cells resulted in accelerated and more severe EAE associated with early demyelination
(Litzenburger et al., 1998). This demonstrates EAE can not only be exacerbated by injection
of exogenous anti-MOG antibodies (Schluesener et al., 1987; Linington et al., 1988) but also
by anti-MOG antibodies that are produced endogenously.

3.2. EAE in Fc�����R knockout mice
The balance between activating and inhibitory Fc� receptors was shown to be very important
in antibody-mediated autoimmune disease. FcR� chain knockout mice (FcR�-/- mice), lacking
the activating Fc�RI and Fc�RIII (Takai et al., 1994), were protected from collagen- and
immune complex-induced arthritis (Ioan-Facsinay et al., 2002), glomerulonephritis (Tarzi et
al., 2003) and vasculitis (Watanabe et al., 1999). In contrast, mice deficient in the inhibitory
Fc�RII developed spontaneous glomerulonephritis (Bolland and Ravetch, 2000) and were more
sensitive to collagen-induced arthritis (Kleinau et al., 2000).
Fc�R receptors have also been implicated in EAE. B6129PF2 FcR�-/- mice did not develop
clinical signs of EAE after immunisation with MOG35-55 (Lock et al., 2002), and clinical signs
were attenuated in Fc�RIII-/- mice (Pedotti et al., 2003), suggesting that both activating
receptors contribute to the induction of EAE. In addition, DBA/1 FcR�-/- mice were resistant to
EAE after immunisation with rrMOG whereas EAE was more severe in Fc�RII-/- mice (Abdul-
Majid et al., 2002). These results are somewhat surprising, as induction of EAE in all these
models was independent of B cells (Lyons et al., 1999; Svensson et al., 2002). Although B cell
deficiency reduced demyelination in DBA/1 mice, it appears unlikely that the complete absence
of EAE in DBA/1 FcR�-/- mice is related to the absence of IgG-Fc�R interactions. In addition,
significant anti-myelin antibody responses are usually not detected until the chronic phase of
EAE (Morris et al., 1997; Morris-Downes et al., 2002; Pedotti et al., 2003), suggesting that
the absence of antibody-mediated effector functions would affect the chronic rather than
the induction phase of EAE.
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It is possible that IgG unrelated effector functions of the FcR� chain contribute to the
preclinical phase of EAE. The FcR� chain also associates with the T cell receptor of ��T cells
(Qian et al., 1993), although the role of Fc�R chain is unclear because FcR�-/- mice do not
show apparent abnormalities in the development of ��T cells (Takai et al., 1994; Shores et al.,
1998). A functional role for ��T cells has been demonstrated in MOG35-55 induced EAE (Rajan
et al., 1996; Spahn et al., 1999), suggesting that aberrant priming of ��T cells in FcR�-/- mice
may contribute to EAE resistance. The FcR� chain has been shown to associate with at least
five other receptor complexes on different cell types: (i) NKR-P1 on NK-, NK T - and dendritic
cells (Arase et al., 1997); (ii) ��TCR on NK T cells (Koyasu, 1994); (iii) PIR-A on dendritic
cells, macrophages and B cells (Takai and Ono, 2001); (iv) GPIb and (v) GPIV on platelets (Wu
et al., 2001). Again, the role of the FcR� chain in these complexes is ill defined. As a consequence
the FcR�-/- mouse has been considered almost exclusively as a mouse lacking activating Fc�R,
thereby possibly ignoring other deficiencies that may be relevant in autoimmunity.
During a CNS inflammatory response, microglia and macrophages show enhanced expression
of Fc�R (Ulvestad et al., 1994). This, in addition to the fact that IgG are found within
phagocytic macrophages in demyelinating lesions (Gay et al., 1997), and the capacity of Fc�R
to enhance myelin phagocytosis in vitro, raises the question to what extent Fc�R expression
on macrophages contributes to the chronic phase of EAE (where considerable anti-myelin
antibody levels can be measured). However, the effect of selective deletion of macrophage
Fc�R has not been studied in EAE.
In addition to Fc�RI and Fc�RIII, FcR�-/- mice also lack expression of Fc�RI, the high affinity
receptor for IgE that is exclusively expressed on mast cells. Mast cells are implicated in the
induction and progression of MOG35-55 induced EAE, as demonstrated by delayed onset,
lower incidence and reduced severity of EAE in mast cell deficient mice (WBB6/F1-KitW/KitWv,
H-2bxj) (Secor et al., 2000). Reconstitution of W/Wv mice with mast cells fully restored
susceptibility to EAE, demonstrating that attenuated EAE was directly related to mast cell
deficiency (Robbie-Ryan et al., 2003). Interestingly, reconstitution with FcR�-/- deficient mast
cells could not restore EAE in W/Wv mice, implying a role for mast cell Fc�R in EAE. Reconstitution
experiments with mast cells lacking Fc�RIII and Fc�RIIb suggested an important role of IgG-
Fc�R interactions in the regulation of mast cell function in EAE (Robbie-Ryan et al., 2003).
The role of IgE and Fc�RI remains to be established. Again, the role of mast cell Fc�R in EAE is
somewhat surprising, as MOG35-55 EAE was shown to be independent of B cells. It is possible
that the encephalitogenic T cell response after MOG35-55 immunisation in wild type mice of
the same genetic background (WBB6/F1-Kit+/Kit+) is somewhat milder than in C57BL/6 mice,
explaining the requirement for additional factors to induce full-blown EAE.

3.3. EAE in complement deficient rodents
Whereas complement depletion with CVF could abolish clinical signs of EAE  (Linington et al.,
1989b), deletion of individual complement components could never completely prevent the
induction of EAE. In fact, studies in complement deficient rodents suggest that complement
activation in the effector phase of EAE is at least as important as in the induction phase. The
onset of MOG35-55 EAE in C57BL/6 mice deficient for C3 (C57BL/6 C3-/-) and factor B (C57BL/



Chapter 2

43

6 factor B-/-) was similar as in Wt mice. However, disease severity was reduced in both
knockout strains, presumably as a result of reduced CNS inflammation (Nataf et al., 2000).
Antigen specific proliferation of encephalitogenic T cells in C3-/- and factor B-/- mice was
similar as in Wt mice, indicating that complement deficiency did not impair the T cell response
after MOG35-55 immunisation (Nataf et al., 2000).
In the alternative pathway of complement, cleavage products of C3 and FB amplify complement
activation by forming a C3 convertase. Thus, C3-/- and factor B-/- mice lack the capacity to
form the MAC, but also to generate large amounts of the inflammatory mediator C3a. This
could explain attenuation of EAE, since C3aR knockout mice also showed reduced severity in
the chronic phase of MOG35-55 EAE, associated with lower number of inflammatory cells in
the CNS (Boos et al., 2004). This was directly linked to the absence of C3a-C3aR interactions:
CNS-restricted overexpression of C3a enhanced cellular infiltration and clinical signs, an effect
that was abolished after deletion of C3aR (Boos et al., 2004). The role of C3 in MOG35-55 EAE
was not confirmed in another study (Calida et al., 2001). In this study, a high dose of MOG35-
55 and adjuvant were used to induce EAE, indicating that similar to the role of B cells in EAE,
the additive role of complement can be overruled by an aggressive induction protocol yielding
a more extensive T cell response.
Complement C5 appears to play different roles in the acute and chronic phases of EAE.
Although clinical signs in the acute phase of EAE were comparable in C5 deficient and control
mice, inflammation and particularly demyelination were reduced in C5 deficient mice. In contrast,
in the chronic phase of EAE C5 deficient mice showed extensive axonal loss and astrogliotic
scarring in the absence of remyelination, whereas C5 sufficient control mice showed large
areas of remyelination, mild astrogliosis and limited axonal damage (Weerth et al., 2003).
Sublytic deposition of the membrane attack complex (MAC) on oligodendrocytes has been
shown to protect oligodendrocytes against apoptosis and to induce proliferation (Rus et al.,
1997; Soane et al., 1999). Indeed, oligodendrocyte apoptosis in C5 sufficient control mice
was much lower than in C5 deficient mice, suggesting that C5 contributes to remyelination by
MAC-mediated rescue and activation of oligodendrocytes (Niculescu et al., 2004). This is
further supported by the fact that EAE in C5aR-/- mice was not different from Wt mice,
suggesting that the absence of C5b, rather than C5a, causes the EAE phenotype in C5
deficient mice (Reiman et al., 2002). The regulatory function of MAC on remyelination and
scar formation in chronic EAE remains to be confirmed in other studies.
The role of the membrane attack complex in acute MBP-EAE was further addressed in C6
deficient rats. In contrast to C3 and C5, C6 is not cleaved after complement activation and
its function is restricted to the formation of the MAC. Thus, results obtained in C6 deficient
animals are directly related to the inability to form the MAC. One study showed significantly
reduced incidence, clinical severity, CNS inflammation and disease duration but normal T cell
responses in C6 deficient rats with EAE  (Tran et al., 2002), but this was not confirmed in
another study (Mead et al., 2002). C6 deficiency protected against anti-MOG antibody mediated
exacerbation of demyelination and axonal damage, confirming results obtained with sCR1 in
antibody-exacerbated EAE (Piddlesden et al., 1994; Mead et al., 2002). Since all C6 deficient
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rats were sacrificed within days after antibody injection, it is unclear how C6 deficiency
affects remyelination and axonal damage in antibody-exacerbated EAE.
Complement activation in EAE has also been addressed at the level of complement regulators.
Complement receptor related protein y (Crry) is a murine complement inhibitor that blocks the
activation of multiple pathways of complement activation (Kim et al., 1995). Transgenic
C57BL/6xSJL/J-F1 (H-2b or H-2s background) mice that overexpressed soluble Crry in the CNS
were resistant to MOG peptide induced EAE (H-2s haplotype) or showed delayed onset (H-2b

haplotype) (Davoust et al., 1999). In this study, Wt H-2s mice displayed milder clinical signs of
EAE than Wt H-2b mice, again suggesting that complement activation may have an additive
effect in mild clinical forms of EAE, which is redundant in more severe models. The capacity of
soluble Crry to suppress or delay clinical EAE suggests a role for complement activation in the
initiation of the encephalitogenic response, probably by reduced chemoattraction in the
absence of C3a and C5a (Davoust et al., 1999). CD59 is an ubiquitously expressed cell
surface complement regulatory protein that protects self cells from MAC-induced lysis. Whereas
Wt C57BL/6x129/Sv mice showed a mild form of EAE after immunisation with rrMOG, CD59-/-

mice showed severe EAE. As C57BL/6x129/Sv fail to produce antibodies after rMOG immunisation,
complement activation in CD59-/- mice is unrelated to antibody deposition (Mead et al., 2004),
demonstrating that antibody independent activation of MAC contributes to cellular infiltration,
demyelination and axonal loss in EAE.

4. Summary and discussion

Generally, B cells, antibodies and complement are not essential for the induction of clinical
EAE, although in some cases humoral immunity contributes to disease severity. In some
models, EAE resistance in mice deficient for B cells or complement components could be
overcome by using a more aggressive immunisation protocol, yielding a more efficient
encephalitogenic T cell response. This suggests that humoral factors may lower the
immunological threshold for the induction of clinical EAE if the encephalitogenic T cell response
is weak.
It is not exactly clear how humoral factors contribute to the preclinical phase of EAE. The role
of B cells in induction of EAE was related to production of anti-MOG antibodies rather than
other B cell functions (Lyons et al., 2002). Anti-myelin antibodies may contribute to local CNS
inflammation by enhancing complement activation or cross-linking of Fc�R resulting in
amplification of the immune response, thereby facilitating the induction of clinical signs.
However, the role of IgG-Fc�R interactions in the induction of EAE is unclear, since the effect
of Fc�R deletion on EAE is much more dramatic than could be expected through the loss of
IgG-Fc�R interactions alone.
Complement proteins can directly enter the CNS parenchyma after disruption of the blood
brain barrier, which precedes the onset of clinical EAE (Tonra et al., 2001). Direct activation of
complement by myelin antigens may induce a local inflammatory response that facilitates the
induction of EAE by encephalitogenic T cells. Complement activation has also been implicated
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in priming of T cells (Carroll, 2004), although this is less likely to play a role in the induction of
EAE as T cell proliferation in complement deficient mice with attenuated EAE was normal
(Nataf et al., 2000).
The capacity of anti-myelin antibodies to contribute to ongoing CNS inflammation and
demyelination was unequivocally demonstrated in models of antibody exacerbated EAE.
Demyelinating capacity was restricted to anti-MOG antibodies. The role of endogenous anti-
MOG antibodies in the effector phase of EAE is less clear. Although guinea pig and rat models
showed a clear relation between anti-MOG antibody responses and demyelination, this was
less evident in mouse models of EAE of demyelination in chronic EAE was in some models
comparable in presence and absence of B cells.
The role of complement activation on the effector phase of EAE is even more complicated.
Whereas soluble components of the complement cascade may have disease-promoting
capacities early in the effector phase of EAE, the MAC may have a regulatory function in the
late chronic phase of EAE.
An interesting thought is the possible redundancy of the complement and antibody-mediated
inflammatory mechanims. Although it is unlikely that either mechanism is crucial for induction
of EAE, it is possible that complement and antibody mediated inflammation are redundant in
the effector phase of the disease and that mice deficient in both complement and B cells
show differences in the chronic phase of disease. This remains to be addressed in the future.
In conclusion, humoral immunity may contribute to both the induction of and progression of
EAE, although neither B cells nor complement are essential for clinical EAE in the presence of
a strong encephalitogenic T cell response.
The capacity of B cells and complement may be very relevant in the pathogenesis of MS,
where the initial T cell response may not be as potent as in EAE. Encephalitogenic T cells are
found in the blood and CSF of MS patients, but also in patients with other neurological
diseases and healthy donors (Lindert et al., 1999; Andersson et al., 2002), suggesting that
additional factors are required to induce CNS demyelinating disease. Evidence from the in vivo
models discussed in this review suggests that complement and myelin specific B cell responses
can provide additional inflammatory signals that facilitate the induction of CNS inflammation
and demyelination if the encephalitogenic T cell response is weak.
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Abstract

Macrophages are considered essential mediators in Multiple Sclerosis (MS) pathogenesis,
presumably through myelin phagocytosis and release of inflammatory mediators. Macrophages
and microglia express activating Fc� receptors (Fc�RI and Fc�RIII), which depend on the FcR�
chain for surface expression and signalling. In MS lesions, crosslinking of Fc�R by
immunoglobulins (IgG) directed against myelin may enhance myelin phagocytosis and
inflammation.
We studied the role of Fc�R and anti-myelin antibodies in MOG35-55 induced experimental
allergic encephalomyelitis (EAE) in C57BL/6 mice, a model of MS-like disease. Incidence and
severity of EAE were similar in FcR� chain-/- (FcR�-/-) and wild type (Wt) mice, albeit with
delayed onset in FcR�-/- mice. This demonstrates that the FcR� chain is not essential for
induction of EAE, but that FcR� signaling may contribute to the preclinical phase.
The role of Fc�R in antibody-mediated demyelination was addressed by injection of anti-
myelin antibodies (Z12 mAb) at onset of MOG35-55 induced EAE. Injection of Z12 mAb
rapidly reduced survival time, in both Wt and FcR�-/- mice, demonstrating that antibody
mediated exacerbation of EAE is independent of the FcR� chain. Interestingly, Z12-induced
exacerbation of inflammation and demyelination persisted longer in Wt than FcR�-/- mice,
suggesting that IgG-Fc�R interactions may contribute to a sustained pathological effect of
anti-myelin antibodies in the CNS.
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Introduction

Multiple sclerosis (MS) is a chronic degenerative disease of the central nervous system (CNS),
with poorly understood aetiology and pathogenesis. In experimental allergic encephalomyelitis
(EAE), an animal model that is used to study (auto-) immune inflammation and demyelination
in the CNS, both CD4+ T and CD8+ T cells specific for myelin antigens induce lesions highly
reminiscent of MS lesions (Gold et al., 2000).  Importantly, T cells critically depend on
macrophages to initiate demyelinating disease  (Tran et al., 1998). Abundant presence of
activated microglia and macrophages containing intracellular myelin debris in active MS
lesions, suggests that macrophages contribute to the formation of lesions by myelin
phagocytosis. Several receptor families are implicated in myelin phagocytosis, including
complement receptors and IgG receptors (Fc�R) (van der Laan et al., 1996; Van der Goes et
al., 1999; Reichert and Rotshenker, 2003). Fc�R enhance phagocytosis of IgG-opsonised
particles (Aderem and Underhill, 1999), thereby forming a bridge between adaptive and
innate immunity. In MS lesions, expression of Fc�R is enhanced on microglia and macrophages
(Ulvestad et al., 1994), and immunoglobulins are observed in a substantial proportion of
active demyelinating MS lesions (Lucchinetti et al., 2000). At least part of these
immunoglobulins specifically bind myelin antigens, and can be found within phagocytic
macrophages in association with degraded myelin (Genain et al., 1999). However, it is unknown
to what extent Fc�R mediated myelin phagocytosis contributes to MS lesion formation.
The capacity of Fc�R to contribute to myelin phagocytosis was demonstrated in vitro, where
myelin specific antibodies enhanced myelin phagocytosis in absence of active complement
(Van der Goes et al., 1999). In addition, cultured microglia produced inflammatory chemokines
upon Fc�R crosslinking, further supporting a pathogenic role for IgG-Fc�R interactions in the
CNS (Song et al., 2002).
Knockout mice lacking Fc�R have improved the understanding of Ig-Fc�R interactions in
health and disease, including experimental autoimmune diseases (Hogarth, 2002; Takai,
2002). The murine leukocyte Fc�R family consists of three subclasses (Fc�RI, Fc�RII, Fc�RIII).
The activating Fc�RI and Fc�RIII are expressed predominantly on myeloid cells and mediate
inflammatory effector functions upon crosslinking by IgG-containing immune complexes (IC).
For surface expression and signal transduction, both receptors depend on association with
the FcR� chain (Ravetch and Bolland, 2001). In FcR� chain deficient mice (FcR�-/-), functional
expression of Fc�RI is severely impaired, while expression of Fc�RIII is absent (Takai et al.,
1994; Barnes et al., 2002). The inhibitory Fc�RII is expressed on B cells and myeloid cells
(Ravetch and Bolland, 2001). Crosslinking of Fc�RII with activating Fc�RI or Fc�RIII results in
down regulation of the activation signal. The balance between activating and inhibitory Fc�R
is critical for the regulation of antibody-mediated immune responses as demonstrated in
several models of infectious and autoimmune diseases (Kleinau et al., 2000; Ioan-Facsinay
et al., 2002; van Lent et al., 2003; Nandakumar et al., 2003).
Recent studies suggest an important role for both activating and inhibitory Fc�R in the induction
of EAE. Disease in FcR�-/- mice was monophasic with low incidence and mild clinical symptoms
(Lock et al., 2002; Abdul-Majid et al., 2002), while autoimmune prone Fc�RII-/- mice exhibited
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more pronounced disease (Abdul-Majid et al., 2002). This led to the conclusion that interactions
between anti-myelin antibodies and Fc�R are important for the induction of EAE. It remains
unclear if IgG-Fc�R interactions can contribute to ongoing CNS demyelinating disease. Injection
of antibodies directed against the immunodominant myelin oligodendrocyte glycoprotein
(MOG) exacerbated EAE in rats and mice (Linington et al., 1988; Morris-Downes et al., 2002),
implying that anti-MOG antibodies can contribute to ongoing CNS inflammation and
demyelination. Antibody-mediated exacerbation of EAE was (partially) independent of
complement (Piddlesden et al., 1991; Morris-Downes et al., 2002) suggesting involvement
of Fc³R.
We explored the role of Fc�R in the effector phase of EAE, using the MOG35-55 model that is
B cell independent (Lyons et al., 1999). Our hypothesis was that the FcR� chain was not
essential for the induction of MOG35-55 EAE, but that Fc�R were instrumental in antibody-
mediated exacerbation of EAE. Indeed, EAE was reproducibly induced in FcR�-/- mice. However,
injection of anti-MOG antibodies at onset of EAE rapidly exacerbated clinical EAE in both Wt
and FcR�-/- mice, demonstrating that anti-MOG antibodies can enhance clinical EAE independent
of interactions with activating Fc�R. Interestingly, sustained CNS inflammation and
demyelination in Wt but not FcR�-/- mice after injection of antibodies suggests that IgG-Fc�R
interactions may contribute to a sustained pathological effect of anti-MOG antibodies.
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Materials and Methods

Animals
C57BL/6 mice were purchased from Harlan Olac (Horst, the Netherlands). FcR� chain knockout
mice (FcR�-/-) were generated on the C57BL/6 background in the lab of Dr. T. Saito (Park et
al., 1998). All mice were 10-20 weeks, weighing 18-25 g, at the time of EAE induction. Mice
were specific pathogen free and had access to chow and water ad libitum. All experiments
were performed with approval of the relevant ethical committees.

Antibodies
The monoclonal antibody (mAb) directed against MOG, Z12 mAb, is a mouse IgG2a. The
hybridoma and ascites fluid were kindly provided by Dr. Sarah Piddelsden (Piddlesden et al.,
1993) and mAb was grown either at Charing Cross Hospital, London (UK) or at the VUMC,
Amsterdam (The Netherlands). Z12 mAb was purified from supernatant or ascitic fluid by
affinity chromatography using a protein A sepharose FF column (Amersham, Roosendaal,
the Netherlands). Z12 F(ab’)2 fragments were produced in the lab of Dr. Van de Winkel.
Hybridomas producing rat-anti-mouse mAbs 6B2 (anti-B220), KT3.1 (anti-CD3), M1/70 (anti-
MAC-1) and M5/114 (anti-HLA-DR) were purchased from American Type Culture Collection
(Manassas, US) and grown in our laboratory. Supernatants were used to detect T cells, B
cells, macrophages and MHC Class II expression respectively. The 2.4G2 antibody (Pharmingen,
Alphen a/d/ Rijn, the Netherlands) was used to detect expression of Fc�RII/III.

Induction of EAE and assessment of clinical disease
Animals were immunized subcutaneously (s.c.) with 200 µg MOG peptide residues 35-55
corresponding to the mouse MOG peptide sequence (M-E-V-G-W-Y-R-S-P-F-S-R-V-V-H-L-Y-
R-N-G-K) (Ansynth, Roosendaal, the Netherlands) emulsified in complete Freund’s adjuvant
(Difco, Detroit, US) (1:1, total volume 200 ¼l) supplemented with 600 µg heat killed
Mycobacterium tuberculosis (Difco, Detroit, US). After 24 h, animals were injected
intraperitoneally (i.p.) with 400 ng pertussis toxin derived from Bordatella pertussis (Sigma,
Zwijndrecht, the Netherlands) in 200 µl saline (NaCl).
Animal were weighed and scored daily for clinical signs of EAE. Clinical disease was graded
as follows: 0 = no clinical signs, 1 = limp tail, 2 = unsteady gait, hind limb weakness, 3 =
incomplete hind limb paralysis, 4 = complete hind limb paralysis, 5 = moribund (euthanised)
or death. Animals exhibiting signs of a lesser severity than typically observed were scored as
0.5 less than the indicated grade (Morris-Downes et al., 2002).
Mice were sacrificed at day 16 or day 35 using O2/CO2. Serum was collected and stored at –
80 ºC. CNS tissue was collected and stored at –80 ºC for immunocytochemistry or fixed in
formalin before embedding in paraffin wax for histology.

Administration of MOG Z12 monoclonal antibody (Z12 mAb)
EAE was induced in C57BL/6 Wt or FcR�-/- mice and at the onset of clinical signs (limp tail,
grade 0.5-1), animals were injected i.p. with 1 mg of Z12 mAb, 1 mg Z12 F(ab’)2 or an equal



FcR� chain and anti-MOG IgG in EAE

56

volume of saline (NaCl). As the day of onset varied between animals, mice were not all
treated on the same day. To limit the variation in day of disease onset (and thus day of
antibody injection) between treatment groups, animals were injected alternatingly with NaCl,
Z12 mAb or Z12 F(ab’)2. The first animal to develop EAE was injected with NaCl, the second
with Z12 mAb, the third with Z12 F(ab’)2, the fourth with NaCl, etc. As a result the average
day of disease onset was comparable for all treatment groups within one strain.
As a control, C57BL/6 Wt mice were immunized with CFA, MTB and pertussis toxin in absence
of MOG35-55 peptide and at the time corresponding to onset of EAE in Wt mice (day 14), the
animals were injected i.p. with 1 mg Z12 mAb.

Histology, immunohistochemistry and immunocytochemistry
Mice were sacrificed 35 days after immunisation, and Kluver-Barrera (luxol fast blue/cresyl
violet) staining was performed on formalin-fixed sections of spinal cord and cerebellum to
assess demyelination (Baker et al., 1990). Semi-quantitative evaluation of demyelination
was performed blindly and each section was evaluated three times.  Perivascular demyelination,
small rims of demyelination centred around blood vessels, and plaque like demyelination,
larger areas of myelin loss that were not obviously associated with blood vessels, were
scored independently as absent (-), minor (+), moderate (++), intermediate (+++) or
extensive (++++). Total demyelination, the cumulative score for perivascular and plaque-
like demyelination was used for statistical analysis.
Immunocytochemistry on frozen material was used to detect infiltration of macrophages, T
cells, B cells, the extent of immune activation (estimated by MHC Class II expression) and
expression of Fc�RII and Fc�RIII. CNS tissue sections (5 ¼m) were fixed in acetone, followed
by incubation with phosphate buffered saline (PBS) containing 0.1 % bovine serum albumin
(BSA; PAA laboratories, Linz, Austria) and 5% normal mouse serum to block non-specific
and Fc-mediated interactions. After rinsing in PBS, sections were incubated with primary
antibody in PBS/0.1% BSA (1 h, 20 ºC), followed by another rinse with PBS and incubation
with peroxidase (HRP)-conjugated rabbit-anti-rat Ig secondary antibody (DAKO, Glostrup,
Denmark) in PBS/0.1% BSA (1 h, 20 ºC). After rinsing with PBS, peroxidase activity was
visualized using 0.5 mg/ml 3,3’-diaminobenzidine tetrahydrochloride (DAB) (Sigma,
Zwijndrecht, the Netherlands) in 0.05 M Tris-HCl buffer (pH 7.6) and 0.03 % H2O2.
Immunostaining was assessed quantitatively using the computer program AnalySis (Soft
Imaging System GmbH, Münster, Germany), and expressed as the percentage of DAB-positive
area in the cerebellum white matter relative to the total cerebellum white matter area. In
each group, sections from at least five mice were analysed, unless stated otherwise.

Statistical analysis
Differences in day of disease onset, clinical score and macrophage infiltration between
experimental groups were assessed using ANOVA and Student’s t-test. Disease incidence
and survival were analysed using Pearson’s Chi-square test. The extent of demyelination in
different experimental groups was compared using Mann-Whitney U-test. Kaplan-Meier
analysis and log-rank tests were used to analyse differences in survival of Wt and FcR�-/- mice
after injection of Z12 mAb or saline.
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3 weeks after injection of Z12 mAb, demonstrating that the effect of antibody administration was
not limited to the first days after injection. In Wt mice that were injected with Z12 F(ab’)2

fragments, demyelination at day 35 was comparable to demyelination in Wt mice (data not
shown), suggesting that the sustained effect of anti-MOG antibody injection is dependent on the
Fc part of the antibody. Interestingly, FcR�-/- mice did not show sustained CNS pathology after
injection of Z12 mAb. Three weeks after injection of anti-MOG antibodies, demyelination in Z12
mAb treated FcR�-/- mice did not differ from demyelination in saline treated FcR�-/- or Wt mice
(figure 4E,F; table 2). This suggests that IgG-Fc�R interactions contribute to the sustained
effect of Z12 mAb on demyelination.
Macrophages are thought to actively contribute to demyelination by myelin phagocytosis, therefore
we subsequently evaluated macrophage infiltration in the CNS. In Wt mice, macrophage infiltration
at day 35 was enhanced after injection of Z12 mAb (figure 4C,D; table 2). Quantitative analysis
of mac-1 staining confirmed enhanced macrophage infiltration in Wt mice after injection of Z12
mAb (figure 4I). This difference did not reach statistical significance, probably as a result of the
high variation within experimental groups and the low number of mice analysed in the Z12 mAb
injected group. However, similar results were obtained in three independent EAE experiments.
Macrophage infiltration in Z12 F(ab’)2 treated animals was comparable to saline treated animals
(data not shown).
Although macrophage infiltration at day 35 in saline treated FcR�-/- appeared to be somewhat
higher than in saline treated Wt mice, this difference was not significant (table 2). A possible
trend towards higher macrophage infiltration in FcR�-/- mice may reflect the difference in clinical
scores between Wt and FcR�-/- mice in this experiment (figure 4C,G; table 2). Importantly, injection
of Z12 mAb in FcR�-/- mice did not enhance macrophage infiltration when compared to injection of
saline (figure 4G,H,I). Again, this suggests that the FcR� chain may contribute to the sustained
inflammation and demyelination after injection of anti-MOG antibodies.

Discussion
This study demonstrates that induction and progression of MOG35-55 EAE are independent of the
FcR� chain, although delayed onset of EAE in FcR�-/- mice suggests a role for FcR� signalling in the
preclinical phase of EAE. Furthermore, interactions between IgG and activating Fc�R are not
essential for anti-MOG antibody mediated exacerbation of EAE. However, IgG-Fc�R interactions
may contribute to a sustained effect of anti-MOG antibodies on CNS inflammation and demyelination.
The relevance of B cells and antibodies in EAE is debated, and the interpretation of data is
complicated by the variety of models that are used. The role of B cells is best characterized in
MOG-induced EAE in C57BL/6 and DBA/1 mice. Consequently, the role of Fc�R has been addressed
in these models (Lock et al., 2002; Abdul-Majid et al., 2002).
In C57BL/6 mice, the origin of the MOG protein is crucial for the role of B cells in EAE. Induction of
EAE using recombinant human MOG (rhMOG) is B cell dependent, whereas immunisation protocols
using rat derived MOG35-55 peptide or recombinant rat MOG (rrMOG) are independent of B cells
(Lyons et al., 1999; Oliver et al., 2003). MOG35-55- and rrMOG- induced EAE in B cell deficient
C57BL/6 mice are indistinguishable from EAE in Wt mice with regard to disease incidence, onset,
severity and CNS pathology (Lyons et al., 1999). This is in line with our finding that C57BL/6 Fc�R-

/- mice are susceptible to MOG35-55 induced EAE. Delayed onset of EAE in Fc�R-/- mice may be
related to absence FcR� chain signalling functions that are unrelated to IgG receptors. Observations
on the role of B cells and Fc�R in EAE in DBA/1 mice support this. B cell deficient DBA/1 mice
develop EAE after immunisation with rrMOG, although clinical severity and demyelination are lower
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than in Wt DBA/1 mice (Svensson et al., 2002). Interestingly, the effect of FcR� deficiency is
more dramatic: EAE in FcR�-/- DBA/1 mice was nearly absent (Abdul-Majid et al., 2002).
The FcR� chain associates with at least six FcR-unrelated receptor complexes in leukocytes,
including the ��T cell receptor (Qian et al., 1993; Koyasu, 1994; Arase et al., 1997; Takai and
Ono, 2001; Wu et al., 2001). The role of FcR� chain in these receptor complexes is ill defined and
as consequence FcR�-/- mice have been considered almost exclusively as mice lacking activating
Fc�R, thereby possibly ignoring less obvious deficiencies.
Earlier studies reported severely attenuated MOG35-55 EAE in B6129PF2 FcR�-/- mice (Lock et
al., 2002; Pedotti et al., 2003). The immunisation protocol was similar to ours and mice were of
the same H2 haplotype (H-2b), suggesting that responses to the immunisating antigen and
antigen presentation may be comparable. Genetic variation in mouse strains (e.g. C57BL6/129 F2
vs. C57BL/6) probably accounts for the different results. Importantly, backcrosses of 129 and
C57BL/6 mice may have unpredictable phenotypes in models of autoimmunity, presumably through
epistatic interactions between 129 and C57BL/6 genes (Bygrave et al., 2004). This emphasizes
that comparisons between results obtained in different EAE experiments, using mouse strains of
different origin, should be drawn very cautiously. Similarly, mast cell expressed Fc�RIII has been
proposed to play an important role in MOG35-55 EAE (Robbie-Ryan et al., 2003). The data
presented here, together with our unpublished results that Fc�RIII-/- mice develop full-blown
EAE, demonstrate that absence of Fc�RIII on mast cells does not ameliorate MOG35-55 EAE, at
least not in C57BL/6 mice.
Another aspect of murine Fc�R that may be relevant to our observations is residual function of
Fc�RI in FcR�-/- mice and possible FcR� chain independent regulation of Fc�RI (Barnes et al.,
2002; Beekman et al., 2004). It is unknown to what extent residual Fc�RI function affects the
immune response in FcR�-/- mice, as FcR�-/- mice and Fc�RI/III-/- mice (lacking expression Fc�RI
and Fc�RIII, but not the FcR� chain) showed similar responses in a model of IC-mediated nephritis
(Tarzi et al., 2003).
The capacity of anti-MOG antibodies to contribute to an ongoing CNS inflammatory and
demyelinating response was previously demonstrated in models of antibody augmented EAE
(Linington et al., 1988; Morris-Downes et al., 2002). The present study demonstrates that anti-
MOG antibody mediated disease exacerbation is dependent on the Fc part of the injected
antibody, but independent of the FcR� chain. This implicates that the pathological effect of
antibodies results from Fc-mediated complement activation. Although the role of complement
activation in MOG35-55 induced EAE has been debated (Nataf et al., 2000; Calida et al., 2001;
Reiman et al., 2002), complement activation may be relevant in the context of antibody exacerbated
EAE. In rats, the in vivo demyelinating potential of anti-MOG antibodies was correlated to their
complement fixing capacity (Piddlesden et al., 1993). Z12 mAb has high complement fixing
capacity in vitro (Piddlesden et al., 1993), possibly explaining the severe effect of Z12 mAb
injection on clinical EAE in both Wt and FcR�-/- mice. Deposition of C9, indicative of full complement
activation, was observed in CNS lesions in association with exogenous anti-MOG antibodies, two
days after injection in animals with EAE (Piddlesden et al., 1993). At six days after antibody
injection, C9 deposition was markedly lower, demonstrating that complement activation after
antibody injection is a short term event (Linington et al., 1989). This supports the idea that the
rapid effect of antibody injection in both Wt and FcR�-/- mice is complement mediated, although
redundancy of Fc�R and complement in antibody-exacerbated EAE cannot be excluded. In fact,
Wt mice succumbed faster to antibody exacerbated EAE than FcR�-/- mice, possibly reflecting a
delayed response due to absence of Fc�R mediated actions. In addition, previous studies
demonstrated that complement depletion can not (Piddlesden et al., 1991), or not completely
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(Morris-Downes et al., 2002), prevent acute exacerbation of EAE by anti-MOG mAb, whereas the
present study demonstrates that deletion of the Fc�R does not abolish the acute effect of anti-
MOG mAb. This supports redundancy of Fc�R and complement mediated pathways, as previously
described in a model of antibody-dependent vitiligo (Trcka et al., 2002).
Although the immediate effect of Z12 mAb on EAE severity was independent of Fc�R, interactions
between IgG and Fc�R may contribute to a sustained effect of anti-MOG antibodies on inflammation
and demyelination. On average three weeks after injection of Z12 mAb, Wt mice showed enhanced
CNS demyelination and inflammation whereas FcR�-/- mice did not. The half-life of IgG2a in serum
is six to eight days (Roopenian et al., 2003), therefore enhanced cerebellum pathology after up
to at least twenty-five days after injection is unlikely to result from direct deposition of Z12
mAb. Furthermore, at the time of antibody injection, blood brain barrier damage in the cerebellum
is limited in comparison with the spinal cord (Paul and Bolton, 2002). Two mice that were
sacrificed two days after Z12 mAb injection for ethical reasons showed severe inflammation in
the spinal cord, whereas infiltration of the cerebellum was negligible (data not shown). This
suggests that Z12 mAb cannot directly reach the cerebellum parenchyma and that the effect of
Z12 mAb is indirect. IgG2a complexed to a soluble protein can enhance both B and T cell
responses against that protein through interactions with activating Fc�R (Getahun et al., 2004).
Similarly, Fc�R-mediated uptake of Z12 mAb opsonised myelin breakdown products, either at the
site of demyelination or after capture of antigens in the periphery (de Vos et al., 2002), could
contribute to amplification of the immune response directed against myelin. Although it was
beyond the scope of this study, it would be interesting to study MOG specific T cell responses in
Wt and FcR�-/- mice at different timepoints after anti-MOG antibody administration.
The data presented here may be relevant for the pathology and treatment of MS. Enhanced
levels of anti-myelin antibodies in serum and CSF have been described MS patients (Warren and
Catz, 1994; Egg et al., 2001; Schmidt et al., 2001) and in a subgroup of early MS patients,
deposition of IgG and complement was observed in active demyelinating lesions. This suggests
that antibody-mediated activation of complement plays a role in a subpopulation of MS patients
(Lucchinetti et al., 2000). In addition, intrathecal IgG production has been described as a prognostic
marker for MS disease progression (Izquierdo et al., 2002), suggesting that antibodies may
contribute to sustained CNS inflammation and demyelination in MS.
In summary, MOG35-55 induced EAE in FcR�-/- mice is delayed in onset, but otherwise
indistinguishable from EAE in Wt mice. This demonstrates that activating Fc�R are not essential
for the initiation of CNS inflammation and demyelination although FcR� chain mediated signal
transduction may contribute to the preclinical phase of EAE. In addition, we show that anti-MOG
antibodies can induce rapid exacerbation of CNS inflammation in absence of the Fc�R chain, but
that IgG-Fc�R interactions may contribute to a sustained effect of anti-MOG antibodies on the
CNS inflammatory and demyelinating response.
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Abstract

Anti-myelin IgGs occur in the cerebrospinal fluid (CSF) and serum of multiple sclerosis (MS)

patients, and can induce inflammatory effector functions in leukocytes by crosslinking IgG

receptors (Fc � R). The efficiency of Fc � R mediated inflammatory processes is affected by

functional polymorphisms of three Fc � R receptors (Fc � RIIa, Fc � RIIIa, Fc � RIIIb).

The relevance of Fc � R polymorphisms in MS was evaluated by studying the distribution of

Fc� RIIa, Fc � RIIIa and Fc � RIIIb genotypes in 432 MS patients and 515 healthy controls. No

significant differences were found between MS patients and controls, or between subgroups

of patients. We conclude that Fc �  receptor polymorphisms influence neither susceptibility nor

clinical disease course of MS.
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Introduction

Despite elaborate research in the last few decades, the pathogenesis of Multiple Sclerosis

(MS) remains enigmatic. Genetic as well as environmental factors have been associated with

the disease. It is generally assumed that T lymphocytes play an important role in the initiation

of MS (Giovannoni and Hartung, 1996). In addition, humoral immune responses have been

proposed to significantly contribute to the development of demyelination and axonal damage

(Wingerchuk et al., 2001; Cross et al., 2001).

Abnormalities in the humoral response are seen in the majority of MS patients. Increased

intrathecal production of immunoglobulins can be detected in over 90% of MS patients (Cross

et al., 2001) and increased concentrations of immunoglobulins in the cerebrospinal fluid (CSF)

have been associated with MS relapses (Izquierdo et al., 2002). A high B cell/monocyte ratio

in the CSF was associated with rapid disease progression in a retrospective study (Cepok et

al., 2001), and elevated anti-myelin antibody titres have been described in patients with

active disease (Xiao et al., 1991; Warren and Catz, 1999).

Binding of auto-antibodies to myelin particles may trigger the inflammatory  process by

activation of complement or cross-linking IgG receptors (Fc � R) on microglia and macrophages

in the CNS (Linington et al., 1988; Storch et al., 1998; Kieseier et al., 1999). Interactions of

immune complexes (IC) and Fc � R can elicit a variety of leukocyte effector functions, including

phagocytosis, antibody-dependent cytotoxicity, antigen presentation and release of

inflammatory mediators (van der Pol and van de Winkel, 1998; Ravetch and Bolland, 2001).

The characteristics of the inflammatory response following Fc � R crosslinking are determined

by the efficiency of the IgG-Fc � R interaction.

The human genome encodes for three classes of leukocyte Fc � R: Fc � RI (CD64), Fc � RII (CD32)

and Fc � RIII(CD16). Each Fc � R class can be further divided into subclasses (Fc � RIa, Fc � RIb,

Fc� RIc; Fc � RIIa, Fc � RIIb, Fc � RIIc; Fc � RIIIa, Fc � RIIIb), each subclass showing a characteristic

expression pattern on leukocytes and binding capacity for IgG isotypes.

Polymorphisms in Fc � RIIa, Fc � RIIIa and Fc � RIIIb further increase heterogeneity of the Fc � R

family.  Fc � RIIa is expressed on myeloid and lymphoid cells and exhibits a functional polymorphism

in the ligand binding domain of the receptor, at amino acid position 131. Expression of either a

histidine (H) or an arginine (R) greatly affects IgG binding capacity (Warmerdam et al., 1990;

Maxwell et al., 1999).  Fc � RIIa-H131 interacts more efficiently with complexed IgG2 and IgG3

than Fc � RIIa-R131 (Warmerdam et al., 1990; Parren et al., 1992). Fc � RIIIa is constitutively

expressed on NK cells and macrophages and exhibits a valine (V) to phenylalanin (F) substitution

at amino acid 158. The Fc � RIIIa-V158 allotype binds IgG1- and IgG3-containing IC more

efficiently than Fc � RIIIa-F158.  Finally, neutrophil-restricted Fc � RIIIb bears the neutrophil

antigen (NA1/NA2) polymorphism.  Fc � RIIIb-NA1 is more efficient in binding IgG1 and IgG3 IC

than Fc � RIIIb-NA2 (Huizinga et al., 1990; Salmon et al., 1992; Bredius et al., 1994).

Consequently, Fc � RIIa-H131, Fc � RIIIa-V158 and Fc � RIIIb-NA1 induce leukocyte effector

functions more efficiently than their counterparts.

Interindividual differences in the efficiency of Fc � R induced inflammation may be associated

with differences in susceptibility to antibody-mediated disease. Indeed, case-control studies
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have documented skewed distributions of Fc � RIIa, Fc � RIIIa, and Fc � RIIIb polymorphisms in

patients with autoimmune and infectious diseases (van der Pol and van de Winkel, 1998).

Myhr et al. (1999) reported an association between Fc � R genotypes and MS disease course in

136 Norwegian MS patients (Myhr et al., 1999).

In this study, we evaluate the relevance of genetic Fc � R heterogeneity for MS susceptibility

and disease course in a large group of Dutch MS patients. We determined the distribution of

Fc� RIIa, Fc � RIIIa, and Fc � RIIIb genotypes in 432 MS patients and 515 ethnically matched

healthy controls.
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Materials and Methods

Subjects

A total of 432 Dutch Caucasian patients with clinically definite MS were recruited from the

outpatient clinic of the Department of Neurology at VU Medical Centre (VUmc) in Amsterdam

(Schrijver  et al. , 1999). The study was carried out with the approval of the Medical Ethical

Committee of the VUmc and informed consent was obtained from all subjects. All patients

were seen at regular intervals at the outpatient clinic. During these visits, patient characteristics

were obtained in a standardized way. Disability was expressed using the expanded disability

status scale (EDSS) (Kurtzke, 1983). In addition, patient files were scrutinized to collect

data on the time to reach permanent need for walking assistance (EDSS6). The latter was

used to evaluate disease progression. Disease duration was determined as the interval between

onset of disease and latest visit at the clinic. All patient characteristics were obtained by

investigators who where at the time blind to the aim of the present study.

Five hundred fifteen ethnically matched healthy blood donors were recruited as controls.

Determination of Fc � R genotypes

Genomic DNA was extracted from whole blood using standard phenol-chloroform isolation

procedures. Fc � R genotypes were determined by means of PCR amplification methods. Fc � RIIa

genotyping was performed using two PCR techniques. All controls were genotyped as described

by Carlsson et al. (1998) (Carlsson  et al. , 1998). In short, a 1000bp product encompassing

the polymorphic site was amplified using Fc � RIIa specific primers. This reaction product was

then used as a template in two separate reactions, using allele-specific primers. In addition,

all patients and 50 control subjects were Fc � RIIa genotyped using a modified allele-specific

reaction as described by Smyth et al. (1997) (Smyth  et al. , 1997). In short, approximately

100ng of DNA was added to a 50 µl reaction mix containing 50mM KCl, 15mM Tris-HCl, 1mM

dNTPs (Invitrogen), 3mM MgCl 2, 2 U Ampli taq Gold (Perkin Elmer, Foster City, CA), and 10

pmol of the following primers: 5’- ctg aaa aac cct tgg aat c -3’, 5’- tct cag acc tcc atg tag -3’,

and either 5’- aat ccc aga aat tct ccc g -3’ (Fc � RIIa-R131 specific reaction) or 5’- aat ccc aga

aat tct ccc a -3’ (Fc � RIIa-H131-specific reaction). Amplification was initiated by incubation at

95°C for 10 minutes, followed by 35 cycles of 95°C for 20 seconds, 56°C for 30 seconds and

72°C for 15 seconds. PCR reactions were terminated by incubation at 72°C for 7 minutes. To

test accuracy of these assays, 50 control subjects were genotyped using both techniques,

yielding identical results. Fc � RIIIa genotyping was performed in two separate reactions using

allele-specific primers as previously described (Leppers-van de Straat  et al. , 2000). Fc � RIIIb

genotyping was performed in two separate reactions using allele-specific primers as previously

described (De Haas  et al. , 1995) with minor modifications. In short, 100ng of DNA was added

to a 50 µl reaction mix containing 50mM KCl, 15mM Tris-HCl, 1mM dNTPs (Invitrogen), 3mM

MgCl2,  2 U AmpliTaq Gold, and either 20pmol NA1 specific or 10pmol of NA2 specific primers.

Fc� RIIa flanking primers (7.5pmol) amplifying a 406 bp fragment were used as internal

controls, to ensure validity of negative PCR results. Samples were subjected to a hot start

and one-cycling procedure: 10 min at 95°C followed by 35 cycles (30 sec at 95°C, 30 sec at

57°C and 30 sec at 72°C) and terminated by incubation for 7 min at 72°C.
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In all experiments, DNA from both homozygous and the heterogeneous genotypes (as verified

by automatic sequencing) were included as internal controls. PCR products were loaded on

2% (Fc � RIIa and Fc � RIIIb) or 3% (Fc � RIIIa) agarose gels containing ethidium bromide and

visualized with a Photo Imager (Uppsula, Sweden).

Statistics

Chi-square test and 3 x 2 contingency tables were used for comparison of Fc � R genotype

distributions between groups. Kaplan Meijer analysis and log-rank tests were used to analyse

differences in disease progression between Fc � R genotypes. Average time to EDSS6 was

compared between patients with different Fc � R genotypes using Mann-Whitney and Kruskal-

Wallis tests. Mann-Whitney test was used to statistically analyse the age of onset of MS

between genotypes. Significance was set at p-values < 0.05.
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Results

Patient characteristics

Patient characteristics are summarised in Table 1.  Females accounted for 270 of the patients.

All patients were unrelated, Caucasian, and from European-Dutch descent. One hundred

seventy-eight patients had relapsing-remitting (RR) MS,  159 had secondary progressive

(SP) MS and 95 had primary progressive (PP) MS.  Average disease duration of the patient

population was 13.4 years, median disease duration was 12 years. Disease duration ranged

from 0.2 to 63.0 years.

Genotype distributions in MS patients and healthy control subjects

Genes encoding Fc � RIIa, Fc � RIIIa and Fc � RIIIb were screened for polymorphisms using allele-

specific primers in a PCR reaction. Genotypes of control subjects were in Hardy-Weinberg

equilibrium for all three Fc � R (data not shown).

Fc� RIIa genotypes were obtained of 431 patients. Table 2A shows the distribution of Fc � RIIa

genotypes and allele frequencies in MS patients, clinical subgroups of MS patients and healthy

donors. Fc � RIIa genotypes frequencies of MS patients closely resembled the genotype

frequencies of healthy donors. Similar results were obtained when subgroups of MS patients

(RR, SP and PP) were compared separately to healthy controls. In addition, no significant

differences were observed when the three MS subgroups were compared to each other.

Fc� RIIIa genotypes were obtained of 422 patients (table 2B). Distribution of genotypes in MS

patients was similar to the distribution in healthy donors. Furthermore, Fc � RIIIa genotype

distributions did not differ between MS subtypes.

Table 2C shows Fc � RIIIb genotype distribution. Genotypes could be determined in 418 MS

patients. Again, no differences between patients, subgroups of patients and healthy controls

were observed.

We next evaluated combinations of Fc � RIIa-IIIa, Fc � RIIa-IIIb, and Fc � RIIIa-IIIb genotypes in

patients and controls. No significant differences were found between MS patients and healthy

donors (data not shown).

Table 1. Clinical characteristics of MS patients included in the study 

Disease duration (years)   No. of patients 

(female/male) Mean Median Range 

MS subtype
a
 RR 178 (121/57) 10.0 9 0.2 - 33.3 

 SP 159 (94/65) 17.1 15 4.0 - 63.0 

 PP 95 (55/40) 13.6 13 2.3 - 44.2 

Total  432 (270/162) 13.4 12 0.2 - 63.0 

a
MS clinical subtypes: RR = relapsing remitting, SP = secondary progressive, PP = primary 
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Fc� R genotype and age at onset of disease

The age of disease onset was compared between MS patients, stratified for Fc � R genotypes.

No differences were observed between Fc � R genotypes (data not shown).

Table 2. Distribution of Fc �JRIIa (A), Fc �JRIIIa (B) and Fc �JRIIIb (C) genotypes in MS 

patients and healthy donors  

A  Fc�JRIIa genotype – n (%)  Allele frequency 

  RR RH HH  R H 

MS patients  107 (24.8) 199 (46.2) 125 (29.0)  0.48 0.52 

MS subtypes RR 40 (22.6) 84 (47.5) 53 (29.9)  0.46 0.54 

 SP 44 (27.7) 74 (46.5) 41 (25.8)  0.51 0.49 

 PP 23 (24.2) 41 (43.2) 31 (32.6)  0.46 0.54 

Healthy donors  124 (24.1) 256 (49.7) 135 (26.2)  0.49 0.51 

     

B  Fc�JRIIIa genotype – n (%)  Allele frequency 

  VV VF FF  V F 

MS patients  68 (16.1) 197 (46.7) 157 (37.2)  0.39 0.61 

MS subtypes RR 24 (13.6) 90 (50.8) 63 (35.6)  0.39 0.61 

 SP 28 (18.3) 61 (39.9) 64 (41.8)  0.38 0.62 

 PP 16 (17.4) 46 (50.0) 30 (32.6)  0.42 0.58 

Healthy donors  74 (14.4) 244 (47.4) 197 (38.2)  0.38 0.62 

     

C  Fc�JRIIIb genotype – n (%)  Allele frequency 

  NA1NA1 NA1NA2 NA2NA2  NA1 NA2 

MS patients  51 (12.2) 192 (45.9) 175 (41.9)  0.35 0.65 

MS subtypes RR 21 (11.9) 76 (43.2) 79 (44.9)  0.34 0.66 

 SP 18 (11.9) 73 (48.4) 60 (39.7)  0.36 0.64 

 PP 12 (13.2) 43 (47.2) 36 (39.6)  0.37 0.63 

Healthy donors  68 (13.2) 240 (46.6) 207 (40.2)  0.37 0.63 
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Figure 1.

Kaplan-Meier analysis of time to reach Expanded Disability Status Scale score

6.0 after disease onset. MS patients were stratified according to their Fc � RIIa

(A), Fc � RIIIa (B) or Fc � RIIIb (C) genotype.
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Fc� R genotype and disease progression

The interval between disease onset and moderate to severe disability (EDSS 6) was used as

an estimate for disease progression. At the time these data were obtained, 163 patients had

reached an EDSS of 6 or higher. Two-hundred and two patients (47% of total) were followed

for 12 years or longer. In the total patient population, the median time to EDSS6 was 9.0

years, ranging from 0.4 to 56 years (average 10.4, standard deviation 7.9). We compared

average time to EDSS6 for patients expressing different Fc � R genotypes using ANOVA, Kruskal-

Wallis and Mann-Whitney tests. No differences were found for any of the three Fc � R

polymorphisms (data not shown). In addition, Kaplan-Meijer analysis did not show significant

differences in disease progression between Fc � R genotypes (Figure 1A-1C).
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Discussion

We compared the distribution of polymorphisms in the genes encoding for Fc � RIIa, Fc � RIIIa

and Fc � RIIIb in a large group of Dutch MS patients and ethnically matched controls. Fc � R

genotype distribution in the healthy donor population was similar to what was previously

described for Caucasians from the Netherlands, Germany and the United States (van der Pol

and van de Winkel, 1998; van Schie and Wilson, 2000). Fc � R polymorphisms could not be

associated with disease susceptibility, and the distribution of Fc � R genotypes was similar in

all subgroups of MS patients. In addition, Fc � R genotypes did not correlate with disease

progression or age of disease onset. We cannot exclude correlations with other disease

parameters that were not tested (e.g., exacerbation frequency). However, these data show

that it is unlikely that Fc � RIIa, Fc � RIIIa and Fc � RIIIb genotypes play a significant role in

disease susceptibility or modification of the long term clinical course of MS in Dutch patients.

Clinical relevance of interindividual Fc � R heterogeneity has been suggested for both infectious

and autoimmune diseases. Relatively inefficient handling of IC by Fc � RIIa-R131, Fc � RIIIa-

F158 and Fc � RIIIb-NA2 is proposed to favour the persistence of bacterial infections or the

deposition of pathogenic IC, thus causing prolonged pro-inflammatory reactions. This may

explain the reported association of Fc � R genotypes with diverse ailments such as meningococcal

and pneumococcal infections (Sanders  et al. , 1994; Bredius  et al. , 1994; Yee  et al. , 2000;

van der Pol  et al. , 2001), SLE (Duits  et al. , 1995; Salmon  et al. , 1996) and RA (Morgan  et al. ,

2000).

Thus far, one study focussed on Fc � R polymorhpisms in MS. One hundred thirty-six Norwegian

patients were compared to 96 healthy donors (Myhr  et al. , 1999). No differences were found

in the distribution of Fc � RIIa and Fc � RIIIb polymorphisms between patients and controls.

However, Fc � RIIIb genotypes were found to be associated with disease course. Patients

homozygous for Fc � RIIIb-NA1 were reported to have significantly better outcome of disease

as measured by EDSS, than those who were heterozygous or homozygous for NA2. In addition,

disease course in Fc � RIIa-H131 homozygotes was reported to be more favourable than in

heterozygotes or patients homozygous for Fc � RIIa-R131. We could not reproduce these findings

in the present study.

Comparisons between geographically separate populations may be complicated by ethnical

differences in the genetics of control subjects. Fc � RIIa-H131 and –R131 allele frequencies

were 0.42 and 0.58 respectively among healthy Norwegian donors, compared to 0.51 and

0.49 in the present study. As a consequence, the distribution of Fc � RIIa genotypes over

healthy controls was different in the two populations. In contrast, Fc � RIIIb-NA1/NA2 allele

frequencies and genotype distributions were very similar among Dutch and Norwegian controls

(0.36/0.64 and 0.37/0.63 respectively). Thus, in this case genetic differences between control

populations should not interfere with comparison of the two.

Several issues may account for the different results. First, the total number of subjects in the

study by Myhr et al . (1999) is smaller than in the present study. The number of subjects

required to detect small differences in the distribution of genetic polymorphisms is very large

(Ebers and Dyment, 1998), and conclusions from smaller studies should be drawn with great
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care. It is possible that the association described by Myhr et al . (1999) is occasional, and the

result may not be confirmed when larger groups of Norwegian MS patients and healthy

donors are compared.

Another issue is the correction for multiple testing. Because of the increased likelihood of

type II errors it can be argued to renounce correction for multiple testing in exploratory

studies. This of course increases the risk of type I errors, which might have occurred in the

study by Myhr et al . (1999). Despite the fact that we performed multiple tests and analysed

the polymorphisms separately, we did not observe any significant effect at the 0.05 cut-off

level. This seems to indicate the robustness of our negative findings in this large sample of

patients and controls.

Conflicting reports on the role of immunoglobulins and Fc � R in MS patients may be the result

of the heterogeneous nature of MS. Disease course can be very different among patients,

and MS lesion formation may differ from one patient to another. Importantly, Lucchinetti and

Lassman proposed a new way to classify MS lesions (Lucchinetti  et al. , 2000), based on

immunohistochemical analysis. They suggest that demyelination and axonal damage follow

different pathogenetic pathways in subgroups of patients. MS lesions were classified by the

presence of different cell types, immunoglobulin deposits and damage to neurons and glia

cells. Type II lesions, as described by Lucchinetti et al . (2000) are characterized by deposition

of immunoglobulins and activated complement at sites of active myelin destruction. It is in

these lesions that polymorphisms in Fc � R could affect lesion formation. Unfortunately, the

new classification of MS lesions (Lucchinetti  et al. , 2000) does not correspond with the classical

subdivision of MS based on disease course (primary progressive, relapsing-remitting and

secondary progressive). The subdivision of MS patients used here may therefore not be the

most desirable for this study.

The most obvious explanation for our results is probably that Fc � R polymorphisms simply do

not affect MS susceptibility or MS disease course, or at least not to a measurable extent.

Both immune complex-complement mediated processes and Fc � R mediated processes may

contribute to antibody-related inflammation in the MS brain. Fc � R polymorphisms may affect

the balance of these two processes in individual MS patients. However, both processes will

eventually lead to augmentation of the inflammatory response. Thus, even though local

inflammatory processes may differ among patients as a result of Fc � R polymorphisms, these

differences may not be reflected at the level of systemic disease progression.

In summary, functional polymorphisms in the genes encoding for Fc � RIIa, Fc � RIIIa and Fc � RIIIb

could not be associated with MS susceptibility or disease course. Allele frequencies for all

genes were highly similar in MS patients and healthy donors. We conclude that Fc � R

polymorphisms do not form a genetic risk marker for MS.
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Abstract

Complement activation and IgG deposition have been described in active demyelinating

lesions in patients with an acute or tumour-like presentation of MS. Absence of complement

and IgG from other MS patients suggested heterogeneity in the pathogenesis of demyelination.

The aim of this study was to characterize complement activation, IgG deposition and Fc �

receptor (Fc � R) expression in active demyelinating lesions in an unselected autopsy material

of MS patients. Post-mortem tissue of 32 MS patients containing 97 lesions was studied

using immunohistochemistry. Complement and IgG were consistently observed on and within

macrophages in active demyelinating areas. Immunostaining for complement and IgG was

infrequent or absent in later lesion stages and in control white matter. Macrophages in active

demyelinating areas were also immunopositive for Fc � R. Double-labelling studies revealed

colocalisation of complement, IgG and Fc � R with myelin proteins in macrophages, suggesting

an important role for complement- and Fc � R-mediated myelin phagocytosis in established

MS. In active demyelinating areas enhanced production of complement was detected using

quantitative PCR.  Heterogeneity between MS patients was not observed with regard to

complement and IgG in active demyelinating areas. This indicates that the immunopathological

mechanisms of white matter demyelination are different in established MS than in the MS

subpopulations studied earlier.
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Introduction

Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system

(CNS), resulting in progressive loss of motor and sensory function. Characteristic for MS are

focal areas (lesions or plaques) of myelin and partial axonal loss within the CNS parenchyma.

Predilection sites are optic nerve, periventricular white matter, subpial cerebral cortex,

brainstem and cervical spinal cord (Lumsden CE, 1970; Bö et al. , 2003).

It is not known what initiates demyelination in MS lesions. Autoimmune inflammation mediated

by infiltrating T and B cells specific for myelin antigens may result in recruitment of

macrophages and removal of healthy myelin (Adams et al. , 1989), alternatively death or

damage of oligodendrocytes may be a primary event followed by (auto-immune) inflammation

and demyelination (Barnett and Prineas, 2004). One study suggests that both these

mechanisms exist, although in different subsets of acute MS patients (Lucchinetti et al. ,

2000). In one subset of MS patients, active demyelinating lesions were characterized by the

presence of activated complement and antibodies, while other patients showed inflammatory

lesions without complement and immunoglobulins, or signs of primary oligodendrocyte

pathology (Lucchinetti et al. , 2000).

All of the suggested pathogenic pathways eventually lead to the removal of myelin by

macrophages. EM studies demonstrated that in active demyelinating MS lesions macrophages

lift myelin off axons and contain myelin fragments intracellularly in coated pits, suggesting a

receptor-mediated phagocytic process (Prineas and Connell, 1978). This may occur through

several mechanisms, including Fc �  receptor (Fc � R) and complement receptor mediated

phagocytosis (Smith, 1999). In vitro  experiments indicate that complement components

and antibodies can contribute to myelin phagocytosis both independently and synergistically.

Direct binding of C1q and C3 to myelin respectively activates the classical and alternative

pathways of complement. Subsequent formation of the membrane attack complex (MAC)

results in fragmentation of myelin, facilitating myelin uptake (DeJong and Smith, 1997). In

addition, C3-opsonized myelin is efficiently taken up by macrophages and microglia through

complement receptor 3 (CR3) (Bruck and Friede, 1991; van der Laan et al. , 1996).

Immunoglobulins specific for myelin antigens enhance myelin phagocytosis through

interactions with Fc � R (Abdul-Majid et al. , 2002). Fc � R mediated phagocytosis is further

enhanced in the presence of fresh serum, indicating an additional role for complement and

complement receptors (Van der Goes et al. , 1999), presumably through antibody-dependent

activation of the classical pathway. It is unclear to what extent each of these mechanisms

contributes to demyelination in MS plaques.

Several studies characterized the presence and expression of complement, IgG and Fc �

receptors in MS. All three subclasses of Fc �  receptors, Fc � RI (CD64), Fc � RII (CD32) and

Fc� RIII (CD16), are constitutively expressed by ramified microglia and perivascular

macrophages in the CNS (Ulvestad et al. , 1994). Fc � R expression is enhanced on lipid-laden

macrophages in active MS lesions (Ulvestad et al. , 1994), but it is unknown if these Fc � R are

involved in myelin phagocytosis. Interestingly, Prineas and Graham (Prineas and Graham,

1981) showed capping of phagocytic macrophages with IgG in MS lesions, suggestive of
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antibody mediated phagocytosis. However, colocalisation of Fc � R with IgG has not been

described in MS lesions.

Deposition of complement and IgG in white matter MS lesions was reported by a number of

groups. In addition to the diffuse immunostaining in active MS lesions that probably results

from leakage of complement proteins through a damaged blood brain barrier (BBB),

complement activation products and IgG were found in capillary walls in active MS plaques

(Compston et al. , 1989; Gay and Esiri, 1991). Direct deposition of complement and IgG on

myelin sheaths or degraded myelin has been described as well, although less consistently

(Storch  et al. , 1998; Lucchinetti  et al. , 2000; Bruck  et al. , 2001; Barnett and Prineas, 2004).

In subgroups of MS patients, complement and IgG have been detected on and within phagocytic

macrophages in areas of active demyelination (Gay et al. , 1997; Lucchinetti et al. , 2000).

Importantly, the results mentioned above were obtained almost exclusively using biopsy or

autopsy material taken from patients with acute MS or acute disease exacerbations, usually

with short disease duration. It is unclear to what extent deposition of complement and IgG

are found in active demyelinating lesions of an unselected autopsy material of patients with

established MS, and whether such deposition is heterogeneous in this patient group.

Another unresolved issue is the origin of complement in MS lesions. Deposition of complement

is observed predominantly in active lesions, where the BBB is disrupted and serum proteins

can easily diffuse into the CNS parenchyma (Gay and Esiri, 1991). However, all resident

brain cells are capable of producing complement components (Barnum, 1995). Local production

of complement is increased in a number of neurological diseases (Veerhuis et al. , 1996;

Singhrao et al. , 1999; Grewal et al. , 1999), but it is unknown if local production plays a role

in MS.

The aim of this study was to characterize presence and distribution of complement and IgG

in active demyelinating lesions in an unselected MS patient material with a typical course of

disease, and to investigate whether heterogeneity exists between MS patients with regard to

the deposition of complement and IgG. In the same material, the expression of Fc � R was

analysed. In addition, local production of complement was assessed in autopsy tissue

containing areas of active demyelination.
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Materials and Methods

Autopsy procedures and classification of lesion areas

Post mortem material from MS patients was obtained through cooperation with the Dutch

Brain Bank (coordinator: Rivka Ravid). The MS diagnosis was clinically and neuropathologically

confirmed in all patients. MS lesions containing areas of active demyelination are relatively

rare; therefore all MS tissue specimens present at the Department of Pathology of the VU

Medical Centre were checked for the presence of such lesions.

The material encompassed paraffin embedded tissue specimens from 66 MS patients, containing

348 white matter lesions. MS lesions were obtained using MRI guided sampling as described

previously (Bö  et al. , 1994; de Groot  et al. , 2001). Briefly, at autopsy 1 cm thick tissue slices

were used for MRI. After MRI, the tissue slices were cut in two parallel to the surface. From

one half tissue blocks containing MS lesions were fixed in formalin and embedded in paraffin,

whereas corresponding blocks from the opposing half were snap frozen and stored in liquid

nitrogen. The paraffin blocks were used to identify tissue blocks containing active demyelinating

MS lesions (see below). Corresponding frozen tissue blocks were subsequently used in the

immunohistochemical study of complement, IgG and Fc � R in MS.

Post mortem paraffin embedded tissue blocks were stained as described before with antibodies

directed against HLA-DR and PLP to characterize lesion inflammatory and demyelinating activity

(Bö  et al. , 1994). The inflammatory activity of lesions was staged as active, chronic active,

or chronic inactive as described (Bö  et al. , 1994; Trapp  et al. , 1998). Demyelinating activity

was defined by the presence of macrophages containing intracellular PLP (Lassmann et al. ,

1998). As lesion activity can be variable in different areas of one lesion (for instance in

chronic active lesions), centre and border areas of MS lesions were analysed separately.

To combine classification of inflammatory and demyelinating activity within MS lesions, areas

containing HLA-DR +  macrophages with intracellular staining for PLP were classified as

inflammatory demyelinating (HLA-DR +  PLP+ ), areas containing HLA-DR +  macrophages in absence

of intracellular PLP were classified as inflammatory non-demyelinating (HLA-DR +  PLP-) and

areas containing few macrophages with low HLA-DR staining and no intracellular PLP were

classified as inactive (HLA-DR - PLP-). Importantly, this method of classification allows

identification of different activity levels within one lesion. For example, a chronic active MS

lesion may contain an inflammatory demyelinating rim and an inactive centre.

Frozen tissue blocks, corresponding to paraffin blocks containing at least one inflammatory

demyelinating area, were used for further study, as previously MS lesion heterogeneity was

described in active demyelinating areas only (Lucchinetti et al. , 2000). This constituted 28

tissue specimens from the CNS white matter of 16 MS patients. In order to study sufficient

numbers of lesions with different inflammatory and demyelinating activity, 6 additional tissue

specimens from the same patients and 18 tissue specimens from 16 other MS patients were

included.
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Table 1. Clinical characteristics of MS patients and control subjects included in the study 

Case Age (y) MS subtype Disease 

duration (y) 

Sex 

 

Cause of death Postmortem 

delay (h) 

MS1 57 PPMS 22 f Sepsis 05:45 

MS2 35 SPMS 11 f Cachexia/general decline 05:35 

MS3 40 SPMS 14 f Dehydration 07:00 

MS4 53 SPMS 18 f Pneumonia 07:16 

MS5 62 SPMS 29 f Cardiac asthma 06:45 

MS6 46 SPMS 23 m Pneumonia 03:35 

MS7 40 SPMS 11 f Aspiration pneumonia 07:00 

MS8 54 MS 37 f Pneumonia/UTI 07:00 

MS9 55 SPMS 11 f Aspiration pneumonia 07:35 

MS10 70 PPMS 19 f Cardiogenic shock; pneumonia 08:55 

MS11 45 SPMS 14 f Euthanasia 10:55 

MS12 58 SPMS 20 f Euthanasia 08:10 

MS13 71 RRMS 24 f Respiratory insufficiency 10:25 

MS14 38 RRMS 14 f Sudden death, cause unknown 05:15 

MS15 70 MS 21 m Unknown 06:25 

MS16 52 SPMS 22 f Pneumonia 08:25 

MS19 64 PPMS 34 m End stage MS 07:30 

MS20 48 SPMS 8 f Euthanasia 08:10 

MS21 66 SPMS 43 f Cancer; liver failure 6:20 

MS22 53 SPMS 23 f Euthanasia 10:45 

MS23 43 SPMS 17 m Pneumonia 8:30 

MS24 81 PPMS 51 m General deterioration 08:50 

MS25 75 SPMS 42 F Pneumonia 08:00 

MS26 77 PPMS 26 m Stroke 04:15 

MS27 71 SPMS 23 f Respiratory problems 10:15 

MS28 48 SPMS 25 f Euthanasia 04:50 

MS29 72 SPMS 13 f Pneumonia 12:00 

MS30 55 PPMS 19 f Possible stroke 17:00 

MS31 49 MS 21 f Breast cancer 05:45 

MS32 84 MS 49 f Euthanasia 08:45 

CTRL1 59   f Larynx carcinoma 06:20 

CTRL2 45   f Adenocarcinoma 13:30 

CTRL3 52   f Leiomyosarcoma 06:50 

CTRL4 70   m Unknown 04:40 

CTRL5 50   f Suicide 14:35 

CTRL6 60   m Myocardial infarction 8:00 
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In total 58 tissue blocks from 32 MS patients were thus available for further study. In

addition, 5 white matter tissue specimens from 5 non-neurological control subjects were

studied.

Patient characteristics

The average age of the 32 MS patients included in the study was 57.3 years ( ± 13.9 years).

The median disease duration was 22.0 years (range 8-51 years). Two patients had relapsing

remitting MS (RRMS), 19 patients had secondary progressive MS (SPMS), 6 patients had

primary progressive MS (PPMS) and of 5 MS patients the clinical subtype was unknown. Of all

patients, 25 were female. The average age of the non-neurological control subjects at time

of death was 56.0 years ( ± 9.7 years). Four control subjects were female. Detailed patient

characteristics are provided in table 1.

Immunohistochemical methods

Five µm cryostat sections were mounted on Poly-l-lysine coated glass slides, fixed in acetone

(10 min), washed in phosphate buffered saline (PBS; pH 7.4) and pre-incubated with normal

serum (swine serum 1:10, rabbit serum 1:50 diluted in 1% bovine serum albumin in PBS for 10

minutes. Frozen sections were incubated for 60 minutes at room temperature (RT) or overnight

(4 °C) with primary antibodies directed against HLA-DR, PLP, complement components, IgG,

Fc� R and fibrinogen (table 2).

The tissue sections were then incubated with a biotinylated swine-anti-rabbit F(ab’) 2 (1:300,

DakoCytomation, Glostrup, Denmark) or a biotinylated rabbit-anti-mouse F(ab’) 2 (1:500, Dako)

for 30 minutes at RT. Sections were incubated for 1 hour with the s-ABC-HRP complex (1:200,

Dako), peroxidase labelling was visualized by 3,3-diaminobenzidine (Sigma, St. Louis MO). For

sections immunostained with the EnVision method, the sections were incubated with the

EnVision-HRP complex (undiluted, Dako) after primary antibody. The tissue sections were

counterstained with haematoxylin. As negative controls, PBS (pH 7.4), irrelevant polyclonal

antibody and isotype specific control monoclonal antibodies (IgG1, IgG2a, IgG2b) were used

instead of primary antibodies. Negative controls were essentially blank. Alzheimer’s disease

autopsy brain tissue was used for positive controls for the complement immunohistochemistry.

For double labelling studies using immunofluorescence, the sections were incubated with a

mixture of biotinylated swine-anti-rabbit F(ab’) 2 (1:300, DAKO) and HRP-conjugated goat-

anti-mouse isotype specific secondary antibodies, after primary antibody (table 2). The sections

were then incubated with streptavidin conjugated to Alexa 488  (1:750, Molecular Probes) for

60 min and rhodamin-tyramide (1:3000 + 0.01% H 2O2, VUmc) for 5 min. If the primary antibodies

used in the double labelling studies were of the same species and isotype, staining for the

antigens of interest, including detection using Alexa 488 - and Alexa 594 -conjugated secondary

antibodies, was performed sequentially on the same section. As negative controls, PBS (pH

7.4), irrelevant polyclonal antibody and isotype control monoclonal antibodies were used

instead of primary antibodies. Negative controls were essentially blank. In addition, single
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Table 2 Primary antibodies used for immunohistochemistry 

Antigen Species/isotype Clone Dilution Company Method 

C1q Rabbit polyclonal  1:1000 DAKO s-ABC-HRP 

C3d Rabbit polyclonal  1:500 DAKO s-ABC-HRP 

C4d Mouse IgG1  1:100 (o/n) Quidel s-ABC-HRP 

C5b-9 Mouse IgG2a aE11 1:50 (o/n) DAKO EnVision 

C5b-9 Mouse monoclonal B7 1:100 (o/n) Gift Dr.Morgan EnVision 

Fc�JRI(CD64) Mouse IgG1 10.1 1:20 Serotec s-ABC-HRP 

Fc�JRII(CD32) Mouse IgG1 AT10 1:750 Serotec s-ABC-HRP 

Fc�JRIII(CD16) Mouse IgG1 3G8 1:500 Gift Dr. Leusen s-ABC-HRP 

Amyloid-�E Rabbit polyclonal  1:600 Gift Dr. Nostrand s-ABC-HRP 

Fibrinogen Rabbit polyclonal  1:100 DAKO s-ABC-HRP 

GFAP Mouse IgG1 6F2 1:10 Monosan s-ABC-HRP 

HLA-DR Mouse IgG2b LN3 1:100 (o/n) Gift Dr.Hilgers s-ABC-HRP 

IgG Rabbit polyclonal  1:800 DAKO s-ABC-HRP 

PLP Mouse IgG2a Plpc1 1:1000 (o/n) Serotec s-ABC-HRP 

GFAP = glial fibrillary acidic protein; PLP = proteolipid protein; o/n = overnight incubation; DAKO = 

DakoCytomation, Glostrup, Denmark; Quidel = Quidel Corporation, San Diego, CA; Serotec = Serotec Oxford, UK; 

Monosan = Monosan, Uden, The Netherlands  

 

fluorescent labelling of the primary antibodies was used on MS brain tissue to verify the

staining pattern compared to the double labelling techniques.

Scoring of immunopositivity

The presence and extent of immunopositivity for complement activation products (C1q, C3d,

C4d and C5b-9), fibrinogen, IgG, Fc � RI, Fc � RII and Fc � RIII on macrophages, astrocytes,

myelin and blood vessels was scored semi-quantitatively in the different lesion areas (centre

and border of white matter lesions, normal appearing white matter (NAWM) of MS patients

and controls), using a semi-quantitative scale from (-) to (+++).  The density of stained

cells/structures and the intensity of staining of each individual cell/structure were taken into

consideration. (-) represented no immunostaining, (+) light immunopositivity, (++) moderate

immunostaining and (+++) strong immunopositivity. Immunopositivity was analysed separately

on macrophages, myelin, astrocytes and blood vessels in centre and border areas of white

matter lesions.
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Quantitative PCR

Tissue specimen containing inflammatory demyelinating lesion areas from 5 MS patients were

selected for quantitative PCR (Q-PCR) to estimate the relative expression of complement

mRNA. Tissue specimens from 4 non-neurological controls were used as controls (CTRL2-4,

CTRL6). From each tissue block, four 10 µm sections were lysed in TRIzol (Life Technologies,

Gaithersburg, MD), according to the manufacturer’s guidelines. Chloroform (0.2ml/ml lysate)

was added and lysates were mixed vigorously for 30 s. The mixture was centrifuged (12000

rpm, 4ºC, 15 min), and the aqueous phase was taken up in a new tube. RNA was precipitated

using 0.5ml isopropanol and incubated for 1 h at -20ºC. After centrifugation (12000 rpm, 4ºC,

10 min) the supernatant was removed and pellets were washed using 75% EtOH, again

followed by centrifugation (4000 rpm, 4ºC, 5 min). The supernatant was removed and pellets

were allowed to dry for 10 min. RNA was resuspended in 40 µl diethylpyrocarbonate (DEPC)

treated H
2
0 and stored at -80ºC. After treatment with DNAse (AppliChem, Darmstadt, Germany)

to digest genomic DNA, RNA was reverse transcribed using a CDNA synthesis kit (MBI Fermentas,

St. Leon-Rot, Germany). Real-time quantitative PCR was performed using an Abiprism 7900

Sequence Detection System (PE Applied biosystems, CA, USA) based on specific primers and

general fluorescence detection with SYBR green. Cyclophilin A and GAPDH were used to

control for sample loading and to allow normalization between samples. Primer sequence:

GAPDH, sense: 5’ ACCTGACCTGCCGTCTAGAAAA 3’, anti-sense 5’ GCCCAGGATGCCCTTGA 3’;

cyclophilin A sense: 5’ TTTCATCTGCACTGCCAAGACT 3’, antisense: 5’ CCATTCCTGGACCCAAAGC

3’; C1q sense: 5’ CCCCGATGGCCAACCT 3’, anti-sense 5’ GCCGACTTTTCCTGGATTCC 3’, C3

sense 5’ ACAGCAGCGCACGTTCATC 3’, anti-sense 5’ ACCCAAGTGTCCTTCCCGA 3’.

Statistical methods

Differences in immunopositivity between lesion areas were calculated using non-parametric

tests (Mann Whitney U-test, Sign Test). Correlations of immunoreactivity between groups

were calculated using the Spearman rank test. Local production of complement mRNA in MS

tissue specimen was considered to be enhanced over production in non-neurological control

tissue when the relative abundance of mRNA in MS tissue was higher than [average abundance

of non-neurological control tissue + 2*standard deviation]. All statistical analyses were

performed 2-tailed with a confidence level of 95% or higher when indicated.
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Results

Number of lesions and areas
The frozen tissue specimens from 32 MS patients contained a total of 97 MS lesions, as

revealed by immunostaining for PLP and HLA-DR. Centre and border areas of the lesions were

studied separately, yielding a total of 194 areas. The material comprised 81 inflammatory

demyelinating areas, 62 inflammatory non-demyelinating areas and 51 inactive areas. Of all

inflammatory demyelinating areas, 44 areas were part of active MS lesions and 37 were part

of chronic active lesions.

Macrophages in areas of active demyelination contain activated complement and

IgG

Generally, macrophage immunopositivity for complement activation products, IgG and fibrinogen

was associated with inflammatory demyelinating areas. In addition to staining on the cell

surface, complement, IgG and fibrinogen showed extensive intracellular immunostaining in

vesicular structures, a pattern highly similar to the cellular pattern of PLP immunopositivity

within the same areas (figure 1A,C,G,E). Deposition of complement, IgG and fibrinogen in

inflammatory non-demyelinating areas or inactive areas was generally much lower or absent

(figure 1B,D,F,H). Results of semi-quantitative analysis of macrophage-associated

immunostaining are provided in figure 2.

C1q and C3d were consistently found on and within macrophages in inflammatory demyelinating

areas, but not in inflammatory non-demyelinating areas, inactive areas and NAWM (for both

C1q and C3d, inflammatory demyelinating areas vs. any other area p<0.001). Immunostaining

for C4d on and within macrophages was less abundant and less intense than for the other

complement activation products, but again the highest extent of immunopositivity was observed

in inflammatory demyelinating areas. Immunostaining for the terminal complex of complement

activation (C5b-9) yielded similar results with the two different monoclonal antibodies used.

C5b-9 immunopositivity was abundantly present on and within macrophages in inflammatory

demyelinating areas (figure 1E). Although there was considerable immunopositivity for C5b-9

in inflammatory non-demyelinating areas, staining was significantly less than in inflammatory

demyelinating areas (p<0.05). C5b-9 immunostaining in inactive areas and NAWM was low

(figure 2).

Macrophage associated immunostaining for IgG and fibrinogen was detected predominantly

on/in macrophages in inflammatory demyelinating areas (figures 1 and 2). Similar to C1q and

C3d, macrophage immunostaining for IgG and fibrinogen was low in all other areas (for both

IgG and fibrinogen, inflammatory demyelinating areas vs. any other area p<0.001).

Macrophage associated immunopositivity for the different complement proteins was highly

correlated (p<0.01) and immunopositivity for all complement activation products was highly

correlated with fibrinogen and IgG (p<0.01).
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Figure 1.
Complement activation products and IgG are present on and within macrophages in inflammatory

demyelinating lesion areas. Left panel: inflammatory demyelinating area; right panel: inflammatory

non-demyelinating area. Both areas were located at the border of a chronic active MS lesion.

Macrophages in inflammatory demyelinating areas contain intracellular PLP (A) whereas

macrophages in inflammatory non-demyelinating areas do not (B). Macrophages in both inflammatory

demyelinating and non-demyelinating areas express high levels of HLA-DR (C, D). Expression of

C5b-9 is associated with macrophages in inflammatory demyelinating areas (E) but not inflammatory

non-demyelinating areas (F). Diffuse immunostaining for IgG, and IgG staining associated with

astrocyte processes is observed in demyelinating (G) and non-demyelinating (H) lesion areas, but

staining on and within macrophages is restricted inflammatory demyelinating areas (G).

See page 163 for a full-colour representation of this figure.
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Figure 2.

Semi-quantitative analysis of macrophage associated immunostaining for complement activation products,

IgG and fibrinogen in lesions areas of different demyelinating and inflammatory activity. The percentage

of areas that was positive for the plasma proteins is represented by the height of the bars, whereas the

shading of the bars represents the extent of immunopositivity. (+) light immunopositivity, (++) moderate

immunopositivity and (+++) strong immunopositivity.

*immunostaining significantly higher than in all other areas (C1q, C3d, fibrinogen and IgG: p<0.001;

C5b-9: p<0.01); **immunostaining higher than inactive and NAWM areas (p<0.05); †immunostaining

higher than NAWM (p<0.01).

There was interlesional variation in the extent of macrophage immunopositivity for individual

complement activation markers. This variation was intraindividual rather than interindividual.

Importantly, increased macrophage immunostaining for at least one, but in most cases more

than one (>90% of lesions), of the complement markers was observed in all active demyelinating

lesions. There was thus no interindividual heterogeneity observed with respect to macrophage

associated complement immunoreactivity.

Complement deposition is occasionally observed on myelin sheaths
C3d immunostaining was occasionally detected on myelin sheaths in inflammatory demyelinating

areas (figure 3A,B). C3d myelin staining was infrequent in inflammatory non-demyelinating

areas and very rare in inactive lesion areas. No C3d was detected on myelin in NAWM or
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Figure 3.

C3d and C4d are detected on myelin sheaths in inflammatory demyelinating areas. C3d immunostaining

is observed on a myelin sheath that is in close contact with macrophages (A, macrophages indicated by

arrows), immunostaining is more intense at the interface of the myelin sheath and the macrophage (B,

interface indicated by arrowhead). C4d immunostaining on a myelin sheath that is surrounded by

macrophages (C, macrophages indicated by arrows). Original magnification 400X. (D) Results of semi-

quantitative analysis of myelin associated immunostaining for C3d and C4d. The percentage of areas

that were positive for complement is represented by the height of the bars, whereas the shading of the

bars represents the extent of immunopositivity.(+) light immunopositivity, (++) moderate immunopositivity

and (+++) strong immunopositivity.

**immunostaining higher than in inactive lesions and NAWM (p<0.05).

See page 166 for a full-colour representation of figure 3A-C.

control white matter tissue (figure 3D). C4d staining on myelin sheaths was observed in

inflammatory areas with and without active demyelination (figure 3C,D), while staining was

lower in inactive lesion areas. Infrequent myelin immunopositivity for C4d was also observed

in NAWM and control tissue (figure 3D). Myelin sheaths that were immunopositive for C3d or

C4d frequently had an irregular, vacuolated or swollen morphology. Occasionally complement

immunopositive myelin sheaths were in direct contact with complement positive macrophages.

In these areas increased complement immunopositivity could be observed at the myelin/

macrophage interface (figure 3B). Complement factors C1q, C5b-9, IgG and fibrinogen were

not observed on myelin sheaths in any lesion area, NAWM or control tissue.
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Figure 4.

Double labelling immunofluorescence reveals

colocalisation of PLP with complement and complement

with IgG in inflammatory demyelinating areas. The left

panel shows colocalisation of PLP (A) and C3d (C) on

the surface and in vesicle-like structures inside

phagocytic macrophages (E shows merge of A and C).

Immunostaining for C3d, but not PLP, is observed on

astrocytes (arrow). The right panel shows colocalisation

of C1q (B) with IgG (D) on infiltrating phagocytic

monocytes/macrophages (arrowheads) and on a glial cell

(arrow) (F shows merge of B and D). Vascular

immunostaining for IgG, but not C1q, is observed on the

inner and outer basement membranes lining the Virchow-

Robin space (D, F, asterix). The IgG-positive, C1q-

negative cell on the left side of image D and F may

represent a plasma cell. Original magnification 400X.

See page 167 for a full-colour representation of this

image.

Astrocytes
Astrocytes in all lesion areas were immunopositive for C1q, C3d, IgG, fibrinogen and to a

lesser extent C4d (data not shown). The cellular pattern of complement immunostaining was

different from that of macrophages, with a diffuse staining throughout the astrocyte cytoplasm

and processes. No astrocyte immunopositivity was observed for the C5b-9 complex. Surprisingly,

astrocyte immunostaining for C1q and IgG was more intense in inflammatory non-demyelinating

lesions than in inflammatory demyelinating areas (p<0.01). For all other complement proteins,

astrocyte immunopositivity was comparable in lesion areas of different inflammatory and

demyelinating activity, and generally slightly enhanced over NAWM. In control white matter,

astrocyte immunopositivity for complement was rare. Astrocyte associated C1q, C3d, IgG

and fibrinogen immunostaining was significantly lower in control white matter than in any

lesion area or NAWM (p<0.05) (data not shown).

Blood vessels
Immunostaining for C1q, C3d, C4d, IgG and fibrinogen was observed in blood vessel walls on

the luminal and abluminal sides of endothelial cells, with no increased immunopositivity associated

with MS lesions.

Immunopositivity for IgG, but not complement components, was observed on astrocytic

endfeet. The extent of immunostaining for C5b-9 in blood vessel walls was lower than for all

complement and plasma proteins studied (data not shown).
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Figure 5.

Enhanced local expression of complement mRNA in tissue blocks containing inflammatory

demyelinating areas. Figure represents relative expression of C1q and C3 calculated using expression

of cyclophilin A as a reference gene. (A) Expression of C1q mRNA was enhanced in 5/5 MS tissue

blocks (shaded bars) when compared to control white matter tissue blocks (black bars)(*, p<0.05).

(B) Expression of C3 mRNA was enhanced in 3/5 MS tissue blocks (shaded bars) when compared to

control white matter tissue blocks (black bars)(*, p<0.05).

Colocalisation of complement with PLP and IgG in phagocytic macrophages

The presence of complement activation products, IgG, and myelin in vesicular structures

within macrophages in active demyelinating areas suggests a role for complement and IgG in

myelin phagocytosis. We next investigated if these proteins were present simultaneously

within the same cells, or in the same structures within the cells. Double labelling studies

demonstrated that PLP and C3d colocalised in structures resembling phagocytic vesicles

within macrophages (figure 4A,C,E). Similarly, C1q and C4d colocalised with PLP in phagocytic

macrophages (data not shown). In addition, double fluorescent staining for C1q and IgG

demonstrated colocalisation of complement and IgG in macrophages in inflammatory

demyelinating areas (figure 4B,D,F).

Enhanced local production of complement in inflammatory demyelinating lesion

areas

The presence of C1q and C3d on and within macrophages in inflammatory demyelinating areas

strongly correlated with deposition of fibrinogen and IgG, suggesting that complement proteins

had entered the brain by leakage through the blood brain barrier. However, resident cells of

the CNS as well as infiltrating macrophages are able to produce complement proteins (Veerhuis

et al. , 1996; Yasojima et al. , 1999). To examine whether local production of complement plays

a role in MS lesion formation, expression of C1q and C3 mRNA was determined in MS tissue

blocks containing inflammatory demyelinating areas from five MS patients and normal white

matter tissue blocks from four non-neurological controls. Relative abundance of C1q and C3
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Figure 6.

High expression of Fc� R in inflammatory areas in chronic MS. Figure shows abundant expression of HLA-

DR (A) on phagocytic macrophages in an inflammatory demyelinating area at the border of a chronic active

lesion. In the same area, high expression of Fc� RI (B) and Fc� RII (C) is detected on the surface of

phagocytic macrophages and within intracellular vesicle-like structures. Expression of Fc� RIII (D) is

observed in association with phagocytic macrophages as well, although the extent of immunostaining is

lower than for Fc� RI and Fc� RII. Original magnification 400X. (E) Results of semi-quantitative analysis

of Fc� R in different lesion areas. The percentage of lesion areas that were positive for Fc� R expression

is represented by the height of the bars, whereas the shading of the bars represents the extent of

immunopositivity. (+) light immunopositivity, (++) moderate immunopositivity and (+++) strong

immunopositivity.

**immunostaining higher than in inactive lesions and NAWM (p<0.05), *immunostaining higher than

NAWM (p<0.05).

See page 170 for a full-colour representation of figure 4A-D.

mRNA was calculated using the expression levels of two genes, cyclophilin A and GAPDH, as

an internal reference. The results obtained with the two different reference genes were

highly comparable. C1q mRNA expression was increased in all MS tissue blocks when compared

to the average expression in control tissue (p<0.05; figure 5A). Expression of C3 mRNA was

increased as well, although less consistently. Expression of C3 was significantly enhanced in
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Figure 7.

Double labelling immunofluorescence reveals colocalisation

of Fc� R with IgG and complement an inflammatory

demyelinating area at the border of a chronic active MS lesion.

The upper panel shows colocalisation of Fc� RII (A) and IgG (C)

on the surface and in vesicle-like structures inside phagocytic

macrophages (E shows merge of A and C). The lower panel

shows colocalisation of Fc� RII (B) with C1q (D) on and within

phagocytic macrophages (F shows merge of B and D). Diffuse

background staining for IgG (C) and C1q (D) is typical of

inflammatory demyelinating areas in the CNS. Original

magnification 400X.

See page 171 for a full-colour representation of this image.

three out of five MS patients (p<0.05; figure 5B). This demonstrates that at least part of the

complement products in areas of active demyelination is produced locally.

Expression of Fc �  receptors in MS lesion areas is associated with inflammation

Macrophage immunostaining for Fc � RI and Fc � RII was consistently enhanced in inflammatory

lesion areas, both demyelinating and non-demyelinating (figure 6). Expression of Fc � RI and

Fc� RII was lower in inactive lesions areas and NAWM (p<0.05). Macrophage expression of

Fc� RIII was similar in all lesion areas, and in all cases enhanced over NAWM (p<0.05) (figure

6). The results are summarized in figure 6E.

In inflammatory demyelinating areas, staining for all Fc � Rs was observed in intracellular vesicle-

like structures in phagocytic macrophages and on the cell surface, similar to immunostaining

for HLA-DR (6A-D). In these areas, double-labelling studies revealed colocalisation of Fc � RI

and PLP within macrophages (data not shown). Furthermore, Fc �  receptors colocalised with

IgG and C1q (figure 7).

Constitutive expression of Fc � RI, Fc � RII and to a lesser extent Fc � RIII was observed on

microglia and perivascular macrophages in NAWM areas of MS patients and in normal controls.

Strikingly, expression of Fc � RII, but not Fc � RI or Fc � RIII was particularly high on perivascular

macrophages, both in lesion and control areas (data not shown). Fc � RIII was the only Fc � R

that was expressed on endothelial cells. Expression was restricted to capillaries and small

venules, and unchanged in lesion areas when compared to NAWM (data not shown).
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Discussion

This study demonstrates that complement activation products, IgG and Fc � R are consistently

present on and within phagocytic macrophages in active demyelinating white matter lesions

in MS patients. Presence of complement and IgG was mostly restricted to inflammatory

demyelinating areas, whereas enhanced expression of Fc � R was observed in all inflammatory

areas, both demyelinating and non-demyelinating. Furthermore, local production of

complement products was enhanced in active demyelinating MS lesions. This suggests an

important role for complement, IgG and Fc � R in white matter demyelination in MS.

MS lesions containing inflammatory demyelinating areas are rare in CNS autopsy material

from patients with established MS. This may explain why previous studies focusing on active

demyelinating lesions were either restricted to a few patients (Storch  et al. , 1998; Bruck  et

al. , 2001; Prineas  et al. , 2001) or performed using brain material from early MS patients,

often with acute disease (Gay et al. , 1997; Lucchinetti et al. , 2000). Analysis of a large

number of active demyelinating MS lesions by Lucchinetti et al . (2000) suggested that these

lesions can be subdivided into four immunopathological patterns. MS lesions patterns varied

between patients, but not within patients, implicating heterogeneity of MS pathogenesis.

One pattern of demyelination (pattern II) was characterized by presence of immunoglobulins

and complement activation product in association with macrophages containing intracellular

myelin debris. This pattern was observed in approximately fifty percent of MS patients with

acute MS, but appeared to be more prominent in patients with disease duration longer than

one year (Lucchinetti et al. , 2000).

The data presented here show complement activation products and IgG within PLP-positive

macrophages in all active demyelinating lesions in all patients that were included. This indicates

that the distribution of MS lesion patterns in an unselected material of MS patients with a

typical disease course is different from that of patients with very severe disease or a tumour

like presentation.

In a recent study, oligodendrocyte apoptosis and complement deposition on myelin sheaths

were proposed to be the earliest events in the formation of new lesions in acute MS (Barnett

and Prineas, 2004), while similar oligodendrocyte changes were not observed in regions of

active demyelination in established lesions of relapsing remitting or chronic MS (Prineas  et

al. , 2001; Barnett and Prineas, 2004). Different pathways of demyelination may converge

with time resulting in a common pathway of demyelination in later phases of disease.

Furthermore, some of the immunopathological patterns as described by Lucchinetti et al .

(2000) may be restricted to patients with acute forms of MS that will never reach the chronic

phase of disease.

Elements of the different pathological subtypes may exist within one lesion. This was recently

described for highly acute, newly forming MS lesions, where complement activation was

observed in areas of oligodendrocyte apoptosis (Barnett and Prineas, 2004). Whether this is

the case in the present material is not known, as the presence of oligodendrocyte apoptosis

and preferential loss of myelin associated glycoprotein was not studied. The extent of

oligodendrocyte apoptosis in this patient material is subject of further studies in our laboratory.
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Although complement activation products and IgG were consistently detected together with

myelin on and within macrophages in areas of active demyelination, myelin staining for C1q,

C5b-9 and IgG was largely absent, and C3d and C4d were only occasionally found on myelin

sheaths. Deposition of C3d on myelin in absence of full complement activation (i.e. presence

of C5b-9) has been described before (Prineas  et al. , 2001), although other studies reported

C9neo immunopositivity on myelin in areas of active demyelination (Storch  et al. , 1998;

Lucchinetti  et al. , 2000; Barnett and Prineas, 2004). C3d and C4d covalently bind to their

target after cleavage and may thus accumulate at the site of deposition, whereas non-

covalently bound C1q and C5b-9 are rapidly turned over, by detachment or vesiculation

respectively (Morgan, 1989). In vitro studies demonstrated the capacity of oligodendrocytes

to secrete vesicles bearing the C5b-9 complex, possibly explaining the absence of

immunopositivity for C5b-9 on myelin sheaths (Scolding et al. , 1989).

In cortical lesions, deposition of C4d on myelin was observed in absence of other complement

activation products on myelin or other structures (Schwab and McGeer, 2002; Brink  et al. ,

2005). However, active demyelinating white matter lesions in the same MS tissues showed

immunopositivity for complement activation products on macrophages, astrocytes and myelin

(Brink  et al. , 2005). This is consistent with location dependent differences in lesion pathology,

as cortical lesions have been found to be largely non-inflammatory (Peterson et al. , 2001).

Not much is known on the origin of complement proteins in MS lesions. Enhanced expression

of mRNAs for C1q and to a lesser extent C3 in MS lesions demonstrates that at least part of

the complement proteins in areas of active demyelination are produced locally. Constitutive

expression of C1q in the CNS is substantially lower than expression of C3 (Yasojima et al. ,

1999), possibly explaining the difference in regulation under inflammatory conditions.

Similarly, in Alzheimer’s disease, upregulation of C1q mRNA in the CNS was more obvious

than upregulation of C3 transcription (Yasojima et al. , 1999). Gene-microarray analysis of

active MS lesions previously showed enhanced mRNA expression for C1r (Lock et al. , 2002),

a protein that forms the C1 complex with C1q and C1s. It is unknown what cell type is

responsible for the upregulation of C1q and C3. Astrocytes in all lesion areas were

immunopositive for complement products, while immunopositivity associated with

macrophages was increased in inflammatory demyelinating areas, suggesting that

macrophages are responsible for the enhanced local production of C1q and C3. In CNS

derived primary cultures, microglia were the only cells that produced C1q and production

was enhanced under inflammatory conditions. C3 was produced by astrocytes, microglia and

neuroblastoma cell lines (Veerhuis et al. , 1999). Further studies using in situ hybridisation

techniques are required to elucidate patterns of local complement expression in MS lesions.

The colocalisation of PLP and IgG in phagocytic macrophages (this study), and the association

of anti-MOG antibodies with degraded myelin within phagocytic macrophages (Genain et al. ,

1999), suggest a role for antibody-mediated uptake of myelin, possibly through Fc �  receptor

mediated phagocytosis. Although enhanced expression of Fc � R on microglia and infiltrating

macrophages in active MS lesions was demonstrated before (Ulvestad et al. , 1994) it was

unknown if Fc � R colocalised with IgG and complement in areas of active demyelination. The

present study demonstrates colocalisation of Fc � R with IgG, complement and PLP in vesicle
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like structures in phagocytic macrophages, suggesting a role of Fc � R mediated myelin

phagocytosis in MS. Crosslinking of Fc � R is achieved most efficiently by immune complexes

(IC). Indeed, PLP, C1q, IgG and Fc � R colocalised within macrophages in inflammatory

demyelinating areas, suggesting a role for Fc � R mediated uptake of IC containing myelin

antigens in MS. Crosslinking of macrophage Fc � R can induce a wide variety of effector functions,

including phagocytosis, release of inflammatory mediators, antigen presentation (Ravetch

and Bolland, 2001), all of which may contribute to MS lesion formation. The result of Fc � R

crosslinking depends on the balance between activating and inhibitory Fc � R that are expressed

on the cell surface (Takai, 2002). In this respect, it would be very interesting to separately

analyse expression of the activating and inhibitory subclass of Fc � RII (Fc � RIIa and Fc � RIIb

respectively). Unfortunately, the available antibodies do not distinguish between Fc � RIIa and

Fc� RIIb. Expression of the activating Fc � RI, but not Fc � RII, is enhanced in the presence of

IFN- � . As IFN- �  production is enhanced in MS (Sarchielli et al. , 1997), the expression pattern

of Fc � R on macrophages in MS lesions may be skewed towards the activating Fc � R, implicating

that Fc � R crosslinking will have a pro-inflammatory effect. In support of this, microglia were

shown to produce inflammatory chemokines upon in vitro  Fc� R crosslinking under pro-

inflammatory conditions (Song et al. , 2002).

In summary, deposition of complement and IgG was consistently observed on and within

macrophages in inflammatory demyelinating MS lesion areas, where local production of

complement was enhanced. Furthermore, complement activation products, IgG and Fc � R

colocalised with intracellular PLP in phagocytic macrophages. It is concluded that all tools for

antibody- and complement-mediated phagocytosis are present in areas of active demyelination.

Consistent presence of complement and IgG in areas of active demyelination demonstrates

that the distribution of lesion patterns in an unselected MS autopsy material from patients

with typical MS disease course is different from the patterns that were previously described

in a population of patients with early MS.
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Abstract

Antibodies are thought to contribute to CNS inflammation and demyelination in a subgroup

of multiple sclerosis (MS) patients. However, the antigen specificity of antibodies in MS is

unknown. Antibodies directed against a number of myelin proteins have been detected in

serum of multiple sclerosis (MS) patients, but no single antigen has been associated exclusively

with MS.

Studies in animal models suggest that antibodies with demyelinating capacity are directed

against native conformational and post-translationally modified epitopes. The current methods

to detect anti-myelin antibodies often do not allow recognition of such epitopes, either because

recombinant proteins or peptides are used as antigens or because the techniques that are

used require denaturation of protein antigens. This is particularly relevant for myelin

oligodendrocyte protein (MOG), the myelin protein that has been shown to elicit potent

demyelinating antibodies in vivo .

We have developed a reproducible, flow cytometry-based assay to detect serum antibodies

directed against human whole myelin, including antibodies to myelin basic protein, proteolipid

protein and MOG. Myelin was isolated from human white matter CNS tissue, allowing antibody

recognition of conformational and post-translationally modified epitopes.

Using this assay, anti-myelin antibodies were measured in serum of 56 MS patients and 27

healthy donors (HD). Approximately fifty percent of MS patients showed enhanced anti-

myelin IgG levels when compared to HD. This suggests that antibody responses to native

human myelin antigens may be relevant in MS, and that antibodies to human whole myelin

may be a valuable biomarker to identify patients with antibody-mediated inflammation.
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Introduction

Abnormalities in the humoral immune system are a common observation in Multiple Sclerosis

(MS). Serum and cerebrospinal fluid (CSF) from MS patients have been screened for antibodies

directed against a wide range of myelin antigens, including myelin basic protein (MBP),

proteolipid protein (PLP), myelin associated glycoprotein (MAG), oligodendrocyte specific

protein (OSP) and myelin oligodendrocyte glycoprotein (MOG) (Sellebjerg et al. , 1998;

Bronstein et al. , 1999; Reindl et al. , 1999; Lindert et al. , 1999; Vojdani et al. , 2003; Berger

et al. , 2003). Although enhanced anti-myelin antibody responses in MS patients have been

described, the results of these studies are inconsistent, and thus far no single antigen has

exclusively been associated with MS.

This inconsistency is possibly related to heterogeneity in pathogenic processes underlying

MS, but also to the variety of different assa ys that are currently used to identify anti-myelin

antibodies. In addition, the source of myelin proteins that are used for screening is highly

variable. Screening studies are often performed using recombinant myelin proteins that are

expressed in bacteria, mammalian cells or by in vitro  translation, all of which differently

affect post-translational processing such as protein folding and glycosylation, further

diversifying the results. This is particularly relevant for the minor myelin proteins (MOG and

MAG) that are difficult to isolate from the CNS in sufficient quantities, although recombinant

proteins and peptides have also been used to screen for antibodies directed against the

major myelin proteins MBP and PLP (Vojdani et al. , 2003).

MOG has been a favourite target in anti-myelin antibody screening studies. MOG is located in

the outermost layer of the intact myelin sheaths, where it is easy accessible for autoimmune

responses (Baumann and Pham-Dinh, 2001). The relevance of MOG as an auto-antigen has

been demonstrated in experimental allergic encephalomyelitis (EAE), where immunization

with MOG can induce chronic demyelinating disease with CNS lesions highly reminiscent of

MS, associated with a MOG specific T- and B-cell response (Adelmann et al. , 1995; Brok et

al. , 2000). The in vivo  demyelinating potential of anti-MOG antibodies has repeatedly been

demonstrated in models of antibody-exacerbated EAE (Linington et al. , 1988; Morris-Downes

et al. , 2002). Importantly, pathogenic anti-MOG antibodies were directed against

conformational epitopes, and it was shown that these conformational antibodies not only

enhanced demyelination but also contributed to dissemination of demyelinating lesions in

the CNS (Brehm et al. , 1999; von Budingen et al. , 2004).

The methods that are currently used to detect anti-MOG antibodies often do not allow

recognition of conformational epitopes, suggesting that the pathogenically relevant anti-

MOG responses may be ignored. Similarly, antibodies specific to other myelin antigens may

be directed against conformational or posttranslationally modified epitopes. In addition, the

anti-myelin antibody response in MS patients may be directed against a range of myelin

antigens rather than to one particular protein, due to the continuous release of myelin antigens

during chronic CNS demyelination and inflammation in MS.

We here describe an assay to detect serum antibodies directed against human whole myelin.

This assay enables detection of antibodies directed against native, posttranslationally modified
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antigens of a wide range of myelin proteins, including MOG.  Taking advantage of the bead-

like appearance of myelin in aqueous solution, we analysed binding of human serum

immunoglobulins to whole myelin using flow cytometry. Using the myelin flow cytometry

assay, serum samples of MS patients and healthy donors were screened for the presence of

anti-myelin antibodies.
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Materials and Methods

Isolation of human myelin

Human CNS white matter tissue was obtained at autopsy from individuals without a history

of neurological disease, in collaboration with the Dutch Brain Bank (coordinator: Rivka Ravid).

Myelin was isolated according to the method of Norton and Poduslo (Norton and Poduslo,

1973), with minor adaptations. Briefly, CNS white matter was homogenised in 0.32 M sucrose.

The suspension was layered over a 0.85 M solution of sucrose and centrifuged at 75,000 g for

30 min at 4 °C (step 1). The interphase, containing the myelin, was pooled and washed three

times with de-ionised water by repeated centrifugation at 75,000 g for 15 min at 4 °C (step

2). Steps 1 and 2 were repeated twice. Myelin was collected and stored at –20 °C until further

use.

The total protein concentration of isolated myelin was calculated using a bovine serum albumin

(BSA) standard curve as described (Van der Goes et al. , 1999). Myelin from five subjects was

pooled for use in all assays.

Myelin Flow Cytometry Assay

Human myelin (15 µg) and undiluted serum (4 µl) were added to 100 µl PBS in a 96-well V-

bottom plate and incubated for 30 min at 37 °C or overnight at 4 °C. Unbound serum proteins

were removed by washing the myelin in PBS (4,500 rpm, 4 min, 3 times repeated). Myelin

was subsequently incubated with polyclonal rabbit-anti-human Ig (detecting a combination

of human IgG, IgM and IgA; DAKO, Glostrup, Denmark) for 30 min at 37 °C. After washing in

PBS, samples were incubated with Phycoerythrin (PE)-labelled donkey-anti-rabbit Ig (Jackson

Laboratories, West Grove, PA, US), washed again and taken up in 50 µl PBS in FACS tubes

(B&D Biosciences, Franklin Lakes NJ, US). Alternatively, myelin was incubated with biotinylated

goat-anti-human IgG or biotinylated donkey-anti-human IgM (Jackson Laboratories) to

specifically detect IgG or IgM bound to myelin. After washing, samples were incubated with

Alexa 488/594 -conjugated streptavidin (Molecular Probes, Eugene, OR, US), washed and taken

up in 50 µl PBS in FACS tubes.

As a positive control, human myelin was incubated with 2 µg/ µl monoclonal antibodies directed

against MOG (Z12 mAb, kindly provided by Dr. Piddlesden (Piddlesden et al. , 1993) and 8-

8C15 (Linnington et al. , 1984), kindly provided by Dr. Reindl), myelin basic protein (MBP;

clone MBP22 (Groome et al. , 1988), kindly provided by Dr. Groome) and proteolipid protein

(PLP; clone plpc1, Serotec, Oxford, UK). Binding of primary antibodies was detected using

PE-labelled rabbit anti-mouse Ig (Jackson Laboratories). As negative controls, myelin was

incubated with primary mouse antibodies of irrelevant specificity (ED1, Serotec, Oxford, UK)

or PBS before incubation with conjugate antibody.

Myelin immunoreactivity was measured using the FACS Calibur (B&D Biosciences, Franklin

Lakes NJ, US). Anti-myelin antibody responses were expressed as the mean fluorescence

intensity (MFI) of 20,000 events measured by the flow cytometer. All serum samples were

incubated with myelin in triplicate and all samples were included in at least three separate

experiments.
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Patient characteristics

Serum was obtained from 27 healthy donors (HD) and 56 MS patients. In 19 patients disease

course was relapsing remitting (RRMS), in 18 patients secondary progressive MS (SPMS)

and 19 patients primary progressive (PPMS). The median age of MS patients was 48 years

(range 28–65); the median age of HD was 37 years (range 29–62) (significantly lower than

MS patients, p<0.01). The median age of RRMS patients was 43 years (range 28-56). The

median age of SPMS patients was 47 years (range 33-57; higher than HD, p<0.05) and the

median age of PPMS patients was 53 years (range 29-62; higher than RRMS, SPMS and HD,

p<0.05). Of the MS patients 39/51 were female (16/18 of RRMS patients, 9/14 of SPMS

patients and 10/19 of SPMS patients) of the HD 15/27 were female (gender distribution in

MS and HD not significantly different).

The study was performed in accordance with the Helsinki Declaration and with approval of

the local ethical committee.

Statistical analysis

It was technically not feasible to test all MS and HD samples in one experiment. Nevertheless,

correlations between MFI values of serum samples that were included in consecutive

experiments were high (Pearson’s Rho: 0.6-0.8, p<0.001). Therefore, MFI values from two

representative experiments were normalised and pooled for further analysis. For normalisation,

regression analysis was performed on samples that were included in both experiments and

the regression line was used to normalize MFI values.

Differences in median age between groups (MS patients, MS clinical subgroups and HD)

were analysed using Mann-Whitney U-test. Difference in distribution of females and males in

MS patients and HD were analysed using Chi-square test. Differences in anti-myelin antibody

response between MS patients and HD, or between clinical subgroups were calculated using

the Mann-Whitney U test. Anti-myelin antibody levels in individual MS serum samples were

considered to be enhanced over HD values when the MFI was higher than the [mean value of

HD + 2.5*standard deviation]. Possible differences in the proportion of anti-myelin Ig positive

samples between clinical subgroups of MS patients were analysed using the Chi-square test.

P values lower than 0.05 were considered to indicate statistical significance (confidence level

95%).
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Results

Human myelin flow cytometry assay detects monoclonal antibodies directed against

myelin proteins

Incubation of human myelin with a murine monoclonal anti-MOG antibody (8-18C5), but not

with an isotype control antibody (ED1), resulted in a shift in mean fluorescence intensity

(MFI) as shown in Figure 1A. In addition, myelin was recognized by well-characterised murine

monoclonal antibodies directed against MBP, PLP and an additional anti-MOG antibody (Figure

1B). No binding was detected using an antibody of irrelevant specificity or when the primary

antibody was substituted by PBS. This demonstrates that the human myelin flow cytometry

assay specifically detects antibodies directed against myelin proteins.
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Figure 1.
Human myelin binds well-characterised monoclonal anti-myelin antibodies. (A) Representative plot

showing a shift in MFI after binding of monoclonal anti-MOG 8-18C5 to human myelin (thin line:

conjugate only; dashed line: isotype ctrl (ED1); filled histogram: anti-MOG 8-18C5). (B) Binding of

antibodies directed against MOG, MBP and PLP to human myelin.

Human myelin binds serum antibodies from MS patients and healthy donors (HD)

To detect anti-myelin antibodies in serum of MS patients and HD, the myelin flow cytometry

assay was performed using human serum as a source of primary antibody. Flow cytometry

plots for an HD (HD7, with MFI representative for average value HD), and an MS patient

(MS12) showing enhanced anti-myelin Ig binding to whole human myelin are shown Figure 2.

Separate analysis of anti-myelin IgG and IgM demonstrates that binding of anti-myelin IgG

was higher for MS12 than for HD7, whereas anti-myelin IgM levels were comparable.

Each serum sample was assayed in at least three different experiments. The correlation

between MFI values obtained in separate experiments was high (Pearson’s Rho: 0.6-0.8

p<0.001), demonstrating that the assay was reproducible.
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At the group level, anti-myelin antibody levels (total Ig) were slightly higher in MS patients

than in HD, although considerable overlap existed. The difference did not reach the level of

significance (p<0.063; Figure 3). In contrast, separate analysis of IgG responses showed

that anti-myelin IgG in MS patients was significantly enhanced over HD (p<0.001). Anti-

myelin IgM responses were heterogeneous in both MS patients and healthy donors, there was

no significant difference between the groups.

Analysis of anti-myelin total Ig levels in clinical subgroups of MS patients revealed that SPMS

patients showed the highest response; this was the only clinical subgroup that showed

significantly enhanced MFI values compared to HD (p<0.05). The differences between anti-

myelin Ig responses in clinical subgroups of MS were not significant.

RRMS, SPMS and PPMS patients all showed significantly enhanced anti-myelin IgG when

compared to HD (p<0.001 for all subgroups vs. HD), with no significant differences between

the clinical subgroups. IgM responses were comparable in all clinical subgroups and HD.

As MS is a heterogeneous disease, anti-myelin antibody responses may be very different

among patients. It may thus be more relevant to compare individual MS patients to a control

population than to look at the MS population as a whole. Individual anti-myelin antibody

levels in MS patient sera were compared to the average level of HD serum. Cut-off values

[average HD+2.5SD] for Ig, IgG and IgM are indicated in Figure 3. In 2/56 MS patients anti-

myelin Ig levels were higher than in HD, while all HD showed MFI values below the cut-off

value. Anti-myelin IgG levels higher than the cut-off value were observed in 24/51 MS patients

 

Total Ig IgM IgG 

Figure 2.
Myelin flow cytometry assay detects anti-myelin antibodies in human serum. Representative flow

cytometry plots showing a shift in MFI after binding of serum Ig, IgG and IgM from an MS patient (MS12,

filled histogram) and a healthy donor (HD7, open histogram, solid line) to human whole myelin. The

dashed line represents the conjugate control. MS12 shows slightly enhanced binding of total Ig when

compared to HD7 (left panel). This can be attributed to enhanced binding of anti-myelin IgG (middle

panel) but not anti-myelin IgM (right panel).
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but in none of the HD. Enhanced anti-myelin IgM levels were detected in 2/50 MS patients,

however 1/24 HD also showed enhanced IgM, emphasising the heterogeneity of the IgM

response (Table 1). The distribution of anti-myelin antibody positive serum samples was not

significantly different between clinical subgroups (Table 1).

Figure 3.
Anti-myelin antibody response in MS patients and HD. Left panel shows slightly elevated anti-myelin Ig

levels in MS patients and the middle panel shows significantly enhanced anti-myelin IgG in MS patients

(*p<0.001, Mann-Whitney U test). The right panel shows heterogeneous anti-myelin IgM responses in MS

patients as well as HD. Dotted lines indicate the [average MFI value HD+2.5*SD], representing the cut-off

value for ‘anti-myelin antibody positivity’. Data points above the dotted lines represent MS patients (or HD)

with elevated anti-myelin serum antibody responses.
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Table 1. MS patients and healthy donors showing enhanced anti-myelin 

antibody responses 

 Total Ig IgG IgM 

MS patients 2/56 24/51 2/50 

RRMS 0/19 9/18 0/18 

SPMS 2/18 9/14 2/14 

PPMS 0/19 6/19 0/18 

Healthy donors 0/27 0/24 1/24 
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Discussion

We present a reproducible assay to detect anti-myelin antibodies in serum of MS patients.

The assay was developed to detect antibody responses against human whole myelin, rather

than against individual myelin proteins. Myelin was isolated from human CNS white matter,

enabling us to detect antibody responses against native myelin proteins, including

conformational and posttranslationally modified epitopes. The assay is performed in fluid

phase, preventing the possible masking of relevant epitopes due to selective binding of the

epitopes to a surface.

Using this assay, we detected enhanced anti-myelin Ig responses in MS patients when

compared to healthy donors. Separate analysis of IgG and IgM showed that this difference

could be attributed to enhanced anti-myelin IgG in MS patients, whereas anti-myelin IgM

was comparable in MS and HD. The anti-myelin antibody response was heterogeneous among

MS patients, approximately fifty percent of MS patients showed enhanced anti-myelin IgG.

Interestingly, it has been proposed that antibodies contribute to MS lesion formation in a

similar proportion of MS patients (Lucchinetti et al. , 2000), although it is unknown if such

antibody-mediated pathology is reflected in the serum.

Further studies are required to expand the analysis of serum anti-myelin antibodies in larger

groups of MS patients, and to correlate anti-myelin antibody responses with other disease

parameters such as the expanded disability status scale (EDSS), which was beyond the

scope of the current methodological description. Importantly, a pilot study in our laboratory

suggested that an antibody responses to whole myelin are also detected in the CSF of MS

patients (Van der Goes et al ., 2004).

Many groups have studied antibody responses against myelin, however in contrast to the

present study, analysis was generally restricted to one, two or three individual myelin proteins

(Annunziata  et al. , 1997; Reindl  et al. , 1999; Lindert  et al. , 1999; Schmidt  et al. , 2001;

Lutterotti  et al. , 2002; Vojdani  et al. , 2003; Lampasona  et al. , 2004). Although the results

have been variable, most studies detected enhanced anti-myelin antibodies in at least a

subpopulation of MS patients. This was found most consistently for anti-MOG antibodies

(Reindl  et al. , 1999; Lindert  et al. , 1999; Schmidt  et al. , 2001; Vojdani  et al. , 2003), and to

a lesser extent for antibodies directed against MBP (Annunziata et al. , 1997; Vojdani et al. ,

2003).

Whereas results for anti-MBP antibodies were mostly obtained using native protein, results

for anti-MOG antibodies were almost exclusively obtained using bacterially expressed

recombinant proteins or small peptides derived from the MOG amino acid sequence. In these

systems, antibodies directed against conformational and posttranslationally modified epitopes

are not detected (Haase et al. , 2001). The relevance of antibody responses to such epitopes

was demonstrated in experimental allergic encephalomyelitis (EAE). Anti-myelin antibodies

that could mediate demyelination in vivo  were those directed against conformational epitopes,

whereas antibodies directed against linear epitopes did not affect the clinical course of EAE

(Brehm  et al. , 1999; von Budingen  et al. , 2001). Importantly, mouse monoclonal antibodies

that showed the highest binding to whole mouse myelin in vitro  showed the highest
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demyelinating capacity in vivo  (Van der Goes et al. , 1999). This suggests that if such antibodies

are present in MS patients, they could be detected using the myelin flow cytometry assay

that is described in this study.

It was recently shown that MS patients show enhanced levels of serum antibodies directed

against native glycosylated mouse MOG, suggesting that conformational epitopes are also

relevant in MS. Similar to our results, the difference between healthy donors and MS patients

was most obvious for IgG antibodies (Gaertner et al. , 2004).  It is unknown to what extent

the antibody response to whole myelin correlates with the anti-MOG antibody response. This

will be subject of further studies in our laboratory.

In summary, the myelin flow cytometry assay is a reliable method to detect and quantify

antibody responses directed against human whole myelin. The assay allows detection of

antibodies directed against native conformational and posttranslationally modified myelin

antigens, including native MOG. The myelin flow cytometry assay will be compared to other

assays detecting antibody responses against individual myelin proteins, including MOG and

MBP, in a worldwide network. In addition, anti-myelin antibody responses will be compared

between MS patients and patients with other neurological diseases. The value of this assay

to predict MS disease course is another topic of future research.
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Abstract

We recently described a new assay to detect antibodies directed against human whole myelin

in MS patients. In contrast to the assays that are currently used to identify anti-myelin

antibodies, the new assay allows detection of antibodies directed against conformational and

post-translationally modified epitopes.

In the present study, we analysed the clinical relevance of serum anti-myelin antibodies by

correlating anti-myelin antibody levels to disease duration and disease severity (measured

by EDSS and MSFC). In addition, anti-myelin antibody responses were compared to anti-

MOG antibody responses. In almost fifty percent of MS patients (n=99), anti-myelin IgG was

enhanced over anti-myelin IgG in HD (n=40), confirming our previous results in another

population of MS patients. The anti-myelin IgM response was heterogeneous in both MS

patients and HD, although overall anti-myelin antibody levels in MS patients were significantly

enhanced. Anti-myelin total Ig levels were comparable in MS patients and HD. Anti-myelin

IgG and IgM responses did not correlate with the age of the subjects, MS subtype, disease

duration or disease severity. In contrast to anti-myelin IgG, anti-MOG IgG levels were

comparable in MS patients and healthy donors and no difference between MS and HD was

observed for anti-MOG total Ig or IgM. Nevertheless, total Ig and IgM responses to whole

myelin and MOG were significantly correlated. However, no correlation between anti-myelin

IgG and anti-MOG IgG was observed. This suggests that the anti-myelin IgG response in MS

is directed against a different combination of myelin antigens than the anti-myelin IgM

response. As anti-myelin IgG was more specific for MS than IgM, it is possible that anti-

myelin IgG antibodies detected in this assay represent pathogenically relevant antibodies.
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Introduction

Multiple sclerosis (MS) is a chronic disabling disease of the central nervous system (CNS),

neuropathologically characterised by inflammation, demyelination, axonal degeneration and

astrogliosis. Although the role of the immune system in the onset of MS is debated, it is

widely accepted that (auto-) immune responses contribute to progression of MS. Based on

comparison with the animal model experimental allergic encephalomyelitis (EAE), CD4 +  T

cells are thought to be essential for the formation of MS lesions  (Hartung and Rieckmann,

1997). In addition, other components of the immune system, such as antibodies directed

against myelin proteins, were shown to contribute to the severity of EAE by enhancing CNS

inflammation and demyelination  (Morris-Downes et al. , 2002; Lyons et al. , 2002).

One of the most common immunological abnormalities in MS patients is enhanced intrathecal

production of antibodies, suggesting that antibodies may also play a role in MS  (Correale

and de los Milagros Bassani Molinas, 2002). An immunohistochemical study of lesion material

of acute MS patients showed deposition of antibodies in fifty percent of MS patients, and it

was suggested that the presence of antibodies in these lesions represents an

immunopathological subtype of MS where antibodies are relevant  (Lucchinetti et al. , 2000).

Isolation of antibodies from MS tissue revealed that at least part of the antibodies in MS

lesions is directed against the major myelin protein, myelin basic protein (MBP)  (Warren and

Catz, 1993). In addition, EM studies demonstrated that antibodies directed against MBP and

myelin oligodendrocyte glycoprotein (MOG) were present at the demyelinating edge of active

MS lesion. In fact, anti-MBP and anti-MOG antibodies colocalised with disintegrating myelin

sheaths, but also with ingested myelin within phagocytic cells, suggesting a role for anti-

myelin antibodies in myelin phagocytosis  (Genain et al. , 1999).

If anti-myelin antibodies do contribute to demy elination in (a subtype of) MS, pathogenic

antibodies could be a target for immune therapy, such as intravenous immunoglobulins

(IVIg), which has shown beneficial effects in patients with relapsing remitting MS  (Fazekas

et al. , 1997). An essential requirement for such therapy is that patients with putative antibody

mediated inflammation can be identified with relatively simple methods.

In search of a biomarker for antibody-mediated pathology in MS, serum of MS patients has

been studied extensively for the presence of antibodies directed against a range of myelin

antigens, including MBP, MOG, proteolipid protein (PLP) and oligodendrocyte specific protein

(OSP)  (Sun et al. , 1991; Bronstein et al. , 1999; Reindl et al. , 1999; Vojdani et al. , 2003).

Enhanced anti-myelin antibody responses have been described in subgroups of MS patients;

however anti-myelin antibodies were often not specific for MS and no single antigen has

been associated exclusively with MS. Analysis of antibody responses to three different myelin

proteins in a single study demonstrated that elevated antibody levels to all three proteins

were observed in MS patients, but that antibody responses to individual myelin proteins

were not necessarily correlated (Vojdani, 2003). This suggests that it may be valuable to test

antibody responses to multiple myelin antigens at the same time.

We recently described an assay that detects antibodies directed against human whole myelin,

including MBP, PLP and MOG (Chapter 6 of this thesis). The assay detects antibodies directed

against native, conformational myelin antigens. This is highly relevant, as in vivo studies

demonstrated that antibodies directed against such epitopes can mediate demyelination and

contribute to disease progression, whereas antibodies directed against linear epitopes were
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not pathogenic (von Budingen et al. , 2004). The myelin flow cytometry assay identified

enhanced anti-myelin IgG responses in almost fifty percent of MS patients.

In the present study, we measured anti-myelin antibody responses in another, larger group

of MS patients and healthy donors. Furthermore, the clinical relevance of anti-myelin antibodies

was addressed by correlating anti-myelin antibody levels to clinical disability measured by

the expanded disability status scale (EDSS) and multiple sclerosis functional composite scale

(MSFC). In addition, we compared the anti-myelin antibody response to the anti-MOG antibody

response in the same population of MS patients and healthy donors.
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Materials and Methods

Patient characteristics

Serum was obtained from 99 MS patients and 40 healthy donors (HD). Fifty four patients had

relapsing remitting MS (RRMS), 21 patients had secondary progressive MS (SPMS) and 18

patients had primary progressive MS (PPMS). Of 6 MS patients the disease subtype was

unknown. Patient characteristics are summarized in table 1. Disability was measured by

trained neurologists using the expanded disability status scale (EDSS)  (Kurtzke, 1983) and

the Multiple Sclerosis Functional Composite (MSFC)  (Rudick et al. , 2002). EDSS and MFSC

scores of MS patients are indicated in table 1. The study was performed with approval of the

local ethical committee and in accordance with the Helsinki Declaration.

Isolation of human whole myelin

Human CNS white matter tissue was obtained at autopsy from individuals without a history

of neurological disease, in collaboration with the Dutch Brain Bank (coordinator: Rivka Ravid).

Myelin was isolated according to the method of Norton and Poduslo  (Norton and Poduslo,

1973), with minor adaptations. Briefly, CNS white matter was homogenized in 0.32 M sucrose.

The suspension was layered over a 0.85 M solution of sucrose and centrifuged at 75,000 g for

30 min at 4 °C (step 1). The interphase, containing the myelin, was pooled and washed three

times with de-ionized water by repeated centrifugation at 75,000 g for 15 min at 4 °C (step

2). Steps 1 and 2 were repeated twice. Myelin was collected and stored at –20 °C for use.

The total protein concentration of isolated myelin was calculated using a bovine serum albumin

(BSA) standard curve as described  (Van der Goes et al. , 1999). Myelin from five subjects

was pooled for use in all assays.

Table 1. Patient characteristics 

Subjects (n)  Age (range)
a
 Females 

(%) 
Disease duration 

(range)
b
 

EDSS MSFC 

MS patients (99)  44 (18-79) 61 9.2 (0.6-25.8) 4 (0-8) 0.5 (-2.3-1.4) 

RRMS (54)  36 (18-61) 65 6.4 (0.6-25.8) 2.5 (0-6.5) 0.7 (-0.7-1.4) 

SPMS (21)  47 (30-72)
c
 57 11.7 (4.4-31.0)

e
 6.0 (1.5-7.5)

g
 -0.2 (-2.3-0.7)

h
 

PPMS (18)  56 (33-79)
d
 56 17.5 (5.1-39.2)

f
 6.0 (2.5-8.0)

g
 0.2 (-1.6-0.9)

h
 

Healthy donors (40)  39 (29-62) 53    

a
Median age in years 

b
Median disease duration in years 

c
SPMS higher than RRMS (p<0.001) and healthy donors (p<0.01) 

d
PPMS higher than SPMS (p<0.05), RRMS (p<0.001) and healthy donors (p<0.001) 

e
SPMS longer than RRMS (p<0.05) 

f
PPMS longer than RRMS (p<0.001) 

g
SPMS and PPMS higher than RRMS (p<0.001) 

h
PPMS and SPMS lower than RRMS (p<0.001) 

 



Anti-myelin antibodies in MS patients

124

Myelin Flow Cytometry Assay

Myelin, isolated as described above, is a suspension of small vesicles in aqueous solution,

allowing detection of (membrane) myelin antigens by flow cytometry (Chapter 6).

Human myelin (15 µg) and undiluted serum (4 µl) were added to 100 µl PBS in a 96-well V-

bottom plate and incubated for 30 min at 37 °C or overnight at 4 °C. Unbound serum proteins

were removed by washing the myelin in PBS (4,500 rpm, 4 min, 3 times repeated). Myelin

was subsequently incubated with polyclonal rabbit anti-human Ig (detecting a combination

of human IgG, IgM and IgA; DAKO, Glostrup, Denmark) for 30 min at 37 °C. After washing in

PBS, samples were incubated with Phycoerythrin (PE)-labelled donkey anti-rabbit Ig (Jackson

Laboratories, West Grove, PA, US), washed again and taken up in 50 µl PBS in FACS tubes

(B&D Biosciences, Franklin Lakes NJ, US). Alternatively, biotinylated goat-anti-human IgG or

biotinylated donkey-anti-human IgM (Jackson Laboratories) were used as a secondary antibody

to specifically detect binding of anti-myelin IgM or IgG. After washing, samples were incubated

with Alexa 488/594 -conjugated streptavidin (Molecular Probes, Eugene, OR, US), washed and

taken up in 50 µl PBS in FACS tubes.

As a positive control, human myelin was incubated with 2 µg/ µl monoclonal antibodies directed

against MOG (Z12 mAb, kindly provided by Dr. Piddlesden  (Piddlesden et al. , 1993). Binding

of Z12 mAb was detected using PE-labelled rabbit-anti-mouse Ig (Jackson Laboratories). As

a negative control myelin was directly incubated with conjugate antibody only.

Myelin immunoreactivity was measured using the FACS Calibur (B&D Biosciences, Franklin

Lakes NJ, US). Anti-myelin antibody responses were expressed using the Mean Fluorescence

Intensity (MFI). All serum samples were incubated with myelin in triplicate and all samples

were included in at least three separate experiments.

Recombinant MOG ELISA

Recombinant protein corresponding to the N-terminal sequence of rat MOG (rrMOG, amino

acids 1-125), was expressed in E. coli and purified by metal chelate chromatography as

described (Amor, 1994). Purified protein was dialyzed into PBS and stored at -20ÚC.

Recombinant protein corresponding to the human MOG sequence rhMOG, amino acids 1-

125), was a kind gift from Dr. Weissert (University of Tübingen, Tübingen, Germany).

Ninety-six well ELISA plates (Nunc, Roskilde, Denmark) were coated with 5 µg/ml rrMOG or

rhMOG diluted in phosphate buffered saline (PBS, pH 7.4) (100 µl/well). After overnight

incubation at 4 °C, plates were washed in PBS/0.1% Tween and blocked with PBS/1%BSA

(37 °C, 1 h). After a washing, diluted serum samples (1:200) were added to the plates in

duplo and incubated for 1 h at 37 °C. Plates were washed again to remove unbound antibodies,

and incubated peroxidase (PO)-labelled rabbit anti-human Ig to detect binding of IgG, IgM

and IgA antibodies (DAKO, Glostrup, Denmark), or with biotinylated goat-anti-human IgG or

biotinylated donkey-anti-human IgM (Jackson Laboratories) followed by incubation with PO-

labelled streptavidin (Vector Laboratories, Burlingame, CA, US) to specifically detect IgG or

IgM antibodies. After a final washing step, binding of secondary antibodies was or streptavidin

was detected by adding substrate (OPD, Merck-Schuhardt, München, Germany). After 10-20
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minutes the reaction was stopped using 1 M H 2SO4 and optical density of the wells was

measured in an ELISA plate reader at 490 nm.

Statistical analysis

To compare anti-myelin antibody responses in MS patients and donors, results obtained in

representative experiments were pooled as described in Chapter 6.

Differences in median age and disease duration between groups (MS patients, MS clinical

subgroups and HD) were analysed using Mann-Whitney U-test. Differences in the distribution

of females and males in MS patients and HD were analysed using Chi-square test. Anti-

myelin antibody responses in MS patients and HD were analysed using the Mann-Whitney U-

test.

Anti-myelin antibody levels in individual MS serum samples were considered to be enhanced

over HD values when the MFI was higher than the [average value of HD + 2.5*standard

deviation]. Possible differences in the proportion of anti-myelin Ig positive samples between

clinical subgroups of MS patients were analysed using the Chi-square test. P values lower

than 0.05 were considered to indicate statistical significance (confidence level 95%).
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Results

MS patients show enhanced levels of anti-myelin IgG and IgM

The average anti-myelin Ig level (total Ig) in MS patients (n=98) was not enhanced when

compared to healthy donors (HD, n=40), although a number of MS patients with a relatively

high anti-myelin antibody response were identified among the MS patients but not among

HD (Figure 1). No significant differences in the anti-myelin Ig response were observed between

clinical subgroups of MS patients (data not shown).

When analysed separately, both anti-myelin IgG and anti-myelin IgM levels were significantly

higher in MS patients than in HD (both IgG and IgM: MS vs. HD, p<0.001) (Figure 1).

Enhanced anti-myelin IgG and IgM responses were observed in RRMS, SPMS and PPMS

patients with no significant differences between clinical subgroups (all clinical subgroups vs.

HD, p<0.001 for IgG and p<0.05 for IgM).

Individual analysis of MS serum samples revealed that 6/98 MS patients showed an anti-

myelin Ig response that was enhanced over HD (cut-off value: average HD + 2.5*standard

deviation), whereas all HD showed values lower than the cut-off value (table 2). The proportion

of MS patients that showed enhanced anti-myelin IgG was 44/99; the anti-myelin IgG response

Figure 1.

Enhanced IgG and IgM antibodies directed against human whole myelin are detected in MS patients.

Anti-myelin total Ig antibody levels were comparable in MS patients and healthy donors (HD) (left panel).

MS patients show enhanced anti-myelin IgG, whereas the anti-myelin IgG response in HD is

homogeneously low (middle panel). The anti-myelin IgM response is heterogeneous in HD and MS

patients, although anti-myelin IgM levels in MS are significantly enhanced over HD (right panel). Boxes

extend from the 25th to the 75th percentiles, the middle line represents the median and bars show the

range of the data. Outliers (� ) showed MFI values extending between 1.5 and 3 box lengths from the

upper edge of the box. Extremes (� ) represent cases with MFI values more than 3 box lengths form the

upper edge of the box.
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of all HD was lower than the cut-off value. Anti-myelin IgM was enhanced in 8/99 MS patients

but also in 2/38 HD, showing that for anti-myelin IgM responses, outliers are identified

among HD as well as MS patients. Again, no significant differences were observed between

clinical subgroups of MS patients (table 2).

Anti-myelin Ig, IgG or IgM responses were not correlated with the age of either HD or MS

patients (data not shown).

Data are representative of at least three different experiments.

Anti-myelin IgG and IgM are not related to disease duration or disease severity

Anti-myelin total Ig correlated weakly with disease duration (Spearman’s Rho=0.25, p<0.05).

However, no correlation between disease duration and anti-myelin IgG or IgM levels was

observed (data not shown). Anti-myelin Ig, IgG or IgM responses were not related to clinical

severity of disease, as measured by EDSS or MSFC (data not shown).

MS patients and HD show similar antibody responses to recombinant MOG

Antibody responses to recombinant MOG were measured in MS patients and HD. At the

group level, anti-myelin Ig, IgG and IgM responses were not different between MS patients

and HD (Figure 2). The OD values for anti-MOG IgG were considerably higher than for anti-

MOG total Ig or IgM. It is unknown if this represents higher sensitivity of the detecting

antibody or a quantitatively different IgG response.

Analysis of MS patients individually demonstrated that only 2/99 MS patients showed anti-

MOG Ig values that were higher than the cut-off value [average HD + 2.5*standard deviation].

All HD showed anti-MOG Ig lower than the cut-off value. Anti-MOG IgG was enhanced in 3/

99 MS patients and 1/40 HD. Anti-MOG IgM was enhanced in 9/99 MS patients and 1/40 HD.

No significant differences in anti-MOG Ig, IgG or IgM were observed between the different

clinical subgroups of MS patients (table 2).

 

Table 2: MS patients and healthy donors showing enhanced anti-myelin and anti-MOG 

antibody responses 

 Whole myelin  Recombinant MOG 

 Total Ig IgG IgM  Total Ig IgG IgM 

MS patients 6/98 44/99 8/99  2/99 3/99 9/99 

RRMS 4/53 22/54 5/54  1/54 2/54 4/54 

SPMS 1/20 11/20 2/14  0/21 0/21 3/21 

PPMS 0/17 5/17 0/17  0/18 1/18 0/18 

Healthy donors 0/40 0/38 2/38  0/40 1/40 1/40 



Anti-myelin antibodies in MS patients

128

The anti-MOG Ig response was weakly correlated with the age of the subjects (Rho = 0.2,

p<0.05) and disease duration (Rho=0.3, p<0.05). Anti-MOG IgG levels correlated weakly

with duration of disease (p<0.05; IgG, Rho=0.3, p<0.05), but not with age of the subjects.

The anti-MOG IgM response was not correlated to either age or disease duration.

There were no correlations between anti-MOG antibodies (Ig, IgG and IgM) and clinical

severity of MS (EDSS and MSFC) (data not shown).

Anti-myelin Ig and IgM but not IgG antibodies correlate with anti-MOG antibodies

To check if the anti-myelin antibody response was related to the anti-MOG antibody response,

correlations between anti-myelin and anti-MOG antibody levels were calculated. The anti-

myelin Ig response correlated weakly but significantly with the anti-MOG Ig response

(Spearman’s Rho = 0.2, p<0.01). The correlation between anti-myelin IgM and anti-MOG

IgM was stronger and more significant (Spearman’s Rho = 0.5, p<0.0001). In contrast, the

anti-myelin IgG response was not correlated to the anti-MOG IgG response.

Figure 2.
Comparable levels of anti-MOG total Ig, IgG and IgM in MS patients and healthy donors (HD). Boxes

extend from the 25th to the 75th percentiles, the middle line represents the median and bars show the

range of the data. Outliers (� ) showed MFI values extending between 1.5 and 3 box lengths from the upper

edge of the box. Extremes (� ) represent cases with MFI values more than 3 box lengths form the upper

edge of the box. A higher number of outliers and extremes are observed among MS patients for anti-MOG

total Ig, IgG and IgM antibodies. Differences between MS patients and HD were not significant.
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Discussion

We previously described an assay to detect serum antibodies directed against whole human

myelin (Chapter 6 of this thesis). In the present study, we expanded the analysis of anti-

myelin antibody responses in MS by analysing a larger group of MS patients and healthy

donors, by correlating anti-myelin antibody responses to clinical parameters such as disease

severity and disease duration and by comparing anti-myelin antibody responses to anti-MOG

antibody responses.

Anti-myelin total Ig levels in MS patient serum were not significantly different from anti-

myelin total Ig in HD serum. In contrast, the anti-myelin IgG was clearly enhanced in MS

patient serum whereas the anti-myelin IgG response in HD was homogeneously low. The

anti-myelin IgM response was heterogeneous in both MS patients and HD, although overall

anti-myelin IgM levels in MS were higher than in HD.

These results support our previous results, obtained in another, smaller population of MS

patients, that enhanced levels of anti-myelin IgG are observed in (a subgroup of) MS patients.

The proportion of MS patients showing anti-myelin IgG lev els higher than HD was forty five

percent in this study and forty seven percent in the previous study, demonstrating that this

is a robust observation. In contrast to the previous study, we here observe enhanced anti-

myelin IgM in MS serum. However, enhanced anti-myelin IgM responses were observed in

individual MS patients as well as HD. This emphasizes that elevated anti-myelin IgM responses

are not specific for MS.

It is unclear why anti-myelin total Ig levels in MS patients did not exceed those of HD, while

anti-myelin IgG and IgM levels did. Enhanced anti-myelin IgM and IgG responses may be

obscured by anti-myelin IgA responses that do not differ between MS patients and HD.

However, this is unlikely as elevated serum IgA levels specific for a number of myelin proteins

have been described in MS  (Vojdani et al. , 2003; Kennel De March et al. , 2003). Anti-myelin

IgA responses have not been studied thus far. Another possibility is that the myelin flow

cytometry assay is less sensitive when a mixed conjugate (specific for IgG, IgM and IgA) is

used instead of a conjugate that is specific for one antibody isotype, as a result of higher

background staining when a less specific conjugate is used.

A characteristic of the antibody response in MS is the persistence of the response; this is in

contrast to the usually transient production of (anti-myelin) antibodies in other neurological

diseases (Reindl et al. , 1999; Bergamaschi et al. , 2004). The stability of the anti-myelin

antibody response over time is unknown, although pilot experiments in our laboratory suggest

that follow-up samples from individual MS patients show similar responses over a period of

at least nine months, in both patients with a positive and a negative anti-myelin antibody

response (data not shown). In addition, anti-myelin IgG and IgM levels were not correlated

with age or disease duration, suggesting that the presence anti-myelin antibodies does not

reflect accumulation of antibody responses directed against myelin proteins over time, as

has been suggested for the anti-MBP IgG response (Reindl et al. , 1999).

Although the anti-myelin IgG response was related to a subpopulation of MS patients, this

could not be attributed to any of the clinical subtypes of MS. Nevertheless, it is possible that
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the subpopulation of MS patients showing enhanced anti-myelin IgG reflects a

immunopathological subtype of MS, as it has been proposed that clinical subtypes of MS

patients based on disease course do not reflect the heterogeneity in underlying

immunopathological processes (Lucchinetti et al. , 2000).

A recent study suggests that the presence of serum anti-MOG antibodies in patients with

clinically isolated syndrome predicts rapid progression to clinically definite MS  (Berger  et al.,

2003). These are very promising results, suggesting that testing anti-myelin antibodies may

provide an easy tool to select MS patients for early treatment. However, the pathogenic

relevance of the antibodies measured in the study by Berger et al.  is unclear, as the ‘predictive’

antibodies were detected using Western blot, detecting antibodies against linear epitopes of

recombinant MOG (Berger et al. , 2003). Antibodies against linear MOG epitopes are

qualitatively different from antibodies against conformational epitopes (Haase et al. , 2001).

Whereas antibodies against conformational epitopes could induce lysis of MOG-transfected

cells and exacerbate EAE, antibodies against linear epitopes were not pathogenic (Bourquin

et al. , 2003; von Budingen et al. , 2004). The anti-myelin antibodies measured in the present

study were directed against native, conformational myelin antigens and may thus represent

pathogenically relevant antibodies.

It is unknown if MS patients with evidence of antibody-mediated pathology in active

demyelinating lesions, as described by Lucchinetti et al.  (2000), show enhanced serum anti-

myelin antibody serum. This should be subject of further study. In addition, future studies

are required to address the predictive value of anti-myelin antibodies for MS disease

progression and the in vitro  pathogenic capacity of anti-myelin antibodies isolated form MS

serum samples. The enhanced anti-myelin IgG and IgM levels in MS patients were not reflected

in anti-MOG antibody levels, as the anti-MOG total Ig, IgG and IgM response were comparable

in MS patients and healthy donors. This supports a number of earlier studies (Xiao et al. ,

1991; Lampasona et al. , 2004), although enhanced anti-MOG IgG and IgM levels in MS

patient serum have often been described as well (Lindert et al. , 1999; Vojdani et al. , 2003).

The inconsistent results in studies on anti-MOG antibodies probably reflect different methods

and different MOG preparations used in different studies, as discussed before (Chapter 6).

Although anti-MOG antibody responses were not significantly enhanced in MS patients, there

was a significant correlation between the levels of anti-MOG total Ig and IgM and the levels

of anti-myelin total Ig and IgM, suggesting that the anti-myelin antibody response may

partly represent antibody responses to MOG. However, the possibility that both anti-myelin

and anti-MOG Ig and IgM responses reflect total immunoglobulin concentration in serum

cannot be excluded, as the total antibody levels of the sera were not measured. Importantly,

the anti-myelin IgG response did not correlate with the anti-MOG IgG response. This, in

addition to the fact that anti-myelin IgG was more specific for MS than anti-myelin IgM,

suggests that the anti-myelin IgG response may be directed against qualitatively different

myelin antigens than anti-myelin IgM. This suggests the anti-myelin IgG response is dominated

by antibodies directed against other myelin antigens or to MOG epitopes that are not

represented in recombinant MOG. It must be noted that anti-MOG antibodies were detected

using an ELISA, recognising antibodies directed against both linear and conformational, but
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not post-translationally modified, epitopes of recombinant MOG. It is possible that anti-myelin

IgG responses in MS patients may be partly directed against glycosylated MOG epitopes, as

was recently suggested (Gaertner et al. , 2004).

In summary, the present study demonstrates that enhanced levels of IgG antibodies directed

against human whole myelin are present in approximately fortyfive percent of MS patients,

confirming an earlier study in a another, smaller population of MS patients. The anti-myelin

IgG response is not correlated with the clinical subtype of  MS, clinical severity of MS, disease

duration or the age of the subjects. This suggests that the presence of anti-myelin antibodies

may define a subgroup of MS patients where antibody-mediated mechanisms contribute to

pathogenesis or disease progression. Extensive efforts to identify antibody responses to

individual myelin antigens have thus far not yielded antigen specificity specifically associated

with MS, or provided a biomarker to identify MS patients with antibody-mediated disease.

Therefore the most relevant question is not the protein specificity of anti-myelin antibodies,

but more importantly the pathogenic relevance of anti-myelin antibodies. This could be done

by addressing the capacity of anti-myelin antibodies, isolated from MS patient serum, to fix

complement or cross-link macrophages Fc³ receptors, two parameters that were shown to be

highly relevant for pathogenic capacity of anti-myelin antibodies EAE (Piddlesden  et al., 1993;

Van der Goes  et al., 1999; <[04] Authors, primary>, <[05] Date, primary>). Eventually, such

studies could help to elucidate the relevance of anti-myelin antibody responses in MS, or the

development of a biomarker to identify MS patients that may benefit from immunotherapy

with autoantibodies as a target.
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Summary and discussion

The role of humoral immunity in Multiple Sclerosis has been a subject of debate for many

years. Recent developments in the field suggest that antibodies and complement are involved

in MS lesion formation in a subgroup of patients, and that anti-myelin antibodies have predictive

value for the rapid development of relapses after a first clinical episode of MS (Lucchinetti et

al. , 2000; Berger et al. , 2003). However, it is unclear if anti-myelin antibodies actually

contribute to MS pathogenesis or merely represent an epiphenomenon that develops in

response to continuous myelin breakdown. In fact, B cells have even been hypothesized to

play a regulatory role in the chronic phase of experimental demyelinating disease (Fillatreau

et al. , 2002).

If anti-myelin antibodies actively contribute to CNS inflammation and demyelination, they

could form a target for therapy, especially if relevant antibody responses can be detected

early in disease when immunotherapy is most successful (Rizvi and Agius, 2004). In addition,

anti-myelin antibodies may represent a valuable biomarker to predict disease progression as

has been suggested recently (Berger et al. , 2003), even if they are a harmless by-product of

demyelinating disease.

It is not easy to unravel the immunological processes that contribute to MS. As the aetiology

of the disease is unknown, it is difficult to pinpoint disease onset because the first clinical

presentation of MS may be preceded by a long period of subclinical pathological events. In

addition, at least part of the immune response is thought to take place locally in the CNS, a

compartment that is not easy accessible for the isolation of body fluids or biopsy material,

limiting the possibilities for large-scale clinical studies. Finally, due to the chronic nature of

the disease, autopsy material often represents later stages of disease where the factors

contributing to the onset of disease may be obscured by secondary processes. For these

reasons, most hypotheses on the immunological events underlying MS are based on

experimental models in vitro  and in vi vo. Using these models it was shown that anti-myelin

antibodies enhance myelin phagocytosis and the release of inflammatory mediators in vitro

by activating the complement system and crosslinking of macrophage Fc � R receptors ( Chapter

1 ). In vivo  studies in different models of experimental allergic encephalomyelitis (EAE)

demonstrated that anti-myelin antibodies were unable to induce EAE in absence of an

encephalitogenic T cell response, but that anti-myelin antibodies could contribute to the

effector phase of EAE by enhancing CNS inflammation and demyelination (Linington et al. ,

1988). Later studies in B cell deficient mice showed that B cells were not essential for the

induction of EAE, although anti-myelin antibodies could provide the crucial additive effect if

the encephalitogenic T cell response was weak (Lyons et al. , 2002). Similarly, complement

activation was not essential for the induction of EAE although milder induction protocols

were less efficient at inducing clinical EAE in complement deficient animals (Nataf et al. ,

2000; Calida et al. , 2001) ( Chapter 2 ).

The capacity to exacerbate clinical signs of EAE was mostly restricted to antibodies directed

against MOG and the antibodies that could fix complement most efficiently had the highest

demyelinating capacity (Piddlesden et al. , 1993). However, complement depletion could never
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completely block anti-MOG antibody mediated exacerbation of EAE (Piddlesden et al. , 1991;

Morris-Downes et al. , 2002). Moreover, antibodies with potent in vivo  demyelinating capacity

could enhance myelin phagocytosis in vitro  in absence of active complement, presumably

through Fc � R mediated phagocytosis (Van der Goes et al. , 1999). Therefore we hypothesized

that anti-MOG antibodies contribute to disease exacerbation at least partly through interactions

with the activating Fc � R, Fc� RI and Fc � RIII. Chapter 3  demonstrates that the rapid exacerbation

of EAE by anti-MOG antibodies is independent of Fc � R-IgG interactions as injection of antibodies

rapidly enhanced mortality in both wild type and FcR � -/-  chain deficient mice. Therefore it is

likely that the acute effect of anti-MOG antibodies is mediated by activation of the classical

pathway of complement. The reported inability of complement depletion to fully block anti-

MOG antibody mediated exacerbation of EAE could be related to the transient release of

inflammatory mediators that is associated with CVF treatment. This is supported by the

protective effect of soluble complement receptor and C6 deficiency in antibody-exacerbated

EAE in rats (Piddlesden et al. , 1994; Mead et al. , 2002). Further studies of antibody exacerbated

EAE in complement deficient mice, particularly C1q knockout mice, should be able to unravel

the role of complement activation pathways in antibody-mediated demyelination. The inability

of both complement depletion and Fc � R deficiency to suppress antibody mediated exacerbation

of EAE could also indicate redundancy of complement- and Fc � R-mediated pathways as has

been shown in other models of antibody-mediated inflammation (Trcka et al. , 2002).

The other important observation in Chapter 3  is that FcR � -/-  mice are fully susceptible to

MOG35-55 induced EAE. This in accordance with previous reports showing that the induction

of EAE was independent of B cells (Lyons et al. , 1999), but in contrast to more recent

observations that FcR � -/-  mice are resistant to induction of EAE by both recombinant rat

(rrMOG) and peptide MOG (MOG35-55) (Lock et al. , 2002; Abdul-Majid et al. , 2002). Given

the fact that EAE can be induced by transfer of encephalitogenic T cells and by active

immunisation in several strains of B cell deficient mice, it is highly unlikely that IgG-Fc � R

interactions should be essential for the induction of EAE. The absence of EAE in FcR � -/-  mice

in other studies, and the delayed onset in our study is probably unrelated to absent surface

expression of Fc � RI and Fc � RIII, but the result of aberrant FcR �  chain signalling in other

receptor complexes (Arase et al. , 1997; Takai and Ono, 2001; Wu et al. , 2001). This is

supported by unpublished studies performed in our laboratory on MOG35-55 EAE in Fc � RIII -

/-  mice that lack Fc � RIII expression due to deletion of the Fc � RIII alpha chain but have

unimpaired FcR �  chain function (Hazenbos et al. , 1996). Fc � RIII -/-  mice developed EAE with

similar clinical and pathological characteristics as wild type mice, including normal onset of

EAE (unpublished results). Interestingly, another group reported attenuated EAE in Fc � RIII -/

-  mice (Pedotti et al. , 2003), suggesting that functional expression of Fc � RIII, and not just

the FcR �  chain, may contribute to the induction of EAE. The Fc � RIII -/-  chain mice used in this

study and in our study were originally from the same strain, although the mice used in our

study were backcrossed to the C57BL/6 background for more generations (twelve generations

in our study, versus six generations in the study by Pedotti et al. ). It is unclear why the

results in the two laboratories are different, even if the EAE immunisation protocols were
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highly similar. The differences between the results obtained in FcR � -/-  chain mice in the

different laboratories are even more striking ( Chapter 3 ).

These discrepancies reflect the sensitivity of the EAE model for changes in the experimental

setting, including genetic background, gender and age of the mice  (Voskuhl et al. , 1996b;

Abdul-Majid et al. , 2000), but also less obvious changes such as the season of immunisation

(Teuscher et al. , 2004) and most likely the infectious state of the animal facility. In addition,

mice backcrossed from the 129 background - a popular strain for the generation of knockout

mice - to other genetic backgrounds may have unpredictable phenotypes (Bygrave et al. ,

2004). We have experienced this in our own hands, when Fc � RI/III double knockout (Fc � RI/

III -/- ) mice of mixed background (129/C57BL6/BalbC, H-2 b), with an intact FcR �  chain, showed

attenuated MOG35-55 EAE whereas in the same experiment, FcR � -/-  and FcR � III -/-  C57BL/6

(H-2 b) mice were fully susceptible (Box 8.1.). Although these results were very intriguing,

we decided not to publish the results obtained in the Fc � RI/III -/-  mice, since a proper control

strain with the same genetic background was lacking and it was unclear to what genetic

background the EAE phenotype of the Fc � RI/III -/- could be attributed. Instead we took advantage

of the observation that FcR � -/- C57BL/6 mice, the genetic background of which was well

defined as they were generated on the C57BL/6 background (Takai et al. , 1994), showed full

susceptibility to EAE to study the role of IgG-Fc � R interactions in antibody mediated

demyelination.

The variability of the EAE model between laboratories and experiments may nicely reflect the

biological variance in (auto-) immunity even in inbred animals; however, in a laboratory

setting it is important that conclusions should be based on reproducible induction protocols

and well defined animal strains. It is therefore of great importance that the models that are

chosen to study (particular aspects of) CNS inflammation and demyelination are selected

very cautiously.

The direct effect of anti-MOG antibody injection of in MOG35-55 EAE was independent of

Fc� R-IgG interactions. However, immunohistochemical analysis of CNS tissue up to 25 days

after antibody injection (35 days after immunisation) suggested that anti-MOG antibodies

had a sustained effect in wild type mice but not FcR � -/-  mice ( Chapter 3 ). Enhanced CNS

inflammation and demyelination up to 32 days after anti-MOG antibody injection in wild type

mice was also observed after injection of lower doses of Z12 mAb (125 µg instead of 1 mg),

showing that this is a robust finding (unpublished pilot experiments). The absence of a long-

term effect of anti-MOG antibodies in FcR � -/-  mice was based on a limited number of mice, but

nevertheless it is interesting to hypothesize that Fc � R-IgG interactions may contribute to the

maintenance and propagation of the autoimmune response in EAE. Targeting antigens to

Fc� RI and Fc � RIII by IC formation can greatly enhance antigen presentation, not only by

more efficient antigen uptake but also by inducing dendritic cell maturation (Manca et al. ,

1991; Rafiq et al. , 2002; Akiyama et al. , 2003). In the case of anti-MOG antibodies in EAE,

this may result in enhanced T and B cell responses to MOG. Interestingly, epitope spreading,

which is thought contribute to chronicity of autoimmune disease, was observed after active

but not passive immunisation of mice with myelin antigens (Voskuhl et al. , 1996a; Tuohy

and Kinkel, 2000). This suggests that factors other than activated T cells, possibly myelin
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Box 8.1. EAE is attenuated in mice lacking activating Fc ����� RI and Fc ����� RIII

Figure 1.
Clinical course of EAE in 129/BalBC/C57BL6 Wt and Fc� RI/III-/- mice.
Animals were immunised with MOG35-55 according to the protocol described in Chapter 3. Filled
squares represent Wt mice (n=19), open squares represent Fc� RI/III-/- mice (n=20). Error bars
indicate s.e.m.

 

Table 1. MOG35-55 EAE in 129/BalbC/C57BL6 Wt and Fc �JRI/III-/- mice 

Mice (n) Incidence Day of onset 

(±stdev) 

Maximal score 

(±stdev)
b
 

129/BalbC/C57BL6 Wt 19/19 12.7 (1.6) 3.3 (1.1) 

129/BalbC/C57BL/6 FcR�JI/III-/- 8/20
a
 16.3 (7.3)  1.6 (0.9)

c
 

   a
Significantly lower than Wt mice (p<0.001, Pearson Chi-square) 

b
Mice with no clinical signs of EAE were excluded from the calculation 

c
Significantly lower than Wt mice (p<0.001, Student’s t-test) 
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specific B cell responses, may contribute to determinant spreading. The capacity of IgG-Fc � R

interactions to amplify the immune response in EAE may be addressed in a model of anti-

MOG antibody-exacerbated EAE, where the initial immunisation is done with an antigen

other than MOG, such as chronic relapsing EAE induced by PLP in SJL mice (Lublin et al. ,

1981).

Interactions between anti-myelin IgG and Fc � R may also contribute to MS, and thus genetic

polymorphisms affecting the capacity of Fc � R to interact with IgG may not only affect MS

susceptibility but also disease progression. Associations between genetic polymorphisms in

Fc� RIIa, Fc � RIIIa and Fc � RIIIb have been described in diseases with a well-described antibody

mediated component, such as systemic lupus erythematosis (SLE) and rheumatoid arthritis

(RA) (van der Pol and van de Winkel, 1998). In Chapter 4  we addressed the relevance of

genetic polymorphisms in Fc � RIIa, Fc � RIIIa and Fc � RIIIb for MS susceptibility and disease

progression. In a large population of MS patients and healthy donors, no evidence was found

that MS patients show a skewed distribution of polymorphisms in genes encoding for Fc � RIIa,

Fc� RIIIa or Fc � RIIIb in MS patients. Furthermore, Fc � R polymorphisms were not associated

with clinical subtypes of MS or with progression of disease over at least twenty-five years.

This suggests that Fc � R polymorphisms do not affect MS susceptibility or MS disease course.

Another possibility is that Fc � R receptors are only relevant in the subpopulation of MS patients

that shows enhanced anti-myelin antibody responses, under the assumption that these

antibodies are pathologically relevant. Chapter 7  demonstrates that enhanced anti-myelin

antibody levels are not restricted to one of the clinical subgroups of MS patients (RRMS,

SPMS and PPMS). Thus, the subdivision of patients based on disease phase or disease course

may not be the most relevant one to study Fc � R polymorphisms. It would be interesting to

evaluate the distribution of genetic Fc � R polymorphisms in patients that showed enhanced

anti-myelin IgG responses. Unfortunately, we did not yet have the opportunity to combine

the analysis of anti-myelin IgG levels and Fc � R polymorphisms within one population of MS

patients.

In Chapter 5  we investigated the presence of IgG, Fc � R and complement in active

demyelinating MS lesions in autopsy material of a large number of chronic MS patients. As

active demyelinating lesions, defined by the presence of high numbers of HLA-DR +

macrophages containing intracellular PLP, are rare in the CNS of chronic MS patients, earlier

studies were limited to a low number of cases (Bruck et al. , 2001; Prineas et al. , 2001).

Complement, IgG were consistently observed in vesicle-like structures within phagocytic

cells in areas of active demyelination. Moreover, double labelling studies demonstrated that

complement and IgG colocalised with PLP in phagocytic cells that also showed enhanced

expression of Fc � RI, Fc � RII and Fc � RIII. In addition, C1q and IgG colocalised in phagocytic

macrophages, suggesting formation of IC. This demonstrates that all tools for antibody-

mediated phagocytosis of myelin are present in active demyelinating lesions of chronic MS

patients. Importantly, no heterogeneity between patients was observed with respect to

deposition of antibodies and complement. This suggests that the heterogeneity that is observed

in white matter lesions of early MS patients (Lucchinetti et al. , 2000) is not present in

patients with chronic MS, at least not with respect to antibodies and complement. The selection
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criteria for MS patients included in our study were chronic disease and the presence of active

demyelinating white matter lesions. This resulted in a diverse population of MS patients

where all clinical subtypes, RRMS, SPMS and PPMS were represented. In addition, most

patients included in the study died of causes not directly related to MS. Therefore, we believe

that the population of MS patients included our study is representative of chronic MS. The

afore mentioned study of active demyelinating lesions in patients with early MS was largely

based on biopsy material (Lucchinetti et al. , 2000), and therefore it is questionable to what

extent this patient population is representative for early MS patients, since biopsies are only

taken if a diagnosis other than MS, such as glioma, is suspected. It is an intriguing question

what active demyelinating lesions in a more typical population of early MS patients would

look like.

Anti-myelin antibodies were recently suggested to have predictive value for disease progression

in MS. The presence of serum anti-MOG antibodies at the time of a first clinical episode (CIS)

was associated with rapid progression to clinically definite MS (Berger  et al. , 2003). The

association was even stronger when both anti-MOG and anti-MBP antibodies were present.

These are very promising results, as this suggests that testing of anti-myelin antibodies in

serum can identify MS patients with rapid disease progression in a very early phase of

disease. This could be valuable to select patients for treatment, as treatment was shown to

be most effective early phase of relapsing remitting disease (Rizvi and Agius, 2004).

Although presence of anti-MOG and anti-MBP antibodies predicted rapid disease progression

in the earliest phase of MS (Berger et al. , 2003), it is unclear to what extent these antibodies

are pathologically relevant. As discussed in Chapter 6  and Chapter 7 , the current methods

to detect anti-myelin antibodies often do not allow recognition of conformational epitopes.

However, studies on antibody-exacerbated EAE in marmosets and mice demonstrated that

pathologically relevant antibodies were directed against conformational epitopes whereas

antibodies to linear epitopes could not enhance CNS inflammation and demyelination (Brehm

et al. , 1999; von Budingen et al. , 2004). This was supported by in vitro  experiments, where

antibodies directed against conformational MOG epitopes, in contrast to antibodies recognizing

linear epitopes, could lyse MOG-transfected cells (Haase et al. , 2001).

Therefore, we set up a new, flow cytometry-based assay to detect antibodies directed against

human whole myelin ( Chapter 6 ). The assay detects antibodies directed against native

conformational antigens in human myelin, including MOG, MBP and PLP. Using this assay, we

observed enhanced anti-myelin IgG responses in approximately fifty percent of MS patients.

Analysis of another, larger population of MS patients in Chapter 7  confirmed this initial

finding. Anti-myelin total Ig (combined analysis of IgM, IgG and IgA) responses were not

significantly different between MS patients and healthy donors (HD). Anti-myelin IgM responses

were heterogeneous in both MS patients and HD. Anti-myelin IgG or IgM responses were not

correlated to the age of the subjects, disease duration, clinical subtype of MS or disease

severity. This suggests that anti-myelin antibodies do not accumulate over time in response

to continuous myelin breakdown as has been suggested for individual myelin antigens (Reindl

et al. , 1999). Moreover, analysis of follow-up samples from MS patients in the early phase of

disease suggested that the anti-myelin antibody response was stable for at least two years
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(pilot study in our laboratory). This suggests that anti-myelin antibodies may represent a

stable serum marker that is present in a subpopulation of MS patients. The relevance of anti-

myelin antibodies as a biomarker to predict disease progression is currently under investigation.

The presence of serum anti-myelin IgM in MS patients correlated with the presence of anti-

MOG IgM. In contrast, there was no correlation between anti-myelin IgG and anti-MOG IgG

(Chapter 7 ). This suggests that the anti-myelin IgG response is directed against different

myelin antigens. As anti-MOG antibodies were measured in an ELISA using recombinant

MOG as an antigen, it is unclear if the anti-myelin IgG responses are directed against different

myelin proteins, or against different epitopes of MOG. Results obtained in the myelin flow

cytometry assay will be compared to a number of different assays to detect anti-MOG antibodies

to linear, conformational and post-translationally modified epitopes in an international

collaboration guided by Dr. Berger and Dr. Reindl (University of Innsbruck, Austria). In addition,

the anti-myelin antibody response in MS will be compared to the anti-myelin antibody response

in other inflammatory neurological diseases.

In Chapter 6  and 7  we measured antibody responses to human whole myelin isolated from

healthy donors. It has been suggested that the initial immune response in MS patients is

directed against altered self-proteins. Aberrant post-translational modification of endogenous

proteins, particularly changes in glycosylation and citrullination have been associated with

the development of autoimmunity (van Boekel and van Venrooij, 2003; Nijenhuis et al. ,

2004) and altered glycosylation has been hypothesised to play a role in MS pathogenesis (t

Hart et al. , 2000). Although abnormalities in glycosylation have been described in MS, it is

largely unknown if MS patients show antibody and T cell responses against differently

glycosylated myelin antigens. Furthermore, the inflammatory mediators that are released in

the process of demyelination, such as reactive oxygen species or proteases, may structurally

change myelin proteins, creating new immunogenic myelin epitopes (Wållberg et al , 2005).

It is unknown to what extent antibody responses in MS are directed against modified self-

antigens, as these epitopes are not detected using the current methods. In the myelin flow

cytometry assay, the posttranslational structure of myelin can be modified experimentally

before measuring anti-myelin antibodies in MS patient sera for anti-myelin antibodies,

providing a controlled system to study the antibody responses to post-translationally modified

antigens. In a pilot study, we compared the serum antibody response to myelin isolated from

MS patients (MS myelin) and antibody response to myelin isolated from healthy donors (HD

myelin). Interestingly, MS patients but not HD showed relatively higher levels of antibodies

to MS myelin than to HD myelin. This suggests that MS patients develop antibodies to myelin

antigens that are associated with disease and are not present in healthy donors.

One of the most interesting questions in the study of anti-myelin antibody responses is the

pathogenic relevance of these antibodies. Using immunohistochemistry, antibodies were

detected in active demyelinating lesions of fifty to sixty percent of patients with early MS

(Lucchinetti et al. , 2000), but it is unknown if these patients also present with enhanced

anti-myelin antibody levels in serum. This issue will be addressed shortly, as we participate

in an international study that combines immunohistochemical analysis of biopsy material

with analysis of body fluids in patients with early MS.
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The pathogenic relevance of anti-myelin antibodies can also be addressed using in vitro

studies. It was previously shown that antibodies with the highest demyelinating capacity in

vivo  could efficiently fix complement and induce Fc � R mediated phagocytosis in vitro

(Piddlesden et al ., 1993; Van der Goes et al ., 1999). Similarly, pathogenic antibodies in

human serum could possibly be identified using functional assays. It is possible that assays

using functional read-outs, rather than assays measuring the mere presence of anti-myelin

antibodies may be able to distinguish pathogenic from non-pathogenic antibodies. This is

especially relevant for anti-myelin antibodies detected using the myelin flow cytometry assay,

as these antibodies detect human myelin antigens in their native form, i.e. antigens that are

present in the human CNS.

The relevance of functional assays to study pathogenic capacity of demyelinating antibodies

in human disease was recently illustrated by a study of patients with the Guillain-Barré

Syndrome (GBS), an acute inflammatory demyelinating disease of the peripheral nervous

system. The titres of serum IgG antibodies directed against the peripheral myelin antigen

GM1 could not predict their capacity to induce leukocyte activation through Fc � R cross-linking,

suggesting that not the serum antibody levels but the functional capacity of these antibodies

to induce leukocyte effector functions is the relevant parameter to predict pathogenicity (van

Sorge et al. , 2003). The capacity of anti-myelin antibodies isolated from MS patients to

induce Fc � R crosslinking and complement activation should be addressed in future studies.
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In summary, the studies described in this thesis have led to the following conclusions :

�ƒ Anti-myelin antibodies have been described in CNS lesions and body fluids of MS

patients, although it is unknown if and how anti-myelin antibodies contribute to CNS

inflammation and demyelination in MS ( Chapter 1 )

�ƒ Antibodies and complement are not essential for in the induction of EAE although the

humoral immune system may be crucial for the development of CNS inflammation

and demyelination if the encephalitogenic T cell response is weak ( Chapter 2 )

�ƒ Fc�  receptors are not essential for the induction and progression of MOG-EAE or acute

anti-MOG antibody mediated exacerbation of EAE. However, IgG-Fc � R interactions

may contribute to sustained CNS inflammation and demyelination ( Chapter 3 )

�ƒ Genetic polymorphisms in Fc � RIIa, Fc � RIIIa and Fc � RIIIb are not associated with MS

susceptibility or MS disease course ( Chapter 4 )

�ƒ Complement, immunoglobulins and Fc � R are consistently associated with active

demyelination in chronic MS ( Chapter 5 )

�ƒ Enhanced levels of serum IgG antibodies directed against human whole myelin are

detected in approximately fifty percent of MS patients ( Chapter 6 )

�ƒ The presence of enhanced serum antibodies in MS is not related to disease duration,

disease severity or the clinical subtype of MS and may represent a stable marker of

antibody mediated inflammation ( Chapter 7 )
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Figuur 1

1. Multiple sclerose

Multiple sclerose ( MS ) is een chronische ziekte die in de meeste gevallen begint bij jong

volwassenen. Het belangri jkste kenmerk van MS is het ontstaan van

verlammingsverschijnselen, die erger worden naarmate de ziekte vordert. Als gevolg hiervan

belanden veel MS patiënten uiteindelijk in een rolstoel.

Hoewel MS effect heeft op het functioneren van de spieren is het geen spierziekte. De

verlammingen zijn het gevolg van een complex proces in de hersenen en het ruggenmerg.

1.1. MS: een ziekte v an het centr aal z enuwstel

De hersenen en het ruggemerg vormen samen het centraal

zenuwstelsel ( CZS) (Figuur 1). Het CZS heeft een belangrijke regeltaak

in het lichaam. Het regelt bijvoorbeeld het aanspannen van de spieren

in de rest van het lichaam, waardoor we in staat zijn onze ledematen

te bewegen. Het CZS bestaat uit vele neuronen  (ook wel ‘zenuwcellen’

genoemd) die elektrische signalen afgeven. Neuronen hebben lange

uitlopers ( axonen ) die het signaal vanuit de neuronen door het

ruggemerg naar andere delen van het lichaam geleiden, bijvoorbeeld

naar de spieren. Als je besluit je been op te tillen, gaat er op die

manier een elektrisch signaal vanuit de hersenen naar de beenspier,

waardoor de spier samentrekt en het been gebogen wordt. Om het

signaal op efficiënte manier door te geleiden zijn de axonen ingepakt

in een isolatielaag. Vergelijk het met een elektriciteitsdraad die wordt

beschermd door een kunststof omhulsel zodat hij niet zo snel

beschadigd raakt, en zodat het elektrische signaal niet kan ‘weglekken’.

Bij neuronen bestaat de isolatielaag uit een samenstelling van vetten

en eiwitten, het myeline (Figuur 2).

1.2. W at gaat er mis bij MS?

In de hersenen van MS patiënten raakt myeline beschadigd ( demyelinisatie ). De overdracht

van signalen in de hersenen wordt hierdoor minder efficiënt, en de kwetsbare axonen lopen

gemakkelijk beschadiging op. Demyelinisatie ontstaat vaak op meerdere (‘multiple’) plaatsen

in het CZS. Op de plaatsen (ofwel  laesies ) wordt myeline uiteindelijk vervangen door

littekenweefsel (‘sclerose’). Demyelinisatie en beschadiging van axonen leiden ertoe dat

signalen vanuit de hersenen de spieren niet meer kunnen bereiken, waardoor MS patiënten

hun spieren niet goed meer kunnen gebruiken. Ze raken dan verlamd, terwijl er aan de

spieren zelf eigenlijk niets mankeert.

Het is nog niet precies bekend wat de demyelinisatie veroorzaakt. Artsen en onderzoekers

vermoeden dat de oorzaak van demyelinisatie niet bij alle MS patiënten dezelfde is. Niettemin



Samenvatting in het Nederlands

152

neuron (zenuwcel)

myeline
axon (uitloper)

Figuur 2.
Neuronen hebben lange uitlopers, de axonen, die zijn ingepakt in myeline
(gemyeliniseerd). De onderste tekening is een dwarsdoorsnede van een
gemyeliniseerd axon.

zijn er veel aanwijzingen dat een verstoring van het immuunsysteem een belangrijke factor

is bij een grote groep MS patiënten.

1.3 Het immuunsysteem

Het immuunsysteem zorgt voor de afweer v an het lichaam tegen ziekteverwekkers, zoals

virussen en bacteriën. Het immunsysteem is in staat ziekteverwekkers te herkennen en op te

ruimen ( de immuunrespons ), waardoor infectieziektes in de kiem gesmoord worden.

Witte bloedcellen en antistoffen (ofwel antilichamen ) zijn twee belangrijke wapens in de

strijd tegen ziekteverwekkers.

T cellen , B cellen  en macrofagen  zijn drie verschillende soorten witte bloedcellen die elk

hun eigen manier hebben om ziekteverwekkers te lijf te gaan. Als er geen gevaar dreigt

circuleren de witte bloedcellen door het lichaam, ze zijn dan in inactieve staat (Figuur 3A).

Als een T cel een ziekteverwekker tegenkomt, raakt hij actief en begint de ziekteverwekker

onschadelijk te maken. Ook B cellen raken geactiveerd als ze in aanraking komen met

ziekteverwekkers. Zij zijn echter niet in staat de ziekteverwekker direct uit te schakelen,

maar scheiden in plaats daarvan antilichamen  uit. Dit zijn kleine eiwitstructuren die specifiek

plakken aan ziekteverwerkers (Figuur 3A). Ze dienen als een ‘vlaggetje’ dat wordt herkend

door weer een andere soort witte bloedcel, de macrofaag. Macrofagen kunnen zelf nauwelijks

ziekteverwekkers herkennen, maar ze zijn erg goed in het herkennen van antilichamen (de

vlaggetjes) die gebonden zijn aan ziekteverwekkers. Als een macrofaag een antilichaam

herkent dat aan een ziekteverwekker geplakt is, ‘eet’ hij het complex van ziekteverwekker

en antilichaam snel en efficiënt op ( fagocytose ) (macrofaag betekent letterlijk ‘grote eter’ )

(Figuur 3B) .

Ook complementeiwitten  zijn in staat de ‘vlaggetjes’ op ziekteverwekkers te herkenen.

Complementeiwitten zijn in inactieve vorm aanwezig in het bloed. Als ze in aanraking komen

met antilichamen die zijn gebonden aan bacteriën worden ze actief en gaan plakken aan het
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complex van antilichaam en bacterie. Geactiveerde complementeiwitten kunnen in sommige

gevallen direct de bacterie doden. Daarnaast worden geactiveerde complementeiwitten ook

herkend door macrofagen. Als een macrofaag een bacterie met geactiveerde

complementeiwitten tegenkomt gaat hij over tot de fagocytose (het opeten) van de bacterie

(Figuur 3B). Op die manier werken antilichamen en complement samen om macrofagen aan

te zetten tot het opruimen van ziekteverwekkers. Om gebonden antilichamen en complement

te herkennen gebruiken macrofagen ‘herkenningeiwitten’ (receptoren) die op de buitenkant

van de macrofaag zitten. Voor antilichamen heten deze herkenningseiwitten Fc �����  receptoren

(zie hieronder), voor complementeiwitten heten ze complementreceptoren.

Tijdens de immuunrespons scheiden zowel T cellen, B cellen als macrofagen chemische

componenten uit die niet alleen de ziekteverwekker opruimen, maar ook zorgen voor nog

meer actieve witte bloedcellen, die op hun beurt weer kunnen bijdragen aan de

immuunrespons. Dit proces heet ontsteking .

1.4. A uto-immuniteit bij MS patiënten

Het is ontzettend belangrijk dat het immuunsysteem het verschil weet tussen schadelijke,

lichaamsvreemde structuren (virussen en bacteriën) en de structuren die bij het lichaam

horen (lichaamseigenstructuren, zoals myeline). Als het immuunsysteem dit onderscheid

niet (meer) kan maken ontstaat een auto-immuunziekte . Het immuunsysteem (witte

bloedcellen, antilichamen en complement) richt zich dan op lichaamseigen structuren, met

vaak zeer schadelijke gevolgen. In het geval van MS is de auto-immuunreactie gericht tegen

de myeline die de axonen in het CZS omhult. Omdat het immuunsysteem de myeline nu als

schadelijk beschouwt, zal het proberen de myeline op te ruimen. Daardoor ontstaan

ontstekingsreacties in het CSZ, waarbij myeline wordt afgebroken (demyelinisatie) door

geactiveerde T cellen, macrofagen, antilichamen en complement. De chemische componenten

die tijdens de onstekingsreactie worden uitgescheiden zijn niet alleen schadelijk voor myeline,

maar beschadigen ook de axonen. Deze schade is vaak onherstelbaar, waardoor de

verlammingsverschijnselen bij MS patiënten meestal blijvend zijn.

Men vermoedt dat macrofagen een grote rol spelen bij de demyelinisatie in MS, waarschijnlijk

door de fagocytose (het opeten) van de myeline. Daarnaast zijn ook anti-myeline

antilichamen  (antistoffen die specifiek plakken aan myeline) en complementeiwitten aanwezig

in de hersenen van MS patiënten. De kans bestaat dus dat macrofagen geactiveerd raken

door antilichamen en complementeiwitten die zijn gebonden aan myeline. Het is echter niet

bekend hoe belangrijk antilichamen en complement zijn voor demyelinisatie. Vooral over de

rol van anti-myeline antilichamen in MS bestaan nog veel vragen.
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Figuur 3A. Witte bloedcellen en complement in inactieve en geactiveerde staat .
T cellen, B cellen, complement en macrofagen circuleren door het lichaam in inactieve staat (bovenste
rij). Als ze een ziekteverwekker zoals een bacterie tegenkomen raken ze geactiveerd (tweede rij). T
cellen zijn direct in staat bacterien te doden. B cellen zitten vol met antilichamen, die ze na activatie
uitscheiden. Die antilichamen plakken aan de bacterie. Complementeiwitten binden weer aan de
antilichamen die aan de bacterie plakken.

2. Promotieonderzoek

Dit proefschrift beschrijft onderzoek naar de manier waarop antilichamen gericht tegen myeline

een bijdrage kunnen leveren aan de onstekingsreactie in MS.

2.1. Antilichamen en complement zijn betrokk en bij m yeline fagocytose in MS

Als anti-myeline antilichamen binden aan myeline, kan dit leiden tot demyelinisatie als de

gebonden antilichamen worden herkend door macrofagen. Om gebonden antilichamen te

herkennen en te fagocyteren (op te eten), maken macrofagen gebruik van

‘herkenningseiwitten’, de Fc �����  receptoren , die op de buitenkant van macrofagen zit.

Antilichamen en Fc �  receptoren passen in elkaar als een sleutel in een slot. Een macrofaag

die geen Fc �  receptoren heeft, is niet in staat gebonden antilichamen te herkennen. Daarnaast

kan demyelinisatie worden veroorzaakt door de activatie van complementeiwitten.

Het is bekend dat antilichamen, macrofagen (met Fc �  receptoren op de buitenkant) en

complement aanwezig zijn in de hersenen van MS patiënten, op de plaatsen waar

demyelinisatie optreedt (laesies). Het is echter niet duidelijk of antilichamen en complement
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Figuur 3B. Macrofagen ‘eten’ bacterien met behulp van antilichamen en complement
Macrofagen hebben herkenningseiwitten op de buitenkant (Fc�  receptoren en
complementreceptoren) waarmee ze respectievelijk antilichamen en complementeiwitten
herkennen. Als er een bacterie in de buurt is raken macrofagen geactiveerd, waardoor er nog
meer herkenningseiwitten op de buitenkant komen. Als een macrofaag gebonden antilichamen
of complement herkent begint hij te eten (fagocytose). Als aan een bacterie zowel antilichamen
als complementeiwitten zijn geplakt eet de macrofaag meer dan als er alleen antilichamen zijn
geplakt.

aanwezig zijn in de laesies van àlle MS patiënten. Omdat het vermoeden bestaat dat het

ziekteproces niet in alle MS patiënten hetzelfde is, is de kans aanzienlijk dat antilichamen en

complement in slechts een deel van de patiënten een rol spelen.

Om dit te onderzoeken hebben we gebruikt gemaakt van autopsie-hersenmateriaal van MS

patiënten. Dit is gebeurd in samenwerking met de Nederlandse Hersenbank, die autopsies

van hersendonoren en de uitgifte van hersenmateriaal coördineert. Omdat het niet mogelijk

is de hersenen van levende MS patiënten van binnen te bekijken, is onderzoek aan

donorhersenen is erg belangrijk voor een beter inzicht in de ziekte MS.

Op dunne plakjes hersenmateriaal kunnen bepaalde structuren (in dit geval bijvoorbeeld

antilichamen en macrofagen) zichtbaar gemaakt worden door ze te ‘kleuren’ met kleurstoffen

die specifiek zijn voor de gewenste structuur. Wij hebben dit gedaan met hersenmateriaal

van een grote groep MS patiënten en we hebben de ‘kleuring’ van de hersenen vergeleken

met de hersenen van gezonde hersendonoren.
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Wij hebben ontdekt dat antilichamen en geactiveerde complementeiwitten aanwezig waren

in de laesies van àlle MS patiënten. Omdat antilichamen en complementeiwitten op precies

dezelfde plaatsen aanwezig waren (co-localisatie) is het mogelijk dat de complementeiwitten

geactiveerd zijn geraakt doordat ze in aanraking kwamen met antilichamen. Daarnaast vonden

we talloze macrofagen, met veel Fc �  receptoren op de buitenkant. De belangrijkste bevinding

van dit onderzoek was dat antilichamen, samen met Fc � R en kleine brokstukjes myeline, te

vinden waren binnenin macrofagen. Dit duidt erop dat macrofagen de myeline hebben

gefagocyteerd (opgegeten). Binnenin de macrofagen waren ook antilichamen en Fc �  receptoren

te zien, dus het lijkt erop dat antilichamen en Fc �  receptoren hebben bijgedragen aan de

fagocytose van myeline. In dezelfde macrofagen waren ook complementeiwitten aanwezig.

Dit duidt erop dat zowel antilichamen als complementeiwitten een belangrijke rol spelen bij

demyelinisatie in MS patiënten (zie ook de kleurenfiguren op pagina 163, 166, 167, 170 en

171).

2.2. Anti-m yeline antilichamen in een diermodel v oor Multiple Sclerose

Hoewel onderzoek naar autopsie materiaal van MS patiënten erg zinvol is, verschaft het

geen informatie over het verloop van de ontstekingsprocessen die bijdragen aan demyelinisatie

(een autopsie is immers een momentopname).

Om de rol van antilichamen en Fc �  receptoren op het ontstaan en verloop van MS beter te

kunnen onderzoeken hebben we gebruikt gemaakt van proefdieren.

Als muizen worden geinjecteerd met myeline (of componenten van myeline) ontwikkelen ze

een auto-immuunreactie tegen myeline, waardoor onstekingen ontstaan in de hersenen,

met demyelinisatie en verlamming. Die ziekte die dan ontstaat heet Experimentele

Autoimmune Encephalomyelitis ( EAE ) en vertoont grote overeenkomsten met MS.

Om te kijken of  Fc �  receptoren  belangrijk zijn voor het onstaan van EAE hebben we gebruik

gemaakt van Fc �  receptor knockout muizen  (FcR ����� -/-  muizen ). De macrofagen van deze muizen

hebben nauwelijks Fc �  receptoren op hun oppervlakte, en zijn daardoor niet goed in staat

gebonden antilichamen te herkennen.

Na injectie met myelinecomponenten raakten alle FcR � -/-  muizen ernstig verlamd. Hieruit

blijkt dat Fc �  receptoren (en dus ook de activatie van macrofagen door antilichamen) niet

essentieel is voor het ontstaan van EAE.

Uit onderzoek in het verleden is bekend dat anti-myeline antilichamen kunnen bijdragen aan

demyelinisatie in EAE, maar pas in een latere fase van de ziekte. Met andere woorden, anti-

myeline antilichamen zijn niet belangrijk voor het ontstaan van de ziekte, maar ze kunnen

misschien wel een bijdrage leveren aan de voortgang van de ziekte.

Om de rol van anti-myeline antilichamen en Fc �  receptoren in een latere fase van EAE te

onderzoeken hebben we EAE geinduceerd in normale muizen en in FcR � -/-  muizen. Nadat ze

ziek werden, kregen de muizen een injectie met anti-myeline antilichamen. De

verlammingsverschijnselen van EAE werden hierdoor onmiddelijk een stuk ernstiger, zowel

in normale als in FcR � -/- . Hieruit blijkt dat Fc �  receptoren niet nodig zijn voor de schadelijke

effecten van antilichamen, want de verergering van de ziekte onstaat ook er geen Fc �
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Figuur 4
Antilichamen en complement binden aan myeline in de hersenen van MS patiënten. Macrofagen herkennen

nu de myeline met behulp van Fc�  receptoren en complementreceptoren en beginnen de myeline op te

eten. Hierdoor verdwijnt de myeline van het axon. Macrofagen die te vinden zijn in de hersenen van MS

patiënten zitten soms helemaal vol myeline brokstukjes De foto rechts is een microscopische opnamen

van een ‘volgegeten’macrofaag in de hersenen van een MS patiënt. Voor kleurenfoto’s van myeline,

antilichamen, complementeiwitten en Fc�  receptoren in en op macrofagen (in de hersenen van een MS

patiënt), zie pagina’s 163, 167, 170 en 171.

receptoren niet aanwezig zijn. Het is waarschijnlijk dat het acute effect van anti-myeline

antilichamen in EAE wordt veroorzaakt door de andere route waarmee anti-myeline

antilichamen schade kunnen aanrichten, via de activatie van complementeiwitten.

Gemiddeld drie weken nadat de muizen waren ingespoten met anti-myeline antilichamen

hebben we de hersenen nader onderzocht door ze in dunne plakjes te snijden en ze te

bestuderen onder de microscoop. In de hersenen van normale muizen was ernstige

demyelinisatie te zien, terwijl de demyelinisatie bij FcR � -/-  muizen gering was. Dus, ookal

waren FcR � -/-  receptoren niet nodig voor acute  verergering van de EAE door anti-myeline

antilichamen, op langere termijn lijken FcR � -/-  receptoren toch een bij te dragen aan

demyelinisatie (voor een kleurenfoto van demyelinisatie in de hersenen van normale muizen,

zie pagina 162).

2.3. De in vloed v an genetische v erschillen in Fc �  receptoren op MS

De Fc �  receptoren, die op de buitenkant van macrofagen zitten, zijn niet bij iedereen hetzelfde.

Dit is het gevolg van een genetisch polymorfisme , een vorm van genetische variatie tussen

mensen, die normaal gesproken geen invloed heeft op de gezondheid. Een bekend voorbeeld

van een genetisch polymorfisme zijn de bloedgroepen (A, B, AB en O).

Door genetische polymorfismen in Fc �  receptoren, is de binding tussen antilichamen en Fc �

receptoren niet bij alle mensen even efficiënt, met als gevolg dat macrofagen minder goed in

staat zijn gebonden antilichamen te herkennen. Uit onze studie in autopsie hersenen bleek

dat macrofagen in de hersenen van MS patiënten veel Fc �  receptoren op de buitenkant
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hadden, en uit onze studie in muizen bleek dat Fc �  receptoren mogelijk op lange termijn

bijdragen aan demyelinisatie. Het is daarom mogelijk dat MS patiënten met bepaalde

genetische polymorfismen in hun Fc �  receptoren minder gevoelig zijn voor antilichaam-

gemedieerde demyelinisatie waardoor de ziekte langzamer verloopt. Om dit te onderzoeken

hebben we van 432 MS patiënten en 515 gezonde donoren genetisch materiaal (DNA)

afgenomen om te kijken welke typen Fc �  receptoren aanwezig waren. Bij gezonde donoren

en MS patiënten kwamen dezelfde typen Fc �  receptoren voor, wat erop wijst dat de kans op

het ontstaan van MS niet beinvloedt wordt door genetische polymorfismen in Fc �  receptoren.

Daarnaast bleek het ziekteverloop bij MS (de snelheid waarmee een patiënt achteruit gaat)

niet gecorreleerd te zijn met genetische polymorfismen in Fc �  receptoren.

Dit zou kunnen betekenen dat Fc �  receptoren echt geen rol spelen bij MS. Het is ook mogelijk

dat Fc �  receptoren alleen belangrijk zijn in een bepaalde groep MS patiënten, namelijk de MS

patiënten die veel anti-myeline antilichamen hebben. Helaas is het onduidelijk bij welke

patiënten dit het geval is, en we kunnen die patiënten dus niet apart testen.

In het laatste deel van mijn promotieonderzoek hebben we een test ontwikkeld, die kan

bepalen of MS patiënten anti-myeline antilichamen in het bloed hebben.

2.4. Anti-m yeline antilichamen in het bloed v an MS patiënten

Als anti-myeline antilichamen inderdaad een rol spelen bij (een deel van de) MS patiënten is

de kans groot dat anti-myeline antilichamen ook in het bloed van die patiënten zijn te vinden.

Om dit te onderzoeken is op de afdeling Moleculaire Celbiologie en Immunologie een test

ontwikkeld die antilichamen detecteert die speciaal gericht zijn tegen myeline.

Om te testen of zulke antilichamen aanwezig zijn in het bloed van MS patiënten, hebben we

bloed afgenomen van 160 MS patiënten en 40 gezonde mensen. Daarin hebben we de

hoeveelheid anti-myeline antilichamen gemeten.

Ongeveer de helft van de MS patiënten bleek een verhoogde hoeveelheid anti-myeline

antilichamen in het bloed te hebben, terwijl de andere helft van de MS patiënten geen

verschil vertoonde met gezonde donoren. Dit kan betekenen dat anti-myeline antilichamen

een rol spelen in ongeveer de helft van de MS patiënten.

2.5. Conclusie

Het lijkt erop dat anti-myeline antilichamen betrokken zijn bij demyelinisatie in MS. Zowel

de activatie van macrofagen via Fc �  receptoren als activatie van complementeiwitten zijn

hierbij betrokken. Antilichamen en complement waren aanwezig in de hersenen van alle MS

patiënten die door ons zijn bestudeerd, hoewel slecht vijftig procent van de MS patiënten

ook anti-myeline antilichamen in het bloed had. Het is daarom niet duidelijk of anti-myeline

antilichamen bij alle patiënten van belang zijn.

Als duidelijk is bij welke patiënten anti-myeline antilichamen schadelijk zijn, wordt het mogelijk

speciaal voor die patiënten een medicijn te ontwikkelen die gericht is op anti-myeline

antilichamen. Dit zou een grote vooruitgang betekenen, omdat de medicijnen die nu worden

gebruikt voor de behandeling van MS niet altijd effectief zijn en veel bijwerkingen hebben.
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Figure 4.
CNS inflammation and demyelination in anti-MOG antibody exacerbated EAE in Wt and FcR� -/- mice.

Brains were isolated 35 days after immunisation, and the cerebellum white matter was analysed for

demyelination using Kluver-Barrera staining (A,B,E,F) and inflammation using mac-1 staining

(C,D,G,H). In Wt mice, injection of Z12 mAb resulted in enhanced demyelination (B) and inflammation

(D) when compared to saline-injected animals (A and C respectively). In FcR� -/- mice, injection of Z12

mAb did not change demyelination (F) or inflammation (H) compared to saline-treated mice (E,G).

Areas of demyelination are indicated by arrows. Original magnification 40x. (I) Quantitative analysis

of macrophage infiltration (percentages calculated as [mac-1-positive area/total cerebellum white

matter area] x 100). Data represent average of 7 mice (Wt-NaCl; FcR� -/--NaCl), 2 mice (Wt-Z12 mAb)

or 3 mice (Fc� R-/--Z12 mAb).
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Chapter 3, figure 4 (page 61)
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Figure 1.
Complement activation products and IgG are present on and within macrophages in inflammatory

demyelinating lesion areas. Left panel: inflammatory demyelinating area; right panel: inflammatory non-

demyelinating area. Both areas were located at the border of a chronic active MS lesion. Macrophages in

inflammatory demyelinating areas contain intracellular PLP (A) whereas macrophages in inflammatory

non-demyelinating areas do not (B). Macrophages in both inflammatory demyelinating and non-

demyelinating areas express high levels of HLA-DR (C, D). Expression of C5b-9 is associated with

macrophages in inflammatory demyelinating areas (E) but not inflammatory non-demyelinating areas (F).

Diffuse immunostaining for IgG, and IgG staining associated with astrocyte processes is observed in

demyelinating (G) and non-demyelinating (H) lesion areas, but staining on and within macrophages is

restricted inflammatory demyelinating areas (G).
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Figure 3A-C.

C3d and C4d are detected on myelin sheaths in inflammatory demyelinating areas. C3d immunostaining

is observed on a myelin sheath that is in close contact with macrophages (A, macrophages indicated

by arrows), immunostaining is more intense at the interface of the myelin sheath and the macrophage

(B, interface indicated by arrowhead). C4d immunostaining on a myelin sheath that is surrounded by

macrophages (C, macrophages indicated by arrows). Original magnification 400X. (D) Results of

semi-quantitative analysis of myelin associated immunostaining for C3d and C4d. The percentage of

areas that were positive for complement is represented by the height of the bars, whereas the shading

of the bars represents the extent of immunopositivity.(+) light immunopositivity, (++) moderate

immunopositivity and (+++) strong immunopositivity.

**immunostaining higher than in inactive lesions and NAWM (p<0.05).
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Chapter 5, figure 3A-C (page 95)
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Figure 4.

Double labelling immunofluorescence reveals colocalisation of PLP with complement and complement with

IgG in inflammatory demyelinating areas. The left panel shows colocalisation of PLP (A) and C3d (C) on the

surface and in vesicle-like structures inside phagocytic macrophages (E shows merge of A and C).

Immunostaining for C3d, but not PLP, is observed on astrocytes (arrow). The right panel shows colocalisation

of C1q (B) with IgG (D) on infiltrating phagocytic monocytes/macrophages (arrowheads) and on a glial cell

(arrow) (F shows merge of B and D). Vascular immunostaining for IgG, but not C1q, is observed on the inner

and outer basement membranes lining the Virchow-Robin space (D, F, asterix). The IgG-positive, C1q-negative

cell on the left side of image D and F may represent a plasma cell. Original magnification 400X.
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Figure 6A-D.

High expression of Fc� R in inflammatory areas in chronic MS. Figure shows abundant expression of HLA-DR

(A) on phagocytic macrophages in an inflammatory demyelinating area at the border of a chronic active lesion.

In the same area, high expression of Fc� RI (B) and Fc� RII (C) is detected on the surface of phagocytic

macrophages and within intracellular vesicle-like structures. Expression of Fc� RIII (D) is observed in association

with phagocytic macrophages as well, although the extent of immunostaining is lower than for Fc� RI and

Fc� RII. Original magnification 400X. (E) Results of semi-quantitative analysis of Fc� R in different lesion

areas. The percentage of lesion areas that were positive for Fc� R expression is represented by the height of

the bars, whereas the shading of the bars represents the extent of immunopositivity. (+) light immunopositivity,

(++) moderate immunopositivity and (+++) strong immunopositivity.

**immunostaining higher than in inactive lesions and NAWM (p<0.05), *immunostaining higher than NAWM

(p<0.05).
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Figure 7.

Double labelling immunofluorescence reveals colocalisation of Fc� R with IgG and complement an

inflammatory demyelinating area at the border of a chronic active MS lesion. The upper panel shows

colocalisation of Fc� RII (A) and IgG (C) on the surface and in vesicle-like structures inside phagocytic

macrophages (E shows merge of A and C). The lower panel shows colocalisation of Fc� RII (B) with

C1q (D) on and within phagocytic macrophages (F shows merge of B and D). Diffuse background

staining for IgG (C) and C1q (D) is typical of inflammatory demyelinating areas in the CNS. Original

magnification 400X.

Chapter 5, figure 7 (page 99)
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achterhalen van patiëntgegevens.
Priscilla, wat ben ik blij dat jij er al die tijd bij was. Bedankt voor je inzet (zelfs in het weekend) en voor

je geduld als ik de zaken even niet helder voor ogen had. Rianka, ik ken niemand die zoveel dingen op

één dag kan doen als jij, je bent onmisbaar geweest de afgelopen jaren. Marc (Jansen), als beginnende

aio was het niet gemakkelijk om samen te werken met een analist op een andere universiteit. Gelukkig
wist jij precies wat er moest gebeuren, bedankt voor je noeste PCR arbeid!

Sjef, bedankt voor de theoretische en praktische hulp bij de experimenten die we hebben gedaan met

‘jouw’ muizen. De organisatie van de EAE experimenten had altijd veel voeten in de aarde omdat het
erg onvoorspelbaar was wanneer de muizen onze stal binnen mochten. Gelukkig hebben we uiteindelijk

mooie data verzameld.

Jan van de Winkel, we hebben niet zo heel vaak om de tafel gezeten maar jouw enthousiasme over

onze resultaten was erg aanstekelijk. Ludo, jouw voorwerk voor en bijdrage aan het Fc � R polymorfisme
manuscript waren erg waardevol. Nina, fijn dat je me op sleeptouw hebt genomen bij je degranulatie

assays, helaas lukte het niet om ‘jouw’ experimenten uit te voeren met onze MS sera.

Bob Harris and Maja Wållberg from the Karolinska Institutet, too bad our experiments did not work

out. Bob, thank you for being a part of the committee.
De mensen van de afdeling neurologie. Chris, bedankt voor de hulp bij de laatste twee hoofdstukken.

Bernard en Lisa, bedankt voor jullie hulp met het Fc � R polymorfisme manuscript. Jessica, ik hoop dat

wij een mooi stuk kunnen maken met de presto sera. De andere arts-onderzoekers, bedankt voor de

gezelligheid op de MS meetings!

Collega’s van de afdeling MCBI, ik heb het bij jullie naar mijn zin gehad! De afdeling is de laatste jaren

een stuk groter geworden, het risico dat ik mensen vergeet te bedanken dus ook. Ik ga het toch

proberen.
Mensen van de blauwe groep, ik heb met veel plezier met jullie samengewerkt en de congressen

waren onvergetelijk! Elga, je hebt een mooie groep opgebouwd (en eindelijk weer wat mannen in de

blauwe groep gehaald). Charlotte, ik heb je het leven behoorlijk zuur gemaakt met mijn gezeur over

sera. Dankzij jouw hulp zijn hoofdstuk 6 en 7 er gekomen. Babs, Gerty, Gijs, Raoul en Rob, hierna zijn
jullie aan de beurt, succes!

Erwin, Dennis, Bianca en de andere biotechnici, het was niet gemakkelijk onze EAE’s uit te voeren

tussen alle verbouwingen door. Gelukkig wisten jullie altijd een oplossing.
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Dan de vrijstaat op J296, heerlijk zo’n afgelegen kamer! Anneke, Tom, Femke en Jerome, wat zou ik

graag nog eens een schilderij kapot gooien. Irene (gelukkig zijn Rob&Rick er altijd nog), Gerben

(bedankt voor de skull), Lutz (‘i don’t know where my cup is’), Raoul (denk je dat het sporten ervan
komt?), bedankt!

Het was sowieso gezellig aan het einde van de gang. Annemarie, jouw last-minute coaching deed me

goed!

De wetenschap is veeleisend, maar gelukkig heb ik genoeg mensen om me heen die zorgen dat ik de

andere kanten van het leven niet vergeet, en die me ertoe bewegen mijn goede voornemens in de

wind te gooien (en jullie weten dat dat soms het beste is wat me kan gebeuren!).

Annelies, jij bent mijn kompaan sinds ik me kan herinneren. Alle dingen die we doen, alle dingen die
we laten (en hoe dat altijd een win-win situatie wordt) en alle dingen die we doen maar beter zouden

laten, jij staat altijd grijnzend naast me. Een afspraak met jou is vaak het antwoord op heel veel, ik

vind het geweldig dat je mijn paranimf bent! Daan, je zegt zelf dat je mijn tutor bent. Waarin precies

blijft onduidelijk, maar voor een paranimf is het ongetwijfeld een kwaliteit. De volgende keer dat we
gaan surfen op Hawaii breek ik niets! Willemijn, de krasse taal die jij uitslaat maakt me zonder

uitzondering aan het lachen. Wij gaan de hele zomer in het park zitten! Willeke, nu kunnen we eindelijk

samen vieren dat we uitgeschreven zijn! Ilse, als ik mijn promotie niet wist te relativeren deed jij het

voor me. Je hulp bij de Nederlandstalige samenvatting en de kaft waren erg waardevol. Maar nog veel
waardevoller: fietsen naar Parijs, de wintersportvakanties en de avonden aan de toog van de B.. Paula

en Anne, ik wist niet dat nieuwe ouders zo betrokken konden zijn! Paula, ik zie ernaar uit om me met

jou weer richting Zaak te begeven. Heel veel succes de komende tijd met het afronden van je promotie.

Anne, succes met je nieuwe baan. Maarten, jij durfde me te bellen op mijn werktelefoon, haha het liep
niet altijd goed af. Gelukkig spreek ik je vaker buiten werktijd. De zomer is in aantocht, we kunnen

weer gaan zeilen! Jorrit, jammer dat jij je zeemanskunsten niet kunt botvieren op de Loosdrechtse

plassen. We verplaatsen het fest naar de pacific! Rikkert, Gijs en Hans, het is de hoogste tijd dat we

weer een popquiz winnen, Tivoli heeft het lang genoeg gesteld zonder Joey T. en De Winnaars. Astrid,
toch jammer dat we nooit naast elkaar op een NVVI feest hebben gestaan om samen te aanschouwen

hoe immunologisch Nederland zich laat gaan, er zijn weinig mensen die zaken zo haarfijn kunnen

beschrijven als jij. En natuurlijk bedankt voor de fietsvakanties, de zeilweekenden en de avonden op

de bank van Hebriden 34. Ruud, dat promoveren heel frustrerend kan zijn weet jij als de beste, veel
succes met de rest van je onderzoek. Ives, jij weet hoe je je moet ontspannen, daarvan kon ik mooi

meegenieten toen ik het niet meer wist! Arianne, Bas, Marc, Meike, Paul, Sung, Erik, Roel, Tobias en

alle anderen, ik hoop nog veel van jullie te zien!

Mijn familie, bedankt voor de gezelligheid tijdens de familieweekenden, de feesten-van-oma, de

hemelvaartvakanties etc, ik geniet er altijd erg van!

Jannie, ik bewonder de manier waarop je je eigen bedrijf hebt opgezet. Dankje voor je lieve kaartjes,

ze kwamen steeds op het goede moment. Jürgen, deze zomer kunnen jullie gaan genieten van de
boot, inclusief scheepshond, wat een feest!

Mieke, het enthousiasme waarmee jij je studie en de rest van je leven aanpakt is super, succes met

het afronden van je studie! Peter Paul, we hadden kunnen weten hoe pünktlich de Duisters zijn, maar
we hebben wèl gesnowboard!

Lieve Gert en Sjaan, pap en mam, bedankt voor alles. Alle steun, alle geduld en alle liefde. Jullie

hebben me een heleboel waardevols meegegeven, ik ben blij dat ik zulke leuke ouders heb.
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