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Foreword

Science is, like most other human activities, in essence, a collective endeavor. Every
scienti�c researcher draws on a body of knowledge which has been gradually built over a
large time span by a collective of scientists and researchers before him. When did a
certain idea appear for the �rst time? Even when an idea represents a radical cut with
what was previously regarded as being the `scienti�c truth,' that is, the accepted
paradigm at that time, it always contains some elements that had already been laid
down earlier, even if only in an embryonic stage. Likewise, thepresent Ph.D. thesis owes
a great deal to general and speci�c scienti�c knowledge I triedto accumulate both
during my undergraduate and post-graduate studies.
During my academic path I was fortunate in coming across a number of outstanding
lecturers and researchers from whom I learned much. As the Ph.D. degree represents the
last stage of a formal Academic education, it is adequate that I acknowledge the
priceless contribution I received from my contact, as a student, with these remarkable
scientists and teachers. First, I must mention the names of Herman K. van Dijk, Pedro
Lago, Jan Magnus, Georgi V. Smirnov, Jean-Jacques Herings, Maarten Janssen, Manuel
Ricouh and Cristina Sernadas as among those whose lectures, scienti�c work and
example as a scientist and researcher have made a signi�cant contribution to my actual
perception of the meaning of science and of the `m�etier' of researcher and lecturer.
During the M.Phil. program at the Tinbergen Institute, as in any Academic program,
there were some subjects which were more appealing to me than others. In some cases,
the skill and enthusiasm of the lecturer was able to turn into an appealing course what
would otherwise be (from my perspective) a rather uninteresting subject. Overall, I
need to acknowledge the outstanding quality and relevance ofthe courses that make up
the Academic program at the Tinbergen Institute. In particular, I am most grateful
that I was able to attend the course lectures by Siem Jan Koopman, Frank Kleibergen,
Peter Boswijk, Frank de Jong, Andr�e Lucas, Richard Paap and Marno Verbeek. These
courses really helped me with my own research. I would also like to mention the friendly
collaboration I was able to keep with a small number of my colleagues at the Tinbergen
Institute. In this sense, a friendly word is due to Ghebre Debrezion, Rute Mendes, Ana
Babus, Eddy Bekkers, Desislava Rusinova and Yin-Yen Tseng.
On a more formal note, I would like to thank my supervisor Prof. Dr. Andr�e Lucas, as
well as my (other) co-authors, Prof. S.J. Koopman, Prof. Georgi V. Smirnov and Dr.
Kr•aussl. I think I did my best in trying to learn as much as possiblefrom the
collaboration with these knowledgeable and experienced Researchers. I further wish to
thank Prof. Andr�e Ran, Prof. Michel Mouchart, several anonymous referees at the
Journal of Econometrics, the Journal of Empirical Finance and Econometric Reviewsas
well as seminar participants at the Tinbergen Institute, VU University Amsterdam,
Trinity College of Dublin, University College of London, University of Copenhagen,
University of Venice, Dutch Central Bank, Technical Universityof Lisbon, University of
Porto, ISCTE Business School, CORE Louvain-la-Neuve, University of Western
Australia, Edith Cowan University and University of Vienna for manyhelpful
comments. Financial support by the VU University Amsterdam, in particular the Asset
Management Program, and by Funda�c~ao para a Ciência e a Tecnologia (Portuguese



Foundation for Science and Technology) is gratefully acknowledged. I want to thank
specially the Tinbergen Institute and the VU University Amsterdam for sponsoring my
participation in the Global Finance Conference held at the Trinity College in Dublin,
the 2005 World Congress of the Econometric Society held at theUniversity College of
London, the 2005 International Conference on Finance held at the University of
Copenhagen, the CREDIT 2005 conference in Venice and the international conference
on Time Series, Econometrics and Finance in Perth, Western Australia. I further wish
to thank Funda�c~ao para a Ciência e a Tecnologia for sponsoring my participation at the
61st European Meeting of the Econometric Society, held at the University of Vienna, as
well as my seminar presentations at the Technical University of Lisbon, the University of
Porto and ISCTE Business School. The data I used in this study, theCreditPro 7.0
dataset on credit ratings, was generously supplied by Standard &Poor's.
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Introduction

What's in This Book

Corporate Credit Risk refers to the risk borne by investors who hold a �nancial stake
that depends in any way on the credit quality of a privately owned debt issuer or
borrower, usually a corporation. WhileMarket Risk is mostly due to the variation in
market prices and rates, Credit Risk is the consequence of changes in the credit quality
of the counterparty. There are several reasons why Credit Risk requires a distinct
modeling approach with respect to Market Risk. One such reason isthat defaults are a
rare event, and therefore, the corresponding historical datais sparse. At least compared
with data on prices and rates. Secondly, some �nancial positions prone to Credit Risk
are mostly illiquid. This means that the corresponding marketprices cannot be readily
determined.
The analysis and modeling of Credit Risk requires methods fundamentally di�erent from
those used for handling Market Risk. Credit Risk is essentially driven by granular credit
events. These can be basically split into two types:default and (credit) rating migration
events. Default corresponds to the failure by the counterparty to honor a �nancial
agreement. This can be due, for example, to a bankruptcy, or the repudiation of a
particular contract.1 Additionally, the extent of the �nancial loss, to be incurred asa
consequence of a particular rating event, can vary. The Exposure at Default (EAD) is
an (apriori) estimate of the maximal �nancial loss to be incurred if the counterparty
defaults, and is mainly used by banking institutions. However, inthe event of a default,
due for example to a bankruptcy, the lender may actually be able to recover a certain
fraction of his (or her's) �nancial stake due to a combination of credit risk mitigation
techniquesand legal proceedings. The Loss Given Default (LGD) is thepercentage of
the EAD that is likely to be lost by the lender (or investor) as a consequence of the
default event.
Credit ratings provide a subjective assessment of the default probability incurred by an
investor who enters into a long �nancial position with a (rated) counterparty. Using

1In a banking context, \A Default is considered to have occurred with regard to a particular obligor

when either or both of the two following events have taken place. The bank considers that the obligor

is unlikely to pay its credit obligations to the banking group in full, without reco urse by the bank to

actions such as realising security (if held). The obligor is past due more than 90days on any material

credit obligation to the banking group." Basel Committee on Banking Supervision (2004)



both public and privately available information, credit rating agencies classify debt
issuers according to a particular ordinal scale.
The objective of this thesis is to present a dynamic econometric analysis of corporate
(agency) credit ratings, and to quantify and estimate the Credit Risk associated with a
rated corporate debt issuer. This last aspect includes both the risk of default and of a
rating change. In particular, one of the aims is to obtain insight into the dynamic
behavior of credit ratings. How does rating activity co-varies with the business cycle?
How can we measure the current state of the `credit cycle?' These are some of the
questions addressed in this thesis. Ultimately, the objective consists in being able to
accurately forecast the rating transition matrix. This aspectis crucial both for risk
management and pricing purposes.
This thesis presents several innovative statistical proceduresfor quantifying, estimating
and forecasting Credit Risk, expressed in terms of both default and rating transition
probabilities.

Credit Ratings

Credit ratings play a prominent role in the current credit industry. Their main objective
is to provide a qualitative classi�cation of the level of default risk associated either with
a particular �nancial instrument or with the corresponding debt issuer in general. In
this thesis I focus on corporate debt-issuer credit ratings. These are aimed at providing
a simple qualitative summary of the overall solidity, solvency and prospects of a �rm.
The literature on credit rating methodologies is vast and owes much to the seminal work
of Edward Altman, who introduced in 1968 thecredit scoring methodology based on
Discriminant Analysis.
Credit ratings are used extensively across �nancial markets. Under the Basle II accord,
credit ratings are used to determine the required capital bu�er to be held by the lender
(banking institution). Additionally, interest rates for corp orate loans are negatively
correlated with the borrower's credit rating. Investors use credit ratings as a simple way
of assessing the relative Credit Risk of di�erent debt issuers. In fact rating agencies hold
an enormous power over companies. If a corporation receives avery low credit rating,
not only will interest rates for new loans go up, but also other contracts with �nancial
institutions can be adversely a�ected. This is because large corporate loans often
contain special clauses that make this one due if the corporation's credit rating falls
below a certain point (most usually the so-called \junk bond"or\speculative" level).
Furthermore, many private and institutional investors will avoid buying bonds issued by
these companies. In fact, in some countries, some institutional investors (for example
pension funds) are not allowed to invest in �rms rated below a certain threshold. This
e�ectively means that, for many companies, receiving a \junkbond" rating can be
tantamount to bankruptcy.
Now, if aggregate credit ratings co-vary with general businessconditions, this has the
potential to exacerbate a downturn, as for a larger number of�rms the cost of capital
will increase when it is most needed. Further still, a simultaneous decrease in the credit
ratings of a signi�cant number of �rms in an economy can lead toa decrease in the
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willingness to lend by banks and investors. The resulting `credit crunch' can have
devastating consequences over an economy already caught in the middle of a downturn.
Credit ratings thus have an indirect impact over the stability of the whole �nancial
system. Therefore, understanding the aggregate dynamic behavior of credit ratings is
crucial.
In this thesis I do not focus on the particular methodology behind the precise credit
ratings contained in the CreditPro 7.0 database from Standard & Poor's, the dataset I
used in this study. Neither do I attempt to suggest a particular rating methodology.
Instead, agency credit ratings are taken as given, and analyzed from a statistical
perspective. The aim will be characterizing their aggregatebehavior. What statistical
patterns can be identi�ed. How to model them, and use the corresponding empirical
model for obtaining forecasts.

Reduced-form Models for Credit Risk

Historically, two distinct approaches for modeling Credit Riskcan be identi�ed. In the
so-calledStructural Approach, pioneered by Merton (1974), the defaultable contracts are
taken as contingent claims on the �rm's assets. Explicit assumptions over the capital
structure, the evolution of the �rm's assets and liabilities are made. The default event is
then endogenously determined as the time when the assets fall below some particular
threshold. An important drawback of this approach (at least when assuming full
information and a strictly continuous evolution of the �rm's assets) follows from the fact
that, under this set up, the default event is in fact predictable. As a consequence, the
(classical) structural approach yields unrealistic credit spreads (that is, the excess yield
required by investors to bear the default risk of the debt issuer).
In contrast, in the Reduced Formapproach, the default even is considered exogenous.
That is, the precise mechanism that triggers the default event is left unspeci�ed and
viewed as the occurrence of aRandom Point Process(Jarrow et al., 1997).
There are some reasons for favoring the reduced form approach when analyzing a large
dataset of agency credit ratings with the purpose of estimatingCredit Risk. The �rst
reason is essentially pragmatic. The structural approach requires �rm-speci�c data that
may not be publicly available. There is, however, also some theoretical rationale for
choosing a reduced form model over a structural one. The structural approach may not
accurately describe the economics of the default mechanism (see for example Berkovitch
and Israel, 1998). In fact, there is some historical evidence insupport of such a view.
Famous e�ective bankruptcy episodes, like Enron's and Parmalat's, or `near misses' like
LTCM's or the more recent cases of Bear Sterns and Northern Rockmay add support to
the `black box' view taken by the reduced form approach. Additionally, some empirical
studies have shown that the reduced form approach yields slightly better accuracy when
predicting the default event (for example, Chava and Jarrow, 2004). However, with
regard to this last aspect, I do acknowledge that this conclusion is not consensual.

15



A Short Overview of this Thesis

In this thesis, departing from the reduced form approach of Jarrow et al. (1997), I
develop an empirical Credit Risk modeling framework that signi�cantly extends
previous work by Kavvathas (2000) and Lando and Sk�deberg (2002).
Because the reduced form approach stems directly from the statistical theory of Point
Processes, in Chapter 1, I present a short overview of the existing econometric literature
dealing with point process models. This chapter starts by recalling some background
results from the theory of point and transition processes. Chapter 1 proceeds by
reviewing the main econometric speci�cations used in the �nancial literature for dealing
with irregularly spaced data. Here, I make a minor contribution to the speci�cation
(mostly introducing a more compact, and perhaps suggestive, notation) of two of these
classes of models. Namely the Autoregressive Conditional Intensitymodel of Russell
(1999) and the generalized Hawkes processes introduced in Bowsher (2007). The
distinction betweenparameter drivenand observation drivenmodels is emphasized
throughout.
Chapter 2 presents a �rst analysis of the CreditPro 7.0 database from Standard &
Poor's using nonparametric tools. Additionally, this thesis makes some theoretical
contributions to the literature on semi-Markov processes (L�evy, 1954) by introducing
some novel estimators for this class of stochastic processes. First, aset of estimators for
the non-homogeneous semi-Markov kernel based on piecewise constant transition rate
estimators is presented. Second, Chapter 2 formally establishes the existence and
uniqueness of the non-homogeneous semi-Markov transition matrix and introduces a
numerical procedure for obtaining this matrix from any feasible estimator of the matrix
of transition rates. The convergence of this procedure is proved. It is further shown that
if a consistent estimator of the matrix of transition rates is used, the resulting estimator
of the semi-Markov transition matrix is also consistent. These newestimators are
applied to the credit ratings database of Standard & Poor's. Inline with previous
literature, it is found that there is signi�cant evidence of the clustering of defaults and
rating transition events to reject the assumption that these occur in time with constant
intensity. However, this chapter shows for the �rst time that thedefault hazard is a
non-monotonic function of thesojourn time in the current rating.
Chapter 3 introduces the new parametric modeling frameworkfor credit ratings. The
new class of Multi-state Latent Factor Intensity (MLFI) models is described jointly with
a computationally e�cient methodology for conducting Likelihood-based estimation and
inference. The estimation methodology is validated by meansof a simulation study.
Further, a new parametric bootstrap procedure for obtainingthe forecasts of the credit
rating transition matrix implied by the MLFI model is introdu ced. This new model is
also applied to the CreditPro 7.0 database.
In Chapter 4, the empirical analysis from the previous chapter is signi�cantly extended
by conditioning the observed rating transitions on a large set of macro economic
variables. A systematic search for the economy-wide determinants of the cyclical
behavior of the aggregate levels of default and rating transitions is conducted. The
observed rating transition rates are regressed over business cycle variables, variables
measuring the bank lending conditions and the state of the �nancial markets. Finally,
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the common latent factor (credit cycle) hypothesis is tested by enlarging the MLFI
model with multiple latent factors. The main driver behind the observed clustering of
default events is found to be GDP growth. Interestingly, thischapter shows that rating
and default cycles seem to be autonomous to a large extent. In the sense that signi�cant
clustering levels are observed that cannot be explained with the macro economic
variables used. Financial contagion and `new-industry bubble' phenomena become,
therefore, good candidates for explaining this �nding.
The technical issues associated with the empirical implementation of the MLFI class of
models are intricate. The computational load required for estimating the MLFI model
in any sizable dataset is heavy. Therefore, in Chapter 5, I discuss three possible
approaches for conducting Likelihood-based estimation and inference for the class of
MLFI models. A simulation study is carried out in order to assess the�nite-sample
performance of each one of the three di�erent methods.
The conclusions and �nal remarks of this study are presented in Chapter 6. This
chapter summarizes the research �ndings of this thesis and discusses some interesting
ideas for future research.
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Chapter 1

The Econometrics of Irregularly

Spaced Data: A Survey

1.1 Summary

This chapter provides an introduction to the problem of modeling irregularly spaced
longitudinal data. Although Point Process theory was developed in the sixties and early
seventies, only in the nineties did this �eld of Probability theory attract the attention of
researchers working in Financial Economics. The large increase, recorded since the late
nineties, in the literature on Econometric models for dealing with �nancial duration
data is mostly due to the increased availability of trade-by-trade data from the �nancial
markets. This chapter provides an overview of the literaturedealing with the
Econometric modeling of this so-calledtick data. I start by recalling the essential
concepts and results from Point Process theory. Due to its relevance to the topic of
reduced form models for credit risk, some central results from the theory of
Continuous-time Markov chains are also brie
y reviewed. The chapter then moves on to
describe the main speci�cations that have appeared in the Econometrics and Empirical
Finance literatures.

1.2 Introduction

The increasing availability of (ultra-)high-frequency data, arising mostly from �nancial
markets, led in recent years to a dramatic increase in the literature dealing with the
Econometric tools needed to handle it e�ciently. The traditional methods based upon
�xed-length intervals of time are simply not adequate for dealing with this type of data,
as they require the aggregation of the observations to the level of the corresponding
time-grid. In general the aggregation of irregularly spacedevent-data into a time-series
of counts, or of some general limited dependent variable, leads to several known
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problems. First, if the length of the chosen observational time-unit is too short then
there will be many intervals where there are no observations at all. This introduces
arti�cially a very speci�c type of heteroskedasticity in the resulting time-series. On the
other hand, if one chooses a large time-unit then the underlying micro structure features
of the data are lost, which can be a serious problem for some analyses. Third, in many
problems the duration between two well-de�ned successive events, or the frequency of
those events, is the subject of the study, and here, clearly no aggregation should be
taken.1 Fourth, the aggregation of point process data over some �xed-length time
interval does not allow the researcher to account for changeson time-varying covariates
of interest that take place during the duration of that interval.
The alternative to �xed-interval techniques is to model theData Generating Process
(DGP) behind the successive events being recorded as a Random Point Process,
eventually a multivariate, generalized, non stationary one.
The General Mathematical Theory of Point Processes is a topic �nding its origins in the
work of the 19th 's century French mathematician S. D. Poisson dealing with theanalysis
of Life tables (i.e. statistics from the distribution of the duration of human life) and
mortality rates. The modern treatment of the subject, however, goes back to the works
of Cox and Wold in the early �fties. During the sixties several central limit theorems
concerning the superposition of Random Point Processes were proved. These theorems
basically showed, for the �rst time, that the Poisson Point Process(one of the simpler
Random Point Process models) plays a role in Point Processes Theory similar to that of
the Gaussian distribution in the Theory of Distributions.
During the seventies the �eld became a structured and established area within
Probability Theory. Several special branches, like Renewal Theory and Hyperplane
Processes Theory for example, were developed in this period. The main motivation for
the development, and also the main �elds of application, of these emerging areas were
Physics, Medical Science, and Engineering.
Recently, Point Process theory has drawn a lot of attention from applied researchers in
Financial Econometrics. The seminal work of Engle and Russell (1998), introducing the
so-called Autoregressive Conditional Duration (ACD) model, spurred an entire new
stream of literature dealing with econometric speci�cationsfor modeling Point Processes
evolving with after-e�ects.2 Most of these econometric speci�cations were developed for
the analysis of �nancial tick data. A directly related, but distinct literature, deals with
the analysis of credit rating data. This chapter intends to provide an uni�ed perspective
of both these streams of literature.
The main focus of the present thesis is the analysis of (corporate) credit rating data in
continuous-time and on a micro scale. That is, without resortingto any sort of
aggregation. In fact, one of the distinctive approaches of this thesis consists in treating
credit rating data as an example of an empirical point process.For this reason, in order
to provide a background to the contributions to the credit risk literature made by this
thesis, this chapter brie
y reviews the main econometric point process models available

1Although for practical measuring purposes there is always some very small basic time unit. In the

case of tick data this can be as small as 1=100th of a second.
2see de�nition 1.4.
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in the literature. This survey intends to cover the main classesof econometric models
currently available for analyzing empirical point processes,both univariate and
multivariate. The focus is placed on situations where one suspects that some type of
serial correlation or unobserved factors are present i.e. thatthe past history of the Point
Process, or of some unobserved `information' process, a�ects its own future evolution in
some way. The focus of most of the models in this survey is placed on
(ultra-)high-frequency data sets. However, there is nothing in the structure of these
models that prevents their application to the analysis of lower-frequency irregularly
spaced data. In fact, the Point Processes approach is not exclusively motivated by
high-frequency (or high-intensity3) data. A very proli�c stream of literature on Duration
Analysis (i.e. the study of the distribution of the inter-arrival times - the amount of
time elapsed between two successive event-points of a point process) stemming from the
original work of Cox (1972), in particular from his so-calledProportional Hazards
model, has found a fertile ground of application in the �eldsof Labor Economics and
Sociology. Here, typically, the type of durations under studyare better expressed in
weeks, months or even years (duration of the unemployment andemployment spells for
workers for example).
The di�erent econometric point process models available in the literature can be
classi�ed according to, at least, two di�erent criteria. Perhaps due to the in
uential
work of Engle and Russell (1998), many econometric point process models directly
specify theforward occurrence density4 conditional on a particular �ltration. Examples
include the already mentioned ACD model (and all derived models), but also the
Stochastic Conditional Duration (SCD) model of Bauwens and Veredas (2004). A more

exible alternative consists in specifying directly the intensity process associated with
the point process. This approach, which was in fact the centralparadigm in Duration
Analysis since, at least, the path braking work of Cox (1972), wasrecovered by Russell
(1999) for his Autoregressive Conditional Intensity (ACI) model. Modeling directly the
intensity of the PP is also the approach taken by Bauwens and Hautsch (2006a) for the
Stochastic Conditional Intensity (SCI) model, and by Bowsher (2007) for his generalized
Hawkes processes. The `intensity approach' to point process models is also the favored
one in this thesis.
Econometric point process models can, however, also be classi�ed according to a general
criterion used extensively across Statistics. Models like the above-mentioned ACD, ACI
and generalized Hawkes processes are good examples ofobservation drivenmodels. This
class of models assumes that, conditional on a particular observable �ltration
(encompassing the internal one), the distribution of the future observations is completely
speci�ed. In contrast, the main approach of this thesis consists in resorting mostly to
parameter drivenmodels. This class of Statistical models explicitly acknowledges that in
most real World situations, even conditioning on a rich observable �ltration, the
probability law governing future observations cannot be known precisely. That is, often
this probability law is itself random. Parameter driven models, however, postulate that
the shapeof this probability law is known. The randomness being due to the presence of

3See equations (1.5) and (1.8).
4See de�nition 1.7.
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unobservable factors. These latent factors are modeled as stochastic processes inside a
fully parametric setting. In many situations, this view is somewhat more realistic, at
least with respect to the one implied by (parametric) observation driven models.

Bauwens and Hautsch (2006b) provides an overview of the econometric point processes
literature somewhat similar to one contained in the current chapter. There are, however,
a number of distinctive features between the later and the former. In particular, in this
chapter the two main classes oftransition processes(or generalized point processes) are
also covered. These types of stochastic processes are directly relevant for the analysis of
credit rating data, and are outside the scope of the survey by Bauwens and Hautsch
(2006b). This chapter also provides a signi�cantly more extensive overview of the theory
of both point and transition processes. This provides the readerwith a deeper insight
into some of the technical issues associated with each particularspeci�cation. Two new
theorems connected with the topic of random time changes forpoint processes are also
introduced in this chapter. This chapter makes an additional contribution to the
econometric literature dealing with models for (ultra-)high-frequency data by presenting
an innovative approach to the speci�cation of some of the models covered. This is the
case for the ACI, SCI and generalized Hawkes models.5 Finally, in this chapter all point
process models surveyed are classi�ed as either observation or parameter driven. This
allows readers familiar with these two classes of statistical models to grasp more easily
the technical issues connected with the estimation of the di�erent speci�cations covered.
The remainder of this chapter is organized as follows. Section 1.3 reviews the essential
concepts and results from the Theory of Point Processes (Subsection 1.3.1) and from the
Theory of Markov processes in continuous time (Subsection 1.3.2). Sections 1.4 and 1.5
constitute the core of the chapter. Here I brie
y review the main Econometric models in
the literature dealing with empirical Point Processes. As mentioned, the di�erent
models in the literature can be grouped in two large classes. In Section 1.4 the focus is
placed onobservation drivenmodels. Parameter driven models are the focus of
Section 1.5. Section 1.6 concludes.

5As a further minor contribution, a small technical issue connected with the speci�cation of the SCI

model (which was erroneously stated in the original article by Bauwens and Hautsch, 2006a) is clari�ed.

See the discussion and footnote following formula (1.66) in Subsection 1.5.2.
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1.3 Theoretical Background

This section reviews important background concepts and results from the general theory
of Point Processes (hereafter PP), Classical Duration and Event-History Analysis and
from the theory of Continuous Time Markov Chains. These concepts are useful for
understanding clearly the assumptions and mechanisms behind each econometric PP
model. PP theory provides a structured and uni�ed framework that accommodates
many seemingly disparate models. In fact, bot duration and count data models6 are
aimed at describing empirical PP. However, as mentioned in theprevious section, count
data models, unlike their duration counterparts, imply a loss of information due to the
aggregation of the number of events over the corresponding time-grid. For this reason,
in this thesis I chose not to work with count data models. Therefore, in this section, the
emphasis is placed more on theduration and intensity statistics rather than on the
counting statistics associated with a PP.

1.3.1 Random Point Processes

In this subsection I provide a brief overview of some important results from the theory
of real-valued Point Processes. The literature on PP theory, however, is reasonably
extensive. An easily accessible and detailed treatment of the main results of the Theory
of Point Processes is available in Snyder (1975), which concentrates on temporal PPs.
Snyder and Miller (1991) provides a detailed treatment of more general PPs in
multidimensional spaces. Karr (1991) provides a formal treatment of the subject from a
Measure Theoretical perspective. A comprehensive and less demanding introduction to
the subject is given in Daley and Vere-Jones (2002). Andersen etal. (1993) sets out in
full mathematical detail the modern, martingale-based counting processes approach to
the theory of PP.

De�nition 1.1 (Random Point Process)

6Some authors reserve the term \duration models"only for those PP models that directly specify the

forward occurrence density. According to this view, models that directly specify the (continuous-time)

intensity process associated with a PP are calledintensity models. However, this distinction is slightly

arti�cial. Not only because the intensity process of a PP directly implies a particular forward occurrence

density, but also because these so-called `duration models' also imply a particulartype of (continuous-

time) intensity process - one that directly depends on the backward-recurrence time of the PP, i.e. the

time since the last observed event. For this reason, in this thesis, I designate as \duration models"any

PP model that does not explicitly assume the existence of a pre-determined time-grid over which the

observed number of events is counted. The later case corresponds to the so-called \countdata models."
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Let (
 ; F ; fF tg; P) denote a �ltered Probability Space satisfying the usual conditions,7 a

(real) Random Point Process

f :::; T� 1; T0; T1; :::; Tn ; :::g;

where the random variablesTn : 
 ! R satisfy Tn� 1(! ) � Tn (! ) 8n2 Z;! 2 
 , is a function

from 
 into the set of all nondecreasing sequences inR.

In this de�nition it should be noted, that for a particular ! 2 
 the sequence f Tn (! )g
may actually be �nite. The random event-momentsTn are in fact stopping timeswith
respect to the �ltration fF tg.

De�nition 1.2 (Counting Process associated with a Point Process):

Given a real Point Processf Tng1
n= �1 and a subsetA of R, the associatedCounting

ProcessN (A) is de�ned as the number of occurrences of the point process in the setA,

formally:

N (A) =
X

n

1A (Tn );

where1A (:) denotes the indicator function over the setA.

Of particular relevance for modeling purposes are the specialcases whereA = [ t0; t] and
A = [ t0; t) with t0 < t . For a �xed t0 2 R, and with a slight abuse of notation, I write
N ([t0; t]) as N (t), and N ([t0; t)) as �N (t). Letting t 2 R vary, the stochastic processN (t)
has c�adl�ag sample paths which are piecewise constant, while those from �N (t) are c�agl�ad
piecewise constant.
Consider a �xed t0 2 R, a random point process is said to benon explosivein the
interval [t0; t] if E[N (t)] < 1 . Because for everyt > t 0 we have E[N (t) � �N (t)] > 0, the
counting processN (t) is a submartingale, that is E[N (t)jF u] > N (u); 8u;t : t0 � u < t .
The Doob-Meyer decompositionestablishes the existence of a unique c�adl�ag,
nondecreasing,F t � predictable process �(t), which is the compensatorof N (t). This
means the process de�ned as

M (t) = N (t) � �( t);

is a F t � martingale. Therefore, the following holds

E[N (t) � N (u)jF u] = E[�( t) � �( u)jF u]; 8u;t : t0 � u < t: (1.1)

If �( t) is absolutely continuous, then there is anF t � predictable intensity process� (t)
such that

�( t) =
Z t

t0

� (� )d�: (1.2)

7See Andersen et al. (1993) for brief discussion.
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De�nition 1.3 (Orderliness):

A Counting Process, and the underlying Point Process, are called orderly at time t > t0

if for any given " > 0 there exists a� (t; " ) > 0 such that

P[N ([t; t + �)) > 1] � "P[N ([t; t + �)) = 1] ; 8� : 0 < � < � (t; " ):

A Point Process is orderly in an interval [a; b] if it is orderly at every point of that

interval. It is uniformly orderly on the interval if � (t; " ) = � (" ).

Intuitively this property means that, for an orderly point process, the probability of
observing more than one point in a given time-interval can be made an arbitrarily small
fraction of the probability of observing one single point, provided the interval is small
enough (in fact if we could rule out the possibility of P[N ([t; t + �)) = 1] = 0 ; 8� > 0 and
t > t0 then this de�nition would be equivalent to simply say that
lim � #0

P[N ([ t;t +�)) > 1]
P[N ([ t;t +�))=1] = 0 and uniform orderliness means that this probability ratio

converges uniformly to zero).

De�nition 1.4 (Evolution without after-e�ects):

A point process observed over an interval[t0; 1 ) is said to evolve without after-e�ects if

for any t > t 0 the realization of points over the interval[t; 1 ) does not depend in any

way on the realization over the interval[t0; t).

In particular, this implies that the (integer) random variables (N (u) � N (u0)), 8u>u 0,
and N (� ) � N (� 0), 8�>� 0>u are independent. That is, a point process evolving without
after-e�ects has independent increments.

De�nition 1.5 (Poisson Processes):

Let f N (t); t > t0g be the counting process associated to a point process de�nedon the

interval [t0; 1 ), this point process is called a Poisson Point Process (andf N (t); t > t0g

a Poisson counting process) if the following conditions hold:

1. P[N (t0) = 0] = 1 ;
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2. for t0 6 u 6 t; the incrementN ((u; t]) = N (t) � N (u) is Poisson distributed with

parameter �( t) � �( u); i:e:

P[N ((u; t]) = n] =
(�( t) � �( u))n exp [� (�( t) � �( u))]

n!
: (1.3)

Where � : [ t0; 1 ) ! R+
0 is an arbitrary, non-decreasing deterministic function

satisfying �( t0) = 0 .

3. f N (t); t > t0g has independent increments. That is, the number of points in

non-overlapping intervals are independent random variables.

Recalling that the mean of a Poisson distribution (and actuallyalso the variance) equals
the single parameter of this distribution, we can see that the general property (1.1)
implies that the compensator of the Poisson counting process coincides with its
parameter function (de�ned in point 2 above, therefore justifying the use of identical
notation).
The Poisson Process is without doubt the single most important Random Point Process
model. It can be viewed as the natural benchmark model when analyzing a particular
empirical point process. Most of the point processes covered in this survey can be
thought of as resulting from relaxing some of the qualitative assumptions behind the
Poisson Process (summarized in theorems 1 and 2 presented furtherahead in this
subsection).
The properties of the parameter function directly a�ect thebehavior of the Poisson
point process, in particular,

� If �( t) � �( u) is �nite, then points do not occur with certainty (i.e. there is never
probability one of observing at least one point) over the interval (u; t] and there is
also zero probability of observing an in�nite number of pointsin that interval.
Additionally, from the well-known fact that for a Poisson distribution the mean
and variance coincide, we see that

E [N ((u; t])] = V [ N ((u; t])] = �( t) � �( u); (1.4)

� The points di of discontinuity of �( t) correspond tosingular time-points of the
point process. That is, at these points there is a non-zero probability mass (equal
to 1 � exp

�
�

�
�( d+

i ) � �( d�
i )

��
) of observing at least one event-point. More

accurately still, at these predetermined time-points the number of events follows a
Poisson distribution with parameter equal to the size of the discontinuity jump in
�( t) (i.e. �( t+

i ) � �( t �
i )),

� If �( t) is continuous for all t > t0 then event-points do not occur at predetermined
times and lim

� #0
P [N ([t; t + �)) = 0] = 1.
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De�nition 1.6 (Intensity function of a Poisson process):

The intensity function of a Poisson process is de�ned at the points of di�erentiability of

the parameter function�( t) as its �rst derivative,

� (t) = lim
� ! 0

�( t + �) � �( t)
�

: (1.5)

Because, when � is di�erentiable at t, the expected number of points in the interval
[t; t + �) equals �( t + �) � �( t) this intensity function can be interpreted as the
instantaneous mean rateat which event-points occur.
If �( t) is absolutely continuous then it can be expressed as

�( t) =
Z t

t0

� (� )d�: (1.6)

So far I have mostly considered thecounting statistics associated with the Poisson Point
Process. That is, the statistics associated with the distribution ofthe number of
event-points over arbitrary intervals of time.
Another important aspect of a Point Process are the so-calledtime statistics. These
include both the statistics associated with the distributions ofthe sequences of
inter-arrival times and with the degree of clusteringof event-points over time.
Two closely related time-sequences can be distinguished,

� The sequence ofoccurrence timesf T1; T2; :::; TN t g where the event-points were
recorded over the interval [t0; t],

� The sequence ofinter-arrival times (or durations) f � 1; � 2; :::; � N t g de�ned as
� i = Ti � Ti � 1 implying Ti =

P i
j =0 � i , with the convention � 0 = t0.

Clearly, both these sequences yield the same amount of information about the history of
the point process over the interval [t0; t].

De�nition 1.7 (Forward-Occurrence density)

The conditional density of the next inter-arrival time (eventually the �rst) given the past

sequence of occurrence times (eventually an empty sequence) is called the

forward-occurrence density.

For the case of a Poisson Process this density is given by

f � n jTn � 1 ;:::;T1 (� j tn� 1; :::; t1) = � (tn� 1 + � ) exp [� (�( tn� 1 + � ) � �( tn� 1))]

= � (tn� 1 + � ) exp
�
�

Z tn � 1+ �

tn � 1

� (u)du
�
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the last expression being valid if �(t) is absolutely continuous. A special case arises if
the intensity function � (t) is constant (this case is termed ahomogeneous Poisson point
process),

f � n jTn � 1 ;:::;T1 (� j tn� 1; :::; t1) = � exp (� �t ) ;

so, in this special case, the forward-occurrence density is a Exponential density with
mean 1=� .

In what follows, two theorems giving qualitative conditionsfor a general point process
to be a Poisson point process are presented. The �rst theorem (following Khinchin,
1956) has mainly a theoretical interest. It presents the weakest set of su�cient
conditions for an arbitrary point process to be a Poisson process.8 However, these
conditions are not easily relaxed for obtaining more generalclasses of point processes.
The second theorem, on the contrary, has more an operational interest. Relaxing some
of the conditions in this second theorem leads to more generalclasses of point processes
that actually contain most of the speci�c processes covered in this chapter.

Theorem 1.1 A counting processf N t ; t > t0g associated to a point process is a Poisson

counting process if the following qualitative conditions are met,

1. the point process is uniformly orderly on [t0; t), for all t > t 0,

2. the point process evolves without after-e�ects,

3. points do not occur at predetermined times,

4. there is no �nite sub-interval of [t0; t) where points occur with certainty,

5. P[N (t0) = 0] = 1.

The second set of su�cient conditions for a point process to be a Poisson process
(assembled under theorem 1.2), unlike the one in theorem 1.1, does not imply the most
general Poisson process possible. However, modifying slightly these conditions, leads to
a particularly important class of (non-Poisson) point processes,the so-called
Self-Exciting point processes. We �rst need the concept ofconditional orderliness, which
is a stronger version of the orderliness notion already seen.

De�nition 1.8 (Conditional Orderliness):

A Counting Process, and the underlying Point Process, areConditionally Orderly at

time t > t0 if for any given " > 0 there exists a� (t; " ) such that

P[N ([t; t + �)) > 1jF t � ] 6 "P[N ([t; t + �)) = 1 j F t � ]; 8� : 0 < � < � (t; " ): (1.7)

8These conditions are su�cient to obtain the most general (non-singular) Poisson counting process

possible, one having a continuous nonnegative and non-decreasing parameter function �(t), termed an

inhomogeneous Poisson process
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The process is called conditionally orderly if it is conditionally orderly for all t > t0: A
conditionally orderly point process is also (unconditionally) orderly but the converse is
not necessarily true.
In intuitive terms this means that the orderliness of the process stays una�ected by any
possible event that may occur in the past history of the process.

A second theorem9 stating an alternative set of su�cient conditions for a point process
to be a Poisson process is now presented.

Theorem 1.2 A counting processf N (t); t > t0g, associated with a given point process,

is a Poisson counting process if it satis�es the following conditions,

1. the point process is conditionally orderly,

2. for all t > t0 the limit

� (t) = lim
� #0

P [N ([t; t + �)) = 1 j F t � ]
�

; (1.8)

exists and is a �nite integrable function that dependsonly on t. Therefore, we can
de�ne �( t) =

Rt
t0

� (� )d� , which is also a �nite function 8t>t 0 ,

3. P[N (t0) = 0] = 1,

Note that if we set n = N (t) and de�ne T =
P n+1

i =0 � i , where� 1; � 2; : : : ; � n+1 denote the
�rst ( n + 1) inter-arrival times, then under condition (1) of Theorem1.2, we can also
interpret � (t) de�ned in (1.8) as

� (t) = lim
� #0

P [t 6 T < t + � j T > t]
�

: (1.9)

For any conditionally orderly point process (not necessarily aPoisson PP), equation
(1.8) de�nes the conditional intensity processof the PP.

In almost all applications, it is necessary to conduct estimationand inference over
observed Poisson processes. The critical quantity to be computed for this purpose is the
Likelihood function at the observed realization of the PoissonPP. This one is basically
the joint probability density of the observed sample path of thePP, considered as a
functional of the intensity function.

9For a proof see Snyder (1975).
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The Likelihood of a �nite sample path of a Poisson Process

Consider a realization of a Poisson counting processN (t) over a given �nite interval:
f N (u); t0 6 u 6 tg the Likelihood functional for a given intensity function� conditional
on this sample path is given by,

L (� j f N (u); t0 6 u 6 tg) = exp
� Z t

t0

ln � (� )dN (� ) �
Z t

t0

� (� )d�
�

: (1.10)

The full set of Likelihood-based inference and testing procedures are readily available for
Poisson PP.

The reason for the importance of the Poisson point process as a model for empirical
point processes is threefold. First, as mentioned, the Poisson point process provides a
baseline model whose generalizations lead to the two most important classes of point
process models. These are the, already mentioned, self-exciting point processes and the
class ofDoubly Stochastic Poisson processes. Second, many empirical point processes
are, in fact, adequately described by a Poisson process. This is inpart due to the fact
that the superposition of many independent point processes leads to a Poisson PP (see
Snyder, 1975, for a treatment of some of these Poisson `central limit' theorems). Third,
a particularly important result, the Random Time Change Theorem(Meyer, 1971,
Brown and Nair, 1988) establishes that any multivariate point (counting) process whose
corresponding (multivariate) compensator is absolutely continuous and unbounded can
be mapped into a set of independent homogeneous Poisson point processes each with
unit intensity.

Theorem 1.3 (Random Time Change) Let (N1(t); : : : ; NS(t)) be a multivariate

counting process associated withS given point processes observed over[t0; 1 ], with

continuous, unbounded vector-compensator process(� 1(t); : : : ; � S(t)) . Let the

correspondingS sequences of occurrence times be denoted asf Ts
n g1

n=1 , with s = 1; : : : ; S.

Then the components of the multivariate point process~N (u) = N (� � 1
s (u)), whose

occurrence times are given byf � s(Ts
n )g1

n=1 , make up a set of independent Poisson point

processes with unit intensity.

Proof. See Brown and Nair (1988).

As it turns out, see Aalen and Hoem (1978) and also Andersen et al. (1993, Subsection
II.5.2.2.), the type of time transformation t 7! u employed in the Random Time Change
Theorem, that is u = � s(t), can be extended to anynon-decreasing, adapted, continuous
(and therefore predictable) process �(t). In what follows I present one extension of the
univariate Random Time Change Theorem for the class of counting processes having a
multiplicative intensity process.
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Theorem 1.4 (Multiplicative Intensity Univariate Random Time Change) .

Let N (t) be anF t -adapted counting process observed over[t0; 1 ], having an absolutely

continuous, unbounded, compensator process�( t). Let the corresponding sequence of

occurrence times be denoted asf Tng1
n=1 . Assume that the corresponding intensity process

can be factored as� (t) = � (t) (t), where� (t) and  (t) are two F t -adapted, c�agl�ad,

non-negative processes, and de�ne�( t) =
Rt

t0
� (� )d� . Further assume that

�( 1 ) = lim t !1 �( t) = 1 .

Then, the point process~N (u) = N (� � 1(u)), whose occurrence times are given by

f �( Tn )g1
n=1 , has the ~Fu-predictable intensity process~� (u) =  (� � 1(u)) =  (t), where

~Fu = F � � 1 (u) .

Proof. This result is in fact a corollary of Theorem 3.2 in Aalen and Hoem(1978). To
see this simply setk = 1 in that theorem and note that �( t0) = 0, �( 1 ) = 1 and the
left-derivative of �( t), that is � (t), is left-continuous. Therefore, the random time
transformation u = �( t) is a regular time changefor N (t), as clearly � (t) = 0 implies
� (t) = 0.

De�nition 1.9 (Marked Point Processes):

A Marked Point Process is a point process that has an auxiliaryrandom variable (called

the mark) associated with every event-point. This random variable can take values on

some mark setM . That is, we can think of a marked point process as a pair(Tn ; Mn )

wheref Tng1
n= �1 is a real point process andM n is a random variable de�ned overM

(either a denumerable or continuous set but independent of the indexn).

As seen, a point process must be both conditionally orderly and evolving without
after-e�ects, in order to be a Poisson process. Certain types of point processes not
satisfying the orderliness requirement can be included in the class of Marked point
processes. A conditionally non-orderly point process can be modeled as a marked point
process where the mark represents the number of simultaneous events recorded atTn ,
that is, where the mark space isM = N.
Removing the requirement that the point process evolves without after-e�ects leads to
one of the most important classes of dynamic PP models. Self-exciting point processes
evolvewith after-e�ects. This means, in the most general setting, that, at time t, any
sub-set of the history of the processf N (u); t0 6 u 6 tg can potentially in
uence any
sub-set of the corresponding futuref N (u); u > t g.
The dependence of the future on the past is formalized throughthe conditional intensity
function of the process de�ned in equation (1.8).
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De�nition 1.10 (Self-Exciting Point Processes):

The conditionally orderly counting processN (t) (and the underlying point process) is

termed a Self-Exciting Counting (point) process if� (t), as de�ned in equation(1.8), is

not merely a function of time, but instead, a stochastic process adapted to the internal

�ltration generated by N (t).

Again, we are interested in performing Likelihood-based estimation and inference
procedures for self-exciting PP models. The important fact here is that the Likelihood
functional computed for a speci�c realization of a general self-exciting PP is completely
similar to the Likelihood functional for a (inhomogeneous) Poisson PP.

The Likelihood functional for Self-Exciting Point Process es

Consider a realization of a Self-Exciting counting processN (t) over a given �nite
interval: f N (u); t0 6 u 6 tg the Likelihood functional for a givenrealization of the
stochastic intensity process� conditional on this sample path is given by,

L (� (� ) j f N (u); t0 6 u 6 tg) = exp
� Z t

t0

ln � (� ; � )dN (� ) �
Z t

t0

� (� ; � )d�
�

: (1.11)

Here it is assumed that the admissible intensity processes for a speci�c problem are
parameterized in terms of the (eventually in�nite-dimensional) vector � .

The similarity between the Poisson and the Self-Exciting cases is a consequence of the
fact that the intensity process for this last class of Point Processes is a stochastic process
adapted to the internal �ltration of the PP. Parameter estimation can be performed
through the common Maximum Likelihood (ML) methodology. Ina similar, way
Likelihood-based inference procedures are readily available, for example the test of two
simple hypothesis:

H0 : f � (� ) = � (� )(0) � � (� ; � 0); t0 6 � 6 tg vs. (1.12)

H1 : f � (� ) = � (� )(1) � � (� ; � 1); t0 6 � 6 tg (1.13)

can be performed using the standard Likelihood Ratio approach.

De�nition 1.11 ( m-Memory Self-Exciting Point Processes)

In the general de�nition of self-exciting point processes the entire history of the process

may in
uence the conditional intensity process (that is thetotal number of occurrences

N (t) and their occurrence timesT1; T2; :::; TN (t)). By contrast for a m-Memory
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Self-Exciting point process onlythe last m occurrence timesTN (t) ; TN (t)� 1; :::; TN (t)� m+1

(and, eventually, the total number of occurrencesN (t)) in
uence the conditional

intensity process.

A particular case of a �nite-memory self-exciting process is the class ofRenewal
processes. A self-exciting point process with independent, identically distributed
durations is termed anordinary Renewal process.10 If all durations but the �rst (which
is measured from the initial momentt0) are identically distributed then the process is
called amodi�ed Renewal process.In both cases we have an example of a 1-Memory
Self-Exciting PP. The only memory of the process is the last occurrence time (in
particular there is no memory of the total number of past occurrences). In intuitive
terms one can think that there is an underlying clock which isset to zero at every
event-point. This means that the conditional intensity function for these processes
depends only on the (left-continuous version of the) backward recurrence time

�U1(t) = t � T �N (t ) ; (1.14)

The basic idea behind Self-Exciting counting (and point) processes, that is, allowing the
conditional intensity function to depend on the internal �lt ration of the counting
process, can be taken a step further. By allowing the conditional intensity function to
be a stochastic process adapted to the �ltration generated by some (eventually
multivariate) `information' processX we arrive at the class ofDoubly Stochastic Poisson
processesalso known asCox processes.

De�nition 1.12 (Doubly Stochastic Poisson Processes):

Let f N (t); t > t0g be a counting process associated with a given point process,let

f X (t); t > t0g be some left-continuous (multivariate) stochastic process, we say thatN (t)

is a Doubly Stochastic Poisson counting process withintensity processf � (X (t)); t > t0g

if for almost every given path f X (t; ! ); t > t0; ! 2 
 g of the processX , N (t) is a

Poisson counting process with conditional intensityfunction � (X (t; ! )) .

In basic terms this means that the intensity process for this class of Point Processes is a
deterministic function of the stochastic processf X (t); t > t0g.

10Remark: this actually means that the homogeneous Poisson PP is a special case ofa Renewal process

- one where every duration is exponentially distributed with a common mean.
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The Likelihood functional for Doubly Stochastic Poisson Pr ocesses

If the `information' processf X (t); t > t0g is observable, then we can use the result
presented in equation (1.15) in Subsection 1.3.1 to obtain theLikelihood associated with
a sample path from one of these PP. The main problem associated with ML estimation
and inference for Doubly Stochastic Poisson Processes comes fromthe fact that the `full
information' processX may not necessarily be observable. That is, the �ltration
generated by the `information' processX may be decomposable asF t = F o

t [ F �
t , where

the observable �ltration F o
t corresponds to the observable components ofX , while F �

t is
a collection of subsets of 
 connected with the history of the remaining (unobservable)
factors.

L (� j F T ) = E
�

exp
� Z T

t0

ln � (X (� ))dN (� ) �
Z T

t0

� (X (� ))d�
� �

�
�
� F o

T

�
(1.15)

The multivariate integral implied by (1.15) represents a challenge for the practical
implementation of estimation and inference procedures for this class of PP (when some
of the components ofX are latent). In Chapter 5 of this thesis I present a simulation
study comparing three di�erent solutions for solving this problem. These three di�erent
methods for (numerically) evaluating the expectation appearing in (1.15), are applied to
a new class ofgeneralized point processesintroduced in Chapter 3 of this thesis.
Next I present a theorem expressing a limit to the identi�cation of latent intensity
factors in multiplicative intensity point process models.

Theorem 1.5 (The Identi�ability of Latent Intensity Factors) . Let N (t) be an

F t -adapted counting process observed over[t0; 1 ], having an absolutely continuous,

unbounded,F t -compensator process�( t). Let the corresponding sequence of occurrence

times be denoted asf Tng. Assume that the corresponding intensity process can be

factored as� (t) = � (t) (t), where� (t) is a non-negative,F o
t -adapted, c�agl�ad process,

while  (t) is a non-negativeF t -adapted, c�agl�ad process (F o
t � F t ), de�ne

�( t) =
Rt

t0
� (� )d� . Further assume that�( 1 ) = lim t !1 �( t) = 1 .

Then, from any given realization of the point processN (t) over a �nite time-window

[t0; T], it is not possible to conduct statistical inference on theindividual values (t)

with t 2 (Tn� 1; Tn ^ T) and n = 1; : : : ; �N (T) + 1) .

Proof. We start by applying Theorem 1.4, from where we are able to conclude that the
time-changed counting process~N (u) = N (� � 1(u)) has the ~Fu-predictable intensity
process~� (u) =  (� � 1(u)) =  (t). This means that the ~Fu-likelihood functional can be
written as

L
�

~�
�
�
� ~F ~T

�
=

0

@
~N ( ~T )Y

n=1

 (� � 1(un ))

1

A exp

2

4�

~�N ( ~T )+1X

n=1

Z un ^ ~T

un � 1

 (� � 1(u))du

3

5 ; (1.16)
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whereun = �( Tn ), ~T = �( T). Obviously, L
�

~�
�
�
� ~F ~T

�
= L (� j F T ). Consider the process

 � constructed in the following way.

 � (u) =

(
 (Tn) for u 2

� un � 1+ un

2 ; un
�

2
hRun ^ ~T

un � 1
 (� � 1(u))du

i
=(un � un� 1) �  (Tn) for u 2 (un� 1; un � 1+ un

2 ]

(1.17)
The process � has sample paths which are c�agl�ad piecewise constant. Statistically, this
process is completely indistinguishable from thetrue latent process . In fact for any
realization of the N (t) process over the interval [t0; T] both processes and  � have the
same likelihood functional (1.16). However, process � only requires the estimation of
two unknown constants for each spell (Tn� 1; Tn ^ T).
This theorem establishes the limits to the identi�ability of latent intensity factors in
point process data. Although nothing can be inferred with regard to isolated values (t)
when t 2 (Tn� 1; Tn ^ T) and n = 1; : : : ; �N (T) + 1), from (1.16) it is clear that point

process datais informative with regard to the integral
Run ^ ~T

un � 1
 (� � 1(u))du.

In most of what we have seen so far, when we speak of a (orderly) univariate Random
Point Process, in intuitive terms, we speak of a series of similar \events occurring in a
one-dimensional continuum, usually time, the events being distinguishable only by
where they occur, i.e., having no qualitative or quantitative information attached to
them "(Lewis, 1972, page 14). However, in many situations these event-points
correspond totransitions of some individual or observational unit between two
well-de�ned states within some denumerablestate space. This motivates the de�nition
of a Transition process.

De�nition 1.13 (Generalized Point Processes)

A Transition Process, also known as aGeneralized Point Process, is a continuous-time

stochastic processf S(t) : t 2 Rg where eachS(t), for a �xed t, is a discrete random

variable taking values over some denumerable (�xed) state space.

A particularly important class of continuous-time discrete-support stochastic processes
corresponds to those processes that actually have both �nite-support and �nite memory.

1.3.2 Continuous-Time Markov Chains

In this subsection, I review some fundamental concepts and results from the theory of
continuous-time �nite-state Markov Processes, also known as continuous-time Markov
Chains. These elements provide a useful background to the class ofreduced formcredit
risk models (see for example Jarrow et al. 1997). Because this thesis makes several
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contributions to this stream of literature, it is useful to recall the related theory. A
comprehensive introduction to Markov theory is provided in Grimmet and Stirzaker
(1992). Isaacson and Madsen (1976) is a detailed treatment of Markov chains with an
emphasis on engineering and reliability applications.
Consider a continuous-time discrete-valued stochastic process de�ned on the interval
[t0; 1 ), f S(t); t > t0g and assume that the state spaceS (in which S(t) takes its values)
is �nite i.e. S = f 1; : : : ; sg. In order to avoid some serious technical di�culties that arise
from the `point wise' de�nition of S(t), I will assume for the remainder of this section
that this stochastic process obeys the c�adl�ag assumption. Thismeans thatwith
probability one the trajectories ofS(t) are Right-Continuous with Left-Limit functions of
time. This type of trajectories admit a countable representation,

f (Sn ; Tn ) ; n 2 Ng;

where theTn ; n 2 N sequence consists of thetransition (or occurrence) times, and
Sn = S(Tn ).

De�nition 1.14 (Markov Chain):

The continuous-time �nite state-space stochastic processf S(t); t > t0g is termed a (1st

order) Continuous-Time Markov Chain (CTMC) if it satis�es the Markov property:

P [Sn = j j Sn� 1 = sn� 1; : : : ; S0 = s0] = P [Sn = j j Sn� 1 = sn� 1] ; (1.18)

for all natural numbersj; s 0; :::; sn� 1 6 s and any arbitrary sequence

t0 < t 1 < : : : < t n� 1 < t n of transition times.11

This means that the evolution of the chain in a �nite time interval [t0; t] does not depend
on the history before timet0, i.e. it is a memoryless process (or more exactly there is
only memory of the present state).
This makes it possible to de�ne a matrix function oft0 and t alone, whose (i; j )th entry
gives the probability that the chain will be in state j at time t given that it was in state
i at time t0.

De�nition 1.15 (Transition Probabilities Matrix):

This matrix determines the evolution of the Markov chain. Entry (i; j ) of this matrix is

de�ned by

pij (t; t 0) = P [S(t0) = j j S(t) = i ] > 0; (1.19)

11A pth order Markov Chain satis�es a generalized version of the Markov property,

P[Sn = j j Sn � 1 = sn � 1; : : : ; S0 = s0] = P [ Sn = j j Sn � 1 = sn � 1; : : : ; Sn � p = sn � p] and so memory of the

past is limited to the last p-steps
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Note that each row of this matrix sums up to one, as it contains a discrete probability
function.

Theorem 1.6 The Family of matrices f P (t; t 0) ; t0 > t > t0g for Continuous-time

Markov Chains satis�es the following conditions,

1. P (t; t ) = I s,

2. P (t; t 0) is a stochastic matrix (i.e. all the entries are non-negativeand all rows add
up to one,P (t; t 0) 1s = 1s),12

3. P (t; t 0) = P ( t; u) P (u; t0) ; t 6 u 6 t0 (Chapman-Kolmogorov Equations).

For a proof of this result see Grimmet and Stirzaker (1992).

De�nition 1.16 (Generator Matrix):

This matrix is the equivalent, for continuous time Markov chains, to the 1-step

transition matrix for discrete time Markov chains, and the intensity function for a

Poisson PP. It is de�ned as

G (t) =
@

@t0
P (t; t 0) j t0= t (1.20)

Under the c�adl�ag assumption we have that:

lim
t0#t

P (t; t 0) = I s

i.e. the entries of the transition probability matrix P (t0; t) are continuous functions of
the second argument, and thus, it follows that the sum of each rowof G (t) is identical
to zero,

G (t) 1s = 0s (a column vector): (1.21)

Additionally, the diagonal elements ofG (t) are non-positive. In fact with � ii (t)
denoting one such component ofG (t) we have,

� ii (t) = lim
t0#t

pii (t; t 0) � 1
t0 � t

;

and as 06 pii (t; t 0) 6 1, we clearly obtain� ii (t) 6 0 by the continuity of pii (t; t 0).
On the other hand, for the non-diagonal elements ofG we have,

� ij (t) = lim
t0#t

pij (t; t 0)
t0 � t

;

and so� ij (t) > 0 by the continuity of pij (t; t 0) :

121s denotes ans-dimensional column-vector of ones.
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So equation (1.21) together with these results means that

� ii (t) = �
sX

j =1 ;j 6= i

� ij (t) : (1.22)

Theorem 1.7 The Transition and Generator matrices are related by the following

system of partial di�erential equations (the Kolmogorov `Evolution' Equations),

@P(t; t 0)
@t0

= P (t; t 0) G (t0) ; (Forward equation) (1.23)

@P(t; t 0)
@t

= � G (t) P (t; t 0) : (Backward equation) (1.24)

Theorem 1.8 The Transition Probabilities matrix is recoverable from theGenerator

matrix by �nding the unique solution to the Kolmogorov Equations that also satis�es the

auxiliary condition P (t; t ) = I s. This solution is explicitly given by

P (t; t 0) =
t0

t

(I s + G(� )d� ) ; (1.25)

where
b
a (I + M (� )d� ), for a given (matrix) function M , denotes the product integral

of M .

The product integral
b
a (I + M (� )d� ) represents a generalization of the usual (�nite)

product, just like the usual integral generalizes the summation operator. The next result
is sometimes useful for the numerical evaluation of the product integral.13

Theorem 1.9 The product integral
b
a (I + M (� )d� ) can be expressed as the following

in�nite P�eano series

b

a

(I + M (� )d� ) = I +
1X

p=1

Z
: : :

Z

a6 � 1<:::<� p 6 b

M d� 1 : : : M d� p: (1.26)

An important particular case of a continuous-time Markov chainarises when the
transition intensities, that is, the individual entries of the Generator matrix, are
constant.

13For an exposition on product integration, and a more detailed treatment of the results presented

here, see Gill (2001), Andersen et al. (1993, Section II.6) and Goodman and Johansen (1973).
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De�nition 1.17 (Homogeneous chains):

A Markov Chain f S(t); t > t0g with transition probabilities matrix P (t; t 0) is called

homogeneousi�

P (t; t 0) = P (t0; t0 + ( t0 � t)) ; 8t0 > t > t0: (1.27)

This means that the transition probabilities matrix does notdepend on historical time,
but only on the amount of time elapsed between the initial and �nal moments. In such
case, we can de�ne for every displacement� > 0, P� = P(t0; t0 + � ).

Generator and Transition matrices for Homogeneous Chains

For homogeneous continuous-time Markov-Chains the Transition Probabilities matrix,
(1.19), as seen, is function only of the displacement� between the initial and �nal time
points, accordingly, if lim� #0 P� = I s, the Generator matrix (1.20) is now a constant
matrix

G =
d
d�

P� j � =0 : (1.28)

The Kolmogorov Equations assume a particularly simple form.

Theorem 1.10 For a Homogeneous Continuous-time Markov Chain where the

Transition matrix is a continuous function of � the Generator and Transition matrices

are related by the following ordinary di�erential equations(Kolmogorov equations),

d
d�

P� = P� G = GP� : (1.29)

Theorem 1.11 The Transition Probabilities matrix is recoverable from theGenerator

matrix by �nding the unique solution to the Kolmogorov DEs that satis�es the auxiliary

condition P0 = I s. This solution, known as the matrix Exponential function, isexplicitly

given by:

P� = exp [�G ] or equivalently

P� =
+ 1X

n=0

� n

n!
Gn :
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Continuous-time Semi-Markov Processes

Continuous-time Finite State-Space Markov processes have a very limited amount of
memory. Only the current state is recorded at any given moment. This may be far too
restrictive to model many real-life problems.
A slightly larger class of continuous-time �nite state-space processes, which include the
Markov chains as a special case, is the class of continuous-time semi-Markov processes.
Semi-Markov processes keep track not only of the present state, but also of the elapsed
duration (or holding time) in that state. For this class of processes equation (1.18) is
replaced by

P [Sn+1 = j; X n+1 � � j (S0; T0) ; : : : ; (Sn ; Tn ) = ( i; t )] = Qij (t; � ) ; (1.30)

In intuitive terms, these processes are characterized by the joint distributionQij (t; � ) of
the destination statej and holding timeX n = Tn � Tn� 1 on the current statei , given
that we know this last one, as well as the precise momentt where the system entered this
state.
This means that for a Continuous-time semi-Markov Chain the entries of the generator
matrix are stochastic processes (instead of deterministic functions of time) which
depend deterministically on the backward-recurrence time.Non-homogeneous
semi-Markov processes are used in Chapter 2 of this thesis for the nonparametric
analysis of Agency credit rating data.

1.4 Observation Driven Point Process Models

Here I brie
y review the main speci�cations proposed in the �nancial literature for
dealing with point processes that evolve with after-e�ects. The focus in this section is
on observation driven models. For all the di�erent speci�cations in this section, it is
assumed that all relevant information is available to the Statistician.
There are two main approaches14 for modeling a point process evolving with after-e�ects.

1. Specifying directly theforward-occurrence densityof a conditionally orderly
process, that is, the probability density function of the next inter-arrival time (or
duration), conditional upon some particular �ltration. This approach is somewhat
limited. First, because the conditioning information set is only updated at each
occurrence time, it is not possible to assess the impact of covariates varying
between event-times. As a consequence, and strictly speaking, `duration models'
can only be applied to univariate point processes. This is due tothe fact that the
occurrence of events of a di�erent type during a duration cannot be included in

14Remark: In principle, it would also be possible to parameterize directly the survivor function, but

apparently, not so many authors have followed this approach. This approach hasexactly the same

limitations as the one resulting from the use of the forward occurrence density.
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the internal �ltration of the model. This problem can be circumvented by using a
marked `duration model' for the pooled counting processN (t) =

P S
s=1 Ns(t)

associated with aS� dimensional PP. In this context, the markM n would
correspond to the speci�c event type (i.e.M = 1; : : : ; S). However, not many
authors seem to have taken this path (see also Bowsher, 2007).

2. Specifying directly the Conditional Intensity of the point process. This is a far
more 
exible approach. The �ltration is updated continuously, allowing both the
inclusion of general time-varying covariates and the occurrence of events of several
di�erent types (i.e. making it possible to model multivariate PPs).

1.4.1 The ACD class of models

This class of processes, introduced by Engle and Russell (1998), isa good example of the
�rst approach mentioned above. The basic underlying idea consist in specifying directly
the next duration as the product of a parametric (scaling) function of past durations by
an i.i.d. noise process with positive support. It is in fact a particular case of the
Multiplicative Error Model introduced in Engle (2002). Therefore, this model has the
same general structure as the GARCH model. It is, in fact, an example of a self-exciting
point process model where the conditional intensity functionexplicitly depends on the
backward-recurrence time (1.14).

Econometric speci�cation

Let f N (t); T1; T2; : : : ; TN (t)g denote the past history of a (univariate) conditionally
orderly point process over the interval [t0; t], the durations are given by� n = Tn � Tn� 1.
Let  n be the conditional expectation of� n given the past sequence� 1; : : : ; � n� 1 of
inter-arrival times. That is,

 n � E [� n j � n� 1; : : : ; � 1] =  n (� n� 1; : : : ; � 1; �  ) ; (1.31)

the ACD class of models consists of parameterizations of (1.31)jointly with the
assumption

� n =  n"n : (1.32)

The innovations process is assumed to be

f "ng � i.i.d. with density p ( " ; � " ) : (1.33)

Additionally, " has unit mean, and�  and � " are �xed unknown vectors of parameters.
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Clearly, this de�nition allows a broad class of point process models. By using di�erent
functional forms in (1.31) and allowing di�erent distributi ons for the multiplicative error
term (1.33) we can arrive at di�erent particular ACD models.
The conditional intensity function implied by this mechanismcan be deduced as follows.
Let

� 0 (" ) = �
p(" ; � " )R1

" p(� ; � " )d�
; (1.34)

denote the hazard function corresponding to the density (1.33). Note that, as the
durations are obtained as modulated versions of i.i.d. random draws from this density,
the corresponding hazard function can be thought of as abaseline hazard(in the spirit
of the proportional hazards model of Cox, 1972, in particular, the expected value of the
standardized durations"n is 1). Now, consider adeformation of the time-axis, such that
in the new, transformed, time-axis we read the standardized durations

"n =
� n

 n
:

The image of the original PP over this new, transformed, time-axis constitutes a
Renewal process, due to the i.i.d nature of the standardized durations. Accordingly, the
corresponding conditional intensity process is

� � (t � ) = � 0

�
t � � t �

�N (t � )

�
; (1.35)

wheret � denotes time measured over the transformed time-axis. This implies the
following intensity over the original time-axis

� (t) = � 0

�
t � t �N (t )

 �N (t )+1

�
1

 �N (t )+1
: (1.36)

The previous argument also shows that we can think of the ACD model as an
Accelerated Failure Time (AFT) model. The past of the process changes the speed at
which time will 
ow over the next duration (through the scaling e�ect that  n imposes
to the `natural' durations "n ). In contrast, in classic AFT models this change in `speed'
is driven by exogenous covariates.
In computational terms, this speci�cation raises two problems.First, the admissible
class of parameterizations of (1.31) is restricted to either strictly positive functions of
(� n� 1; : : : ; � 1; �  ) (for any �  ), or to values of�  that keep  n (� n� 1; : : : ; � 1; �  ) strictly
positive for all possible durations� n� 1; : : : ; � 1. In the later case, numerically maximizing
the implied likelihood may be problematic. Second,p(" ; � " ) is restricted to densities
with strictly positive support.
The simplest ACD model possible corresponds to a homogeneous Poisson Point Process
with intensity

� (t) =
1
 

;

by setting (1.31) identical to a constant, and using a standard Exponential density for
(1.33).
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In most empirical applications of this model, (1.31) is simplytaken to be a linear
function of a �nite number of past (observed) durations and pastconditional expected
durations. The so called ACD(p,q) model consists of (1.32) jointly with the following
linear parameterization of (1.31),

 n = ! + � (B )� n� 1 + � (B) n� 1; (1.37)

whereB denotes the usual lag operator, and

� (B ) = � 1 + � 2B + : : : + � p� 1B p� 1;

� (B ) = � 1 + � 2B + : : : + � q� 1B q� 1:

Note that this general ACD(p,q) model has `full memory', in contrast to a �nite
memory PP, due to the autoregressive polynomial� (B ). This can be seen by noticing
the similarity of (1.37) with the equation de�ning an Autoregressive Moving Average
(ARMA) process. However, this similarity also shows that the impact of one speci�c
duration, under suitable location of the complex roots of the� (B ) polynomial, will fade
out exponentially. Therefore, speci�cation (1.37) is a `short-memory' duration model.
This similarity also implies that we can obtain a �nite p-memory Self-Exciting PP by
taking the � (B ) polynomial identical to zero.
A convenient property of the (linear) ACD(p,q) model is that it allows a straightforward
analytical computation of several unconditional moments ofthe generated duration
sequences, by taking expectations on both sides of (1.37).
In the original article by Engle and Russell (1998), most of the emphasis was placed on
two particular choices for the innovations process (1.33). First of these, the EACD(p,q)
model is obtained by using an Exponential distribution for (1.33) jointly with the linear
speci�cation (1.37) for the conditional duration (1.31). A particularly simple form is the
EACD(1,1)

 n = ! + �� n� 1 + � n� 1: (1.38)

In this model the unconditional mean duration is

� =
!

1 � � � �
;

and the conditional and unconditional variances of the durations are given by

V [� n j � n� 1; : : : ; � 1] =  2
i ;

� 2

�
1 � � 2 � 2��

1 � � 2 � 2�� � 2� 2

�
= � 2:

Accordingly, this model will exhibit excess dispersion in the corresponding unconditional
distribution of the generated durations whenever� > 0, this is a feature often observed
in duration data sets.
The alternative particular parameterization, the WACD(p,q) model, uses a Weibull
distribution for the innovations process (1.33) together with the linear process (1.37).
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The hazard function associated with a Weibull distribution, with parameters
 and � , is
given by

� (� ) = 
� 
 � 
 � 1: (1.39)

Other possible distributions for the innovations are the Generalized Gamma,
Log-normal and Log-Logistic distributions (see for example Kalb
eisch and Prentice,
2002, section 2).
A further extension of the basic ACD speci�cation consists in including the values of
marks associated with the previousm event-points in the mean equation (1.37). That is,

 n = ! + � (B )tn� 1 + � (B) n� 1 + 
 0(B ) zn� 1; (1.40)

with 
 (B ) = 
 1 + 
 2B + : : : + 
 m� 1B m� 1 and z denotes a vector of marks. Again the
need to insure a positive n requires the use of (non-trivial) constraints over the
parameters in (1.40).
It is equally possible to include deterministic calendar e�ects, like `time-of-day' e�ects
for transaction data. This can be achieved by assuming that the conditional expected
duration is a�ected by a deterministic function of the corresponding starting moment.
For example, using the multiplicative form

E [� n j � n� 1; : : : ; � 1] = ' (Tn� 1; � ' ) n (~� n� 1; : : : ; ~� 1; �  ) ;

where ~� n = � n=' (Tn� 1; � ' ) corresponds to the \diurnally adjusted" durations.

A plethora of di�erent extensions and variations on the basic ACD(p,q) model have
been proposed in the literature. Next, I provide a brief description of the main ideas
behind some of these speci�cations.

1. The class ofLog-ACD models, introduced by Bauwens and Giot (2000)
circumvents one of the problems connected with the linear ACD(1,1) model,
namely the need for imposing constraints over the model parameters to insure the
positivity of  n , by resorting to the logarithmic transformation. That is, equation
(1.38) is replaced by

ln  n = ! + � ln � n� 1 + � ln  n� 1: (1.41)

2. Generalizing the class of Log-ACD models, Fernandes and Grammig (2006)
proposed theAugmented ACD (AACD) by using a Box-Cox transformation.
Therefore (1.41) is replaced by

 �
n � 1
�

= ! + � �
n� 1 [j"n� 1 � bj � cj"n� 1 � bj]� + �

 �
n� 1 � 1

�
; (1.42)

where� > 0, � > 0, b and c are unknown parameters. The factor
[j"n� 1 � bj � cj"n� 1 � bj]� appearing in (1.42) is the so-called \news impact
function."

3. In order to circumvent the `short-memory' characteristicsassociated with the
linear conditional duration process (1.37), Koulikov (2002), introduces a class of
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long-memory positive weakly stationary random variables. Equation (1.38) is
replaced by

 n = ! + � (1 � �B )� 1(1 � B )� d(� n� 1 �  n� 1); (1.43)

where 0< d < 1 and the negative fractional power of the back-di�erencing
operator can be obtained from the expansion (1� B)� d = 1 +

P 1
j =1 cj B j . The

coe�cients cj of this expansion can be obtained recursively fromcj = cj � 1
j � 1+ d

j ,
starting from c1 = d.

4. A Threshold ACD (TACD) model was proposed by Zhang et al. (2001). The main
idea behind this speci�cation, is to use an observable variable(for example the
previous duration) to select one ofP di�erent regimes. Each regime has its own
conditional mean equation (1.38) and error distribution (1.33). Regimej is chosen
if (for example) � n� 1 2 [rn� 1; rn ), where 0< r 0 < r 1 < : : : < r J = 1 are the
threshold parameters. For �xed values of the threshold parameters the remaining
parameters of the TACD model can be estimated by ML. Performing a grid-search
over the threshold values is a feasible solution for obtaining the corresponding ML
estimates.

5. Meitz and Ter•asvirta (2006) introduce a class ofSmooth Transition ACD
(STACD) models. In contrast with the (discrete) regime switching TACD model,
where the DGP `jumps' between several di�erent regimes, durations in the STACD
model result of a continuous `mixture' of several di�erent conditional distributions.
A particular case of this speci�cation is as follows. The conditional duration is
given by

 n = ! + � n� 1 + �� n� 1 + ( ! 0+ � 0)G(ln � n� 1); (1.44)

with ! 0 � 0 denoting additional parameters andG(:) is the so-called `transition
function.' In general G(:) can be any non-negative, bounded real function of one
real variable. UsuallyG(:) takes values between 0 and 1. A particular choice for
the transition function is the logistic form

G(ln � n� 1; �; r 1; : : : ; rJ ) =

"

1 + exp

 

� �
JY

j =1

ln � n� 1 � r j

!# � 1

(1.45)

where� > 0, r1 � : : : � r J are unknown parameters. The integerJ is normally
chosena priori and determines the shape ofG. The STACD model encompasses
several particular cases of the TACD model. A further extensionwould consist in
extending the scope of the transition function in order to include the lagged
conditional duration term � n� 1, yielding a Time-Varying ACD (TVACD) model.

6. Drost and Werker (2004) propose asemi-parametric class of ACD models by
relaxing both the distributional and i.i.d. assumptions behind the innovations
process (1.33). That is, while the conditional mean is speci�edas a parametric
function (as for the other ACD models), the conditional distribution of the noise
process"n is estimated directly from the data using a combination of kernel
density and Nadaraya-Watson regression estimators.
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Estimation and Inference

Observation driven ACD models belong to the class of Self-Exciting point processes.
Therefore, the Likelihood associated with a particular ACD speci�cation can be obtained
by combining the general result (1.11) with the particular form of (1.36) implied by the
chosen innovations density (1.33) and the precise parameterization (1.31) of  n .
However, the construction of the precise data Likelihood implied by some of the more
complex ACD speci�cations can be di�cult. More important stil l, if the assumed
distribution for the noise process is mis-speci�ed, and unless this one belongs to the
Exponential family (see Gouri�eroux et al., 1984), the derived estimators will not be
consistent. Engle and Russell (1998) show that the estimators of the ACD parameters
derived from the Exponential noise distribution satisfy the Quasi-ML(QML) properties.
Therefore these estimators are consistent even under mis-speci�cation of the noise
distribution. Drost and Werker (2004) showed that the QML estimators based on the
Gamma distribution are equally consistent but provide no e�ciency gains over the ones
derived from the Exponential distribution. This essentially means that, for obtaining
the pseudo-Likelihood function implied by a particular ACD-type model, we can
combine the result (1.11) with the particular conditional mean function (1.31) used,
assuming the innovations to be i.i.d. Exponential. The estimators resulting from the
maximization of this pseudo-Likelihood will be consistent.
Recently, Peiris et al. (2008) show that the estimation of bothExponential and Weibull
ACD models is also feasible under theEstimating Functions approach of Godambe
(1985).
Dynamic `mixture' ACD models (for example, the STACD) on thecontrary, cannot be
estimated by ML due to the path dependence of conditional durations (a similar
problem arises for Markov-Switching GARCH models, see Gray, 1996). This class of
models requires more sophisticated estimation methods.

1.4.2 The ACI class of models

As mentioned in the introduction to this chapter, while the original ACD speci�cation of
Engle and Russell (1998) models directly the forward-occurrence density (of a univariate
point process) as a function of past observed durations, the Autoregressive Conditional
Intensity model of Russell (1999) models directly the conditional intensity process (1.8).
The added 
exibility that results from the intensity approach makes it feasible dealing
with multivariate point processes. Additionally, the ACI mechanism allows the inclusion
of time-varying covariates in a regression framework. The basic idea of this model
consists in using a Vector Autoregressive Moving Average (VARMA) process for
describing the dependence of the (vector) conditional intensity on the past of the
multivariate point process.
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Econometric speci�cation

Consider a set ofS distinct (right-continuous) counting processesNs(t), with
s = 1; : : : ; S, de�ned on a given �ltered probability space (
 ; F ; fF tg; P), which are
observed over the interval [0; T]. Assume that thepooledcounting process
N (t) =

P S
s=1 Ns(t) is orderly and the compensator� s(t) associated withNs(t) is

absolutely continuous. The correspondingintensity process is denoted by� s(t).
The ACI mechanism parameterizes each individual intensity component as

� s(t) = qs(t) exp(� 0
sw(t) + � s

�N (t )+1 )hs( �U(t)) ; (1.46)

whereqs(t) is a deterministic function of (chronological) time, intended, for example, for
modeling high-frequency (\intra-daily") seasonality e�ects. Typically, qs(t) is speci�ed
as a low-order spline function. Thep dimensional vectorw(t) contains a collection of
time-varying covariates relevant to all event types, while� s stores the regression
coe�cients corresponding to thesth point process. The multivariate baseline hazard
function hs introduces dependence on the vector�U(t) = ( �U1(t); : : : ; �US(t)). The
quantities �Us(t) = t � ts

�N s (t ) are the amount of time elapsed, i.e. the duration, since the
last occurrence of an event of each type (known in the Point Processes literature as the
backward-recurrence time). Therefore, it is possible to assess the impact over thesth

point process of the duration with respect to the last event, both of that same or of a
di�erent type. Note that, for each s = 1; : : : ; S �xed, the point ts

N s (t ) satis�es

� Ns(t) = 1, and � Ns(� ) = 0 for every � in the interval
�

ts
N s (t ) ; t

�
whenever this is a

non-degenerate one. This multivariatebaseline hazardfunction hs can, take di�erent
possible parametric forms. For example the product ofS Weibull or Burr hazards (see
for example Hautsch, 2004).
Although a general VARMA structure is possible, most commonly,� n = ( � 1

n ; : : : ; � S
n )0 is

de�ned as a Vector Autoregressive (VAR) process of order one,

� n+1 = A� n + B� n �0
n � n ; and � 1 = 0; (1.47)

where�n = (� N1(tn ); : : : ; � NS(tn ))0 is a randomselection vector, A = ( ars ) and
B = ( brs ) are (S � S) matrices of unknown parameters.15 The vector � n = ( � 1

n ; : : : ; � S
n )

contains the innovations corresponding to each intensity process. Later in this section I
shall discuss in detail two possible speci�cations for the noise process.
The A matrix determines the degree of persistence of each shock to theprocess� .
When the last event was of thesth type we have�n = es,wherees denotes thesth column
of the identity matrix I S, therefore, thesth column of B is used for re-scaling the
(univariate) innovation �0

n � n = � s
n . This means that theinstantaneousimpact of an event

15Note that the matrix A can be made dependent on�n , according to A = [ A1 : : : AS ] (�n 
 I S ), such

that, when the last event was of types, the S � S matrix As is used as the VAR(1) coe�cient ( 
 denotes

the Kronecker product and I S is the identity matrix of order S). This adds extra 
exibility to the model

by allowing a rich set of dependence patterns among the di�erent components of the multivariate PP.
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of type s over the intensity process of typer equalsbrs � s
n , that is

@�rn+1

@�sn
= brs :

The eigenvalues of the matrix of persistence parametersA are required to lie inside the
unit circle in order for the process� to be mean reverting to its unconditional mean of
zero (see proposition 2 and ensuing discussion in Russell, 1999).
The (vector-valued) noise process� n can be de�ned in, essentially, two di�erent ways,
both resulting from a suitable application of the random time change theorem. In the
original 1999 article by Russell the vector of innovations� n is de�ned as

� n = (1 � � 1(t1
N1 (tn )� 1; t1

N1 (tn )); : : : ; 1 � � S(tS
NS (tn )� 1; tS

NS (tn )))
0; (1.48)

where � s(a; b) =
Rb

a � s(t)dt. That is, the innovation associated with each point process,
consists of the increment in the correspondingcompensated counting process16 over the
interval de�ned by the two most recent events of that type. Therefore, � s

n is a
Martingale di�erence sequence. When the last event was of thesth type, only the sth

component of� n is used for updating the vector� . In this case,� s
n > 0 (or � s

n < 0)
means that the model over predicted (respectively, under predicted) the time length
between two consecutive events of types. Direct application of the random time change
theorem implies that the sequence of (scalar) innovations�0

n � n is an i.i.d. Exp(1) noise
re-centered in zero.
The alternative solution for de�ning the innovations � n was suggested in Bowsher
(2007). Instead of using the increments in the compensated counting processes of each
type, the idea consists in using the increments in the pooled (compensated) counting
process. That is,

� n = (1 � � n )1S; (1.49)

where1S denotes anS column vector of ones andf � ng denotes the sequence of
increments in the compensator associated with the pooled process,

� n =
SX

s=1

� s(tn� 1; tn ); n = 1; : : : ; N (T): (1.50)

In this case�0
n � n > 0 (< 0) means that the model over predicted (under predicted) the

time length between any two consecutive events (i.e. regardless of their type). As
previously mentioned, due to the random time change theorem,� n is an i.i.d. Exp(1)
noise while�0

n � n has zero mean. The computation of the ACI residuals, in both cases, is
straightforward.

Maximum Likelihood estimation and Inference

As it was seen in Subsection 1.3.1, the Likelihood associated to a sample path from a
general univariate Self-Exciting point process is readily available (see equation (1.11)).

16that is, the Martingale process M s(t) = Ns(t) � � s(t).
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For the present case of a multivariate ACI process the key consistsin applying the result
(1.11) to the pooled counting process. This leads to

L (� (� ) j F T ) =
SY

s=1

exp
� Z t

t0

ln � s(� ; � )dN (� ) �
Z t

t0

� s(� ; � )d�
�

; (1.51)

where� denotes the full vector of parameters associated with a particular ACI
speci�cation. The computation of ML estimates has to be done using some numerical
optimization algorithm, as, in general, there are no closed-form expressions obtainable
from (1.51).
ML-based inference procedures are directly available.
Additionally, due to the fact that under correct speci�cation of the ACI model, the
sequence of residuals� s

n , with s = 1; : : : ; S and n = 1; : : : ; Ns(T) are i.i.d. unit
Exponential distributed, we can use a Ljung-Box test over the autocorrelations of the
estimated residuals as a diagnostic check on the adequacy of theestimated model. An
additional `goodness-of-�t' test is the excess-dispersion test introduced by Engle and
Russell (1998).

1.4.3 Generalized Hawkes models

This intensity-based class of self-exciting multivariate point processes was proposed by
Bowsher (2007), adapting and extending the seminal work of Hawkes (1971) to the
analysis of �nancial data. Accordingly, Bowsher (2007) describes a simple data
transformation for dealing with the fact that �nancial transaction data is not
continuously recorded in time, due to the presence of the overnight period when
�nancial markets are closed. The generalized Hawkes (g-Hawkes)model also allows the
inclusion of exogenous variables in a regression framework that enables the assessment
of their impact over the intensity of each univariate component of the multivariate PP.
I start by describing the original, univariate, Hawkes (1971) model, this is then followed
by the generalized counterpart introduced in Bowsher (2007)and then, �nally, the full
multivariate g-Hawkes model.

The Univariate Hawkes model

This is a case of a `full-memory' self-exciting point process. The entire past history of
the process over [t0; t) determines the present value of the conditional intensity process.
Hawkes (1971) introduced the following particular parameterization of the intensity
process

�
�
t j N (t); T1; T2; : : : ; TN (t)

�
= ! +

Z t

0
� (t � u) dN(u) (1.52)
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wheret denotes calendar time,T1; T2; : : : ; TN (t) are the previous occurrence times and
! > 0 is an unknown parameter. The integrand,� (:), is a �xed function of time termed
the infectivity measure in the classical literature due to the �rst applications of this
model in epidemiology. The most common parameterization of� was �rst suggested by
Hawkes (1971)

� (� ) =
KX

k=1

� k exp(� � k � ); (1.53)

where� k � 0 and � k � 0 are model parameters. The order of the processK is either set
a priori or chosen using model selection criteria.
This model was initially used in the �eld of seismology, see for example Vere-Jones and
Ozaki (1982) and Ogata and Katsura (1986). The main feature ofthis model, besides its
full memory, is the fact that the marginal impact of one eventrecorded at calendar time
tn is independent of the remaining history of the PP. The amount of time elapsed since
tn is the only factor determining the impact of this event over the current value of the
conditional hazard rate; regardless of the number of events recorded betweentn and t.
This property of the Hawkes model, as argued in Engle and Russell(1998), may render
it inadequate for the purpose of analyzing �nancial transactions data. In fact some
authors argue that �nancial markets evolve intransaction instead ofchronological time.
In contrast with this view, Bowsher (2007) adapts the Hawkes speci�cation for modeling
�nancial transaction data. The g-Hawkes model makes use of a simple data
transformation, designed for dealing with the overnight periods when no activity takes
place on the �nancial markets. The transformed time axis is de�ned in the following
way, the origin is set at 9:30 a.m. of the �rst recorded trading day. The overnight
periods are then removed from the time axis, such that only thel working hours of each
trading day (6.5 hours for most �nancial markets) are retained. This means that
moment x (expressed in hours measured after 9:30 a.m.) in trading dayd (an integer
number) will appear as time-pointl � (d � 1) + x in the �nal data set. Formally, we
have the following partition of the time axis

(0; + 1 ) = (0 ; x1] [ (x1; x2] [ : : : [ (xd� 1; xd] [ : : : ; (1.54)

wherexd = d � l (d = 0; 1; 2; : : :). With this partition in place, Bowsher (2007) proposes
a special Hawkes-type speci�cation for the conditional intensity process.

The Univariate g-HawkesE( K ) model

Consider a self-exciting, conditionally orderly point process de�ned over [0; 1 ) and
equipped with the above-mentioned partition. Let the conditional intensity process of
this PP follow the parameterization

�
�
t j N (t); T1; T2; : : : ; TN (t)

�
= � (t) +

KX

k=1

�
� k (t) ; (1.55)
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where� (t) is a strictly positive deterministic function of time (designed to

accommodate deterministic intra-daily patterns). Each stochastic component
�
� k is

obtained recursively. Starting from
�
� k(0) = 0, the recursion step is given by

�
� k (t) = � k

�
� k (xd� 1) exp [� � k (t � xd� 1)] +

Z

[xd� 1 ;t )
� k exp [� � k (t � u)] dN (u); (1.56)

when xd� 1 < t 6 xd. Additionally, the following sign restrictions need to be imposed,
� k > 0; � k > 0; � k > 0 and � k > 0. Equations (1.55) and (1.56) mean that, added to the
deterministic function � (t), there areK stochastic components which account for both a
`spillover e�ect' from the trading intensity of the previous trading day (obtained from
the �rst term on the right-hand side of (1.56)), and the past trading intensity on that
day (given by the second term). Both e�ects have an associated exponential `rate of
memory loss.' Inside a speci�c trading day one individual event leads to a `jump' of
amplitude

P K
k=1 � k in the intensity � . This increase will eventually fade out at

exponential rate. More precisely, at the rate of exp
h
� t �

�
min

k
� k

�i
. With regard to the

`spillover' term on the right-hand side in equation (1.56), itshould be noted that the
value of each stochastic component at the closing time on dayd � 1, included in � (t)

with xd� 1 < t 6 xd, `fades out' at the (distinct) rate exp
h
� t �

�
min

k
� k

�i
.

The basic self-excitement mechanism of the g-HawkesE(K ) model, built using weighted
exponential response-functions, is easily extended to the multivariate case by including
terms that account for possiblecross-e�ects between the di�erent components of the
multivariate PP. Again, for simplicity of exposition and following Bowsher (2007) only
the bivariate case is described. Constructing the general multivariate case is nonetheless
straightforward. In particular, I introduce in this chapter an innovative notation for
describing the bivariate g-Hawkes that lends itself to a trivial generalization for handling
the general multivariate case.

The Bivariate g-HawkesE( K ) model

Consider two distinct, conditionally orderly, point processeswith associated intensity
processes� 1 (t) and � 2 (t) assembled into a (column) vector� (t) = ( � 1 (t) ; � 2 (t))

0
: The

bivariate g-HawkesE(k) model assumes this vector intensity follows the
parameterization:

� (t) = � (t) + M (t) 1K ; (1.57)

where� (t) = ( � 1(t); � 2(t))0 is a bidimensional deterministic function of time. The

matrix M (t) = ( mij (t)), i; j = 1; 2 has entrymij (t) =
P K

k=1

�
�

(k)

ij (t). Each individual

stochastic component
�
�

(k)

ij (t) is de�ned similarly to the univariate case. That is,
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�
�

(k)

ij (0) = 0, and then

�
�

(k)

ij (t) = � (k)
ij

�
�

(k)

ij (xd� 1) exp
h
� � (k)

ij (t � xd� 1)
i

+
Z

[xd� 1 ;t )
� (k)

ij exp
h
� � (k)

ij (t � u)
i

dN j (u);

(1.58)
when xd� 1 < t 6 xd. The following restrictions are required,� (k)

ij > 0; � (k)
ij > 0; � (k)

ij > 0

and � (k)
ij > 0. N j (u) stands for the counting process associated with thej th component

of the PP. The bivariate version basically adds the facility for cross-e�ects between the
occurrence of events and the intensities of the di�erent component PP.

Maximum Likelihood Estimation

The data Likelihood implied by this class of models follows directly from equation (1.11)
and the speci�cation of the conditional intensity process (1.57). This leads to a general
Likelihood expression similar to (1.51). However, the structureof the transformation of
the time-axis (1.54), allows writing the likelihood as a product of daily contributions.
This decomposition in turn, allows the use of the recursive speci�cation (1.58) in order
to compute the log-likelihood in an e�cient way. Additionall y, the special parametric
forms in (1.58) mean that the integral of the path of eachsth intensity component
(appearing in (1.51)) can be computed analytically, see Bowsher (2007) for details.

1.5 Parameter Driven Point Process Models

In this section the focus is placed on point process models withunobserved components.
The common feature across the di�erent speci�cations in this section, is that the
internal �ltration generated by all these models can be decomposed asF t = F o

t [ F �
t ,

whereF o
t corresponds to the observable information set, whileF �

t denotes the history of
the unobserved components. The dynamic behavior of these models is driven not only
by an observable �ltration but also by latent components, thus combining aspects from
both self-exciting and doubly stochastic point processes. The richer dynamic structure
of this class of models provides added 
exibility for describing the patterns in empirical
point processes. This added 
exibility, however, comes at a cost. ML estimation for this
class of models is hindered by the need to integrate out the e�ect of the unobserved
components. This is a common and well-known problem for parameter driven nonlinear
or non-Gaussian dynamic statistical models. The data-density typically involves a
high-dimensional integral, which has (due to the unavailability of exact closed-form
solutions) to be evaluated either using simulation or other approximate methods.
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1.5.1 Parameter driven ACD models

As seen in Subsection 1.4.1, the class of ACD models constitutes, byhistorical reasons,
one of the main point process models used in the �nancial literature. Many di�erent
extensions and variations on the original speci�cation of Engle and Russell (1998) have
been proposed. Some of these were already mentioned in Subsection 1.4.1. Here I focus
on those particular extensions of the ACD model that include latent components.

The Markov Switching ACD model

As mentioned in Subsection 1.4.1 ACD models are characterizedby a particular shape
for the conditional duration (1.31), the multiplicative error structure (1.32) and a
particular set of stochastic assumptions for the noise process"n .
One particular extension of the basic ACD model mentioned in Subsection 1.4.1 was the
TACD model of Zhang et al. (2001). The main characteristic of the TACD speci�cation
consists in combining di�erent `regimes,' i.e. the durations are generated according to
several di�erent conditional mean functions and innovationdistributions. The particular
regime used to generate the next duration is chosen according to the value of the
previous observed duration. An alternative way to shift between several di�erent
regimes is a (hidden)Markov switchingmechanism. That is, the particular regime
(among J possible regimes) generating the next conditional duration n+1 is chosen
according to the value of an unobserved discrete random variable rn+1 (with �nite
support J = f 1; : : : ; Jg) following a (discrete) Markov chain. This is the main idea
behind the Markov Switching ACD (MSACD) model introduced by Hujer et al. (2002).
The MSACD model is characterized by the multiplicative error structure (1.32)
(implying E["n ] = 1), the conditional mean depends directly on the unobserved regime
variable rn

 n+1 =
JX

j =1

P[rn+1 = j jF n ; � ] (j )
n+1 ; (1.59)

where P[rn+1 = j jF n ; � ] is the probability that the next regime will be in state j , given
the information set available at timeTn . The regime-speci�c conditional mean

 (j )
n+1 = E[ � n+1 jrn+1 = j; Fn ; � ];

is normally speci�ed according to an autoregressive speci�cation of the form (1.37).
As mentioned the latent stochastic processf rng follows a homogeneous (discrete)
Markov chain, characterized by the 1-step transition matrixP, with entries
pij = P[ rn+1 = j jrn = i ]. As with the conditional mean duration, the next conditional
error distribution depends only on the current statern and the (observable) information
set Fn . That is, "n+1 is drawn from f ("n+1 jrn+1 = j; Fn ; � ).
There are two possible ways in which to specify the regime-speci�c conditional expected
duration  (j )

n+1 . First,  (j )
n+1 can be regressed only on previous expected durations and

observed durations corresponding to that same regimej . Alternatively,  (j )
n+1 can be
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written as an autoregressive function of both previous expected and observed durations
regardless of the speci�c regime. This second possibility raises the problem ofpath
dependence, that is,  (j )

n+1 becomes dependent on the unobserved past trajectory
r1; : : : ; rn . This requires a computationally expensive procedure, as all J n possible past
trajectories need to be considered. A simplifying aggregation procedure for this case was
suggested by Gray (1996), in the context of Markov switching GARCH models (see also
Hujer et al., 2002).
The data Likelihood for the MSACD class of models is given by the average conditional
likelihood of the observable variables, taken over all possibletrajectories (r1; : : : ; rN (T ))
of the latent Markov chain. Evaluation of this Likelihood function is computationally
demanding. Hujer et al. (2002) suggest a feasible procedure making use of the
Expectation-Maximization (EM) algorithm of Dempster et al. (1977).

The Stochastic Conditional Duration model

The relationship between the Stochastic Conditional Duration (SCD) and the ACD
models is similar to that between the Stochastic Volatility (SV) and GARCH models.
Instead of specifying the expected conditional duration (1.31) as a function of previous
observed durations, as in the ACD model, this expected duration is modeled as a latent
stochastic process.
While the multiplicative error structure (1.32) is retained, the conditional expected
duration equation (1.37) is replaced by

ln  n = ! + � ln  n� 1 + � n ; with j� j < 1; (1.60)

where the latent noise process,� n � N (0; � 2), is assumed independent of"n , given Fn� 1.
The initial value of the latent conditional mean log-duration process, that is ln 0, is
drawn from the `steady state' distribution of ln n .

The SCD model implies a marginal distribution for the durations � n that results from
mixing the (assumed) log-Normal distribution of n with the chosen distribution for "n .
In general, it is not possible to compute these distributions (i.e. the unconditional one
and the one conditional uponFn ) analytically given a choice of a parametric family of
distributions for "n . It is, however, possible to obtain these distributions by numerical
integration (see Bauwens and Veredas, 2004).
In what follows I assume that the distribution of "n has �nite moments of all orders.
These moments are denoted by

gp = E [ "p
i ] ; p = 1; 2; : : :

Two possible choices are the standard Weibull distributionW (
; 1) and the standard
Gamma distribution G (�; 1) for which

gp = �
�

1 +
p



�
(Weibull) ;

gp =
� ( � + p)

� ( � )
(Gamma):
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The sequence of durations� n constitutes a strictly stationary process under the
restriction j� j < 1, which also implies the stationarity of the latent factor . The
unconditional moments of these processes are given by17

�  = exp
�

!
1 � �

+
1
2

�
� 2

1 � � 2

��
;

� � = g1�  ;

� 2
 = � 2

	

�
exp

�
� 2

1 � � 2

�
� 1

�
;

� 2
� = � 2

t

�
g2

g2
1

exp
�

� 2

1 � � 2

�
� 1

�
:

The SCD model is able to generate a sequence of durations� n exhibiting excess
dispersion if

� 2

1 � � 2
> ln

�
2

g2
1

g2

�
:

For Weibull distributed innovations, this condition holds if 
 � 1 (� � 1 for the Gamma
case) and� 2 > 0 (even if � = 0).
The theoretical autocorrelation function (ACF) of the sequence of durations� n is given
by

� p =
exp

�
� 2 � p

1� � 2

�
� 1

g2
g2

1
exp

�
� 2

1� � 2

�
� 1

:

This result implies that the ACF decreases geometrically withs. Therefore, the SCD
model is, just like the ACD, a `short-memory' duration process.

As seen on Section 1.3.1 Doubly Stochastic Poisson Processes are noteasy to estimate
using Maximum Likelihood. Following Harvey et al. (1994) and Ruiz (1994), Bauwens
and Veredas (2004) propose a Quasi-Maximum Likelihood (QML) approach obtained
from the application of the Kalman �lter to the state space representation of the SCD
model

ln � n = � +  n + � n (observation equation); (1.61)

ln  n = ! + � ln  n� 1 + � n (state equation); (1.62)

where� n = ln "n � � , and � =E[ln "n ].
The Kalman �lter would provide the exact Likelihood for this state space model (SSM)
if the � n disturbances were Normally distributed. Because this is not thecase (unless
the distribution of " is taken to be log-Normal), maximizing the likelihood obtained
from application of the Kalman �lter to the SSM given by equations 1.61 and 1.62 is a
pseudo ML and not a full ML procedure.

17See Bauwens and Veredas, (2004) for a proof of these results.
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More recently, Bauwens and Galli (2007) describe the detailsof applying the E�cient
Importance Sampling (EIS) algorithm of Richard and Zhang (2007) to the estimation of
SCD models. As it would be expected, they �nd that (at the cost of an increased
computational e�ort) the simulation-based EIS algorithm provides more accurate
estimates of the model parameters, when compared with the original QML procedure
suggested in Bauwens and Veredas (2004).

1.5.2 Stochastic Conditional Intensity processes

Introduced in Bauwens and Hautsch (2006a), this class of `intensity based' point process
models can be considered a parameter driven extension of the ACI model of Russell
(1999). As it is the case with the SCD and ACD models, the SCI speci�cation results
from enlarging the �ltration generated by the original ACI model with the � -algebra
generated by a single latent (univariate) stochastic process. That is, although the model
can be applied to an arbitraryS-dimensional point process, it is assumed that a
common latent factor in
uences (multiplicatively) the conditional intensity process of
each individual component.
More formally, consider a set ofS distinct (right-continuous) counting processesNs(t),
with s = 1; : : : ; S, de�ned on a given �ltered probability space (
 ; F ; fF tg; P), and
observed over the interval [0; T]. Assuming that the pooledcounting process
N (t) =

P S
s=1 Ns(t) is orderly and the compensator� s(t) associated withNs(t) is

absolutely continuous, there is a correspondingintensity process, denoted by� s(t). In
the broadest sense possible, the SCI class of models consists of all possible parametric
speci�cations for the vector of intensities (� s(t)), where each component can be written
multiplicatively as

� s(t) = � o
s(t) exp(� s (t)) ; (1.63)

with  (t) denoting a univariate unobserved stochastic process with piecewise-constant
c�agl�ad sample paths. In fact, the unobserved process cannot beidenti�ed between
successive events of the pooled process (recall theorem 1.5). Only the integral of this
latent process over acomplete spell(tn� 1; tn ] of the pooled process and its boundary
values (tn) are identi�able. Accordingly, it is reasonable to consider a process with
piecewise-constant c�agl�ad sample paths (only `jumping' at the occurrence timestn , with
n = 1; : : : ; N (T)) as an approximation to the `true' dynamic unobserved heterogeneity
process. Clearly, the trajectories of such a process can be indexed by the left-continuous
counting process�N (t) associated with the pooled process. Finally, for this class of
models, thelatent information set F �

t mentioned previously, corresponds to the history
of the process (t). And therefore, it is updated only at the occurrence times ofthe
pooled counting processN (t).
The observable intensity component� o

s(t) can, in general, be any predictable process of
the observable �ltration F o

t . In contrast with F �
t , F o

t can be updatedcontinuously.
In practice, speci�c parametric processes have to be chosen for modeling both the latent
and the observable components of� s. In Bauwens and Hautsch (2006a), the observable
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intensity factor � o
s is modeled as an ACI process,18 while an AR(1) speci�cation driven

by Gaussian innovations was chosen for the common latent process.That is

 �N (t )+1 = � �N (t ) + " �N (t )+1 ; " �N (t )+1 � NIID(0 ; 1): (1.64)

The latent innovations process is assumed to be independent of the series of increments
in the compensator of the pooled process (2.4). This assumption is required to insure
valid intensity components� s. The stationarity of the latent AR(1) process (obtained
when j � j< 1) is a necessary condition for the stationarity of the SCI model.
Note that � s represents the conditional standard deviation of thesth log-intensity
component ln s given F . For this reason, the latent innovations"n have unit variance
(1.64).
The component-speci�c standard deviation� s means that a shock"n to the common
unobserved factor will have a di�erent impact over each individual component of the
S-variate PP.

As mentioned above, the observable part of the intensity function for a SCI model� o
s,

can be parameterized using the ACI mechanism, Bauwens and Hautsch (2006a) suggest
the use of a product of Burr hazard functions for the baseline hazard function hs

discussed in Subsection refsec1.3.2.
There is, however, one critical di�erence between the (original) ACI speci�cation and
the parameterization of the observable component of the intensity process in the SCI
model, as suggested by Bauwens and Hautsch (2006a). If the innovations process� n is
computed following either (1.48) or (1.49) then, in both cases, � n will be a function of
previous values of the latent component.
Recall that in the ACI model, the innovation associated with each individual counting
processNs(t), at an occurrence timeTn of the pooled processN (t), was either the
increment in the sth compensated counting process over the last complete spell of the
associated point process, or the increment in the pooled compensated counting process.
However, when an unobserved component is added to the intensity processes, both �n
and � s(ts

N s (tn )� 1; ts
N s (tn )) become dependent on one or more past values of this latent

factor. Clearly, this means that one cannot separate the computation of the ACI
residuals from the problem of �ltering the (latent) process . In order to separate the
computation of the innovations � n from the �ltering problem for  , Bauwens and
Hautsch (2006a) suggest an alternative speci�cation for the ACI innovations. The basic
idea is to compute the ACI innovations process� based only on the observable intensity
components� o

s. This simpli�es considerably the computation of the (rede�ned) ACI
residuals, but at the cost of seriously hindering the determination of their exact
distribution (which is still unknown). Under the approach of Russell (1999), Bauwens
and Hautsch (2006a) suggest the following de�nition for the ACI residuals,

� n = ( � 
 � ln � o
1(t1

N1 (tn )� 1; t1
N1 (tn )); : : : ; � 
 � ln � o

S(tS
NS (tn )� 1; tS

NS (tn )))
0; (1.65)

where
 � 0; 5772 denotes the Euler-Mascheroni constant and �o
s(a; b) =

Rb
a � o

s(t)dt. The
alternative speci�cation for the noise process suggested by Bauwens and Hautsch

18See Subsection 1.4.2 for the details of this multivariate point process model.
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(2006a), follows the approach suggested by Bowsher (2007)

� n = ( � 
 � ln
SX

s=1

� o
s(tn� 1; tn ))1S: (1.66)

Clearly, in this last case,� n does not depend on the type of the most recently observed
event.
The reason for taking the natural logarithm (apart from leading to an eventual increase
in the numerical stability of the corresponding computations)is understandable mainly
in the univariate case (i.e.S = 1). Only in this case it is possible to write the
(univariate) disturbance term � n as

� n = � 
 + � 1 n � ln � 1(tn� 1; tn ): (1.67)

That is, because under correct model speci�cation �1(tn� 1; tn ) is Exp(1) distributed, � n

is the sum of a re-centered standard Gumbel (minimum) random variable19 with the
latent factor. However in the general (multivariate) case, the log transformation does
not lead to a clear decomposition similar to (1.67). This is true both for the Russell and
Bowsher speci�cations of the ACI innovations.20

Estimation and Inference for the SCI model

The main challenge in estimating this type of models comes from the presence of the
latent factor, which must be `integrated out' of the conditional (upon the true path of
the latent process) likelihood function. The data Likelihoodimplied by the SCI model
can be obtained by combining the results (1.15) and (1.51). That is, if the complete path
of the latent process 	 �N (T )+1 = f  i g

�N (T )+1
i =1 would be known, then (1.51) would provide

the data-Likelihood for the SCI model when (1.63) is used. LetL
�
� j F o

T ; 	 �N (T )+1

�

denote this conditional Likelihood. Because 	�N (T )+1 is unknown, the likelihood becomes

L(� j F o
T ) =

Z
L

�
� j F o

T ; 	 �N (T )+1

�
p(	 �N (T )+1 )d	 �N (T )+1 ; (1.68)

where andp(	 �N (T )+1 ) denotes the (unconditional) density function of 	 �N (T )+1 .
Several di�erent approaches are available for evaluating the high-dimensional integral in
(1.68). In Chapter 5 of this thesis, three di�erent methods areapplied to a multi-state
extension of the SCI model introduced in Chapter 3. Bauwens and Hautsch (2006a)
apply the simulation-based EIS algorithm of Richard and Zhang(2007) and Liesenfeld
and Richard (2002).
Inference in parameter driven models is not only limited to the estimation and
evaluation of hypothesis concerning the unknown parametersof the model. A central
issue is the so-calledsignal extraction problem. This consists in two closely related

19A standard Gumbel (minimum) r.v. has mean equal to � 
 and variance equal to �
6

2.
20Further note that equation (15) on page 458 of the article is clearly inconsistent.
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problems, the�ltering and the smoothingproblems. Usually, the �ltering problem
consists in obtaining the conditional expectations E[ n+1 jF o

tn
], with n = 1; : : : ; �N (T), of

the latent stochastic process given past observations up to (and including) the previous
moment tn . The smoothing problem, on the other hand, consists in obtaining the
conditional expectations E[ n jF o

T ], with n = 1; : : : ; �N (T) + 1, of the latent stochastic
process given all observations. The di�erent feasible estimation methods that can be
applied for evaluating the Likelihood (1.68) can also deal with these signal extraction
problems.

1.6 Conclusion

This chapter provided a short overview of the core econometrics literature dealing with
irregularly spaced data. The main concepts and results from the theory of point
processes were also brie
y recalled, in order to provide the adequate background for
understanding the underpinnings of the models surveyed.
Statistical models for point processes, like other dynamic statistical models, can be
classi�ed as eitherobservationor parameter drivenmodels. Most of the econometric
models for point processes, in the literature, are observation driven. This is mostly due
to the impact that the ACD model of Engle and Russell (1998) has had over the
�nancial econometrics literature. Nevertheless, an increasing literature (to which this
thesis aims to make a contribution) on point process models with unobserved
componentshas recently appeared. This particular stream of literaturestarted with the
introduction by Hujer et al. (2002) of a parameter driven extension of the ACD model.
The main obstacle to the wider use of these more 
exible econometric models is, clearly,
the complexity and computational load associated with their estimation. This issue is
addressed in the remaining chapter of this thesis.





Chapter 2

Nonparametric Analysis of Agency

Credit Rating Data

2.1 Summary

This chapter proposes procedures for estimating the time-dependent transition matrices
for the general class of �nite non-homogeneous continuous-time semi-Markov processes.
The existence, and Fr�echet di�erentiability, of a unique solution for the system of
Volterra integral equations which relates the transition matrix with the subdensity
functions is established. Therefore, it is possible to estimate the realized transition
probabilities consistently from window-censored event-history data. An implementation
of the method is presented, based on nonparametric estimators of the conditional hazard
rate functions in the general and separable (multiplicative) cases. The resulting
estimators are used for dealing with a central issue in credit risk. The problem of
obtaining estimates of the historical corporate default and rating migration probabilities
is addressed using a dataset of corporate credit ratings from Standard & Poor's. The
contents of this chapter are based mostly on Monteiro, Smirnovand Lucas (2006).

2.2 Introduction

The Semi-Markov Process (SMP) introduced independently by L�evy (1954) and Smith
(1955) is a generalization of the Markov process. The SMP with a�nite state space can
be thought of as a Markov chain (MC) with a random transformation of the time scale
(Pyke, 1961a). In particular this means that the sojourn times in each state can have
arbitrary distributions that may also depend on the next state to be visited. Therefore
SMP's are more 
exible than the homogeneous MC as a tool for the statistical analysis
of transition data.
Stochastic processes evolving in continuous time with jumps over a (�nite) set of states
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(also known in the Finance literature as transition or `migration' models) constitute the
most natural class of econometric models to consider for modeling corporate credit
rating and default data, see for example Kavvathas (2000), Lando and Sk�deberg (2002)
and D'Amico et al. (2004).
The literature on semi-Markov processes has focused mainly on the time-homogeneous
case, examples are Pyke (1961a and 1961b), Limnios and Ouhbi (1999 and 2005) and
Alvarez (2005). However, in the �eld of credit risk, several empirical studies have
explicitly shown that the time-homogeneity assumption is strongly rejected (Kavvathas,
2000, Lando and Sk�deberg 2002, Koopman et al. 2005). Additionally, Kavvathas
(2000) and Lando and Sk�deberg (2002) also present some evidence that the empirical
distribution function (d.f.) of the sojourn times (or duration) of debt issuers in each
rating class seems to display negative duration dependence. Ifthe resulting `maturity'
e�ect is severe, then a given rating class will, in fact, be heterogeneous with respect to
the associated default probabilities according to the time spent by the issuer in that
rating. This chapter, in particular, answers the following question: what is the impact
on the rating migration probabilities (including the default probabilities) of this known
non-Markovian feature of credit rating data? The chapter addresses this issue through
its main methodological contribution. General computational procedures for estimating
the transition matrices accounting both for the presence of duration dependence and
time-inhomogeneity e�ects are developed. These proceduresare applicable to any
statistical model inside the class of �nite non-homogeneous semi-Markov processes
(NHSMP) in continuous time, and do not depend on the particularestimation
methodology used.
The NHSMP was de�ned for the �rst time in Iosifescu Manu (1972). Thediscrete-time
�nite state case was treated in De Dominicis and Janssen (1984). However, to the best
of my knowledge, this chapter provides for the �rst time a formal proof of the existence
and uniqueness of the corresponding (continuous-time) transition probabilities in any
�nite time window. A computationally e�cient numerical pro cedure for obtaining the
transition matrices from knowledge of the matrix of subdensityfunctions is derived, and
its convergence formally proved. Additionally it is shown that this procedure preserves
the consistency of any such estimator of the subdensity functions that may be used as
input in an empirical application.
Such a consistent estimator for the subdensity functions can be constructed (for
example) using nonparametric estimators of the conditional hazard rate functions. Two
leading references on this topic are Nielsen and Linton (1995)and Linton et al. (2003).
Using the class of piecewise-constant hazard rate estimators, an implementation of this
new methodology is applied to analyze the CreditPro 7.0 dataset from Standard &
Poor's - containing the detailed rating histories of more than 7300 U.S. �rms recorded at
a daily frequency and over a period of almost 25 years. The historical (realized) issuer
rating migration probabilities are estimated considering 7 distinct rating classes. This
leads to some interesting empirical �ndings. First, large di�erences in estimated default
(and transition) probabilities are found - with respect to what is obtained using the
Aalen-Johansen estimator (Aalen and Johansen, 1978). Second, when estimating
separable hazard functions, and in contrast with Lando and Sk�deberg (2002), the
baseline hazard is not found to be monotonically decreasing with the elapsed duration.
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Instead, for the great majority of rating classes, there is strongevidence of
non-monotonic behavior. After an initial period of increase in the downgrade and
default rates, which leads to a peak located around 30 months (for downgrade
movements) or 3 years (for default events) after the date when the current rating was
issued, the intensity of this type of rating events decreases signi�cantly. In a similar way
for upward rating movements the peak in the hazard rates is located, roughly, three
years after the rating was issued.
Transition matrices are a capital input for many credit risk management methodologies
like, for example, J.P. Morgan's Credit Metrics or McKinsey's Credit Portfolio View. In
order to `backtest' a particular credit risk model and rating system, it is of paramount
importance that one is able to consistently estimate, ex-post, the empirical transition
probabilities. These should be estimated accounting for the main statistical features of
that rating system and in a robust manner. This is so regardless of whether the �nal
aim is assessing compliance with the Basle II norms, or comparing two or more
competing models in the development stage. The nonparametric Aalen-Johansen
estimator frequently used for this purpose in the literature (see for example the studies
by Lando and Sk�deberg 2002, Jafry and Schuermann 2004, or Koopman et al. 2008)
allows for time-inhomogeneity but is built upon the unrealistic Markov property. This
assumption, as mentioned, has been strongly rejected empirically (Kavvathas, 2000,
Lando and Sk�deberg 2002).1

This chapter is organized as follows. Section 2.3 reviews informally the main de�nitions
and some important results from the literature on non-homogeneous semi-Markov
Processes. Section 2.4 presents the simple class of piecewise-constant nonparametric
estimators of the hazard rate functions, both in the general and separable
(multiplicative) cases. The explicit formulas of the nonparametric estimators of the
semi-Markov kernel implied by the estimators of the hazard rate functions presented in
the previous section are introduced in Section 2.5. Additionally the problem of
obtaining the empirical semi-Markov transition probabilities using window-censored
event-history data is formulated rigorously, and solved. A simulation study is conducted
in section 2.6 to assess the small-sample behavior of the hazard rate estimators
employed. The empirical results are reported in section 2.7. Section 2.8 concludes the
chapter. The appendix details the proofs of the theorems in section 2.5.

1Note that the results reported in Jafry and Schuermann (2004) concern only the comparison of

estimated transition matrices either through the use of standard matrix norms or their proposed metric,

the \ average of the singular values of the mobility matrix. " Comparisons, across di�erent estimation

methods or chronological periods, of estimated transition matrices, as a whole, may not capture relevant

di�erences for particular transition probabilities (for example the default probabi lities) for a given rating

class. Therefore, for risk management purposes, the extra-computational cost implied by an estimation

procedure which accounts for the time-inhomogeneity is not material.
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2.3 Non-homogeneous Semi-Markov Processes

This section brie
y recalls the main de�nitions and results from the theory of
non-homogeneous Markov Renewal Processes (NHMRP) which are directly relevant to
the problem under study in this chapter.
Consider an arbitrary bivariate stochastic process (S; T) = ( Sn ; Tn )n2 N0

de�ned on a
complete, �ltered, probability space (
 ; F ; fF tg; P), describing the evolution in time of
a given discrete-event system. Directly linked to this process Iexplicitly consider four
other processes. The process (Sn )n2 N0

, gives the sequence of states visited by the
system, and takes values in the setS = f 1; 2; : : : ; sg, (s < 1 ), termed the state space.
The nondecreasing random sequence (Tn )n� 0 is built from the consecutive transition
times in the setR+

0 . The bivariate process (Sn ; X n )n2 N0
whereX n = Tn � Tn� 1 is the

sojourn time in state Sn� 1.2

Finally I consider the continuous-time c�adl�ag processS (t), t 2 R+
0 that records the

current state of the observational unit (or system).
Let Q = ( Qij ) be a matrix-valued function of two arguments,Q is called a matrix of
subdistribution functions(s.d.f.) if each entry

Qij : R+
0 � �R+

0 ! [0; 1]

is a nondecreasing measurable function of the second argument and satis�es

sX

j =1

Qij (t; 1 ) = lim
� !1

sX

j =1

Qij (t; � ) = 1 ; (2.1)

for every t 2 R+
0 . The s-valued function g = ( gi ), with components

gi : R+
0 ! [0; 1]

is termed the (time-varying) vector of initial probabilities if it satis�es

sX

i =1

gi (t) = 1 ; 8t 2 R+
0 : (2.2)

The bivariate process (Sn ; X n )n2 N0
is said to be a NHMRP, and the associated process

S (t), t 2 R+
0 a NHSMP, if the following assumptions hold

P [Sn+1 = j; X n+1 � � j (S0; T0) ; : : : ; (Sn ; Tn ) = ( i; t )] = Qij (t; � ) ; (2.3)

and
P [S0 = i j T0 = t0] = gi (t0) : (2.4)

The matrix of s.d.f. (Qij ) is called in this context thesemi-Markov kernel, and together
with the vector of initial probabilities completely determines the stochastic behavior of
the NHSMP.3 Unlike in De Dominicis and Janssen (1984) I de�ne the non-homogeneous

2By convention X 0 = T0 = 0 and S� 1 is left unspeci�ed.
3I will always assume that Qii (t; � ) = 0, 8i 2 S
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semi-Markov kernel using as arguments not the last and next transition times, Tn = t
and Tn+1 = t + � , but instead the last transition time and the duration � until the next
transition. In this way the two underlying time-scales are made explicit: the
chronological time-scalet and the `age' (or duration) scale� . Note that I assume the
non-homogeneous semi-Markov kernel to be independent of thepast number of recorded
transitions.
De�ne for every t 2 R+

0

pij (t) = lim
� !1

Qij (t; � ) ; (2.5)

and

H i (t; � ) =
sX

j =1

Qij (t; � ) : (2.6)

Due to Condition (2.1), H i (t; � ) is a d.f. on �R+
0 with respect to the second argument� .

This can be interpreted as the d.f. of the sojourn times in statei that start at time t.
Under conditions (2.3) and (2.4) the process (Sn )n2 N0

is a non-homogeneous (discrete
time) Markov chain with transition probabilities pij (Tn ), this is called theembedded
Markov chain. The d.f. of the sojourn times in statei starting at time t that �nish with
a transition to state j is given by

Fij (t; � ) =
�

p� 1
ij (t) � Qij (t; � ) ; pij (t) > 0

0 ; otherwise.
(2.7)

It is considered throughout this chapter thatQij (t; � ), as a function of the second
argument � , is absolutely continuous with respect to Lebesgue's measure. In this case
the partial derivative of Qij (t; � ) with respect to � is well de�ned and I denote it by
qij (t; � ),

qij (t; � ) =
@Qij (t; � )

@�
:

In the current credit risk context it is clearly reasonable to consider that the
semi-Markov kernel satis�es the additional condition

Qij (t; 0) = 0; 8t 2 R+
0 ;

that is, that there is no probability mass at zero. This assumption is used in section 2.5
for deriving our numerical procedure for computing the transition probabilities.
The hazard rate function associated with a transition to statej at time t + � in the case
where the unit has entered statei at time t is de�ned by

� ij (t; � ) = lim
h#0

1
h

P [Sn+1 = j; � < X n+1 � � + h j (S0; T0) ; : : : ; (Sn ; Tn ) = ( i; t ) ; X n+1 > � ]

(2.8)
Using assumption (2.3), we can obtain the deterministic function� ij as

� ij (t; � ) =

(
qij (t;� )

1� H i (t;� ) ; pij (t) > 0 and H i (t; � ) < 1
0 ; otherwise.

(2.9)
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Inverting this last equation we can also obtain the semi-Markovkernel (2.3) from the
hazard rate functions,

Qij (t; � ) =
Z �

0
exp [� � i (t; u)] � ij (t; u) du; (2.10)

where

� i (t; � ) =
sX

j =1

Z �

0
� ij (t; u) du; (2.11)

is the total integrated hazard `out' of statei , that is the total cumulative `force' of
transition for leaving state i , this relates directly to the d.f. of sojourn times in statei .4

This one-to-one mapping between the semi-Markov kernel and the corresponding hazard
rate functions means that if we can estimate the latter ones weare also able to obtain
estimates of the former.

2.3.1 Associated counting processes and their intensities

I now de�ne the counting processes (c.p.) associated with the process (S; T). Let

N (u) = sup
n

f n : Tn � ug ; u > t 0; (2.12)

denote the right-continuous c.p. recording the total number of transitions experienced
by the statistical unit in the interval ( t0; u]. I denote by �N (u) the corresponding
left-continuous c.p. For each pair of statesi and j two c.p. can be similarly de�ned, the
right-continuous process

N ij (u) = nr.of direct transitions from state i to state j in ( t0; u] ; (2.13)

and the corresponding left-continuous c.p., which I denote by �N ij . The set of
right-continuous c.p. are related by

N (u) =
X

i 6= j

N ij (u) ;

and a similar equality holds for their left-continuous counterparts.
The history of the (S; T) process over a given interval [t0; u] can be completely
determined by the sample path of the multivariate c.p.N = ( N ij )s

i;j =1 over this interval,
together with information on the initial state S0. That is the internal �ltration
associated with the process (S; T) equals the internal �ltration associated with the
processN enlarged with the � -algebra generated by the random variableS0.
Throughout this chapter I consider that the compensator of the(right-continuous) c.p.
N ij is absolutely continuous with respect to Lebesgue's measure. Therefore there is a

4In fact the survival probability in state i , that is, Si (t; � ) = 1 � H i (t; � ) is directly given by Si (t; � ) =

exp[� � i (t; � )].
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correspondingcaglad intensity process� ij given by

� ij (u) = lim
h#0

1
h

P
� �N ij (u + h) � �N ij (u) > 0 j F u �

�

= Yi (u) � ij
�
T �N (u) ; �U (u)

�
; (2.14)

where

Yi (u) =
�

1 ; S �N (u) = i
0 ; otherwise,

(2.15)

is an exposureindicator and
�U (u) = u � T �N (u)

is a left-continuous version of thebackward-recurrence time, that is, the elapsed duration
in the current state.

2.3.2 Transition probabilities

For continuous-time Markov chains it is well known that the matrix of transition
probabilities over a given time window (t; t + � ] denoted by

Pij (t; t + � ) = P [ S (t + � ) = j j S (t) = i ] ; � > 0 (2.16)

is the unique solution to the Kolmogorov system of `backward' and `forward' PDEs
(Goodman and Johansen, 1973). In the current context, and dueto the presence of
duration dependence, we are interested in the following `age-speci�c' or `left-truncated'
transition probabilities,

p�
ij (t; � 0; � ) = P [ S (t + � ) = j j U (t + � 0) = � 0; S (t + � 0) = i ] ; � � � 0 > 0: (2.17)

That is, from a risk management perspective, I am interested in estimating the
probability of �nding a particular unit 5 in state j by time t + � when it is known that at
time t + � 0 the unit is in state i , and the elapsed duration in that state is precisely� 0

units of time.
For obtaining these `left-truncated' transition probabilities we must start by considering
the related `renewal' transition probabilities

pij (t; � ) = P
�
S (t + � ) = j j N (t) � �N (t) = 1 ; SN (t) = i

�
; � > 0; (2.18)

these are the probabilities of �nding the unit in statej , � units of time after it entered
state i , given that this transition happened at (chronological) time t.
These probabilities satisfy the following system of non-homogeneous Volterra linear
integral equations of the second type on two independent variables (t and � )

pij (t; � ) = � ij (1 � H i (t; � )) +
sX

k=1

Z �

0
pkj (t + u; � � u)qik (t; u)du; i; j = 1; : : : ; s; (2.19)

5In the empirical application of section 2.7, the statistical units are the corporate debt-issuers rated

by Standard and Poor's .
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where� ij denotes Kronecker's symbol. These equations are the direct counterpart to the
Kolmogorov `evolution' equations in the Markov setting. Forwriting down an expression
for the `age-speci�c' transition probabilities (2.17), letq�

ij (t; � 0; � ) represent the density
corresponding to the `left-truncated' s.d.f. of the durations in state i starting at time t
which are larger than� 0 units of time and which end with a transition to state j , that is

Q�
ij (t; � 0; � ) =

Qij (t; � ) � Qij (t; � 0)
1 � Qij (t; � 0)

:

The `age-speci�c' transition probabilities in equation (2.17) are given by

p�
ij (t; � 0; � ) = � ij (1 � H �

i (t; � 0; � )) +
sX

k=1

Z �

� 0

pkj (t + u; � � u) q�
ik (t; � 0; u) du; (2.20)

whereH �
i (t; � 0; � ) is the d.f. function of left-truncated sojourn times in statei and is

obtained by adding the s.d.f.Q�
ik (t; � 0; � ) with k = 1; : : : ; s and pkj (:; :) are the

transition probabilities de�ned in equation (2.18).

2.4 Nonparametric estimation

In this section, I consider the problem of estimating nonparametrically the main
quantities of interest associated with any NHSMP. Keeping in mindthe size of the
Standard and Poor's dataset, and in order to keep the requiredcomputational volume at
a manageable level, I make use of the class of kernel hazard estimators known as `bin
smoothers,' this corresponds to the use of indicator functions as the underlying
smoothing kernels. Hastie and Tibshirani (1990) provide a discussion of this class of
smoothers in the context of nonparametric regression. However,it is conceptually
straightforward to use nonparametric hazard rate estimators based on other classes of
smoothing kernels as the input to the mapping yielding the transition probabilities.
Nielsen and Linton (1995) and Linton et al. (2003) are two leading references on the
general issue of conditional hazard rate estimation using kernel methods, both for the
general and separable cases.
Besides the general (non separable) case of a bivariate hazard rate function, I also
implement the separable case where the hazard rate functions de�ned in (2.8) have the
multiplicative form 6

� ij (t; � ) = � ij (� )  ij (t + � ) : (2.21)

This multiplicative speci�cation for the hazard rate functions encompasses the
celebrated Proportional Hazards (PH) model of Cox (1972) for the case of a
homogeneous population. In this particular NHSMP, one posits the existence of a
time-invariant transition-speci�c baseline hazard� ij (� ), which is multiplied by a
function of chronological time ij (t + � ) to yield the hazard rate. In the original PH

6The coordinates (t; � ) in the Lexis diagram represent a straight line segment departing from the point

(t; 0) to the point ( t + �; � ) in the Cartesian (t; � ) plane.
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model, without unit-speci�c covariates,  ij can be seen as the combined e�ect of the
(common across units) time-varying regression covariates.
Speci�cation (2.21) encompasses both the homogeneous SMP as considered for example
by Limnios and Ouhbi (1999 and 2005), and the non-homogeneous continuous-time
Markov Chain (CTMC) process. The former is obtained by setting ij (t + � ) � 1, the
later by setting � ij (� ) � 1.
To identify  ij and � ij simultaneously I impose the arbitrary normalization

 ij (t0) = 1 : (2.22)

Therefore ij can be interpreted as a relative `risk' index regarding transitions of the ij
type. That is, as time-index of clustering e�ects.

2.4.1 Piecewise constant hazard rate estimators

Consider a panel ofK units following independently a NHSMP characterized by a
common SM kernel as in (2.3) and arbitrary vectors of initialprobabilities. I consider
estimation in the presence of left-truncation at timet = 0 and independent
right-censoring of type I at time t = T1 for the entire panel. In order to proceed some
additional notation is required. Consider for unitk (right-continuous) c.p. N k (t) and
N k

ij (t) de�ned as in (2.12) and (2.13). Also, let

N (t) =
KX

k=1

N k (t) ;

denote theglobal pooled c.p., i.e., the process counting the total number of transitions of
any type recorded across all units in the panel. Lett0 < t 1 < : : : < t N (T1 )+1 = T1 denote
the corresponding sequence of `jump' times of the processN (t), together with the
censoring timeT1.
Consider for every possible transition from statei to state j , and unit k an indicator
process de�ned as

� N k
ij (t) = N k

ij (t) � �N k
ij (t) ;

where �N k
ij is the left-continuous c.p. associated withN k

ij . Let Y k
i (t), de�ned as in (2.15),

denote an indicator variable taking the value 1 if unitk is in state i at time t � , where
t � t � is arbitrarily small. The Likelihood function for such a panelconditional on the
observed initial state of each unit can be written as,

L (� j F T1 ) =

�N (T1 )+1Y

m=1

KY

k=1

Y

i 6= j

n�
� ij (tm � �Uk(tm ); �Uk(tm ))

� � N k
ij (tm )

� (2.23)

exp
�

� Y k
i (tm )

Z tm ^ T1

tm � 1

� ij
�
t � �Uk(t); �Uk(t)

�
dt

��
:

I start by considering the general case where the hazard rate functions depend
simultaneously on �Uk(t + � ) and t + � without imposing any parametric assumptions
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over the structure of this function. In order to obtain simple computational procedures,
I approximate this bivariate hazard rate using a piecewise constant function,

� �
ij (t; � ) =

M ij � 1X

p=0

L ijX

m=0

� ijpm 1(x ij;p ;x ij;p +1 ] (� ) � 1(t ij;m ;t ij;m +1 ] (t + � ) : (2.24)

The sequence 0 =x ij; 0 < x ij; 1 < : : : < x ij;M ij consists of an arbitrary partition of the
interval

�
0; X max

ij

�
, whereX max

ij denotes the maximum between the largest observed
duration in state i that ended with a transition to state j and the largest right-censored
duration in state i . In a similar way, the sequence 0 =t ij; 0 < t ij; 1 < : : : < t ij;L ij +1 = T1

denotes an arbitrary partition of the time-window [0; T1].
Substituting (2.24) in (2.23) taking the natural logarithm and collecting terms yields the
loglikelihood function,

l (� � j F T1 ) =
X

i 6= j

L ijX

m=0

M ij � 1X

p=0

(oijpm ln � ijpm � eijpm � ijpm ) ; (2.25)

where

oijpm =
KX

k=1

Z T1

0
1(x ij;p ;x ij;p +1 ]

� �Uk(t)
�

� 1(t ij;m ;t ij;m +1 ] (t) dN k
ij (t);

denotes the total number of transitions from statei to state j and

eijpm =
KX

k=1

Z T1

0
1(x ij;p ;x ij;p +1 ]

� �Uk(t)
�

� 1(t ij;m ;t ij;m +1 ] (t) Y k
i (t)dt;

is the total exposure (i.e. the cumulative length of time) observed in cell (p; m) of the
bivariate grid generated by the Cartesian product of both partitions
x ij; 0 = 0 < x ij; 1 < : : : < x ij;M ij and t ij; 0 = 0 < t ij; 1 < : : : < t ij;L ij +1 = T1. The �rst order
conditions for maximizing the loglikelihood function (2.25) with respect to the unknown
parameters� ijpm , yield the following estimators,

�̂ ijpm =
oijpm

eijpm
: (2.26)

The corresponding asymptotic variance can be estimated by

bV[�̂ ijpm ] =
oijpm

e2
ijpm

: (2.27)

Similarly for the separable (multiplicative) case (2.21) I approximate both (univariate)
components of the hazard rate function� ij by two piecewise constant functions� �

ij and
 �

ij de�ned by,

� �
ij (� ) =

M ij � 1X

p=0

� ijp 1(x ij;p ;x ij;p +1 ] (� ) ; (2.28)
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and

 �
ij (t + � ) =

L ijX

m=0

 ijp 1(t ij;m ;t ij;m +1 ] (t + � ) : (2.29)

Due to the scaling condition (2.22), we have ij 0 = 1. The sequences
x ij; 0 = 0 < x ij; 1 < : : : < x ij;M ij and t ij; 0 = t0 < t ij; 1 < : : : < t ij;L ij +1 = T1 are similar to
the ones de�ned for the nonseparable case.
Substituting (2.28) and (2.29) in (2.23), taking the naturallogarithm and collecting
terms yields the loglikelihood function

l (� � ;  � j F T1 ) =
X

i 6= j

M ij � 1X

p=0

dijp ln � ijp +
X

i 6= j

L ijX

m=1

bijm ln  ijm

�
X

i 6= j

L ijX

m=0

M ij � 1X

p=0

 ijm � ijp eijpm ; (2.30)

where

dijp =
KX

k=1

Z T1

0
1(x ij;p ;x ij;p +1 ]

�
Uk (t)

�
dN k

ij (t); (2.31)

bijm =
KX

k=1

Z T1

0
1(t ij;m ;t ij;m +1 ] (t) dN k

ij (t); (2.32)

and7 eijpm denotes again the total exposure in cell (p; l) of the bivariate grid. Now, the
loglikelihood l is strictly concave as a function of the unknown values of the step
functions � �

ij and  �
ij (denote these by the vectors~ ij and ~� ij of dimensionsL ij and M ij

respectively). Additionally when we let the components of thevectors ~ ij and ~� ij

increase to1 we see thatl decreases to�1 , therefore there is a unique pair
�

 ̂ ij ; �̂ ij

�

which maximizesl. Numerical optimization of (2.30) is, under this setting, a problem
for which there are available several fast and robust algorithms. A particularly simple
computational procedure is as follows. The �rst order conditions for maximizing the
loglikelihood function given in (2.30) with respect to its arguments, yield the two
following sets of estimating equations,

eij
~ ij = ( dijp =� ijp )� (eijp 0)

e0
ij ~� ij = ( bijm = ijm ): (2.33)

The matrix eij = ( eijpm ) contains all the eijpm elements withp = 0; : : : ; M ij � 1 and
m = 1; : : : ; L ij . Iterating these two sets of nonlinear equations starting froman arbitrary
(strictly positive) value for one of the unknowns, yields a sequence of vectors which

converges to the unique solution
�

 ̂ ij ; �̂ ij

�
. This is so because this procedure is

7These statistics satisfy
P �N ij (T1 )

m =0 bijm =
P N ij (T1 ) � 1

p=0 dijp .
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interpretable as a gradient ascent method applied to the maximization of a concave
function.
The asymptotic variance of the resulting estimators can be estimated, for example, by
evaluating the symmetrical of the inverse of the Hessian matrix,

Hess =
�

A � eij

� e0
ij C

�
;

at the estimates resulting from the system of estimating equations (2.33), where

A = diag
�

� dijp

� 2
ijp

�
, C = diag

�
� bijm

 2
ijm

�
are two diagonal matrices, and againeij = ( eijpm ).

2.4.2 Smoothing parameter estimation

As seen in section 2.4.1 the piecewise constant estimators for the bivariate hazard rate
� ij , and for the hazard rate components� ij and  ij , depend on the chosenknots
x ij; 1 < : : : < x ij;M ij � 1 and t ij; 1 < : : : < t ij;L ij . Although there are many di�erent methods
for choosing the number and location of the knots (see for example Hastie and
Tibshirani, 1990, Chapter 9) I shall employ in the empirical section of this study a
simple adaptive procedure. After �xing the total number of knots for each dimension
(M ij for the duration and L ij + 1 for the length of the time-window) I choose as knots
the corresponding empirical quantiles for that dimension.
The remaining problem consists in estimating the `smoothing' matrices L ij and M ij .
However this type of problem has been extensively studied in theliterature (see among
others, Tanner and Wong, 1984, Sheather and Jones, 1991 and Halland Johnstone,
1992). In this section I adapt to the piecewise constant hazard rate estimators, a
conceptually simple data-driven procedure for choosing the smoothing parameter. This
consists of a generally applicable method, not only in the context of hazard rate
estimation but in the wider subject of curve estimation,cross-validation.
The general idea behind cross-validation is to choose the smoothing parameter(s) in
such a way as to minimize an appropriate loss function. It is in fact an attempt to
mimic the use of training and test samples for prediction. In thepresent case it works
by leaving out the l th spell with l = 1; : : : ; N (T), and then computing the (loglikelihood)
cross-validation function

CV((L ij ); (M ij )) =
N (T )X

l=1

(d� l ln �̂ � l + b� l ln  ̂ � l � �̂ � l  ̂ � le� l ) (2.34)

where ^� � l and  ̂ � l denote the correspondingjackknifed estimators evaluated at the
point corresponding to the excluded spell.8

These are obtained by solving the system of equations (2.33) basedon the (incomplete)
data set after removing thel th spell. The matrices (L ij ) and (M ij ) are chosen in order to
maximize the cross-validation functionCV. It is relevant to point out that

8The statistics d� l , b� l and e� l are appropriately chosen fromdijp , bijm and eijpm as in equation

(2.30), according to the excluded spelll .
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CV((L ij ); (M ij )) is separable overi , that is, its (global) optimization can be
implemented separately for eachi th term (a function of 2(s � 1) integer arguments).
Due to the integer nature of the components of the matrices (L ij ) and (M ij ) (these
belong to the �nite sets I ij = f 1; : : : ; Nij (T1) � 1g, whereN ij (T1) =

P K
k=1 N k

ij (T1)) this
is done simply by performing an exhaustive search. Therefore, this procedure is very
time consuming. Nevertheless, because the class of nonparametricestimators chosen
(2.33) are simple and quick to compute, this approach is still feasible.

2.5 Empirical Transition Probabilities

As shown in section 2.3 it is possible to obtain the semi-Markov kernel (2.10) from the
estimated hazard rate functions. The �rst required step consists in obtaining the
integrated hazard. The estimator of the integrated hazard associated with state i over a
given path (t; � ) as de�ned in equation (2.11) is obtained as,

�̂ i (t; � ) =
sX

j =1

D ijX

n=1

�̂ ij;n
�
� ^ x �

ij;n � x �
ij;n � 1

�
; (2.35)

wheren indexes chronologically the cells (p; m) of the ij -grid which have a nonempty
intersection with the path (t; � ) and D ij is the total number of these cells. The
estimator of the (constant) value of the hazard rate� ij over celln is denoted by ^� ij;n .
Equation (2.10) suggests an estimator for the subdensity functions qij

q̂ij (t; � ) = exp
�

� �̂ i (t; � )
�

�̂ ij;D ij ; (2.36)

and explicitly for the semi-Markov kernel,

Q̂ij (t; � ) =
D ijX

n=1

h
e� �̂ i;n x �

i;n � 1 � e� �̂ i;n (� ^ x �
i;n )

i �̂ ij;n exp
� P n� 1

k=0 x �
i;k (�̂ i;k +1 � �̂ i;k )

�

�̂ i;n
; (2.37)

where ^� i;n =
P s

j =1 �̂ ij;n . The points x �
ij;n result from the reunion of the set of pointsx ij;p

of the partition of the duration-scale with the points t ij;m � t whenever these are positive
and smaller than� . In a similar way the points x �

i;n are obtained from the reunion of the
sets of pointsx �

ij;p over j = 1; : : : ; s.
I now consider formally the problem of estimating the transition probabilities over a
speci�c time-window and for a given backward recurrence-time spent in the current
state. That is, the aim is to estimate consistently the quantity inequation (2.17). For
doing this we need to obtain the empirical `renewal' transition probabilities pij by
solving the Volterra integral equations (2.19) using as inputa consistent estimator of the
subdensity functions. I start by stating an existence and uniqueness theorem regarding
these transition probabilities over the time-window corresponding to the available data
(the proofs are contained in the appendix).
Let T2 = max i;j =1 ;:::;s f X max

ij g. Set T(t) = min f T2; T1 � tg,
T = f (t; � ) j 0 � t � T1; 0 � � � T(t)g and T � = f (t; � ) j 0 � t � T1; 0 � � < T (t)g.
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Consider a spaceCar(T ) of bounded functionsf : T ! R satisfying the following
conditions:

1. f (�; � ) : [0; T1 � � ] ! R is measurable for all� 2 [0; T2],

2. f (t; �) : [0; T(t)] ! R is continuous for almost allt 2 [0; T1],

The spaceCar(T ) equipped with the norm

jf jCar = sup
T

jf (t; � )j

is a Banach space. Consider also a Banach spaceCars(T ) of matrix-valued functions
p = ( p) ij , i; j = 1; : : : ; s. Every componentpij , i; j = 1; : : : ; s, belongs to the space
Car(T ). The norm in Cars(T ) is de�ned by

jpjCar s = max
1� i;j � s

sup
(t;� )2T

jpij (t; � )j:

Assume that the functionsQij : T ! R, i; j = 1; : : : ; s, satisfy the following conditions
(C):

1. there exist non-negative functionsqij 2 L 1 (T ),9 i; j = 1; : : : ; s such that

Qij (t; � ) =
Z �

0
qij (t; u)du; (t; � ) 2 T � ;

2. Qij (t; T (t)) = lim � " T (t ) Qij (t; � ) + hij (t), where hij : [0; T1] ! R, i; j = 1; : : : ; s, are
non-negative measurable functions,

3.
P s

k=1 Qik (t; T (t)) = 1 for all t 2 [0; T1].

Now consider functionsPij : T ! R, de�ned by

Pij (t; � ) = pij (t; � ) +
sX

k=1

� (� � T(t))hik (t); i; j = 1; : : : ; s;

where� (�) is the Heaviside step function, and the functionspij : T ! R;
i; j = 1; : : : ; s, as de�ned in (2.18) satisfy the system of integral equations (2.19)

Theorem 2.1 (Existence and Uniqueness) Equation (2.19) has a unique solution

p̂ 2 Cars(T ) satisfying p̂ij (t; � ) 2 [0; 1], (t; � ) 2 T , i; j = 1; : : : ; s,
P s

j =1 p̂ij (t; � ) = 1 and

p̂ij (t; 0) = � ij , t 2 [0; T1], i; j = 1; : : : ; s. This solution is Fr�echet di�erentiable as

function of the matrix of subdensity functions(qij ).

9L1 (A)
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This theorem implies that if one could directly compute ~p using as input estimates of
(qij ) obtained from a consistent estimator, the resulting estimator of the `renewal'
transition matrix would also be consistent.

Corollary 2.1 (Consistency) Given a consistent estimator of the matrix of subdensity

functions (q̂ij ) P! (qij ), let p̂ denote the solution of equation(2.19) corresponding to

(q̂ij ), then

p̂ P! ~p:

In this corollary, it should be noted that the (implicit) runn ing index for each sequence
q̂ij ; with i; j = 1; : : : ; s is the sum of the number of observed durations in statei that
ended with a transition to state j with the total number of right-censored durations
recorded in statei . That is, the number of recorded trajectories (t; � ) in state i (let this
number be denoted asmi ). Therefore, to index the estimator of the whole matrix of
subdensity functions (and of the transition matrix) we can use

m = min
1� i � s

mi :

In practice we need to approximate numerically the solution ^pij (t; � ) over T by means of
a �nite system of algebraic equations. I now turn to this issue.
Considerqij 2 L 1 (T ) with the norm less than or equal toM > 0. Assume that there
exist a partition of the interval [0; T1], 0 = t0 < t 1 < : : : < t ~N1

= T1, a partition of the
interval [0; T2], 0 = � 0 < � 1 < : : : < � ~N2

= T2, a constantL > 0, and functions �qn1n2
ij (t; �),

n1 = 1; : : : ; ~N1, n2 = 1; : : : ; ~N2, satisfying the Lipschitz condition

j �qn1n2
ij (t0; � 0) � �qn1n2

ij (t00; � 00)j � L(jt0 � t00j + j� 0 � � 00j) (2.38)

for all i; j = 1; : : : ; s, (t0; � 0); (t00; � 00) 2 T \ [tn1 � 1; tn1 ] � [� n2 � 1; � n2 ], n1 = 1; : : : ; ~N1,
n2 = 1; : : : ; ~N2, and such that

qij (t; � ) = �qn1n2
ij (t; � ); (t; � ) 2 T \ [tn1 � 1; tn1 ) � [� n� 1; � n );

with
n1 = 1; : : : ; ~N1; n2 = 1; : : : ; ~N2:

Without loss of generality there exist positive integersN1 � ~N1 and N2 � ~N2 such that
T1=N1 = T2=N2 = ~�, f tn j n = 1; : : : ; ~N1 � 1g � f l ~� j l = 1; : : : ; N1 � 1g, and
f � n j n = 1; : : : ; ~N2 � 1g � f l ~� j l = 1; : : : ; N2 � 1g. Put

� k(� ) = s(T2L + 2M )k(sT2M )k� 1�; k = 1; 2; : : :

and

� n (� ) =
� n (� ) +

P n� 1
k=1 � k(� )

1 � � n (� ) � (sT2M )n=n!
; n = 1; 2; : : : :
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Let N be a positive integer. Set � = ~� =2N . Let m1 = 0; : : : ; N1 and m2 = 0; : : : ; N2.
Consider functionsp̂�

ij , i; j = 1; : : : ; s, de�ned at the points
((m1 + �l + �r=2N ) ~� ; (m2 � �l � �r=2N ) ~�), �l = 0; : : : ; m2, �r = 0; : : : ; 2N � 1, by the following
system of linear equations

p̂�
ij ((m1 + �l + �r=2N ) ~� ; (m2 � �l � �r=2N ) ~�)

= � ij (1 � H i ((m1 + �l + �r=2N ) ~� ; (m2 � �l � �r=2N ) ~�))

+�
sX

k=1

m2 � �lX

l=2

�r � 1X

r =0

p̂�
kj ((m1 + �l + l + r=2N ) ~� ; (m2 � �l � l � r=2N ) ~�) qik ((m1 + �l) ~� ; (l � 1) ~�) :

(2.39)
From a computational perspective, the remarkable feature ofthis numerical
approximation method consists in the fact that the resulting linear system of (matrix)
equations can be solved simply by backward substitution. Therefore, there is no need to
invert the corresponding square matrix of coe�cients, which istypically very large.10 I
now provide a theoretical upper bound for the error implied by this numerical
approximation. This inequality insures not only the convergence of the method to the
true solution, but also the consistency of the estimator of the transition matrix which
results from its application using estimates of the matrix (qij ) obtained from a
consistent estimator.

Theorem 2.2 (Numerical Approximation) Let n be a positive integer such that

(sT2M )n=n! < 1. If ~� satis�es

� n ( ~�) < 1 �
(sT2M )n

n!
;

then for all m1 = 1; : : : ; N1 and m2 = 1; : : : ; N2 the following inequality holds

jp̂�
ij (m1

~� ; m2
~�) � p̂ij (m1

~� ; m2
~�) j � (s + L̂ )2M 2T2� exp(( s + L̂ )MT2) + � n ( ~�) ;

where

L̂ = maxf 2L ~� + M; LT 2 + M + ( LT2 + 16N2M )(1 + � n ( ~�)) g
(1 + 4sMT2)N2 � 1 � 1

4sMT2
:

Obtaining a consistent estimator of the `left-truncated' transition probabilities (2.17)
can be easily done by evaluating numerically the expression (2.33) using the discrete set
of valuesp̂�

ij .

10In section 2.7 this matrix is of order 3500
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2.6 Simulation Study

In this section I present the results of a small Monte Carlo study conducted with the
aim of assessing the small-sample behavior of the estimators of the hazard rate functions
presented in section 2.4. The simulation setup is as follows, there are 3 states
S = f 1; 2; 3g, state 3 is absorbing and denotes default. I consider a time-window [0; T]
with �xed-length T = 300 time units. At time t = 0 there are K=2 units in each one of
the two non-absorbing states. For each one of theK units I consider a set of four
intensity processes as de�ned in (2.14) with corresponding hazard rate functions as in
(2.21). I restrict myself to the simplest case where the baseline hazard is a constant and
the time-index is identically equal to one. This correspondsto the simple case of a
homogeneous continuous time MC. Therefore, I can test if the piecewise constant
estimators of the hazard rate functions are capable of recovering this particular case of a
SMP.
The simulation itself can be made in at least two di�erent ways. Inthis chapter I
describe one of this feasible methods of simulating a panel of individual event histories
generated byK units, each one following a NHSMP. Chapter 3 presents a more general
method, one that is also valid when the semi-Markov property (2.3) is relaxed. The
simulation algorithm described in Chapter 3 allows the simulation of a panel of units
whose individual event histories are governed by an arbitraryset of F t -predictable,
transition-speci�c, intensity processes� ij . That is, when the value of the
transition-speci�c intensity processes don't simply depend on the current state, elapsed
duration and chronological time as in (2.14) but on the entire �ltration F t .
A simulation algorithm speci�cally adapted to NHSM processes is asfollows. Recall
that from knowledge of the hazard rate functions we are able to obtain the
subdistribution functions according to (2.10). We can then iterate the following steps
(with k = 1; : : : ; K ).

1. Pick one particular unit, say unit k, set t = 0 and assume its starting state at that
time is i 2 S,

2. Draw u � U[0; 1], then solveH i (t; � ) = u with respect to � and with the given t,

3. Draw the next state j for that unit from the Multinomial f � ij (t; � )g distribution,
where each probability� ij (t; � ) = Q ij (t;� )

H i (t;� ) ,

4. Update t = told + � ,

5. If the new t < T , and j is non-absorbing, then go back to step 2, otherwise go to
step 1 and choose a di�erent unit.

When all the units have been selected, we have the full set of simulated event-histories.
That is, we have a set of sequencesf (Sk

0 ; 0); (Sk
1 ; Tk

1 ); : : : ; (Sk
N k (T ) ; Tk

N k (T ))g, with
k = 1; : : : ; K . I consider two casesK = 200 and K = 600 units. For both cases I
perform 500 replications of the simulations. Each replication consists in obtaining a set
of K individual event-histories, followed by the estimation of thetwo components of the
underlying hazard rate functions (2.21). The results are shown in �gures 2.1 through 2.4.
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It should be noted that as more and more units enter the absorbing state, the lower will
be the total exposure to each one of the feasible transitions (seethe discussion before
formulas (2.26) and (2.27)) over the `cells' corresponding tolater chronological periods.
As formula (2.27) clearly shows, the lower the total exposure in agiven `cell' is, the
higher the variability of the hazard rate estimator will be. Although no such simple

0 20 40 60 80 100

2

3

4

5

a 12 
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Figure 2.1: Empirical distributions of the NPML estimators of the baseline hazard
200 units - the SM model and the simulation set-up are explained in the text. The true baseline hazards

appear as the thin solid line, while the corresponding MC average nonparametric estimate is represented

as the thick solid one. Also depicted are the 2 MC standard deviations from the MCaverage. Depicted

on the top left picture is the estimated baseline hazard for a transition from state 1 to state 2. The

top right plot corresponds to transitions from state 1 to state 3. On the lower left picture we have the

estimated baseline hazard for transitions from state 2 to state 1. Finally the lower right graph depicts

the estimated baseline hazard for transitions from state 2 to state 3.
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Figure 2.2: Empirical distributions of the NPML estimators of the baseline hazard
( 600 units - the baseline model and the simulation set-up are explained in the text. The structure of the

plot is as in �gure 2.1)
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Figure 2.3: Empirical distributions of the NPML estimators of the time-index
( 200 units - the SM model and the simulation set-up are explained in the text. The true values of

the time index (constant and equal to 1) appear as the thin solid lines, while the corresponding average

nonparametric estimate is represented as the thick solid one. Also depicted are the2 MC standard

deviations from the MC average. Depicted on the top left picture is the estimated time-inhomogeneity

index for a transition from state 1 to state 2. The top right plot corresponds to transitions from state

1 to state 3. On the lower left picture we have the estimated time index for transitions from state 2 to

state 1. Finally the lower right graph depicts the estimated time index for tr ansitions from state 2 to

state 3.)
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ŷ 12-2St.Dev. 

0 50 100 150 200 250 300

0.50

0.75

1.00

1.25

1.50

y 13 
ŷ 13+2St.Dev. 
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ŷ 23+2St.Dev. 
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Figure 2.4: Empirical distributions of the NPML estimators of the time-index
( 600 units - the baseline model and the simulation set-up are explained in the text. The structure of the

plot is as in �gure 2.3.)
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formula is available for the multiplicative case (2.21) a similar e�ect is to be expected.
For this reason I impose a type-I right-censoring limitT = 300. This value was
empirically selected in order to keep, on average, the total exposure (to each type of
transition) in the later `cells' above half of those values observed at the beginning of the
time window.
It is possible to see as the number of units increases (and therefore also the number of
recorded transitions of each type, and the total exposure to those transition-types) the
estimated components of the hazard rate functions in equation (2.21) seem to approach
the true values with decreasing variance (as it is to be expected). This e�ect, however,
appears stronger for the baseline hazard component� than for the time-inhomogeneity
index  . This may be a hint that the estimator of the index of clusteringe�ects may
have a lower asymptotic rate of convergence, when compared with the estimator of the
baseline hazard.

2.7 Empirical Application

In this section I report the empirical results obtained with a basic SMP model for the
credit rating process. I start by considering only two rating classes, investment grade
(from BBB � up to AAA) and subinvestment or speculative grade (below BBB� ),
Default is considered an absorbing state. I do not model explicitly the non-rated (N.R.)
class as a state, instead all transitions into N.R. are taken as censored observations. The
`cells' or `bins' used for the estimation of the hazard rates wereconstructed using a
simple adaptive method. The number of observations is taken tobe constant across
`bins,' while the dimensions of each `bin' are random. Therefore, the `smoothing'
parameter (equivalent to the `bandwidth' parameter in general kernel methods) is, in
this case, the number of observations used to de�ne each bin.
By looking at the number of quarterly recorded defaults by issuers rated as
subinvestment grade level, depicted in �gure 2.5, we can see, byconditioning on the age
of the rating (depicted at a yearly resolution), that most defaults take place within the
�rst four to �ve years after receiving this rating. This is to b e expected, as speculative
grade rated issuers represent, by de�nition, risky investments.
The total exposure (measured in �rm-years) in each `cell' (covering one quarter in
calendar time and one year in `age'), �gure 2.6, indicates the concentration of �rms in
that interval of time with a similar rating `maturity.' In thi s plot it is possible to see the
existence of 4 historical periods where there was a large increase in the number of �rms
entering the speculative grade level (both due to the downgrade from the investment
level and to the request of a �rst rating). The �rst cohort at the start of the
time-window (1 January 1981, this cohort is somewhat special due to the fact that most
of its �rms would most probably already had their rating for an - unknown to us -
period of time). A second cohort corresponding to the period starting on late 1986 and
ending on early 1990 (this large cohort was mostly due to �rms being downgraded to the
subinvestment grade in this period, this conclusion results from the analysis of the grid
count of this type of event - see next graphic). A third cohort corresponding to the
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period of the middle nineties (which was mostly due to initialratings - most likely
connected to the `dot-com' boom). And �nally a fourth cohort corresponding to the
period from 1999 to early 2001 also due to (new) initial ratings.
Figure 2.7 documents the recorded number of downgrade rating actions. With exception
of a high-intensity period between 1985 and 1987 the picture is here much more
homogeneous throughout time, when compared with the one depicting the recorded
defaults for subinvestment grade issuers.
The total exposure of �rms in the investment level category, �gure 2.8, shows that the
largest such cohort, by far, corresponds to �rms which entered the DB at the left-limit
of the time-window.

Assuming a multiplicative structure for the hazard rates, it is possible to extract the
marginal impacts of both the chronological and rating `age'e�ects. The time-index
component expresses the relative degree of `risk' of a given historical period with respect
to a reference period. Due to the identifying restriction (2.22), this reference period is
the �rst chronological period (for the case of defaults by subinvestment grade issuers
this was the period covering from January 1981 to late 1984) in the dataset. We can
clearly see, for example, a very high intensity of defaults in late 1990, early 1991 and
then again in the early 2000's.
With regard to the `rating maturity' e�ect, we can clearly seethat there is a peak in the
default intensity for subinvestment grade rated issuers roughlythree years after they
received that rating. This non-monotonic pattern is in contrast with the results reported
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Figure 2.5: Recorded Number of Defaults: subinvestment grade rated issuers

(each grid cell covers a quarter in calendar time and one year in age-time.)
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Figure 2.6: Total Exposure: subinvestment grade rated issuers

(each grid cell covers a quarter in calendar time and one year in age-time)
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Figure 2.8: Total Exposure: investment grade rated issuers

(each grid cell covers a quarter in calendar time and one year in age-time)
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Figure 2.9: Recorded defaults, subinvestment grade rated issuers: time index
(Here I plot the estimated time index  . The �rst time period is taken as the basis for comparison,

the time index was estimated using 36 `time bins' each one of these `bins' encompasses23 observations.

This choice of the number of `bins' was made using (Likelihood) cross-validation. Also plotted are the

upper and lower .95 con�dence bands. It is possible to see that, although the average amplitude of these

con�dence bands is rather large, the time-homogeneity is strongly rejected at this level, inparticular in

the period from early 96 to late 2001 the overall intensity of this type of event was signi�cantly lower -

when compared to the reference period - from early 1981 to the middle of 1984.)
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Figure 2.10: Recorded defaults, subinvestment grade rated issuers: baseline hazard
(The topmost plot depicts the baseline hazard estimated with 52 `bins.' This numberwas chosen by

cross-validation. In the lower pane I enforce a higher level of smoothness by choosing only 6 `bins,'

each cell or `bin' encompasses 139 observations. Also plotted are the upper and lower.95 con�dence

bands. In both cases it is possible to see that the strong non-monotonic behaviorof the baseline hazard

is statistically signi�cant at the .95 level.)
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Figure 2.11: Downgrade from investment to subinvestment grade: time index
(Here I plot the estimated time index  . The �rst time period is taken as the basis for comparison,

the time index was estimated using 36 `time bins' each one of these `bins' encompasses21 observations.

This choice of the number of `bins' was made using (Likelihood) cross-validation. Also plotted are the

upper and lower .95 con�dence bands. It is possible to see that, although the average amplitude of these

con�dence bands is rather large, the time-homogeneity is strongly rejected at this level, this takes place

for several periods in 1983, 1986, 1989 and from 1996 to 1999 the overall intensity of this type of event

was signi�cantly lower - when compared to the reference period - from early 1981 to middle 1982.)
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Figure 2.12: Downgrade from investment to subinvestment grade: baseline hazard
(The topmost plot depicts the baseline hazard estimated with 54 `bins.' This numberwas chosen by

cross-validation. In the lower pane I enforce a higher level of smoothness by choosing only 6 `bins,'

each cell or `bin' encompasses 128 observations. Also plotted are the upper and lower.95 con�dence

bands. In both cases it is possible to see that the strong non-monotonic behaviorof the baseline hazard

is statistically signi�cant at the .95 level.)

in Lando and Sk�deberg (2002), this is most likely due to the fact that I have dropped
the parametric assumption used in that study. The Gompertz baseline hazard used in
that article is not su�ciently 
exible to accommodate non-monotonic behavior, and
therefore seems to have captured only the right tail of the baseline hazard. However as
it is possible to see, (Likelihood) cross-validation seems to be undersmoothing on the
current dataset. It is well-known that cross-validation, and in particular Likelihood
cross-validation provides ine�cient estimators of the `smoothing' parameters in several
di�erent nonparametric estimation set ups (see for example Li and Racine, 2007, Hall
and Marron, 1987a and Park and Marron 1990). In particular ithas been pointed out
(Hall and Marron, 1987a, Park and Marron, 1990) that cross-validation frequently leads
to an estimator of the smoothing parameter that exhibits an excessive level of variability
and seems to be overly sensitive when the underlying density is not smooth (in fact
these drawbacks were one of the main motivations behind the development of the
literature dealing with the so-called `plug-in' methods).
Throughout all cases, the cross-validation selection of the optimal number of `bins'
seems to lead to very irregular estimates of the rating `age' e�ect. Unless there are in
fact multiple peaks in the `duration' component, this �nding is most likely due to the
`undersmoothing' characteristics of cross-validation. Therefore, using trial-and-error, I
enforced a higher degree of smoothness by choosing a lower number of `age bins.' This is
denoted in �gures 2.10, 2.12 and 2.14 as the `ad-hoc' bandwidth selection.
Next I present the empirical transition matrices for the 7 grades rating system (the CCC
class includes all issuers with a credit rating lower than B� ),
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Table 2.1: Empirical SM transition matrix for 1992
This table contains the nonparametric estimates of the one- year semi-Markov transition matrix for the year 1992. This

matrix gives the empirical probabilities (i.e. the observe d frequencies) of a �rm being found in each one of the 8 rating

classes (ordered through the columns of the table) at 31/12/ 1992 given that it received a speci�c credit rating (represe nted

by the rows of the table) at 31/12/1991.

AAA AA A BBB BB B CCC D
t

AAA 0.98417 0.01297 0.00285 0.00005 0.00001 0.00000 0.00000 0.00000

AA 0.00536 0.95795 0.03336 0.00139 0.00118 0.00070 0.00004 0.00003

A 0.00108 0.00401 0.95287 0.03726 0.00413 0.00049 0.00008 0.00008

BBB 0.00001 0.00121 0.02380 0.92771 0.04122 0.00288 0.00116 0.00237

BB 0.00000 0.00100 0.00290 0.02353 0.89034 0.06412 0.00854 0.00943

B 0.00000 0.00025 0.00127 0.00439 0.02231 0.81334 0.07894 0.07832

CCC 0.00000 0.00003 0.00014 0.00446 0.02238 0.08001 0.34470 0.53435

Table 2.2: Aalen-Johansen estimator for 1992
This table contains the nonparametric Aalen-Johansen esti mates of the one-year Markov transition matrix for the year

1992. This matrix gives the empirical probabilities (i.e. t he observed frequencies) of a �rm being found in each one of

the 8 rating classes (ordered through the columns of the tabl e) at 31/12/1992 given that it was in a speci�c credit rating

(represented by the rows of the table) at 31/12/1991.

AAA AA A BBB BB B CCC D
t

AAA 0.92403 0.07458 0.00137 0.00005 0.00000 0.00000 0.00000 0.00000

AA 0.00928 0.93742 0.05191 0.00133 0.00006 0.00000 0.00000 0.00000

A 0.00013 0.01540 0.93625 0.04572 0.00242 0.00009 0.00000 0.00000

BBB 0.00000 0.00061 0.06099 0.90047 0.03644 0.00140 0.00007 0.00003

BB 0.00000 0.00006 0.00584 0.11514 0.81013 0.05227 0.01102 0.00554

B 0.00000 0.00003 0.00476 0.02748 0.11240 0.73119 0.07736 0.04678

CCC 0.00000 0.00003 0.00041 0.00274 0.03017 0.09973 0.49593 0.37102

Table 2.3: Empirical SM transition matrix for 1993
This table contains the nonparametric estimates of the one- year semi-Markov transition matrix for the year 1993. This

matrix gives the empirical probabilities (i.e. the observe d frequencies) of a �rm being found in each one of the 8 rating

classes (ordered through the columns of the table) at 31/12/ 1993 given that it received a speci�c credit rating (represe nted

by the rows of the table) at 31/12/1992.

AAA AA A BBB BB B CCC D
t

AAA 0.97629 0.02063 0.00300 0.00005 0.00002 0.00001 0.00000 0.00000

AA 0.00511 0.95637 0.03528 0.00134 0.00118 0.00072 0.00002 0.00002

A 0.00074 0.00370 0.95881 0.03336 0.00291 0.00041 0.00005 0.00006

BBB 0.00001 0.00120 0.02375 0.92131 0.04757 0.00312 0.00117 0.00203

BB 0.00000 0.00101 0.00339 0.02088 0.90965 0.05787 0.00354 0.00363

B 0.00000 0.00026 0.00136 0.00515 0.02291 0.90651 0.03219 0.03143

CCC 0.00000 0.00004 0.00020 0.00509 0.02302 0.18516 0.38943 0.39272
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Figure 2.13: Upgrade from subinvestment to investment grade: time index
(In this graphic I plot the estimated time index  . The �rst time period is taken as the basis for

comparison, the time index was estimated using 36 `time bins' each one of these `bins' encompasses 16

observations. Also plotted are the upper and lower .95 con�dence bands. It is possibleto see that the

time-homogeneity is strongly rejected at this level, this takes place for several periods like 1986, from

1988 to 1992 and from 1994 onwards the overall intensity of this type of event was signi�cantly lower -

when compared to the reference period - from early 1981 to late 1983.)
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Figure 2.14: Upgrade from subinvestment to investment grade: baseline hazard
(The topmost plot depicts the baseline hazard estimated with 51 `bins.' This numberwas chosen by cross-

validation. In the lower pane I enforce a higher level of smoothness by choosing only6 `bins,' each cell or

`bin' encompasses 96 observations. Also plotted are the upper and lower .95 con�dence bands.In both

cases it is possible to see that the strong non-monotonic behavior of the baselinehazard is statistically

signi�cant at the .95 level.)

Comparing the estimated SM `renewal' transition matrix with its Markov counterpart,
obtained using the Aalen-Johansen (A-J) estimator, it is possible to see the impact of
the (estimated) non-constant baseline hazards on the transition probabilities. Several
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Table 2.4: Aalen-Johansen estimator for 1993
This table contains the nonparametric Aalen-Johansen esti mate of the one-year Markov transition matrix for the year 19 93.

This matrix gives the empirical probabilities (i.e. the obs erved frequencies) of a �rm being found in each one of the 8 rat ing

classes (ordered through the columns of the table) at 31/12/ 1993 given that it was in a speci�c credit rating (represente d

by the rows of the table) at 31/12/1992.

AAA AA A BBB BB B CCC D
t

AAA 0.95487 0.04361 0.00149 0.00003 0.00000 0.00000 0.00000 0.00000

AA 0.00011 0.94244 0.05639 0.00104 0.00002 0.00000 0.00000 0.00000

A 0.00333 0.00663 0.95886 0.03031 0.00084 0.00002 0.00000 0.00000

BBB 0.00009 0.00033 0.04699 0.89641 0.05163 0.00424 0.00024 0.00007

BB 0.00001 0.00620 0.00845 0.08211 0.82690 0.06865 0.00652 0.00116

B 0.00001 0.00044 0.00505 0.01420 0.12686 0.82013 0.01681 0.01651

CCC 0.00000 0.00004 0.00015 0.00179 0.03572 0.31275 0.49087 0.15866

features are apparent. First for investment grade rated issuersit is possible to see that
there is much more `mass' on the main diagonal (if an issuer has justreceived a given
rating in the investment grade level then this issuer is much less`mobile' than another
issuer - with the same rating - but with a longer `history') than given by the A-J
estimator (which e�ectively `averages' the issuers in a given rating class over the `age' of
that rating). This e�ect is still visible for BB and B rated issuers. On the contrary for
CCC rated issuers the opposite e�ect is present, these issuers seem tobe even more
`mobile' than what the A-J estimator indicates. Simultaneouslythe A-J estimator seems
to underestimate the probabilities of more extreme rating movements - this is
particularly true for the default probabilities - these are systematically higher than the
A-J estimator indicates, for some cases the di�erence correspondsto a factor larger than
two. Additionally many transition probabilities away from the main diagonal are
estimated as zero (at this number of digits) in the A-J estimator but not for the SM
case. On the contrary the A-J estimator overestimates the probability of a rating
movement of a single class. This shows clearly the large impact ofthe `rating' age over
the transition probabilities.

In table 2.5 I check the stability of the estimated SM `renewal'transition matrices
(corresponding to the year 2000) with respect to the number of points of the grid where
the integral appearing in (2.19) is to be evaluated numerically, which leads to the linear
system (2.39). There is almost no noticeable di�erence betweenthe use of 500 or 2000
grid points (I therefore used 500 points for estimating the SM transition matrices).

In these two tables we can see two SM transition matrices from theyear 2004. The �rst
is a `renewal' one (like the SM transition matrices in the previous tables). At the left
point of the time window (31/12/2003) I assume there is an occurrence of a rating
action which leads to the rating displayed in the rows of the matrix. Then across the
columns, the probability that the debt issuer will be in any one of the possible 8 ratings
is shown. The second table is di�erent. Here I assume that at the left-limit
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Table 2.5: Empirical SM transition matrices for 2000
This table contains the nonparametric estimates of the one- year semi-Markov transition matrix for the year 2000. Here I

increased the resolution of the discrete grid used to apply t he numerical integration algorithm discussed in section 2. 5. We

are thus able to see the impact of the number of points of the gr id over the �nal estimates. This matrix gives the empirical

probabilities (i.e. the observed frequencies) of a �rm bein g found in each one of the 8 rating classes (ordered through th e

columns of the table) at 31/12/2000 given that it received a s peci�c credit rating (represented by the rows of the table) a t

31/12/1999.

500 points

AAA AA A BBB BB B CCC D
t

AAA 0.98926 0.00781 0.00286 0.00005 0.00001 0.00000 0.00000 0.00000

AA 0.00643 0.94603 0.04396 0.00189 0.00116 0.00073 0.00003 0.00003

A 0.00068 0.00532 0.95399 0.03659 0.00284 0.00048 0.00006 0.00011

BBB 0.00001 0.00092 0.01359 0.94701 0.02973 0.00440 0.00109 0.00347

BB 0.00000 0.00071 0.00150 0.00993 0.89104 0.08014 0.00721 0.00932

B 0.00000 0.00024 0.00062 0.00140 0.00630 0.86747 0.05977 0.06343

CCC 0.00000 0.00001 0.00004 0.00366 0.00230 0.04137 0.33102 0.60614

1000 points

AAA AA A BBB BB B CCC D
t

AAA 0.98926 0.00781 0.00286 0.00005 0.00001 0.00000 0.00000 0.00000

AA 0.00643 0.94603 0.04401 0.00189 0.00116 0.00073 0.00003 0.00003

A 0.00068 0.00533 0.95399 0.03656 0.00284 0.00048 0.00006 0.00011

BBB 0.00001 0.00092 0.01358 0.94701 0.02973 0.00440 0.00108 0.00343

BB 0.00000 0.00071 0.00150 0.00993 0.89104 0.08018 0.00721 0.00932

B 0.00000 0.00024 0.00062 0.00140 0.00630 0.86747 0.05977 0.06337

CCC 0.00000 0.00001 0.00004 0.00366 0.00230 0.04139 0.33102 0.60554

2000 points

AAA AA A BBB BB B CCC D
t

AAA 0.98926 0.00781 0.00286 0.00005 0.00001 0.00000 0.00000 0.00000

AA 0.00643 0.94603 0.04398 0.00189 0.00116 0.00073 0.00003 0.00003

A 0.00068 0.00533 0.95399 0.03657 0.00284 0.00048 0.00006 0.00011

BBB 0.00001 0.00092 0.01359 0.94701 0.02973 0.00440 0.00109 0.00343

BB 0.00000 0.00071 0.00150 0.00993 0.89104 0.08017 0.00721 0.00931

B 0.00000 0.00024 0.00062 0.00140 0.00630 0.86747 0.05977 0.06335

CCC 0.00000 0.00001 0.00004 0.00366 0.00230 0.04138 0.33102 0.60564

(31/12/2003) each debt issuer had already been one year in its current rating (displayed
in the rows). That is, the debt issuer had received its rating on 31/12/2002. The most
striking feature is the dramatic reduction in the realized default probability from CCC
rated issuers from 39 to only 9 percent.
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Table 2.6: Empirical SM transition matrices for 2004
The �rst table below contains the nonparametric estimates o f the one-year semi-Markov transition matrix for the year

2004. This matrix gives the empirical probabilities of a deb t issuer being found in each one of the 8 rating classes (order ed

through the columns of the table) at 31/12/2004 given that it received a speci�c credit rating (represented by the rows of

the table) at 31/12/2003. The second table contains the equi valent `left-truncated' semi-Markov transition matrix. H ere

the initial rating was received at 31/12/2002 and by 31/12/2 003 the issuer was still in that same rating.

`renewal' transition matrix

AAA AA A BBB BB B CCC D
t

AAA 0.97868 0.01821 0.00305 0.00007 0.00002 0.00001 0.00000 0.00000

AA 0.00722 0.93740 0.05120 0.00219 0.00129 0.00074 0.00003 0.00001

A 0.00067 0.00530 0.94608 0.04024 0.00715 0.00065 0.00008 0.00010

BBB 0.00006 0.00091 0.01020 0.94776 0.03308 0.00400 0.00130 0.00292

BB 0.00000 0.00071 0.00158 0.01076 0.89995 0.07767 0.00503 0.00413

B 0.00000 0.00025 0.00064 0.00170 0.00981 0.91680 0.04880 0.02203

CCC 0.00000 0.00002 0.00006 0.00448 0.00317 0.09810 0.48754 0.39976

`left-truncated' transition matrix

AAA AA A BBB BB B CCC D
t

AAA 0.96332 0.03397 0.00325 0.00007 0.00003 0.00001 0.00000 0.00000

AA 0.00615 0.90949 0.07935 0.00273 0.00140 0.00069 0.00003 0.00002

A 0.00093 0.01766 0.91809 0.05869 0.00477 0.00057 0.00009 0.00014

BBB 0.00001 0.00090 0.01748 0.92622 0.04986 0.00424 0.00065 0.00085

BB 0.00000 0.00064 0.00328 0.03001 0.88430 0.07521 0.00396 0.00286

B 0.00000 0.00023 0.00050 0.00244 0.04147 0.89297 0.04299 0.01885

CCC 0.00000 0.00001 0.00005 0.00356 0.00370 0.06070 0.83702 0.09212

2.8 Conclusion

In this chapter the existence and uniqueness of the empirical non-homogeneous
semi-Markov transition matrix was established for any realisticsetting. An e�cient
numerical method for consistently estimating these time-dependent transition matrices
from consistent estimates of the subdensity functions was introduced and its
convergence established. A feasible implementation of the method was constructed using
piecewise-constant nonparametric estimators of the hazard rate functions. The resulting
estimators were applied to the analysis of a dataset on corporate credit ratings from
Standard & Poor's. Large di�erences were found between the empirical default
probabilities obtained from the semi-Markov assumption and their Markov counterparts.
These results con�rm the existence of a signi�cant `aging' or `maturity' e�ect in Agency
credit ratings, as previously reported in the empirical �nance literature. The
methodology proposed in this chapter, however, makes it possible to adequately quantify
the impact of this `rating maturity' e�ect over the rating tr ansition matrix. As the
transition matrix constitutes a critical input for most credit risk management
methodologies, the availability of estimators of this matrixderived from realistic
reduced-form models (that take into account most of the stylized facts of rating data) is
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crucial. This chapter represents one step in that direction.
From the theoretical results presented in this chapter it is also possible to derive
con�dence intervals for the empirical transition probabilities, this however, falls outside
of the scope of this thesis and its left for future research.

2.9 Appendix

Here I use mainly the notation of section 2.5. Let 0< T 2 � T1. Consider a space
Car([0; T1] � [0; T2]) of bounded functionsf : [0; T1] � [0; T2] ! R satisfying the
following conditions:

1. f (�; � ) : [0; T1] ! R is measurable for all� 2 [0; T2],

2. f (t; �) : [0; T2] ! R is continuous for almost allt 2 [0; T1],

In the theory of ordinary di�erential equations these functions are known as
Caratheodory functions. For a brief revision of the main properties of the functions
f 2 Car([0; T1] � [0; T2]) see Ekeland and Temam (1976, Chapter 8).

Theorem 2.3 (Lusin) Let f 2 Car([0; T1] � [0; T2]) and let � : [0; T1] ! [0; T2] be

measurable. Then the functiont ! f (t; � (t)) is measurable.

Theorem 2.4 (Scorza-Dragoni) A bounded functionf belongs to the space

Car([0; T1] � [0; T2]) if and only if for any � > 0 there exists a compact set

K � � [0; T1] such thatmeas([0; T1] n K � ) < � and the functionf : K � � [0; T2] ! R is

continuous.

2.9.1 Proof of Theorem 2.1

Theorem 2.1 is an immediate consequence of Lemma 2.3 below. Toprove Lemma 2.3 we
need some auxiliary results.

Lemma 2.1 If q 2 L 1 (T ) and p 2 Car(T ), then the function

I (t; � ) =
Z �

0
p(t + u; � � u)q(t; u)du; (t; � ) 2 T ;

belongs toCar(T ).

Proof. Set

�p(t; � ) =
�

p(t; � ); (t; � ) 2 T ;
0; (t; � ) 2 R2 n T ;

�q(t; � ) =
�

q(t; � ); (t; � ) 2 T ;
0; (t; � ) 2 R2 n T ;
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and
�I (t; � ) =

Z �

0
�p(t + u; � � u)�q(t; u)du; (t; � ) 2 T :

By Theorem 2.3 the integral exists. We haveI (t; � ) = �I (t; � ), whenever (t; � ) 2 T .
There exist M > 0 such that jpj; jqj � M , and sequences of continuous functions
pn ; qn : R2 ! [� M; M ] converging to �p and �q, respectively, in the spaceL 1(R2). Put

I n (t; � ) =
Z �

0
pn (t + u; � � u)qn (t; u)du; (t; � ) 2 T :

Let � 2 [0; T2]. Combining the Scorza-Dragoni and the Lusin theorems we see that the
function (w; t) ! �p(w; � � w + t) is measurable. We have

jI n (t; � ) � �I (t; � )j �
Z �

0
j �p(t + u; � � u) � pn (t + u; � � u)jj �q(t; u)jdu

+
Z �

0
j �q(t; u) � qn (t; u)jjpn (t + u; � � u)jdu

� M
Z �

0
(j �p(t + u; � � u) � pn (t + u; � � u)j + j �q(t; u) � qn (t; u)j)du

� M
Z T1+ �

0
j �p(w; � � w + t) � pn (w; � � w + t)jdw + M

Z �

0
j �q(t; u) � qn (t; u)jdu = Jn (t):

From the Fubini theorem one obtainsJn (�) 2 L 1([0; T1]) and

Z T1

0
Jn (t)dt � M

Z

R2
(j �p(�; � ) � pn (�; � )j + j �q(�; � ) � qn (�; � )j)d� d�:

This implies that the sequenceJn (�) tends to zero in the spaceL 1([0; T1]). Therefore
there exists a subsequenceJnk (�) converging to zero almost everywhere in [0; T1]. Since
the functions I n(�; � ) are measurable, we see that the function�I (�; � ) and, as a
consequence, the functionI (�; � ) are measurable in [0; T1].
Put

~p(t; � ) =
�

p(t; � ); (t; � ) 2 T ;
p(t; T (t)) ; (t; � ) 2 ([0; T1] � [0; T2]) n T :

Obviously ~p 2 Car([0; T1] � [0; T2]). Let � > 0. By the Scorza-Dragoni theorem there
exists a compact setK � � [0; T1] such that meas([0; T1] n K � ) < �=M 2 and the function
~p : K � � [0; T2] ! R is continuous. Lett 2 [0; T1]. Consider�; � + � 2 [0; T(t)]. We have

jI (t; � + � ) � I (t; � )j

�
Z �

0
jp(t + u; � + � � u) � p(t + u; � � u)jjq(t; u)jdu + j� jM 2

�
Z

[0;� ]\ (K � � t )
jp(t + u; � + � � u) � p(t + u; � � u)jjq(t; u)jdu + � + j� jM 2 (2.40)
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There exists� 2 ]0; �=M 2[ such that jp(� 0; � 0) � p(�; � )j < �= (T2M ) whenever
(� 0; � 0); (�; � ) 2 T \ (R � K � ). Thus the right-hand side of inequality (2.40) does not
exceed 3� whenever� 2 (� �; � ). This ends the proof.2

For each matrix q = ( qij ), with qij 2 L 1 (T ) consider a linear operatorA (q) de�ned by

(A(q)p) ij (t; � ) =
sX

k=1

Z �

0
pkj (t + u; � � u)qik (t; u)du; i; j = 1; : : : ; s:

By Lemma 2.1A(q) transforms Cars(T ) into itself.

Lemma 2.2 Assume thatjqjL 1 � M . Then for any positive integern the inequality

jA n (q)j �
(sMT2)n

n!

holds.

Proof. Indeed, we have

jA n (q)pjCar s � (sM )n jpjCar s

Z �

0

Z � � un � 1

0
: : :

Z � � u1 � :::� un � 1

0
du0 : : : dun� 1: (2.41)

By induction one can easily prove the equality

Z �

0

Z � � un � 1

0
: : :

Z � � u1 � :::� un � 1

0
du0 : : : dun� 1 =

� n

n!
:

Combining this with (2.41) we obtain the result. 2

Consider, for each matrixq as above,b(q) 2 Cars(T ) given by

(b(q)) ij (t; � ) = � ij (1 � H i (t; � )) ; (t; � ) 2 T ; i; j = 1; : : : ; s;

and the mapB(q) : Cars(T ) ! Cars(T ) de�ned as

B(q)p = b(q) + A(q)p: (2.42)

Let P denote the set

f p 2 Cars(T ) : 0 � pij (t; � );
sX

j =1

pij (t; � ) = 1 ; pij (t; 0) = � ij ; t 2 [0; T1]; i; j = 1; : : : ; sg;

that is, the subset ofCars(T ) de�ned by the transition matrices. The setP is closed.

Lemma 2.3 The equationp = B(q)p has a unique solution̂p 2 P .
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Proof. Let p 2 P . Since

0 � (B(q)p) ij (t; � ) � � ij (1 � H i (t; � )) +
sX

k=1

Qik (t; � ) = � ij (1 � H i (t; � )) + H i (t; � ) � 1

(see condition (C3)), and

sX

j =1

(

� ij (1 � H i (t; � )) +
sX

k=1

Z �

0
pkj (t + u; � � u)qik (t; u)du

)

=

1 � H i (t; � ) +
sX

k=1

Z �

0

(
sX

j =1

pkj (t + u; � � u)

)

qik (t; u)du = 1;

B(q) transforms P into itself. By Lemma 2.2 there existsn such that Bn (q) is
contractive. This implies the existence of a unique solution to the equation

p = B(q)p:

Now set (r (q)) ij = � � ij H i (t; � )(q). Consider a mapp = G(q) associating toq the
solution to the equationp = A(q)p + b(q). Note that jpj = jG(q)j � 1. Let jqj � M . Put

ph = A(q+ h)ph + b(q+ h)

and � p = ph � p. Then we have

� p = A(q+ h)ph + b(q+ h) � A (q)p � b(q)

= A(q)� p + A(h)ph + r (h) = � (q;ph ;h)(� p):

Therefore

� p = � n
(q;ph ;h)(� p) = A n (q)� p +

n� 1X

k=0

A k(q)(A (h)ph + r (h)):

Since
jA n(q)j � (sMT2)n=n!;

we see that there exists the map (I � A n (q)) � 1 whenever (sMT2)n=n! < 1. Fix n
satisfying this condition. Then we obtain

� p = ( I � A n (q)) � 1
n� 1X

k=0

A k(q)(A (h)p + r (h) + A(h)� p): (2.43)

Observe that j� pj � j ph j + jpj � 2. Since

j(I � A n (q)) � 1j =

�
�
�
�
�

1X

j =1

(A n (q)) j

�
�
�
�
�

�
1X

j =1

�
(sMT2)n

n!

� j

= (1 � (sMT2)n=n!)� 1;
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from (2.43) we get

j� pj �

 

4sT2(1 � (sMT2)n=n!)� 1
n� 1X

k=0

(sMT2)k

k!

!

jhj:

Now (2.43) can be written as

G(q+ h) � G(q) = � p = � h + � (h);

where

� h = ( I � A n (q)) � 1
n� 1X

k=0

A k(q)(A (h)G(q) + r (h))

is the Fr�echet derivative of G at q computed at h and

j� (h)j � (const)jhj2:

This implies the Fr�echet di�erentiability of the G map and the end of the proof.2

2.9.2 Proof of Corollary 2.1

The Fr�echet di�erentiability of the G map overL s+ s
1 (T ) implies its continuity over

L s+ s
1 (T ). Therefore the conditions of the Continuous Mapping Theorem (see, for

example, theorem 18.11 in vd Vaart, 1998) are satis�ed.2

2.9.3 Proof of Theorem 2.2

De�ne functions
~qij (t; � ) = qij (t; maxf 0; l � 2g~�) ;

with
(t; � ) 2 T ; � 2 [(l � 1) ~� ; l ~�) ; i; j = 1; : : : ; s; l = 1; : : : ; N2:

Consider the linear operator ~A ~� : Cars(T ) ! Cars(T ) de�ned by

�
~A ~� (P)

�

ij
(t; � ) =

sX

k=1

Z �

0
pkj (t + u; � � u)~qik (t; u)du; i; j = 1; : : : ; s:

Obviously we have

jA (p) � ~A ~� (p)jCar s �
sX

k=1

jpjCar s

X

f l � 1jl ~� � T (t )g

Z l ~�

(l � 1) ~�
jqij (t; u) � ~qij (t; u)jdu

+
Z T (t)

l ~�
jqij (t; u) � ~qij (t; u)jdu � sT2L ~� jpjCar s :
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Consider also the linear operatorA ~� : Cars(T ) ! Cars(T ) de�ned by

(A ~� (P)) ij (t; � ) =
sX

k=1

mX

l=2

 Z l ~�

(l � 1) ~�
pkj (t + u; � � u)du

!

qik (t; (l � 1) ~�) ;

(t; � ) 2 T ; � 2 [m ~� ; (m + 1) ~�) ; m = 1; : : : ; N2 � 1; i; j = 1; : : : ; s:

Since

�
~A ~� (P)

�

ij
(t; � ) =

sX

k=1

mX

l=2

 Z l ~�

(l � 1) ~�
pkj (t + u; � � u)du

!

qik (t; (l � 1) ~�)

+
sX

k=1

 Z ~�

0
pkj (t + u; � � u)du

!

~qik (t; 0)+
sX

k=1

� Z �

m ~�
pkj (t + u; � � u)du

�
qik (t; (m� 1) ~�) ;

(t; � ) 2 T ; � 2 [m ~� ; (m + 1) ~�) ; m = 1; : : : ; N2 � 1; i; j = 1; : : : ; s;

we get
jA ~� (p) � ~A ~� (p)jCar s � 2sM ~� jpjCar s :

Therefore we have

jA (p) � A ~� (p)jCar s � s(T2L + 2M ) ~� jpjCar s : (2.44)

Lemma 2.4 Let n be a positive integer such that(sT2M )n=n! < 1. If ~� = T2=N2

satis�es

� n ( ~�) < 1 �
(sT2M )n

n!
; (2.45)

then the equation

p = B~� (p) = b+ A ~� (p) (2.46)

has a unique solutionp~� 2 Cars(T ) satisfying

jp
~� � p̂jCar s � � n ( ~�) : (2.47)

Proof. SincejAj ; jA ~� j � sT2M , from (2.44) we obtain

jA k
~� � A k j � jA ~� � AjjA k� 1

~�
+ A k� 2

~�
A + : : : + A k� 1j � � k( ~�) :

Therefore (see Lemma 2.2)

jA n
~� j � jA n

~� � A n j + jA n j � � n ( ~�) +
(sT2M )n

n!
:

From this we see that condition (2.45) implies the existence ofa unique solution
p~� 2 Cars(T ) to equation (2.46). Observe that

jp
~� � p̂jCar s = jBn

~� (p
~� ) � B n (p̂)jCar s � jA n

~� (p
~� ) � A n (p̂)jCar s +

�
�
�
�
�

n� 1X

k=1

(A k
~� � A k)b

�
�
�
�
�
Car s
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� jA n
~� (p

~� ) � A n
~� (p̂)jCar s + jA n

~� (p̂) � A n
~� (p̂)jCar s +

 
n� 1X

k=1

� k( ~�)

!

jbjCar s

� jA n
~� jjp

~� � p̂jCar s + jA n
~� � A n jj p̂jCar s +

 
n� 1X

k=1

� k( ~�)

!

jbjCar s :

�
�

� n ( ~�) +
(sT2M )n

n!

�
jp

~� � p̂jCar s + � n ( ~�) jp̂jCar s +

 
n� 1X

k=1

� k( ~�)

!

jbjCar s :

Sincejp̂jCar s � 1 and jbjCar s � 1, we get (2.47).2

Set Tm = f (t; � ) 2 T j � � m ~� g. From (2.46) we see that the functions
p~�

ij : Tm+1 ! [0; 1] satisfy

p
~�
ij (t; � ) = � ij (1 � H i (t; � )) +

sX

k=1

mX

l=2

 Z l ~�

(l � 1) ~�
p

~�
kj (t + u; � � u)du

!

qik (t; (l � 1) ~�) ; (2.48)

(t; � ) 2 T ; � 2 [m ~� ; (m + 1) ~�) ; i; j = 1; : : : ; s;

and are completely determined by their values on the setTm . This implies that (2.48)
allows to successively calculate the functionsp~�

ij : T ! [0; 1], i; j = 1; : : : ; s, on the sets
T1 � T 2 � : : : � T N2 .

Lemma 2.5 The solution p~�
ij to equation (2.48) is Lipschitz continuous in

[m1
~� ; (m1 + 1) ~�) � [m2

~� ; (m2 + 1) ~�) \ T , m1 = 0; : : : ; N1 � 1, m2 = 0; : : : ; N2 � 1,

with the constant

~L = maxf 2sL ~� + M; sLT 2 + sM + ( sLT2 + 16sN2M )jp
~� jCar s g

(1 + 4sMT2)N2 � 1 � 1
4sMT2

:

Proof. Consider (t0; � 0); (t00; � 00) 2 [m1
~� ; (m1 + 1) ~�) � [m2

~� ; (m2 + 1) ~�) \ T , where
m2 = 0 or m2 = 1. Then we have

jp
~�
ij (t0; � 0) � p

~�
ij (t00; � 00)j = � ij jH i (t0; � 0) � H i (t00; � 00)j

=
sX

k=1

 Z � 0

0
qik (t0; u)du �

Z � 00

0
qik (t00; u)du

!

�
sX

k=1

Z 2 ~�

0
jqik (t0; u) � qik (t00; u)jdu + sM j� 0 � � 00j � L1(jt0 � t00j + j� 0 � � 00j);

whereL1 = 2sL ~� + sM .
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Suppose thatp~�
ij is Lipschitzian in [m1

~� ; (m1 + 1) ~�) � [m2
~� ; (m2 + 1) ~�) \ T ,

m1 = 0; : : : ; N1 � 1, m2 = 0; : : : ; m � 1, with the constant Lm� 1. If
(t0; � 0); (t00; � 00) 2 [m1

~� ; (m1 + 1) ~�) � [m ~� ; (m + 1) ~�) \ T , we have

p
~�
ij (t0; � 0) � p

~�
ij (t00; � 00) = � ij (H i (t0; � 0) � H i (t00; � 00))

+
sX

k=1

mX

l=2

  Z l ~�

(l � 1) ~�
p

~�
kj (t0+ u; � 0 � u)du

!

qik (t0; (l � 1) ~�)

�

 Z l ~�

(l � 1) ~�
p

~�
kj (t00+ u; � 00� u)du

!

qik (t00; (l � 1) ~�)

!

= � ij (H i (t0; � 0) � H i (t00; � 00))

+

 Z l ~�

(l � 1) ~�
p

~�
kj (t00+ u; � 00� u))du

!

(qik (t0; (l � 1) ~�) � qik (t00; (l � 1) ~�))

+
sX

k=1

mX

l=2

 Z l ~�

(l � 1) ~�
(p

~�
kj (t0+ u; � 0 � u) � p

~�
kj (t00+ u; � 00� u))du

!

qik (t0; (l � 1) ~�) :

From this we obtain
jp

~�
ij (t0; � 0) � p

~�
ij (t00; � 00)j

� s((m + 1) L ~� + M )( jt0 � t00j + j� 0 � � 00j) + smLjp
~� jCar s

~� jt0 � t00j

+ M
sX

k=1

mX

l=2

Z l ~�

(l � 1) ~�
jp

~�
kj (t0+ u; � 0 � u) � p

~�
kj (t00+ u; � 00� u)jdu: (2.49)

Set

U(t0; � 0; t00; � 00) = f u j 9 l1; l2; w; v : t0+ u + w = t00+ v; � 0 � u + w = � 00� v;

(t0+ u; � 0 � u); (t00+ v; � 00� v) 2 [(l1 � 1) ~� ; l1 ~�] � [(l2 � 1) ~� ; l2 ~�] g:

If jt0 � t00j + j� 0 � � 00j < ~� =4, then from elementary geometric considerations we get

meas(U(t0; � 0; t00; � 00)) � T2 � 2(jt0 � t00j + j� 0 � � 00j)N2:

Therefore for (t0; � 0); (t00; � 00) 2 [m1
~� ; (m1 + 1) ~�) � [m ~� ; (m + 1) ~�) \ T satisfying

jt0 � t00j + j� 0 � � 00j < ~� =4 we have

sX

k=1

mX

l=2

Z l ~�

(l � 1) ~�
jp

~�
kj (t0+ u; � 0 � u) � p

~�
kj (t00+ u; � 00� u)jdu

�
sX

k=1

� Z

U(t0;� 0;t 00;� 00)
jp

~�
kj (t0+ u; � 0 � u) � p

~�
kj (t00+ u; � 00� u)jdu

+
mX

l=2

Z

[( l � 1) ~� ;l ~�] nU(t0;� 0;t 00;� 00)
jp

~�
kj (t0+ u; � 0 � u) � p

~�
kj (t00+ u; � 00� u)jdu

!
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� (sLm� 1T2 + 4sN2jp
~� jCar s )( jt0 � t00j + j� 0 � � 00j):

Combining this with (2.49) we see that the functionp~�
kj is Lipschitzian in

[m1
~� ; (m1 + 1) ~�) � [m ~� ; (m + 1) ~�) \ T , with the constant

Lm = s((m + 1) L ~� + M ) + smLjp
~� jCar s

~� + 4( sLm� 1T2 + 4sN2jp
~� jCar s ):

By induction we obtain
LN2 � 1 � ~L

= maxf 2sL ~� + M; sLT 2 + sM + ( sLT2 + 16sN2M )jp
~� jCar s g

(1 + 4sMT2)N2 � 1 � 1
4sMT2

:

This ends the proof.2

Lemma 2.6 The sequence


 0 = 0; 
 � +1 = �

 
�X

� =0


 � + ��

!

; � = 0; 1; : : : ;

satis�es the inequality


 � +1 � � 2� (1 + � )� :

Proof. Set S� =
P �

� =0 
 � and � � = S� =� . We haveS� +1 = (1 + � )S� + �� 2 and

� � +1 �
S� +1

�
= (1 + � )� � + � 2:

By induction we obtain

� � � � 2(1 + (1 + � ) + : : : + (1 + � )� � 1) = � ((1 + � )� � 1):

Therefore

 � +1 = �� (� � + � ) � � 2� (1 + � )� : 2

Let t = ( m1 + �l) ~� and � = ( m2 � �l ) ~�. Observe that (see (2.48))

p
~�
ij (t; � ) = � ij (1 � H i (t; � )) +

sX

k=1

m2 � �lX

l=2

 Z l ~�

(l � 1) ~�
p

~�
kj (t + u; � � u)du

!

qik (t; (l � 1) ~�)

= � ij (1 � H i (t; � ))

+�
sX

k=1

m2 � �lX

l=2

2N � 1X

r =0

p
~�
kj (t + (( l � 1) + r=2N ) ~� ; � � (( l � 1) + r=2N ) ~�) qik (t; (l � 1) ~�)

+
sX

k=1

m2 � �lX

l=2

2N � 1X

r =0

� iklr ; (2.50)
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where

� iklr =

 Z (l � 1+( r +1) =2N ) ~�

(l � 1+ r=2N ) ~�
p

~�
kj (t + u; � � u)du

!

qik (t; (l � 1) ~�)

� � p
~�
kj (t + (( l � 1) + r=2N ) ~� ; � � (( l � 1) + r=2N ) ~�) qik (t; (l � 1) ~�) :

Put

 ij (m1 + �l + �r=2N ; m2 � �l � �r=2N )

= jp
~�
ij ((m1 + �l + �r=2N ) ~� ; (m2 � �l � �r=2N ) ~�)

� p̂�
ij ((m1 + �l + �r=2N ) ~� ; (m2 � �l � �r=2N ) ~�) j

(see (2.39)). By Lemma 2.5 we havej� ijlr j � ~LM � 2. Combining (2.39) and (2.50) we
obtain


 ij (m1 + �l + �r=2N ; m2 � �l � �r=2N )

� � M
sX

k=1

m2 � �lX

l=2

�r � 1X

r =0

(
 kj (m1 + �l + �r=2N ; m2 � �l � �r=2N ) + ~L�) :

Applying Lemma 2.6 with � = ( s + ~L)M �, we get


 ij (m1; m2) � (s + ~L)2M 2� 2N22N (1 + ( s + ~L)�) N22N

� (s + ~L)2M 2T2� exp(( s + ~L)MT2):

(Here I used the well-known inequality (1 + 1=a)a � exp(a).) This and the inequality

jp
~� jCar s � j p̂jCar s + jp̂ � p

~� jCar s � 1 + jp̂ � p
~� jCar s

together with Lemma 2.4 imply Theorem 2.2.2







Chapter 3

The Multi-State Latent Factor

Intensity Model for Credit Rating

Transitions

3.1 Summary

This chapter introduces a new empirical reduced-form modelfor credit rating
transitions. It is a parametric intensity-based duration modelwith multiple states and
driven by exogenous covariates and latent dynamic factors. The model has a generalized
semi-Markov structure designed to accommodate many of the stylized facts of credit
rating migrations. In this chapter, parameter estimation is based on Monte Carlo
maximum likelihood methods whose details are presented. A simulation experiment is
carried out to show the e�ectiveness of the estimation procedure. An empirical
application is presented for transitions in a 7 grade rating system. The model includes a
common dynamic component that can be interpreted as the credit cycle. Asymmetric
e�ects of this cycle across rating grades and additional semi-Markov dynamics are found
to be statistically signi�cant. Finally, an investigation is carried out on whether one
common factor su�ces to capture systematic risk in rating transition data by
introducing multiple factors in the model. The contents in this chapter are mostly
derived from Koopman, Lucas and Monteiro (2008)

3.2 Introduction

Ratings play a prominent role in the credit industry. Their key purpose is to provide a
simple qualitative classi�cation of the solidity, solvency and prospects of a debt issuer.
The importance of credit ratings has increased signi�cantly with the introduction of the
new regulatory framework known as Basel II (BCBS, 2004). In this framework, ratings
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can be used directly to determine the size of a bank's capital bu�er. As capital
constitutes a relatively costly source of funding for a bank, ratings and rating changes
directly a�ect the banks' willingness to grant credit to individual �rms. Moreover, if
ratings and thus capital requirements co-vary with the business cycle, economic

uctuations may be exacerbated by capital becoming increasingly scarce in adverse
economic conditions, precisely when it is needed most. It is clear that a good
understanding of the dynamic behavior of ratings and rating changes is therefore
important from both a regulatory and �nancial industry perspective.
In this chapter a new model for rating transitions is introduced. The main novelty of
the model is that rating transitions are modeled continuouslyin event time rather than
calendar time and are subject to common dynamic latent factors. Although the model is
relatively complex, it is shown that it can be feasibly estimated using modern
importance sampling techniques for non-Gaussian models in state space form.1

The literature on modeling credit events such as defaults andrating changes has grown
rapidly over the past 10 years. Wilson (1997a,b) modeled default rates using logistic
regressions with macroeconomic explanatory variables. Nickell, Perraudin and Varotto
(2000) and Bangia et al. (2002) show that upgrade, downgrade,and default probabilities
di�er over di�erent economic regimes, whether characterized by NBER business cycle
classi�cations or by GDP growth rates. Default and downgrade intensities are higher
during recessions. In the same spirit, Kavvathas (2001), Carling, Jacobson, Lind�e and
Roszbach (2002), Couderc and Renault (2004), and Du�e, Saita, and Wang (2007) use
a duration approach conditional on observed macroeconomic and �rm characteristics
and show that average times-to-default decrease if economic activity decreases.
Koopman and Lucas (2008) and Koopman, Lucas and Klaassen (2005) have adopted a
direct time series approach and identi�ed the time-varying cyclical nature of default
rates over a long historical period. Also Fledelius, Lando and Nielsen (2004) corroborate
the existence of time-
uctuations for credit rating migration rates.
Whereas some of the contributions in the literature introduce observed macro-variables
to capture co-variation in default intensities between �rmsand industries, an alternative
approach is to estimate the common components of default risk directly from the data.
An advantage of such an approach is that one is less prone to misspeci�cation caused by
the use of an incorrect macroeconomic proxy for the credit cycle. Couderc and Renault
(2004) tested a large number of macroeconomic variables for their predictive ability and
found �ve signi�cant factors. Still, a large part of the 
uctua tions in systematic default
probabilities could not be accounted for. Second, by estimating the default dynamics
directly from the data, one obtains an integrated frameworkfor capital determination
and risk management, see Koopman, Lucas and Klaassen (2005). By contrast, if
observed macroeconomic variables are used, one needs an auxiliary forecasting model for
such variables, see for example Du�e et al. (2006a,b).
Suggestions for dynamic models with latent components are Gagliardini and Gourieroux
(2004), McNeil and Wendin (2006), and Koopman, Lucas and Daniels (2005). These
models, however, are all set in a calendar time framework: rating transitions are

1In chapter 5 two other feasible estimation methodologies are presented, and compared to the one

discussed in this chapter.
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observed empirically over discrete time slots, e.g., years or quarters. The observed
frequencies are subsequently modeled by non-Gaussian time series processes. By
contrast, in this chapter a duration model with unobserved components is used. The
duration (continuous time) approach is the more natural approach in the current
context, where durations to transitions are endogenous rather than exogenous. In this
way, all the information available in the data-set is used. Lando and Sk�deberg (2002)
provide a further detailed discussion of the advantages of the continuous-time approach.
The new model can be regarded as a multi-state extension of the Stochastic Conditional
Intensity (SCI) model of Bauwens and Hautsch (2003, 2006a). TheSCI model is a point
process model for stock transactions in tick-time. Durations in the SCI model are the
time to the next trade. By contrast, in the current model it is not only the time to the
next rating event that is unknown, but also the type of event that is going to occur, e.g.,
upgrade, downgrade, or default. In that sense, the model introduced in this chapter is
set in the so-called competing risks framework. Given a �rm's initial rating, there are
multiple states for the �rm's next rating. Each of these states has its own duration
process and only the minimum of those is observed. This leads to amore complicated
likelihood structure than considered by Bauwens and Hautsch (2003, 2006a).
The likelihood function of the new model contains a high dimensional integral involving
the latent common risk factor. In this way, this parameter driven model di�ers from
well-known observation driven counterparts like the Autoregressive Conditional
Duration model (ACD) of Engle and Russell (1998), or the Autoregressive Conditional
Intensity model (ACI) of Russell (1999). In this chapter, the likelihood of this new
model is evaluated using a multivariate extension of the MonteCarlo techniques that
are developed by Durbin and Koopman (1997, 2001). The e�ectiveness of the method is
demonstrated by means of a simulation experiment.
The model is estimated for the CreditPro7.0 data set from Standard & Poor's,
containing all issuer ratings over the period 1981 { 2005. In the present study �rms are
classi�ed into 7 standard rating categories and a dynamic modelfor upgrades,
downgrades, and defaults is speci�ed using all available data.This yields a data set
including almost 7000 �rms and almost 14000 informative rating events (more than
25000 if sample extension and attrition are also taken into account). The analysis leads
to some interesting empirical �ndings. First, there is signi�cant evidence of a persistent
common component in rating transitions. It is further shown that the impact of this
common component with respect to downgrade and upgrade probabilities is asymmetric.
Upgrades are idiosyncratic to a large extent, whereas downgrades and defaults tend to
cluster together in time. Further, experiments with multiple (latent) factor models cast
doubt on the suitability of (widespread) single factor models for risk management and
capital bu�er determination. Finally, there is statisticall y signi�cant evidence of
semi-Markov e�ects in transitions and defaults. Investment grade transition intensities
tend to increase over the �rst few years and become more stable thereafter.
Sub-investment grade companies, by contrast, show increased transition activity at short
durations, probably due to momentum e�ects, and at longer durations, possibly due to
debt roll-over.
This chapter is organized as follows. In Section 3.3, the model is presented. Section 3.4
contains the details of a computationally e�cient estimation methodology for this model.
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Section 3.5 discusses how to obtain default probabilities over�nite time periods from
the event time speci�cation. Section 3.6 contains the resultsof a Monte Carlo study. In
Section 3.7 the results of the empirical study are presented. Section 3.8 concludes.

3.3 The Multi-State Latent Factor Intensity model

The multi-state latent factor intensity (MLFI) model is a mult i-state generalization for
multivariate point processes of the latent factor intensity (LFI) model of Bauwens and
Hautsch (2003). Consider a set ofK units (or �rms) whose event-histories can be
adequately described by the history of transitions between a �nite set of states. The
states in the empirical application will be the set of credit ratings for issuers as assigned
by Standard and Poor's (S&P). The data set has a clear panel structure and consists of
the exact dates, and the corresponding type, of the rating changes recorded for each �rm
in the sample. In order to account for unobserved dependence between the transition
histories in a parsimonious way, a common factor (t)is introduced. In this modeling
framework it is assumed that conditional on (t), rating events are independent across
�rms (i.e., along the cross section dimension). This assumption is standard in the credit
risk literature and is used to prevent the model's corresponding joint state-space
becoming quickly unmanageable due to its size. Gagliardini and Gourieroux (2004)
provide a short discussion of this curse of dimensionality problem.
The multi-state feature of the model is represented as a setS of transition types,
S = f 1; 2; : : : ; Sg. For example, in the case of three rating classes (AAA,AA,A),s = 1
denotes a downgrade from AAA to AA,s = 2 from AAA to A, s = 3 an upgrade from
AA to AAA, : : :, up to s = S = 6 an upgrade from A to AA. Next, de�ne the
right-continuous counting processesN k(t) and N (t) (their left-continuous counterparts
are denoted as�N k(t) and �N (t)). The processesN (t) and �N (t) make a jump of unit size
at each time there is a rating event for one of theK units.2 Similarly, N k(t) (and �N k(t))
jumps at the times there is a credit event for unitk such that

N (t) =
KX

k=1

N k(t);

with a similar relationship holding for their left-continuous counterparts. These point
processes are marked because at each event time we also observe thetransition type of
the unit, i.e., the speci�c type of upgrade or downgrade. In fact, the counting process
N k(t) (and �Nk(t)) can be expressed as the sum ofS counting processesN k

s (t) (and
�N k

s (t) respectively) that keep track of the total number of transitions of types for �rm
k. It follows that

N k(t) =
SX

s=1

N k
s (t); N (t) =

KX

k=1

N k(t) =
SX

s=1

KX

k=1

N k
s (t);

2It is assumed that there are no simultaneous rating transitions. In practice theS&P's database is

recorded at a daily frequency. This means multiple rating actions can be observed on a single day (for

distinct �rms). The likelihood speci�cation in Section 3.4 incorporates this phenomenon.
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and similarly for their left-continuous counterparts. Corresponding to each of these
point processesN k

s (t) it is assumed there is a �nite stochastic intensity~� sk(t). In
practical terms this intensity describes the instantaneous probability of unit k
experiencing a types rating transition at time t conditional on the information available
just before time t. Naturally, such transition intensities are only de�ned at timet if the
unit actually is `at risk' for transition type s at t � < t , wheret � t � is arbitrarily small.
For example, the downgrade intensity from AAA to AA for �rm k at time t is only
de�ned if �rm k actually has an AAA rating just prior to t. The intensity for each point
process3 ~� k

s(t) can be (informally) de�ned by

~� k
s(t) = lim

� #0

P
�
N k

s (( t + �) � ) � N k
s (t � ) > 0 j F t �

�

�
;

see for example Andersen et al. (1993, p. 51). The conditional information up to (but
not including) time t is represented byF t � = [ �<t F � for an appropriate �ltration F � .
De�ne Y k

s (t) as a dummy variable that takes the value one if unitk is `at risk' for
transition type s 2 S at time t � , and zero otherwise. Note that unitk can be at risk for
multiple transition types at the same time. For example, both the AAA to AA and the
AAA to A transitions may be at risk simultaneously. Obvious reasons for a transition
type not to be at risk for �rm k at time t are that unit k has the incorrect current initial
rating, has defaulted, or dropped out of the sample earlier for other reasons.
The main assumption used to build the parametric intensity processes

~� k
s(t) = � k

s(t)Y k
s (t)

is the log-linearity of the instantaneous hazard rate� k
s(t) conditional on the observed

path of any relevant covariates. The model speci�cation for the conditional hazard� k
s(t)

is thus given by
� k

s(t) = exp
�
� s + 
 0

sw
k(t) + � s (t)

�
� H k

s (t); (3.1)

with s = 1; : : : ; S and k = 1; : : : ; K , where (i) scalar� s, m � 1 vector 
 s, and scalar� s

are �xed unknown coe�cients, (ii) m � 1 vector wk(t) contains explanatory variables
(covariates), (iii) scalar  (t) represents a latent dynamic factor, and (iv) scalar function
H k

s (t) represents the generalized baseline hazard function, whichcan be used to model
duration dependence of the multivariate type (i.e. dependence on the quantity of time
elapsed since the previous rating transitions). This speci�cation encompasses for
example the homogeneous continuous-time Markov chain modelthat is frequently used
in the empirical credit risk literature, see, for example, Kavvathas (2001) and Lando and
Sk�deberg (2002). Note that� k

s(t) is assumed to be de�ned only if the corresponding
Y k

s (t) = 1.
A more detailed discussion of the intensity speci�cation (3.1) follows below. The
parameter � s represents the reference-level log-hazard of transition type s. It is
independent of time and common across all unitsk = 1; : : : ; K . The parameter vector
 s

3N k
s (t) is assumed to be a conditionally orderly process, i.e., it satis�es

P
�
N k

s (( t + �) � ) � N k
s (t � ) > 1 j F t �

�
= o(�) P

�
N k

s (( t + �) � ) � N k
s (t � ) = 1 j F t �

�
, such that the

probability of a jump larger than 1 in N k
s (t) can be discarded.
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and scalar� s measure the sensitivity of unitk's log-hazard for transition types with
respect to observed covariateswk(t) and the unobserved process (t), respectively. The
m-dimensional vector of covariateswk(t), is taken as �xed givenF0 and can contain, as
in Du�e, Saita and Wang (2007), unit-speci�c information such as leverage and
pro�tability ratios, industry dummies, stock volatilities or st atistics depending on the
rating process.4 Further, wk(t) can include macroeconomic information such as
economic growth rates, interest rate levels and term structurevariables. In this case
subscript k can be dropped from the notation. Note that phenomena like rating
momentum can also be included inwk(t) such that past downgrades and upgrades make
subsequent downgrades and upgrades more likely, respectively.
The coe�cients � s depend on the transition types 2 S. This implies that � s can
depend on both the origin and the destination state. In the empirical literature it is
common practice to let� s parameters depend on the origin state, i.e., the initial rating,
only. Here, however, the impact of the common risk factor (t) depends on the type of
transition, and therefore on the destination state as well. Forexample, upgrades might
be less subject to common risk factors than downgrades, see Gagliardini and Gourieroux
(2005). Restrictions on� s can be tested explicitly using the maximum likelihood based
procedure of Section 3.4.
Following the empirical work in the credit risk literature, all intensities are assumed to
be subject to the same unobserved dynamic common factor (t). Relaxing this
assumption by making (t), for example, rating or industry speci�c is conceptually
straightforward in this modeling framework. The latent process might even be unit
speci�c as in Bauwens and Hautsch (2003, 2006a). In the case of rating transition data,
however, specifying unit-speci�c processes is not really feasible. The number of rating
events for an individual �rm is usually too small, even over a prolonged period of time.
This is a direct consequence of the rating agencies' policy to provide stable ratings to
the investment community.
Assume that  (t) only changes at observed event timestn for n = 1; : : : ; �N (T) where T
denotes the time index of the last observation (right-censoring of type I). The
speci�cation of  (t) as a stochastic process with piecewise constant (left-continuous)
sample paths is intuitive since the intensity of the pooled process (pooled over �rms and
transition types) is not identi�ed between two consecutive events. Moreover, in the
context of credit rating transitions,  (t) is intended to capture low-frequency
co-movements in the vector of migration intensities. In the empirical illustration of
Section 3.7, the average duration of the pooled process is 1.2days. Therefore, no serious
bias will arise from disregarding possible changes in the macroeconomic variables over
the almost bi-daily spells of the pooled process.
Let  n =  (tn) denote the value of the common risk factor (t) over the interval
t 2 (tn� 1; tn ]. In order to capture serial correlation in the intensity of the pooled process,
the dynamic process for n can be speci�ed, for example, by a �rst order autoregressive

4The possible endogenous nature of a selection of (time-varying) covariates leads to an inference

procedure that can no longer be interpreted as full (conditional) maximum likelihood. In such case

a partial likelihood inference framework results from treating as either �xed or de�ned any internal

covariates, see Lancaster (1990) and Kalb
eisch and Prentice (1980, 2002).
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(AR) equation
 n = � � n  n� 1 + � n"n ; (3.2)

where"n is a set of i.i.d. N(0; 1) innovations, the AR parameter� 2 [� 1; 1], and where
� n may depend on the length� n of the interval (tn� 1; tn ). The speci�cation in (3.2) has
small changes in (t) over short spells. This is in line with the interpretation of (t) as
an economy wide risk factor, which one would not expect to varywildly at high
frequencies. As not all� s parameters from (3.1) and� n can be identi�ed simultaneously,
� n is normalized to

� 2
n =

�
(1 � � 2� n =D )=(1 � � 2=D ) for � 1 < � < 1,
� n for � = 1,

(3.3)

in the empirical work of Section 3.7, withtn measured in days of aD = 260 day business
year. This brings (t) close to an Ornstein-Uhlenbeck (forj� j < 1) or Brownian Motion
(for � = 1) process observed at the event daystn . More general dynamic speci�cations
for  n can be easily incorporated in the state space framework of the next subsection.
For example, di�erent AR processes can be considered for speci�c rating transitions. See
also the empirical application in Section 3.7.
The baseline hazardH k

s (t) is speci�ed by the deterministic function

H k
s (t) = Hs(t � tk

0 ; t � tk
1 ; : : : ; t � tk

N k (t )); (3.4)

wheret � tk
n denotes the backward-recurrence time of unitk with respect to its past i th

transition moment. The function Hsk(�) can be any non-negative function of its
arguments. The inclusion ofH k

s (t) introduces duration dependence into the model and,
therefore, relaxes the Markov assumption. More precisely, ifH k

s (t) is allowed to depend
only on t � tk

N k (t ) , then each unit follows a semi-Markov process. In the general case a
generalized semi-Markov process is obtained, see Glynn (1988). Possible choices for
H k

s (t) include the hazard function of a multivariate Weibull distribution, given by

Hs(x0; : : : ; xN ) =
NX

n=0

asi xbs � 1
n ; (3.5)

with xn � 0 and �xed coe�cients asi > 0 and bs > 0 for n = 0; 1; : : : ; N . Another valid
alternative is the self-excitation mechanism introduced by Hawkes (1971) and also
considered for the LFI model by Bauwens and Hautsch (2003).
It should be noted that k's observed duration or spelltk

N k (t ) � tk
N k (t )� 1 is the minimum of

P
s Y k

s (t) latent durations corresponding to the set of feasible transitions `at risk' for unit
k at time t. Here the standard practice of assuming that the latent durationprocesses
are mutually independent conditional on the common factor (t) is adopted.5 See van
den Berg (2001) for a detailed discussion of identi�cation problems in this setting.
To complete the model speci�cation, an additional set of identifying assumptions for the
parameters is required. The global identi�cation of intensity speci�cation (3.1) requires

5If no exogenous covariates are included, as in the empirical illustration of Section3.7, this is an

innocuous assumption, see Tsiatis (1975, Theorem 2).
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a sign restriction for � s. Changing the sign simultaneously for all� s's and for the
complete path of (t) clearly yields the same path for the intensity~� k

s(t). Therefore, the
restriction � s < 0 for s = S is enforced.
For a vector of unknown parameters� , the likelihood function conditional on the initial
ratings, pre-sample event histories,6 and on the complete path of the unobserved
process, as de�ned by 	 �N (T )+1 = f  ng

�N (T )+1
i =1 , can be written as

L
�
� j F T ; 	 �N (T )+1

�
=

�N (T )+1Y

n=1

KY

k=1

SY

s=1

exp
�

� N k
s (tn) lnf � k

s(tn )g � Y k
s (tn )

Z tn ^ T

tn � 1

� k
s(t)dt

�
;

(3.6)
where dummy variable � N k

s (t) = N k
s (t) � �N k

s (t) is one if unit k at time t experiences a
rating event of type s, and zero otherwise, andFT denotes the relevant observable
�ltration. The likelihood function (3.6) has an intuitive i nterpretation. Unit k only
contributes to the (conditional) likelihood if it is at risk, that is if Y k

s (tn ) = 1. In this
case, the likelihood contains the probability of survival of unit k in its current state over
each spell of the pooled point process if there was no rating event for this unit at risk.
When rating event n takes place at the end of the spell of the pooled process for �rmk,
that is if � N k

s (tn) = 1, the survival probability is multiplied by the hazard rat e to yield
the probability density of the rating event.
The likelihood in (3.6) can be decomposed in a likelihood of a spell length in the pooled
point process, and a likelihood of the associated mark. The spell length follows from the
cumulated (over all s and k) intensities at risk, Y k

s (t)� k
s(t). The mark then follows from

the multinomial distribution with probabilities

Y k
s (t)� k

s(t)=
X

s;k

Y k
s (t)� k

s(t)

for �rm k experiencing rating event types. See also Section 3.6. This is the most
general speci�cation.7 More restrictive speci�cations can of course be accommodated as
well. For example, one might take the ordered nature of ratings into account by
restricting the � s parameters to depend on the initial/input rating only, and not on the
output rating. In this chapter, however, I stick to the more general speci�cation.
In order to estimate the parameter vector� , the conditional likelihood function must be
integrated with respect to the complete path 	 �N (T )+1 of the unobserved process (t).
The maximum likelihood problem becomes

max
�

L(� j F T ); (3.7)

6A discussion of the initial conditions problem in event-history models is provided by van den Berg

(2001).
7Given the close resemblance of the process for the marks with qualitative response models, well-

known problems for those classes of models like (in)dependence of irrelevant alternatives (IIA), will be an

issue here as well, at least for the general multinomial speci�cation. Though not the issue of this chapter,

the current methodology is also applicable in more general classes of point process models that are less

subject to such problems. Moreover, in the current application to credit risk modeling within a 7 grade

ratings system, IIA is not a key issue.
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where

L(� j F T ) =
Z

L
�
� j F T ; 	 �N (T )+1

�
p(	 �N (T )+1 )d	 �N (T )+1 ; (3.8)

and p(	 �N (T )+1 ) denotes the density function of 	 �N (T )+1 .

3.4 Monte Carlo Maximum Likelihood Estimation

The main di�culty with maximum likelihood estimation in (3.8 ) is the computation of
the high-dimensional integral. In a typical application suchas the one in the next
section, this integral is much more than 4000 dimensional. McNeil and Wendin (2006)
address a similar problem by adopting a Bayesian perspective, albeit in a lower
dimensional space (around 50). Bauwens and Hautsch (2003, 2006a) adopt the
simulated maximum likelihood method of Liesenfeld and Richard (2003) and Richard
and Zhang (2007) for the estimation of a single-state LFI model.
By contrast, in this chapter, the general method of Monte Carlo maximum likelihood is
used to estimate a multi-state LFI (MLFI) model. To overcome theine�ciency problem
of direct Monte Carlo estimation of the high-dimensional integral in (3.8) a combination
of importance sampling and the Kalman �lter and smoother is used, as described in
Durbin and Koopman (Part II, 2001). It is shown that the methodology can be made
applicable for high-dimensional problems. In this section, the model is formulated in
state space form in Subsection 3.4.1. The Monte Carlo simulationmethod for likelihood
evaluation is discussed in Subsection 3.4.2.

3.4.1 State Space representation

The MLFI model considers the following three sources of stochastic variation: (i) the
duration between events in the pooled process, denoted by� n = tn � tn� 1; (ii) the
transition types s being at risk at t �

n for unit k, denoted byY k
s (tn ); (iii) the speci�c

transition type s at time tn for unit k, denoted by � N k
s (tn ). These stochastic variables

are collected in the vectorzn for n = 1; : : : ; �N (T) + 1, where zn is de�ned as

zn =
�

� n ; Y 1
1 (tn ) ; : : : ; YK

S (tn) ; � N 1
1 (tn ) ; : : : ; � N K

S (tn)
	 0

:

The vector zn can be constructed (or observed) at each eventn = 1; : : : ; �N (T) + 1. The
analogue of the observation equation forzn is implied by the non-Gaussian conditional
likelihood in (3.6). In particular, for the i th event time of the pooled process, the
conditional log-density is

ln p(zn j n ; F t �
n

) =
SX

s=1

KX

k=1

� N k
s (tn ) lnf � k

s(tn )g � Y k
s (tn )

Z tn ^ T

tn � 1

� k
s(t)dt; (3.9)

for n = 1; : : : ; �N (T) + 1.
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The intensity speci�cation (3.1) can be formulated more generally via vector xn that
contains latent processes and �xed e�ects. That is,

� k
s(t) = exp ( Zskn xn ) � H k

s (t); for tn� 1 < t � tn ; (3.10)

whereZskn is a �xed and known `selection' vector, fors = 1; : : : ; S, k = 1; : : : ; K , and
n = 1; : : : ; �N (T) + 1. In case H k

s (t) = 1, intensity � k
s(t) is constant for tn� 1 < t � tn . To

show that speci�cations (3.1) and (3.10) can be equivalent, consider

xn = f � 1 ; : : : ; � S ; 
 0
1 ; : : : ; 
 0

S ;  (tn)g0;

Zskn =
�

e0
s ; e0

s 
 wk(tn)0 ; � s
	

;

wherees is the s-th column of I S. It follows that Zskn xn = � s + 
 0
sw

k(tn ) + � s n . If
another speci�cation for � k

s(t) is considered, the speci�cations forZskn and xn need to
be adjusted accordingly.
The vector xn can contain both �xed unknown coe�cients and dynamic latent
processes. Thereforexn is modeled by the general Markovian process

xn = Fnxn� 1 + ~Rn � n ; � n � NIID(0 ; Qn ); n = 1; : : : ; �N (T) + 1 ; (3.11)

with initial condition x0 � N(a; P). The vector a and the matrix processesFn , ~Rn , Qn

and P are predictable with respect to the observable �ltrationF t and may also depend
on the parameter vector� . If the vector xn only consists of �xed unknown coe�cients,
then set a = 0, Fn = ~Rn = I , Qn = 0 and P = �I , where� is the so-called di�use prior
constant. Usually, � is set to some large value in numerical software, see Harvey (1989,
pp. 367-8). Exact solutions for� ! 1 are available as well, see Durbin and Koopman
(2001, Ch. 4). If the vectorxn only contains the latent autoregressive process (3.2), that
is xn =  n , one should seta = 0, Fn = � � n , ~Rn = 1, Qn = � 2

n and P = (1 � � 2)� 1. A
combination of unknown coe�cients and latent time series processes can be
incorporated in (3.11) in a straightforward way. For example, in the case of (3.1) with
wk(t) = 0, we have xn = ( � 1 ; : : : ; � S ;  n )0 with a = 0,

Fn =
�
I S 0
0 � � n

�
; ~Rn =

�
0
1

�
; Qn = � 2

n ; P =
�
�I S 0
0 (1 � � 2)� 1

�
:

In case multiple latent factors or higher order dynamics of the latent factors are part of
the model, the state vectorxn can be extended in a natural way. The state space
matrices need to be adjusted accordingly. A general framework for the MLFI model can
be summarized by the observation log-density forzn conditional on the statexn . This is
given by (3.9) where� k

s(t) is given by (3.10) fortn� 1 < t � tn , and wherexn is modeled
by (3.11) with n = 1; : : : ; �N (T) + 1. This set of equations makes up a nonlinear
non-Gaussian state space model as considered by Shephard and Pitt(1997) and Durbin
and Koopman (1997, 2001). Importance sampling methods enable the evaluation of the
likelihood function but also the estimation ofxn and the computation of the
corresponding standard errors forn = 1; : : : ; �N (T) + 1. The details of these methods are
given in Subsection 3.4.2.
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The high dimension of the state vectorxn should be noted, since it includes the scalars
� 1; : : : ; � S, whereS can be as large as 49 = 72 in a 7 ratings system. However, the state
space analysis can accommodate this aspect of the model in a feasible way since it relies
on computationally e�cient methods such as the Kalman �lter and associated
algorithms. Furthermore, it leads to a signi�cant reduction of the size of the parameter
vector � . Since� needs to be estimated via the numerical optimization of the likelihood,
computation time is also reduced as a result. The remaining parameters in� are � and
the � ss. These coe�cients can be placed in the state vectorxn as well although in this
case the model becomes nonlinear in the state equation. The linear Markovian process
(3.11) modeling of the state vectorxn is not applicable anymore. The treatment of
nonlinear state processes is more involved and computationally more demanding. The
details of the estimation procedures forxn and � in the current framework are presented
in the next subsection.

3.4.2 Monte Carlo likelihood evaluation

Given the statistical model speci�cation of the previous subsection, the likelihood
function (3.8) can be reformulated by

L(� j F T ) =
Z

8
<

:

�N (T )+1Y

n=1

p(zn jxn ; Fn� 1 )

9
=

;
p(x j F T )dx; (3.12)

wherep(zn jxn ; Fn� 1 ) is given by (3.9) and the model forx =
�

x0
1; : : : ; x0

�N (T )+1

� 0
is

implied by (3.11). Both p(zn jxn ; Fn� 1 ) and p(xjF T ) depend on the parameter vector�
for n = 1; : : : ; �N (T) + 1. An exact analytical expression for (3.12) does not exist and
therefore we must rely on numerical techniques for the evaluation of (3.12). In this
chapter, the technique of Monte Carlo integration with importance sampling
acceleration is employed. The basic idea is simple. First, we simulate M paths of x from
p(xjF T ) denoted byx1; : : : ; xM whereM is a large number. Second, we compute the
Monte Carlo estimator of (3.12) given by

bL(� j F T ) = M � 1
MX

m=1

8
<

:

�N (T )+1Y

n=1

p(zn jxm
n ; Fn� 1 )

9
=

;
(3.13)

wherexm
n is the i th element from xm . The estimator (3.13) is poor sincexm is simulated

`unconditionally' and is therefore likely to make little contribution to the likelihood. A

more e�cient approach is to simulate from p(xjz; FT ), with z =
�

z0
1; : : : ; z0

�N (T )+1

� 0
, but

this is not feasible since no analytical expression exists for this density. The idea of
importance sampling is to replacep(xjz; FT ) by the more convenient Gaussian density
pG(xjz; FT ) for simulating x's. The basic algorithm is then adjusted as follows. First,
simulate M paths of x from pG(xjz; FT ) denoted byx1; : : : ; xM whereM is a large
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number. Second, compute the Monte Carlo estimator of (3.12) as given by

bL(� j F T ) = M � 1
MX

m=1

8
<

:

�N (T )+1Y

n=1

p(zn jxm
n ; Fn� 1 )

9
=

;
p(xm jF T )

pG(xm jz; FT )

= pG(zjF T )M � 1
MX

m=1

8
<

:

�N (T )+1Y

n=1

p(zn jxm
n ; Fn� 1 )

9
=

;
1

pG(zjxm ; FT )
; (3.14)

sincepG(xjF T ) = p(xjF T ) and pG(xjz; FT ) = pG(zjx; FT ) pG(xjF T )=pG(zjF T ). This
estimator is referred as the Monte Carlo likelihood. The construction of pG(xjz; FT ) and
the evaluation of the di�erent densities is described in detail below.

Step 1: Simulate paths of x from pG(xjz; FT )

To build a device for simulating from the conditional Gaussian density pG(xjz; FT ), an
approximating linear Gaussian model needs to be formulated that represents the joint
density pG(x; zjF T ). This density for the linear Gaussian model ideally resembles the
true density p(x; zjF T ) as close as possible because samples generated from the
conditional Gaussian densitypG(xjz; FT ) may then be similar to samples from the
conditional density p(xjz; FT ). An appropriate linear Gaussian model can be obtained
using the method described in Durbin and Koopman (2001, section11.4) and is based on
the linearization of the observational log-density using a second-order Taylor expansion.
In the context of the model described in Subsection 3.4.1, the basic idea is to construct
a linear Gaussian state space model for the series of rating event indicators at eventn as
given by �

� N 1
1 (tn ); : : : ; � N 1

S(tn ); � N 2
1 (tn); : : : ; � N K

S (tn )
	

:

The rating event is triggered by the signalZskn xn = � s + 
 0
sw

k(tn ) + � s n which
determines the intensity� k

s(t) for tn� 1 < t � tn , see Subsection 3.4.1. To establish an
approximating Gaussian model that relates the signalZskn xn to � N k

s (tn ), consider the
linear Gaussian observation equation

� N k
s (tn ) = cskn + Zskn xn + � skn ; � skn � NIID (0 ; Cskn ) ; (3.15)

for s = 1; : : : ; S, k = 1; : : : ; K and n = 1; : : : ; �N (T) + 1, where scalar constantcskn and
scalar varianceCskn are considered as auxiliary and unknown variables that need to be
constructed in a consistent fashion as is shown below. The observation � N k

s (tn ) is linear
in vector xn and modeled by the linear Gaussian process (3.11). Therefore, observation
equation (3.15) and the dynamic latent process (3.11) make upa standard linear
Gaussian state space model, see Durbin and Koopman (2001, part I) for a detailed
discussion on this class of models.
The constant cskn and varianceCskn of the observation equation (3.15) are constructed
in such a way that the conditional density of the model of interest p(zjx; FT ) and the
conditional density of the approximating modelpG(� N jx; FT ) have the same mode for
x, where � N = (� N 1

1 (t1); : : : ; � N K
S (tN ))0. The joint solution for cskn and Cskn to
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obtain the mode denoted by�x can be obtained recursively, see the treatment in Durbin
and Koopman (2001, Chapter 11).
The implementation of this procedure is relatively simple. Aninitial guess for the mode
�x needs to be found that is denoted bybx (0) . The linear Gaussian model (3.15) is
constructed for j = 0 by

cskn = � N k
s (tn ) � Zskn bx (j )

n � Cskn Zskn r ln p(zjx; FT )n ;

Cskn = � [Zskn r 2 ln p(zjx; FT )nZ 0
skn ]� 1 ;

(3.16)

where

r ln p(zjx; FT )n =
@ln p(zjx; FT )

@xn

�
�
�
�
x = x ( j )

;

r 2 ln p(zjx; FT )n =
@2 ln p(zjx; FT )

@xn@x0n

�
�
�
�
x = x ( j )

:

A new guess of the mode forx is obtained by estimating the conditional mean ofx
conditional on � N for the approximating linear Gaussian state space model (3.15) and
(3.11). The conditional mean ofx can be computed by the Kalman �lter and smoothing
(KFS) algorithm. More formally, the KFS method computes EG(xj� N ) where EG(�) is
with respect to the approximating linear Gaussian model. It is well-known that the
mode and the mean are equivalent in a Gaussian model. The new estimate of x is
denoted bybx (j +1) . New guesses for the mode are obtained by the KFS based on (3.16)
for j = 1; 2; : : : until convergence is reached according to some metric. Usually
convergence takes place after 5 to 10 iterations.
The approximating linear Gaussian model consists of (3.11) and (3.15), with joint
density pG(x; zjF T ) and where (3.16) is evaluated atx = bx with bx as the estimated
mode. This model is adopted to generate conditional samples for x from pG(xjz; FT ).
Direct sampling from such a high-dimensional Gaussian density requires many
high-dimensional matrix operations. These numerical problems can be overcome
because the model is formulated as a linear Gaussian state space model. Therefore, the
simulation smoothing algorithms of de Jong and Shephard (1995) or Durbin and
Koopman (2002) can be used to generate conditional samples forx, denoted asxm for
m = 1; : : : ; M .

Step 2: Compute the Monte Carlo likelihood (3.14)

Given a set of simulated samples frompG(xjz; FT ) � pG(xj� N; FT ) and denoted byxm ,
the computation of the Monte Carlo likelihood (3.14) is relatively simple. The Gaussian
density pG(zjx; FT ) � pG(� N jx; FT ) is conditional on x and its expression is
well-known for the linear model (3.15). Further, the observation density of interest
p(zn jxn ; Fn� 1) is given by equation (3.9) and can also be computed straightforwardly.
The Monte Carlo likelihood is then maximized with respect to� for a particular choice
of M . The maximization can be carried out by a numerical optimization procedure. For
example, a quasi-Newton method can be used for this purpose. To ensure a likelihood
surface that is continuous (or smooth) in� , the same random numbers are used for the
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sampling in Step 1 of theM signals frompG(xjz; FT ). The optimization procedure
requires an initial estimate of� that is chosen ideally in the neighborhood of its �nal
estimate.8

Step 3: Smoothed estimates of the state vector

The state vectorxn contains �xed unknown coe�cients and dynamic latent processes.
Estimating the state vector for eachn leads to estimates of regression parameters and
latent processes such as n . A straightforward estimate of the state vector, given the
data, is obtained by weighting each simulated state vectorxm

n by its contribution to the
likelihood function, that is

x̂nj �N (T )+1 =

 
MX

m=1

wm � xm
n

! , 
MX

m=1

wm

!

; (3.17)

where

wm =

8
<

:

N (T )Y

i =1

p(zn jxm
n ; Fn� 1 )

9
=

;

,

pG(zjxm ; FT ): (3.18)

Standard errors forx̂nj �N (T )+1 are obtained by taking the square root of

"(
MX

m=1

wm � (xm
n )2

) , 
MX

m=1

wm

!#

� (x̂nj �N (T )+1 )2: (3.19)

3.5 Implied Transition Matrices

I now turn to the issue of estimating the transition matrix given the Monte Carlo
maximum likelihood estimates of the parameters. Typical examples include 1-year
transition matrices as the ones published by Standard & Poor'sand Moody's. I start by
recalling the connection for unitk between thein�nitesimal generator matrix Gk(t) and
the implied matrix Pk of transition probabilities for a continuous-time �nite-state
Markov process. The case of semi-Markov processes is dealt with later on.9 The matrix
Gk(t) contains the hazard rates for each origin and destination state combination. In
particular, the (i; j )th element of Gk(t) equals� k

s(t) for s corresponding to a transition
from origin state i to destination state j . The diagonal elements ofGk(t) are such that
the rows ofGk(t) sum to zero. Consider an interval [T; T + �]. Then the matrix of

8In the Appendix to Chapter 5, I provide some simple estimators that may be used for this purpose.
9For a Markov chain, the entries of the generator matrix are either constants or (deterministic) func-

tions of time. However, for generalized semi-Markov processes the entries of the generator matrix are, in

general, stochastic processes.
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transition probabilities over the interval [T; T + �] is given by the product integral 10

Pk (T; T + �) =
T +�

T

(I S + Gk(t)dt) : (3.20)

For the MLFI model, a parametric form for Gk(t) conditional on observed regressors and
an unobserved factor is assumed. In Aalen and Johansen (1978), by contrast, Gk(t) is
left completely unspeci�ed under the assumption that durationand self-excitation
e�ects are absent. Therefore the Aalen-Johansen estimator is used in the empirical
section as a benchmark for evaluating model adequacy. I assume that the elements of
Gk(t) are adapted to the observable �ltration F t . In this situation Pk(T; T + �)
becomes a random variable, and we want to compute its expectation conditional on FT .
This expectation can be interpreted as the transition matrixover the interval [T; T + �],

�Pk (T; T + �) = E [ Pk (T; T + �) j F T ] = E

2

4
T +�

T

(I + Gk(t)dt)

�
�
�
�
�
�
FT

3

5 : (3.21)

To estimate the conditional expectation in (3.21), I suggest two approximating schemes.
In the �rst scheme, a large number of high frequency (say daily) paths from the process
 (t) are generated, compare (3.2) and (3.3) in Section 3.3. Using these paths, a
consistent estimator for �Pk(T; T + �) is given by

�̂Pk (T; T + �) =
1

M

MX

m=1

T +�

T

(I + Gm
k (t)dt) ; (3.22)

whereGm
k (t) denotes unit k's realized matrix of intensities for replicationm. This

approximation skips the fact that in the empirical model speci�cation,  (t) only jumps
at event times. This last assumption, however, is not material inthe model's
speci�cation, and jumps at higher frequencies (such as every day) are easily allowed for.
The second scheme to obtain estimates of annual transition probabilities uses the
bootstrap. Here, I build on the empirical model's assumption that the common factor
 (t) only jumps at event times. The starting point is the set of estimates of the
unknown model parameters and the smoothed estimates of the latent process, E[ n jF T ]
for n = 1; : : : ; �N (T) + 1. Next, I simulate a large numberM of possible future sample
paths over the [T; T + �] interval for the full panel of K �rms as well as for the
unobserved risk factor n .11

10See Gill (2001) for an exposition on product integration. The product integral is the continuous

counterpart of the standard, discrete product operator, just as the integral is thecontinuous counterpart

of the summation operator. Informally, the product integral of a function f (t) over the interval [T; T +�]

is
T +�
T (1+d f (t)) = lim N !1

Q N
n =1 (1+ f (tn ) � f (tn � 1)) for a partition T = t0 < t 1 < : : : < t n = T +�.

11If weakly exogenous covariates were included in equation (3.1), then an auxiliary model is needed to

forecast the future path of these covariates (as mentioned in the introduction).One resulting possibility

is the estimation of scenario forecasts.
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The pooled process over [T; T + �] for replication m provides a partition
T = tm

0 < t m
1 < : : : < t m

n = T + �, over which the product integral can be factored, see
Andersen et al. (1993, p. 91). For the empirical model in Section 3.7 these calculations
become particularly manageable.
The estimates of �Pk [T; T + �] can be used to compute several interesting risk measures.
For example, one can compute the average transition probabilities over a speci�c time
interval for a portfolio of �rms,

�P[T; T + �] = K � 1
KX

k=1

�Pk [T; T + �] :

One can also compute (non-linear) functions of the default probabilities in �Pk [T; T + �]
to obtain direct estimates of capital requirements according to the o�cial Basel II
regulations. This is especially interesting if one does not average over simulations of
 (t), but considers quantiles instead. See the forecasting exercise in Section 3.7. This
also allows one to consider stress scenarios in terms of extreme (t) realizations.
So far, I have discussed how to obtain estimates of transition matrices for Markov
processes. If we move on to semi-Markov processes, the equations become more
involved. In the current case of semi-Markov behavior and a common risk factor  (t),
the relevant equations are worked out in Monteiro, Smirnov,and Lucas (2006). If we
follow the �rst approximation scheme above, we then have to solve a system of Volterra
integral equations for a �xed path of  (t) to obtain the transition matrix. This matrix
subsequently has to be averaged over di�erent simulated paths of  . Alternatively, one
could follow the second approach and simulate the complete panel of �rms to obtain a
realized path of that only jumps at event times. This could then be used in the
Volterra equations to obtain a transition matrix. The resulting matrix again would have
to be averaged over many replications. Working out the �nite sample properties of these
di�erent approaches is beyond the scope of the current work. Here the focus is placed on
estimating the empirical dynamics of systematic credit risk. I leave the implication of
these dynamics for one-year default probabilities and risk measures for future research.

3.6 Simulation Results

To assess the performance of the Monte Carlo maximum likelihoodmethod in a
controlled environment, a simulation experiment is carriedout. The modeling
framework resembles closely one of the model speci�cations in the empirical study of
Section 3.7. In both cases 7 rating classes are considered. The states can be interpreted
as the familiar grades AAA, AA, A, BBB, . . . , CCC, and default. Default is modeled as
an absorbing state. In the simulation section, the intensities are restricted to

� k
s(t) = Y k

s (t) � exp [� s + � s (t)] ;

where (t) is a step function that jumps at the endogenous event timestn as in (3.2).
The �rm heterogeneity in this speci�cation enters through the di�erent parameters � s
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for the di�erent transition types s = 1; : : : ; S. Another source of heterogeneity is the
latent process (t) that can be interpreted as the (unobserved) macroeconomic e�ect.
The benchmark model in this simulation exercise abstracts fromduration dependence
by setting H k

s (t) � 1. This assumption is relaxed in the empirical section. Further
parsimony is introduced by setting� s = � down < 0 for downgrades, and� s = � up > 0 for
upgrades. The parameter values used for the simulation can be found in the �rst column
of Table 3.1.
Note that the number of parameters, even in this simple model speci�cation, is large.
For 7 rating classes, we have 49 possible rating transitions. Given the underlying data
generating process (DGP) in this simulation study, some of the transitions are extremely
unlikely, e.g., from AAA to default. As a result, in a particular simulation run there
may be no transitions of this type. In such cases, the corresponding � s parameter is not
estimated. This means that not all� s parameters can be estimated for every simulation.
Table 3.1 only reports the simulation results for those� s parameters for which a
reasonable (50 out of 500) number of simulations exists for at least one of the four data
generating processes (DGPs) presented in Table 3.1. The model settings considered are
K = 70 and K = 700 combined with autoregressive parameters� = 1 and � = 0:9.
For both K = 70 and K = 700, a panel of �rms and rating transitions is generated as
follows. At time t0 = 0, the sample contains an equal number of �rms in each rating
category. The unobserved process (t) is initialized at zero. Given the parameters, this
completely speci�es the intensities up to the event datet1. For the time interval
(tn� 1; tn ], the intensity of the pooledprocess is de�ned by

� � (tn ) =
KX

k=1

SX

s=1

� k
s(tn ); (3.23)

with � � (t1) applicable over the �rst spell (t0; t1]. The length of any spell in the pooled
process can therefore be drawn from the exponential distribution with intensity
parameter � � (tn). Given the durations of the spells (tn� 1; tn ] for n = 1; : : : ; �N (T) + 1,
the �rm experiencing a rating event is drawn from the univariate
Multinomial f � 1(tn ); : : : ; � K (tn )g distribution where the probability of drawing unit k is
given by

� k(tn ) = [ � � (tn )]� 1
SX

s=1

� k
s(tn ); k = 1; : : : ; K: (3.24)

Next, the type of rating event for unit k is drawn from the multinomial distribution
with the probability of state s being drawn for unit k given by

� sk(tn) =

"
SX

s=1

� k
s(tn )

#� 1

� k
s(tn); (3.25)

for s = 1; : : : ; S and k = 1; : : : ; K . If the event is a default, the dummy variableY k
s (t)

jumps to zero. Finally, the unobserved common risk factor n =  (tn) is updated using
(3.2) with � = 1 or � = 0:9 and where the disturbances"n , n = 1; : : : ; �N (T) + 1, are
drawn from a standard normal distribution. This process is repeated until all units have
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entered the absorbing default state, or until the event timetn exceeds the maximum
period of 25 years. For each panel size, 500 replications of thesimulations were
performed. All calculations in this chapter were performed using the Oxmatrix
programming language of Doornik (2002) and the estimation and smoothing routines in
the packageSsfPack of Koopman, Shephard and Doornik (1999).
The simulation results for the Monte Carlo maximum likelihoodprocedure discussed in
Section 3.4 are shown in Table 3.1. I �rst concentrate on the model with a random walk
factor (� = 1). We see that many of the parameters are estimated accurately for a panel
with 70 �rms. The parameters that are estimated less accurately, correspond to larger
rating transitions (e.g, AAA to BB or AA to CCC). As the larger ratin g transitions are
much less likely, the Monte Carlo averages of the corresponding � s parameters are based
on less replications and, therefore, less accurate themselves.By contrast, the presented
averages for the smaller rating transitions are all very close to the true parameter values.
The accuracy of the� s parameters increases further if the number of units is increased
to K = 700. This is due to the fact that for a larger panel, we will observe more types of
transitions in the same period of 25 years. The increase in precision also holds for the� s

parameters. By considering the average estimate, it appears that the estimator for � s is
somewhat biased toward zero. This implies the magnitude of thecommon risk factor is
underestimated. Consequently, it is more di�cult to �nd signi� cant evidence of such a
factor in the empirical section later on. The strength of the common factor actually
found in the empirical section might thus be a lower bound on its true value.
If a stationary speci�cation for  with � = 0:9 is considered, the results are similar.
Parameters for small rating transitions are estimated accurately. Parameters for the
larger rating transitions are more di�cult to estimate for the smaller panel due to the
limited number of observations. For the large panel, the bias in the estimates of� s

appears smaller than for a non-stationary (t). For the stationary model, one has to
estimate the additional AR(1) parameter� . For the small panel ofK = 70, the average
estimate is near its true value of 0.9. The slight negative �nite-sample bias is well-known
from the linear model context. If the panel size increases toK = 700, the estimate of�
remains stable, while its Monte Carlo standard deviation decreases somewhat. The mild
improvement is largely due to the parameterization chosen. The cross-sectional
dimension of the panel was increased while keepingT at 25 years. This increases the
number of event times, without increasing the calendar time available. Given the scaling
of the parameters of the autoregressive process with the lengthof the spell intervals,
there is limited additional information on the long-term dynamics of the AR process.
There is only a moderate precision gain caused by a more precise estimate of the signal
given the increased number of events.
As explained in Section 3.4 (Step 3), we can use smoothing techniques to obtain an
estimate of the unobserved (t) factor. Figure 3.1 illustrates the result for a single
`representative' simulation. For this simulation, the true value of  (t) was plotted
against its estimated (smoothed) counterpart using the Durbin-Koopman importance
sampling scheme. The 95% con�dence bounds are also provided. The algorithm clearly
performs adequately in recovering the characteristics of the true, unobserved (t)
process from the observed data. As expected, the true (t) is much more volatile at
high frequencies than its smoothed counterpart. Local and global peaks and troughs of
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the series, however, appear correctly positioned in calendar time. The true process also
falls inside the 95% con�dence interval most of the time.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
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Figure 3.1: True versus smoothed estimate of (t)
The baseline model and the simulation set-up are the same as explained in the note toTable 3.1. The

thick, solid curve is the smoothed estimate of (t). The thin solid curve is the true  (t) path in a typical

simulation. The dotted lines give the 95% con�dence band of the smoothed (t).



122 CHAPTER 3. THE MLFI MODEL

Table 3.1: Monte Carlo Results
This table contains parameter estimates for the MLFI model, � k

s (t) = Y k
s (t) � exp[� s + � s (t)]; for

k = 1 ; : : : ; K with K the number of units, s = 1 ; : : : ; 49. The true parameters are taken in accordance
with the empirical results in Section 3.7, with di�erent loading � s for up and down-grades, model C in
Table 3.3. There are 7 rating classes. Initial ratings are distributed evenlyover these classes. The model is
estimated for K = 70 and K = 700, both with a random walk common factor  and with a stationary AR,
parameter � = 0 :9. The maximum time T is set to 25 years, unless the complete sample has defaulted at
an earlier stage. 500 replications were performed for each parameter combination. Monte-Carlo averages
and standard errors (in parentheses) are presented for those parameters that havea su�cient number of
occurrences over all simulations.

True K=70 K=700 K=70 K=700
� true = 1 � true = 1 � true = 0 :9 � true = 0 :9

� AAA ! AA -3.47 -3.48 (0.79) -3.51 (0.27) -3.55 (0.88) -3.50 (0.16)
� AAA ! A -5.88 -5.20 (1.36) -5.99 (0.64) -5.35 (1.32) -6.04 (0.51)
� AAA ! BBB -8.38 -5.39 (1.10) -7.67 (1.02) -5.52 (1.37) -7.72 (0.93)
� AAA ! BB -7.55 -5.73 (1.10) -7.36 (1.08) -5.64 (0.89) -7.44 (0.75)
� AA ! AAA -5.04 -4.81 (0.93) -5.05 (0.23) -4.84 (1.00) -5.07 (0.15)
� AA ! A -3.04 -3.10 (0.80) -3.07 (0.26) -3.12 (0.63) -3.08 (0.14)
� AA ! BBB -5.84 -5.38 (1.40) -5.92 (0.55) -5.49 (1.38) -6.00 (0.41)
� AA ! BB -8.47 -5.65 (1.23) -8.01 (1.00) -5.74 (1.30) -8.06 (0.72)
� AA ! B -7.59 -5.78 (1.44) -7.49 (1.08) -5.54 (1.32) -7.65 (0.83)
� AA ! CCC -9.63 -6.03 (1.57) -8.03 (0.90) -5.50 (1.05) -8.20 (0.69)
� A ! AAA -7.06 -6.27 (1.65) -7.03 (0.50) -5.93 (0.82) -7.22 (0.59)
� A ! AA -3.96 -3.99 (0.63) -3.93 (0.10) -3.96 (0.56) -3.96 (0.08)
� A ! BBB -3.38 -3.49 (0.78) -3.41 (0.25) -3.49 (0.72) -3.40 (0.14)
� A ! BB -6.18 -5.91 (1.41) -6.30 (0.52) -5.80 (1.32) -6.27 (0.33)
� A ! B -6.89 -6.34 (1.65) -6.95 (0.73) -6.16 (1.23) -7.06 (0.56)
� A ! D -7.75 -6.52 (1.69) -7.77 (0.98) -6.34 (1.28) -7.86 (0.78)
� BBB ! AAA -8.78 -6.17 (1.18) -8.09 (0.92) -5.91 (0.74) -8.02 (0.64)
� BBB ! AA -5.88 -5.66 (1.15) -5.94 (0.36) -5.39 (0.87) -6.00 (0.26)
� BBB ! A -3.08 -3.12 (0.42) -3.06 (0.08) -3.06 (0.29) -3.07 (0.05)
� BBB ! BB -3.41 -3.50 (0.84) -3.44 (0.26) -3.49 (0.64) -3.43 (0.15)
� BBB ! B -5.81 -5.61 (1.31) -5.87 (0.54) -5.68 (1.26) -5.90 (0.35)
� BBB ! CCC -7.94 -6.51 (1.26) -7.89 (0.92) -6.23 (1.02) -7.92 (0.79)
� BBB ! D -6.51 -6.19 (1.25) -6.61 (0.56) -5.97 (1.39) -6.65 (0.52)
� BB ! AAA -7.62 -5.60 (1.15) -7.36 (0.81) -5.41 (0.96) -7.45 (0.68)
� BB ! AA -6.75 -5.46 (0.92) -6.74 (0.79) -5.27 (1.12) -6.91 (0.71)
� BB ! A -5.20 -4.86 (1.11) -5.26 (0.28) -4.93 (0.94) -5.24 (0.20)
� BB ! BBB -2.61 -2.60 (0.35) -2.61 (0.08) -2.59 (0.28) -2.59 (0.05)
� BB ! B -3.02 -3.13 (0.85) -3.06 (0.27) -3.12 (0.75) -3.05 (0.14)
� BB ! CCC -5.83 -5.53 (1.63) -5.87 (0.51) -5.32 (1.48) -5.94 (0.43)
� BB ! D -5.51 -5.26 (1.17) -5.61 (0.49) -5.26 (1.30) -5.66 (0.34)
� B ! AA -7.06 -5.04 (0.76) -6.98 (0.84) -5.12 (1.15) -7.10 (0.70)
� B ! A -6.14 -5.03 (1.10) -6.24 (0.65) -4.90 (1.17) -6.41 (0.60)
� B ! BBB -5.37 -4.79 (1.10) -5.47 (0.46) -4.86 (0.96) -5.44 (0.28)
� B ! BB -2.64 -2.65 (0.48) -2.62 (0.08) -2.59 (0.28) -2.63 (0.05)
� B ! CCC -3.14 -3.23 (0.93) -3.19 (0.28) -3.22 (0.75) -3.17 (0.16)
� B ! D -3.97 -4.03 (0.89) -4.02 (0.33) -4.03 (1.03) -4.01 (0.18)
� CCC ! A -5.24 -3.40 (1.00) -5.21 (0.75) -3.63 (1.11) -5.30 (0.70)
� CCC ! BBB -4.84 -3.48 (1.12) -4.89 (0.74) -3.49 (0.86) -5.05 (0.62)
� CCC ! BB -4.12 -3.42 (0.90) -4.24 (0.45) -3.36 (1.03) -4.30 (0.43)
� CCC ! B -1.74 -1.76 (0.57) -1.73 (0.10) -1.79 (0.51) -1.72 (0.05)
� CCC ! D -1.24 -1.37 (0.73) -1.29 (0.22) -1.32 (0.55) -1.28 (0.14)

� up 1.60 1.43 (0.81) 1.47 (0.36) 1.46 (1.40) 1.56 (0.36)
� down -3.20 -2.64 (1.05) -2.90 (0.64) -2.83 (1.41) -3.12 (0.63)

� 0.85 (0.20) 0.83 (0.15)
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3.7 Empirical Results

3.7.1 Data

The data consist of rating transitions obtained from Standard &Poor's. The rating
histories of all issuers are recorded in the CreditPro 7.0 database. The sample period is
from the end of 1980 (the left-truncation time point) until June 2005. The durations of
the pooled process were expressed as a fraction of the business year. Note that there
may be multiple rating events on a single day. This is capturedby the variables � N k

s (tn )
in (3.6). The rating histories in the data set distinguish between more than 18 di�erent
rating classes. To illustrate this methodology, only seven broadclasses were considered,
namely AAA, AA, A, BBB, BB, B, CCC (and lower), and default. This produces 49
possible rating transitions. Out of these 49, 42 are observed in thecurrent sample. In
terms of model (3.9), we therefore haveS = 42, K is almost 7000, andN > 25000 (or
14000 if the (t) process does not jump at transitions involving the non-ratedclass).
Even with these sample sizes, the model can be implemented on a standard desktop PC.
New �rms enter the sample when they receive a rating for the �rst time. Firms leave the
sample when they enter the default state or when their rating iswithdrawn. However,
S&P continues to track �rms whose ratings are withdrawn. It isindicated in the
database when such �rms default at a later stage. This should substantially mitigate
any biases caused by strategic behavior of �rms in maintaining arating at S&P. If a �rm
�rst enters the non-rated class and later defaults, the transition to the non-rating class
is skipped. In total, we observe 7000 �rms, though many of these �rms are only
observed over part of the sample. The number of rated �rms increases over time.
Accounting for attrition (defaults and transitions to non-rated) and sample extension,
the time series average of the number of �rms available at any moment is around 2200.
As the clustering e�ect of defaults is the main interest, I �rst clean the database for
alternative forms of clustering. Two �lters were used. First, the data is inspected in
order to look for �rms that have long histories of coincident rating increases and
decreases. Typical examples of these are �rms that have merged during the time of the
database. In such cases, one of the two �rms is excluded from the dataset from the time
of the merger onwards. Second, there appeared to be some policyof the rating agencies
in clustering re-ratings, e.g., centered around meeting times of the committee. To
account for this, the `number of events per day' was Winsorizedto 3 by replacing
� N k

s (tn ) by � N k
s (tn ) � min(3; � Ns(tn ))=� Ns(tn ), with � Ns(tn ) =

P
k � N k

s (tn ).
Experiments with Winsorizing values between 1 and 5 yielded similar results. The
Winsorizing procedure has the largest e�ect on the estimation of the dynamics of the
latent component, summarized by the AR parameter� . Erratic clustering due to rating
agencies' policies, e.g., around committee meetings, corrupts the dynamics of and
causes a downward bias in the estimate of� . This e�ect is mitigated considerably by the
Winsorizing procedure. In future research, these anomalous clustering e�ects can be
dealt with di�erently, e.g., by trying to model them explici tly.
Some descriptive features of the data are as follows. The pooled process has a high
intensity of migrations, resulting in an average duration between transitions, `births,' or
withdrawals of 1:2 days. There is a large number of downgrades and upgrades. The
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counts of transition events is given in Table 3.4. It is clear that most transitions take
place to adjacent rating categories. Some of the transitions are very rare, e.g., large
down-grades or up-grades. In order to check the sensitivity of the results to these rare
events, a robustness check was also performed. This consisted in considering only those
transition types with more than 20 recorded events. The resultsare not sensitive to this.
The data are visualized in Figure 3.2. In order to keep the number of graphs
manageable, the ratings were, temporarily, further clustered into investment grade
(AAA{BBB) and sub-investment grade (BB{CCC). The upper two plots in Figure 3.2
show the number of investment grade downgrades and defaults ona daily basis since
December 31, 1980, respectively. We can see that downgrades and defaults tend to
cluster in time. This follows from the concentration of vertical lines, which originate
dark and bright areas along the horizontal (time) axis. The lower two plots in Figure 3.2
contain the number of sub-investment grade upgrades and downgrades on any given day,
respectively. Interestingly, the plots complement each other. When downgrades and
defaults cluster, upgrades are more sparse, and vise versa. This suggests that the model
speci�cation used with a single common risk factor (t) might already captures the
most salient features of the data. However, multiple factor models were also estimated
at a later stage in the analysis.

1985 1990 1995 2000 2005

1

2

3
Investment Grade Downgrades Investment Grade Defaults

1985 1990 1995 2000 2005

1

2

3

Sub-investment Grade Defaults

1985 1990 1995 2000 2005

1

2

3

1985 1990 1995 2000 2005

1

2

3Sub-investment Grade Upgrades

Figure 3.2: Daily number of rating actions and recorded defaults
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3.7.2 Homogeneous continuous-time Markov chain model

To get a �rst impression of the adequacy of the empirical model speci�cation, a MLFI
model without any latent dynamics was considered. In this case, the model has
� k

s(t) = exp( � s) and the MLFI model reduces to a simple homogeneous continuous-time
Markov chain (HCTMC) model. The maximum likelihood (ML) estimator of � s for the
HCTMC model has a closed-form expression and is given by12

�̂ s = ln

0

@
�N (T )+1X

n=1

KX

k=1

� N k
s (tn )

1

A � ln

0

@
�N (T )+1X

n=1

KX

k=1

� nY k
s (tn )

1

A : (3.26)

Table 3.2 presents the parameter estimates based on (3.26) as well as the estimates
obtained by using the Monte Carlo methods of Section 3.4. As expected, the parameter
estimates are almost identical for all transition types for which the number of
observations is su�ciently large. But even for the transition types with only one
observation, the importance sampling estimates (SML) never di�er more than 10% from
their closed form counterparts. This is well within a bound of two standard errors. As
stated before, a robustness check was also performed by including only the transition
types with 20 observations or more. Here the di�erences between the sampling and
analytic approach appear negligible. Also note that the estimate of the likelihood di�ers
by less than 0.01% from its analytic counterpart. Again, this di�erence shrinks to zero if
only transition types with more than 20 observations are used.

12These estimators may also be used to obtain starting values for the corresponding parameters in the
general speci�cation (3.1). See also the footnote at the end of section refsec3.2.3
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Table 3.2: Parameter estimates of the HCTMC model
This table presents estimates of a homogeneous continuous-time Markov chain (HCTMC) model with
intensities � k

s (t) = exp( � s). The transition types are sorted on their number of observations. The �rst
two columns provide the rating transition type. The third column indicates the num ber of steps taken
for this transition type in the 7 grade system. The fourth column contains the number of observations
for this transition type. The column headed ML- �̂ s contains the closed form maximum likelihood (ML)
estimates from (3.26). Its ML asymptotic standard error is in parentheses in column six. The Monte
Carlo maximum likelihood estimates SML-�̂ s and their simulated standard errors (using 100 samples)
follow in columns seven and eight. The column � �̂ s and � s:e: give the di�erence between the ML and
SML estimates, and between their standard errors, respectively.

From To #steps #obs ML- �̂ s SML-�̂ s �^� s � s:e:
B ! CCC 1 855 -2.50 (0.04) -2.50 (0.03) 0.00 0.00

BB ! B 1 769 -2.39 (0.04) -2.40 (0.03) 0.00 0.01
A ! BBB 1 714 -2.86 (0.04) -2.86 (0.04) 0.00 0.00

CCC ! D 1 678 -0.53 (0.04) -0.52 (0.04) -0.01 0.00
BBB ! BB 1 605 -2.93 (0.04) -2.94 (0.04) 0.01 0.00

B ! BB 1 524 -2.94 (0.04) -2.96 (0.04) 0.02 0.00
AA ! A 1 475 -2.55 (0.05) -2.56 (0.04) 0.00 0.00
BB ! BBB 1 467 -2.89 (0.05) -2.88 (0.04) -0.01 0.00

BBB ! A 1 457 -3.20 (0.05) -3.21 (0.05) 0.01 0.00
B ! D 2 349 -3.35 (0.05) -3.34 (0.06) -0.01 0.00
A ! AA 1 219 -4.06 (0.07) -4.07 (0.07) 0.01 0.00

CCC ! B 1 135 -2.12 (0.09) -2.11 (0.08) -0.01 0.01

AAA ! AA 1 95 -2.96 (0.10) -2.97 (0.10) 0.00 0.01
BB ! D 3 65 -4.85 (0.12) -4.88 (0.10) 0.03 0.03

BBB ! B 2 53 -5.34 (0.14) -5.32 (0.14) -0.02 0.00
BB ! CCC 2 48 -5.16 (0.14) -5.18 (0.13) 0.02 0.02
A ! BB 2 40 -5.72 (0.16) -5.70 (0.15) -0.02 0.01

BB ! A 2 36 -5.44 (0.17) -5.46 (0.17) 0.02 -0.01
AA ! AAA 1 34 -5.14 (0.17) -5.14 (0.11) 0.00 0.06
B ! BBB 2 34 -5.67 (0.17) -5.63 (0.16) -0.04 0.01

BBB ! AA 2 27 -6.02 (0.19) -6.01 (0.15) 0.00 0.04
AA ! BBB 2 25 -5.45 (0.20) -5.38 (0.20) -0.07 0.00

BBB ! D 4 24 -6.13 (0.20) -6.04 (0.21) -0.10 -0.01
A ! B 3 19 -6.46 (0.23) -6.44 (0.22) -0.02 0.00
B ! A 3 16 -6.43 (0.25) -6.43 (0.24) 0.01 0.01

CCC ! BB 2 13 -4.46 (0.28) -4.49 (0.27) 0.03 0.01
A ! AAA 2 10 -7.11 (0.32) -7.16 (0.30) 0.06 0.02

A ! D 5 9 -7.21 (0.33) -7.31 (0.33) 0.10 0.01
AAA ! A 2 8 -5.39 (0.35) -5.40 (0.26) 0.01 0.09
BB ! AA 3 8 -6.95 (0.35) -7.06 (0.31) 0.11 0.04

CCC ! BBB 3 8 -4.95 (0.35) -5.17 (0.36) 0.22 -0.01
BBB ! CCC 3 6 -7.52 (0.41) -7.48 (0.40) -0.04 0.01

B ! AA 4 6 -7.41 (0.41) -7.38 (0.36) -0.03 0.05
AA ! B 4 5 -7.06 (0.45) -7.20 (0.45) 0.14 0.00

CCC ! A 4 5 -5.42 (0.45) -5.59 (0.40) 0.17 0.05
BB ! AAA 4 4 -7.64 (0.50) -7.93 (0.61) 0.29 -0.11

AAA ! BB 4 2 -6.78 (0.71) -7.14 (0.73) 0.36 -0.03
AA ! BB 3 2 -7.97 (0.71) -7.97 (0.59) -0.01 0.12

BBB ! AAA 3 2 -8.62 (0.71) -8.93 (0.88) 0.32 -0.17
AAA ! BBB 3 1 -7.47 (1.00) -7.88 (0.91) 0.40 0.09
AA ! CCC 5 1 -8.67 (1.00) -9.43 (1.15) 0.76 -0.15

CCC ! AAA 6 1 -7.03 (1.00) -7.63 (1.03) 0.61 -0.03

log-likelihood -25582.7 -25584.4 1.7 (< 0.01%)
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3.7.3 Estimation results for the MLFI model

This empirical exercise starts with the introduction of a single random walk component
 n capturing systematic credit risk. This implies the AR parameter� is set to unity.
The estimation results are in Table 3.3, model B. Due to the restriction � = 1,  (t1) and
� s for s = 1; : : : ; S(= 42) are not jointly identi�ed. Therefore the starting valu e of the
latent process (t) is set to  1 =  (t1) = 0. This means that  (t) can be interpreted as
a relative credit index compared to its starting level in December 31, 1980.
For the intensity speci�cation (3.1) in model B, I set � s = � �� < 0 for downgrades and
� s = �� > 0 for upgrades. Since n is interpreted as the (unobserved) credit cycle, these
sign restrictions on� s imply an increase in the probability of downgrades and defaults if
 n is negative, and a simultaneous decrease in the probability ofrating upgrades.
Conversely, if n is positive, it leads to an increase in the probability of �rms being
upgraded. The sign restrictions are relaxed later on.
It is worth mentioning here that all models reported in Table3.3 have an additional 42
(unreported) � s parameters that need to be estimated. This is the number of non-zeros
in Table 3.4. Given space constraints, I do not report them here.They are however a
part of the estimation problem as sketched in Section 3.4.






























































































































































































