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Foreword

Science is, like most other human activities, in essence, a cdilee endeavor. Every
scienti ¢ researcher draws on a body of knowledge which has bhegradually built over a
large time span by a collective of scientists and researchersdref him. When did a
certain idea appear for the rst time? Even when an idea represts a radical cut with
what was previously regarded as being the “scienti ¢ truth,'hat is, the accepted
paradigm at that time, it always contains some elements thatdd already been laid
down earlier, even if only in an embryonic stage. Likewise, th@esent Ph.D. thesis owes
a great deal to general and speci ¢ scienti ¢ knowledge | trietb accumulate both
during my undergraduate and post-graduate studies.

During my academic path | was fortunate in coming across a nurab of outstanding
lecturers and researchers from whom | learned much. As the Ph.Begree represents the
last stage of a formal Academic education, it is adequate that Icknowledge the
priceless contribution | received from my contact, as a studgnwith these remarkable
scientists and teachers. First, | must mention the names of Herman. Kan Dijk, Pedro
Lago, Jan Magnus, Georgi V. Smirnov, Jean-Jacques Herings, Mear Janssen, Manuel
Ricouh and Cristina Sernadas as among those whose lectures, scework and
example as a scientist and researcher have made a signi cant ailoiition to my actual
perception of the meaning of science and of the "netier' of gearcher and lecturer.
During the M.Phil. program at the Tinbergen Institute, as in any Academic program,
there were some subjects which were more appealing to me thahers. In some cases,
the skill and enthusiasm of the lecturer was able to turn into an@pealing course what
would otherwise be (from my perspective) a rather uninterestqnsubject. Overall, |
need to acknowledge the outstanding quality and relevance tbfe courses that make up
the Academic program at the Tinbergen Institute. In particula, | am most grateful
that | was able to attend the course lectures by Siem Jan KoopmaFrank Kleibergen,
Peter Boswijk, Frank de Jong, Ande Lucas, Richard Paap and Maro Verbeek. These
courses really helped me with my own research. | would also like tnention the friendly
collaboration | was able to keep with a small number of my coblgyues at the Tinbergen
Institute. In this sense, a friendly word is due to Ghebre Debréan, Rute Mendes, Ana
Babus, Eddy Bekkers, Desislava Rusinova and Yin-Yen Tseng.

On a more formal note, | would like to thank my supervisor Prof. @ Ande Lucas, as
well as my (other) co-authors, Prof. S.J. Koopman, Prof. Gegr V. Smirnov and Dr.
Kraussl. | think | did my best in trying to learn as much as possiblefrom the
collaboration with these knowledgeable and experienced Rasghers. | further wish to
thank Prof. Ande Ran, Prof. Michel Mouchart, several anonynous referees at the
Journal of Econometrics the Journal of Empirical Finance and Econometric Reviewsas
well as seminar participants at the Tinbergen Institute, VU Uniersity Amsterdam,
Trinity College of Dublin, University College of London, Univesity of Copenhagen,
University of Venice, Dutch Central Bank, Technical Universityof Lisbon, University of
Porto, ISCTE Business School, CORE Louvain-la-Neuve, Univergitof Western
Australia, Edith Cowan University and University of Vienna for many helpful
comments. Financial support by the VU University Amsterdam, in paricular the Asset
Management Program, and by Fundacao para a Ciéncia e a Temlogia (Portuguese



Foundation for Science and Technology) is gratefully ackmdedged. | want to thank
specially the Tinbergen Institute and the VU University Amsterdam 6r sponsoring my
participation in the Global Finance Conference held at the finity College in Dublin,
the 2005 World Congress of the Econometric Society held at théniversity College of
London, the 2005 International Conference on Finance held #he University of
Copenhagen, the CREDIT 2005 conference in Venice and theenmhational conference
on Time Series, Econometrics and Finance in Perth, Western Austfra. | further wish
to thank Fundacao para a Ciéncia e a Tecnologia for sponsog my participation at the
61%' European Meeting of the Econometric Society, held at the Ungvsity of Vienna, as
well as my seminar presentations at the Technical University ofitbon, the University of
Porto and ISCTE Business School. The data | used in this study, th€reditPro 7.0
dataset on credit ratings, was generously supplied by Standard Roor's.
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Introduction

What's in This Book

Corporate Credit Risk refers to the risk borne by investors whodid a nancial stake
that depends in any way on the credit quality of a privately owed debt issuer or
borrower, usually a corporation. While Market Risk is mostly due to the variation in
market prices and rates, Credit Risk is the consequence of chasgn the credit quality
of the counterparty. There are several reasons why Credit Riskequires a distinct
modeling approach with respect to Market Risk. One such reasontlsat defaults are a
rare event, and therefore, the corresponding historical daia sparse. At least compared
with data on prices and rates. Secondly, some nancial positisrprone to Credit Risk
are mostly illiquid. This means that the corresponding markeprices cannot be readily
determined.

The analysis and modeling of Credit Risk requires methods fuathentally di erent from
those used for handling Market Risk. Credit Risk is essentially dren by granular credit
events These can be basically split into two typesdefault and (credit) rating migration
events. Default corresponds to the failure by the counterpartto honor a nancial
agreement. This can be due, for example, to a bankruptcy, ohé repudiation of a
particular contract.! Additionally, the extent of the nancial loss, to be incurred asa
consequence of a particular rating event, can vary. The Expasuat Default (EAD) is
an (apriori) estimate of the maximal nancial loss to be incured if the counterparty
defaults, and is mainly used by banking institutions. However, ithe event of a default,
due for example to a bankruptcy, the lender may actually be ab to recover a certain
fraction of his (or her's) nancial stake due to a combination 6 credit risk mitigation
techniquesand legal proceedings. The Loss Given Default (LGD) is thgercentage of
the EAD that is likely to be lost by the lender (or investor) as a consequee of the
default event.

Credit ratings provide a subjective assessment of the default grability incurred by an
investor who enters into a long nancial position with a (rated counterparty. Using

1In a banking context, \A Default is considered to have occurred with regard to a particular obligor
when either or both of the two following events have taken place. The bank considers thiahe obligor
is unlikely to pay its credit obligations to the banking group in full, without reco urse by the bank to
actions such as realising security (if held). The obligor is past due more than 9@ays on any material
credit obligation to the banking group." Basel Committee on Banking Supervisian (2004)



both public and privately available information, credit raing agencies classify debt
issuers according to a particular ordinal scale.

The objective of this thesis is to present a dynamic econometranalysis of corporate
(agency) credit ratings, and to quantify and estimate the Creitl Risk associated with a
rated corporate debt issuer. This last aspect includes both thésk of default and of a
rating change. In particular, one of the aims is to obtain ingiht into the dynamic
behavior of credit ratings. How does rating activity co-varie with the business cycle?
How can we measure the current state of the “credit cycle?' These aome of the
guestions addressed in this thesis. Ultimately, the objective csists in being able to
accurately forecast the rating transition matrix. This aspects crucial both for risk
management and pricing purposes.

This thesis presents several innovative statistical procedurésr quantifying, estimating
and forecasting Credit Risk, expressed in terms of both defaulhd rating transition
probabilities.

Credit Ratings

Credit ratings play a prominent role in the current credit industry. Their main objective
is to provide a qualitative classi cation of the level of defall risk associated either with
a particular nancial instrument or with the corresponding debt issuer in general. In
this thesis | focus on corporate debt-issuer credit ratings. Tke are aimed at providing
a simple qualitative summary of the overall solidity, solvencyrad prospects of a rm.
The literature on credit rating methodologies is vast and oveemuch to the seminal work
of Edward Altman, who introduced in 1968 thecredit scoring methodology based on
Discriminant Analysis.

Credit ratings are used extensively across nancial markets. Ued the Basle Il accord,
credit ratings are used to determine the required capital bier to be held by the lender
(banking institution). Additionally, interest rates for corp orate loans are negatively
correlated with the borrower's credit rating. Investors useredit ratings as a simple way
of assessing the relative Credit Risk of di erent debt issuers. In facating agencies hold
an enormous power over companies. If a corporation receiveseay low credit rating,
not only will interest rates for new loans go up, but also otherantracts with nancial
institutions can be adversely a ected. This is because large rpmrate loans often
contain special clauses that make this one due if the corporati's credit rating falls
below a certain point (most usually the so-called \junk bond"oAspeculative" level).
Furthermore, many private and institutional investors will avoid buying bonds issued by
these companies. In fact, in some countries, some institutionalvestors (for example
pension funds) are not allowed to invest in rms rated below a ct@in threshold. This

e ectively means that, for many companies, receiving a \junkbond" rating can be
tantamount to bankruptcy.

Now, if aggregate credit ratings co-vary with general busineg®nditions, this has the
potential to exacerbate a downturn, as for a larger number ofms the cost of capital
will increase when it is most needed. Further still, a simultanes decrease in the credit
ratings of a signi cant number of rms in an economy can lead t@ decrease in the

14



willingness to lend by banks and investors. The resulting “credirunch' can have
devastating consequences over an economy already caught ia thiddle of a downturn.
Credit ratings thus have an indirect impact over the stabiliy of the whole nancial
system. Therefore, understanding the aggregate dynamic bel@vof credit ratings is
crucial.

In this thesis | do not focus on the particular methodology bahd the precise credit
ratings contained in the CreditPro 7.0 database from Standdr& Poor's, the dataset |
used in this study. Neither do | attempt to suggest a particular rang methodology.
Instead, agency credit ratings are taken as given, and anaga from a statistical
perspective. The aim will be characterizing their aggregateehavior. What statistical
patterns can be identi ed. How to model them, and use the correspding empirical
model for obtaining forecasts.

Reduced-form Models for Credit Risk

Historically, two distinct approaches for modeling Credit Riskcan be identi ed. In the
so-calledStructural Approach pioneered by Merton (1974), the defaultable contracts are
taken as contingent claims on the rm's assets. Explicit assumpins over the capital
structure, the evolution of the rm’'s assets and liabilities ae made. The default event is
then endogenously determined as the time when the assets falldve some particular
threshold. An important drawback of this approach (at least whie assuming full
information and a strictly continuous evolution of the rm's assets) follows from the fact
that, under this set up, the default event is in fact predictate. As a consequence, the
(classical) structural approach yields unrealistic credit spess (that is, the excess yield
required by investors to bear the default risk of the debt issuer)

In contrast, in the Reduced Formapproach, the default even is considered exogenous.
That is, the precise mechanism that triggers the default evensileft unspeci ed and
viewed as the occurrence of Random Point Process(Jarrow et al., 1997).

There are some reasons for favoring the reduced form approachen analyzing a large
dataset of agency credit ratings with the purpose of estimatinGredit Risk. The rst
reason is essentially pragmatic. The structural approach reqes rm-speci ¢ data that
may not be publicly available. There is, however, also some thretical rationale for
choosing a reduced form model over a structural one. The structl approach may not
accurately describe the economics of the default mechanismegder example Berkovitch
and Israel, 1998). In fact, there is some historical evidence support of such a view.
Famous e ective bankruptcy episodes, like Enron's and Parmait's, or "'near misses' like
LTCM's or the more recent cases of Bear Sterns and Northern Rookay add support to
the "black box' view taken by the reduced form approach. Addinally, some empirical
studies have shown that the reduced form approach yields sligjhtetter accuracy when
predicting the default event (for example, Chava and Jarron2004). However, with
regard to this last aspect, | do acknowledge that this conclusias not consensual.
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A Short Overview of this Thesis

In this thesis, departing from the reduced form approach of Jeow et al. (1997), |
develop an empirical Credit Risk modeling framework that sigrcantly extends
previous work by Kavvathas (2000) and Lando and Sk deberg (®2).

Because the reduced form approach stems directly from the sttical theory of Point
Processes, in Chapter 1, | present a short overview of the existingpaometric literature
dealing with point process models. This chapter starts by redalg some background
results from the theory of point and transition processes. Chaptd proceeds by
reviewing the main econometric speci cations used in the nagial literature for dealing
with irregularly spaced data. Here, | make a minor contributia to the speci cation
(mostly introducing a more compact, and perhaps suggestive, tation) of two of these
classes of models. Namely the Autoregressive Conditional Intensityodel of Russell
(1999) and the generalized Hawkes processes introduced in Bogvg2007). The
distinction betweenparameter drivenand observation drivenmodels is emphasized
throughout.

Chapter 2 presents a rst analysis of the CreditPro 7.0 databasedm Standard &
Poor's using nonparametric tools. Additionally, this thesis mkes some theoretical
contributions to the literature on semi-Markov processes (kgy, 1954) by introducing
some novel estimators for this class of stochastic processes. Firsseaof estimators for
the non-homogeneous semi-Markov kernel based on piecewisestaot transition rate
estimators is presented. Second, Chapter 2 formally establishine existence and
unigueness of the non-homogeneous semi-Markov transition matand introduces a
numerical procedure for obtaining this matrix from any feasile estimator of the matrix
of transition rates. The convergence of this procedure is pred. It is further shown that
if a consistent estimator of the matrix of transition rates is usedthe resulting estimator
of the semi-Markov transition matrix is also consistent. These newstimators are
applied to the credit ratings database of Standard & Poor's. Ihine with previous
literature, it is found that there is signi cant evidence of the clustering of defaults and
rating transition events to reject the assumption that these oag in time with constant
intensity. However, this chapter shows for the rst time that the default hazard is a
non-monotonic function of thesojourn time in the current rating.

Chapter 3 introduces the new parametric modeling frameworfior credit ratings. The
new class of Multi-state Latent Factor Intensity (MLFI) modelsis described jointly with
a computationally e cient methodology for conducting Likelihood-based estimation and
inference. The estimation methodology is validated by mears a simulation study.
Further, a new parametric bootstrap procedure for obtaininghe forecasts of the credit
rating transition matrix implied by the MLFI model is introdu ced. This new model is
also applied to the CreditPro 7.0 database.

In Chapter 4, the empirical analysis from the previous chapteas signi cantly extended
by conditioning the observed rating transitions on a large setfanacro economic
variables. A systematic search for the economy-wide determirtarof the cyclical
behavior of the aggregate levels of default and rating trart&ns is conducted. The
observed rating transition rates are regressed over business eyriables, variables
measuring the bank lending conditions and the state of the nasial markets. Finally,
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the common latent factor (credit cycle) hypothesis is testedybenlarging the MLFI
model with multiple latent factors. The main driver behind the observed clustering of
default events is found to be GDP growth. Interestingly, thischapter shows that rating
and default cycles seem to be autonomous to a large extent. lmet sense that signi cant
clustering levels are observed that cannot be explained witlhné macro economic
variables used. Financial contagion and "new-industry bubdslphenomena become,
therefore, good candidates for explaining this nding.

The technical issues associated with the empirical implementah of the MLFI class of
models are intricate. The computational load required forstimating the MLFI model
in any sizable dataset is heavy. Therefore, in Chapter 5, | disssi three possible
approaches for conducting Likelihood-based estimation andference for the class of
MLFI models. A simulation study is carried out in order to assess thaiite-sample
performance of each one of the three di erent methods.

The conclusions and nal remarks of this study are presented infapter 6. This
chapter summarizes the research ndings of this thesis and disses some interesting
ideas for future research.
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Chapter 1

The Econometrics of Irregularly

Spaced Data: A Survey

1.1 Summary

This chapter provides an introduction to the problem of modéng irregularly spaced
longitudinal data. Although Point Process theory was develagd in the sixties and early
seventies, only in the nineties did this eld of Probability theory attract the attention of
researchers working in Financial Economics. The large incseg recorded since the late
nineties, in the literature on Econometric models for dealmwith nancial duration

data is mostly due to the increased availability of trade-by+ade data from the nancial
markets. This chapter provides an overview of the literaturelealing with the
Econometric modeling of this so-calletick data. | start by recalling the essential
concepts and results from Point Process theory. Due to its reknce to the topic of
reduced form models for credit risk, some central results fronhe theory of
Continuous-time Markov chains are also brie y reviewed. Thelapter then moves on to
describe the main speci cations that have appeared in the Ecometrics and Empirical
Finance literatures.

1.2 Introduction

The increasing availability of (ultra-)high-frequency das, arising mostly from nancial
markets, led in recent years to a dramatic increase in the litature dealing with the
Econometric tools needed to handle it e ciently. The traditional methods based upon
xed-length intervals of time are simply not adequate for deing with this type of data,
as they require the aggregation of the observations to the kevof the corresponding
time-grid. In general the aggregation of irregularly spaceevent-data into a time-series
of counts, or of some general limited dependent variable, leatb several known
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problems. First, if the length of the chosen observational timanit is too short then
there will be many intervals where there are no observationg all. This introduces

arti cially a very speci c type of heteroskedasticity in the resulting time-series. On the
other hand, if one chooses a large time-unit then the undertyg micro structure features
of the data are lost, which can be a serious problem for some arsdg. Third, in many
problems the duration between two well-de ned successive evgnor the frequency of
those events, is the subject of the study, and here, clearly no aggation should be
taken.! Fourth, the aggregation of point process data over some xeeshgth time
interval does not allow the researcher to account for changesa time-varying covariates
of interest that take place during the duration of that intenal.

The alternative to xed-interval techniques is to model theData Generating Process
(DGP) behind the successive events being recorded as a RandoninP&rocess,
eventually a multivariate, generalized, non stationary one

The General Mathematical Theory of Point Processes is a topiading its origins in the
work of the 19"'s century French mathematician S. D. Poisson dealing with thanalysis
of Life tables (i.e. statistics from the distribution of the dumation of human life) and
mortality rates. The modern treatment of the subject, howevergoes back to the works
of Cox and Wold in the early fties. During the sixties several cetral limit theorems
concerning the superposition of Random Point Processes werevaw. These theorems
basically showed, for the rst time, that the Poisson Point Procesgone of the simpler
Random Point Process models) plays a role in Point Processes Thesimilar to that of
the Gaussian distribution in the Theory of Distributions.

During the seventies the eld became a structured and establisti@rea within
Probability Theory. Several special branches, like Renewalh€&ory and Hyperplane
Processes Theory for example, were developed in this periocheéTmain motivation for
the development, and also the main elds of application, of thse emerging areas were
Physics, Medical Science, and Engineering.

Recently, Point Process theory has drawn a lot of attention ém applied researchers in
Financial Econometrics. The seminal work of Engle and Russell9@8), introducing the
so-called Autoregressive Conditional Duration (ACD) model, spred an entire new
stream of literature dealing with econometric speci cationgor modeling Point Processes
evolving with after-e ects.? Most of these econometric speci cations were developed for
the analysis of nancial tick data. A directly related, but distinct literature, deals with
the analysis of credit rating data. This chapter intends to povide an uni ed perspective
of both these streams of literature.

The main focus of the present thesis is the analysis of (corpoedtcredit rating data in
continuous-time and on a micro scale. That is, without resortingo any sort of
aggregation. In fact, one of the distinctive approaches of ithesis consists in treating
credit rating data as an example of an empirical point proces$or this reason, in order
to provide a background to the contributions to the credit rsk literature made by this
thesis, this chapter brie y reviews the main econometric potrprocess models available

LAlthough for practical measuring purposes there is always some very small bastime unit. In the

case of tick data this can be as small as=100th of a second.
2see de nition 1.4.



1.2. INTRODUCTION 21

in the literature. This survey intends to cover the main classesf econometric models
currently available for analyzing empirical point processesoth univariate and
multivariate. The focus is placed on situations where one susps that some type of
serial correlation or unobserved factors are present i.e. th#te past history of the Point
Process, or of some unobserved “information’ process, a ects itgrofuture evolution in
some way. The focus of most of the models in this survey is placed o
(ultra-)high-frequency data sets. However, there is nothingiithe structure of these
models that prevents their application to the analysis of loer-frequency irregularly
spaced data. In fact, the Point Processes approach is not exchedy motivated by
high-frequency (or high-intensity?) data. A very proli ¢ stream of literature on Duration
Analysis (i.e. the study of the distribution of the inter-arrival times - the amount of
time elapsed between two successive event-points of a point pFeg) stemming from the
original work of Cox (1972), in particular from his so-calledProportional Hazards
model, has found a fertile ground of application in the eldf Labor Economics and
Sociology. Here, typically, the type of durations under studwre better expressed in
weeks, months or even years (duration of the unemployment arenployment spells for
workers for example).

The di erent econometric point process models available ime literature can be

classi ed according to, at least, two di erent criteria. Perhgs due to the in uential
work of Engle and Russell (1998), many econometric point praaemodels directly
specify theforward occurrence densit§y conditional on a particular Itration. Examples
include the already mentioned ACD model (and all derived maals), but also the
Stochastic Conditional Duration (SCD) model of Bauwens and &fedas (2004). A more
exible alternative consists in specifying directly the intersity process associated with
the point process. This approach, which was in fact the centrglaradigm in Duration
Analysis since, at least, the path braking work of Cox (1972), wagcovered by Russell
(21999) for his Autoregressive Conditional Intensity (ACIl) mode Modeling directly the
intensity of the PP is also the approach taken by Bauwens and Hasth (2006a) for the
Stochastic Conditional Intensity (SCI) model, and by BowsherZ007) for his generalized
Hawkes processes. The ‘intensity approach’ to point process madisl also the favored
one in this thesis.

Econometric point process models can, however, also be classisgecording to a general
criterion used extensively across Statistics. Models like the ae-mentioned ACD, ACI
and generalized Hawkes processes are good examplexbsérvation drivenmodels. This
class of models assumes that, conditional on a particular obsaple Itration
(encompassing the internal one), the distribution of the futue observations is completely
speci ed. In contrast, the main approach of this thesis consists iresorting mostly to
parameter drivenmodels. This class of Statistical models explicitly acknowlgés that in
most real World situations, even conditioning on a rich observéd lItration, the
probability law governing future observations cannot be knen precisely. That is, often
this probability law is itself random. Parameter driven modés, however, postulate that
the shapeof this probability law is known. The randomness being due tahe presence of

3See equations (1.5) and (1.8).
4See de nition 1.7.
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unobservable factors. These latent factors are modeled as stastic processes inside a
fully parametric setting. In many situations, this view is someWwat more realistic, at
least with respect to the one implied by (parametric) observadin driven models.

Bauwens and Hautsch (2006b) provides an overview of the ecorgint point processes
literature somewhat similar to one contained in the current chpter. There are, however,
a number of distinctive features between the later and the forer. In particular, in this
chapter the two main classes dfansition processes(or generalized point processes) are
also covered. These types of stochastic processes are directlgvaaht for the analysis of
credit rating data, and are outside the scope of the survey by Baens and Hautsch
(2006b). This chapter also provides a signi cantly more extesive overview of the theory
of both point and transition processes. This provides the read&rith a deeper insight
into some of the technical issues associated with each particulgyeci cation. Two new
theorems connected with the topic of random time changes fpoint processes are also
introduced in this chapter. This chapter makes an additionlacontribution to the
econometric literature dealing with models for (ultra-)hgh-frequency data by presenting
an innovative approach to the speci cation of some of the modekovered. This is the
case for the ACI, SCI and generalized Hawkes modélsinally, in this chapter all point
process models surveyed are classi ed as either observation orgmaeter driven. This
allows readers familiar with these two classes of statistical meld to grasp more easily
the technical issues connected with the estimation of the di @nt speci cations covered.
The remainder of this chapter is organized as follows. Segtid.3 reviews the essential
concepts and results from the Theory of Point Processes (Subsent1.3.1) and from the
Theory of Markov processes in continuous time (Subsection 2R. Sections 1.4 and 1.5
constitute the core of the chapter. Here | brie y review the man Econometric models in
the literature dealing with empirical Point Processes. As merdned, the di erent

models in the literature can be grouped in two large classes. le@ion 1.4 the focus is
placed onobservation drivenmodels. Parameter driven models are the focus of
Section 1.5. Section 1.6 concludes.

5As a further minor contribution, a small technical issue connected with the speci cation of the SCI
model (which was erroneously stated in the original article by Bauwens and Hatsch, 2006a) is clari ed.
See the discussion and footnote following formula (1.66) in Subsection 1.5.2
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1.3 Theoretical Background

This section reviews important background concepts and ressifrom the general theory
of Point Processes (hereafter PP), Classical Duration and Evehtistory Analysis and
from the theory of Continuous Time Markov Chains. These concépare useful for
understanding clearly the assumptions and mechanisms behindceaconometric PP
model. PP theory provides a structured and uni ed framework lhtat accommodates
many seemingly disparate models. In fact, bot duration and cotidata models are
aimed at describing empirical PP. However, as mentioned in th@evious section, count
data models, unlike their duration counterparts, imply a loss foinformation due to the
aggregation of the number of events over the correspondingnie-grid. For this reason,
in this thesis | chose not to work with count data models. Therefe, in this section, the
emphasis is placed more on theéuration and intensity statistics rather than on the
counting statistics associated with a PP.

1.3.1 Random Point Processes

In this subsection | provide a brief overview of some importantasults from the theory
of real-valued Point Processes. The literature on PP theory, @ver, is reasonably
extensive. An easily accessible and detailed treatment of the maiesults of the Theory
of Point Processes is available in Snyder (1975), which contates on temporal PPs.
Snyder and Miller (1991) provides a detailed treatment of nre general PPs in
multidimensional spaces. Karr (1991) provides a formal treatemt of the subject from a
Measure Theoretical perspective. A comprehensive and less danliag introduction to
the subject is given in Daley and Vere-Jones (2002). Andersenadt (1993) sets out in
full mathematical detail the modern, martingale-based couimg processes approach to
the theory of PP.

De nition 1.1  (Random Point Process)

6Some authors reserve the term \duration models"only for those PP models that diectly specify the
forward occurrence density. According to this view, models that directly specify the (catinuous-time)
intensity process associated with a PP are calledntensity models However, this distinction is slightly
arti cial. Not only because the intensity process of a PP directly implies a particular forward occurrence
density, but also because these so-called “duration models' also imply a particuldype of (continuous-
time) intensity process - one that directly depends on the backward-recurrence time of the P, i.e. the
time since the last observed event. For this reason, in this thesis, | designatesaduration models"any
PP model that does not explicitly assume the existence of a pre-determined time-grid over kich the
observed number of events is counted. The later case corresponds to the so-called \couddwta models."
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Let ( ;F;fF (g;P) denote a Itered Probability Space satisfying the usual coitidns,’ a
(real) Random Point Process

fonT T Te i Ths g

where the random variable3, : ! R satisfy T, 1(!) Ta(') 8n2z12 , is a function

from into the set of all nondecreasing sequenceshin

In this de nition it should be noted, that for a particular ! 2 the sequencefT,(! )g
may actually be nite. The random event-momentsT,, are in fact stopping timeswith
respect to the ltration fF .qg.

De nition 1.2  (Counting Process associated with a Point Process):

Given a real Point Processf T,gt. ; and a subsefA of R, the associatedCounting
ProcessN (A) is de ned as the number of occurrences of the point process imetsetA,
formally:
y X
N(A) = 1a(Th);

n

where 1, (:) denotes the indicator function over the seA.

Of particular relevance for modeling purposes are the specadses wheré\ = [to;t] and
A =[to;t) with to <t. For a xed ty 2 R, and with a slight abuse of notation, | write
N ([to; t]) as N (t), and N ([to; t)) as N (t). Letting t 2 R vary, the stochastic proces$ (t)
has adhg sample paths which are piecewise constant, whildse fromN (t) are aghd
piecewise constant.
Consider a xedty 2 R, a random point process is said to baon explosivein the
interval [to;t] if E[N (t)] < 1 . Because for every >t o we have EN(t) N (t)] > 0, the
counting procesaN (t) is a submartingale that is E[N (t)jF ] > N(u); 8yt :to u<t.
The Doob-Meyer decompositiorestablishes the existence of a unique @adhg,
nondecreasingfF; predictable process (), which is the compensatorof N (t). This
means the process de ned as

M(t)= N() (1)

is aF; martingale. Therefore, the following holds

EIN({) N@FJ=E[(t) (ujFu; 8ut:to u<t (1.1)
If ( t)is absolutely continuous, then there is arF; predictable intensity process (t)
such that Z,
()= ()d: 1.2)

to

’See Andersen et al. (1993) for brief discussion.
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De nition 1.3  (Orderliness):

A Counting Process, and the underlying Point Process, are ¢adl orderly at time t > tg

if for any given" > 0 there exists a (t;") > 0 such that
PIN(t;t+)) >1] "P[N(tt+))=1] ;8 :0< < (t"):

A Point Process is orderly in an interval [a;  if it is orderly at every point of that

interval. It is uniformly orderly on the interval if (t;")= (").

Intuitively this property means that, for an orderly point process, the probability of
observing more than one point in a given time-interval can be ade an arbitrarily small
fraction of the probability of observing one single point, praded the interval is small
enough (in fact if we could rule out the possibility of AN ([t;t + ))=1]=0 ;8 ., and
t > to then this de nition would be equivalent to simply say that

lim 4 W = 0 and uniform orderliness means that this probability ratio

converges uniformly to zero).

De nition 1.4  (Evolution without after-e ects):

A point process observed over an intervifl;; 1 ) is said to evolve without after-e ects if
for any t > t ¢ the realization of points over the interva[t; 1 ) does not depend in any
way on the realization over the intervalto; t).

In particular, this implies that the (integer) random variables (N (u) N (u9), 8usu o,
andN( ) N(9, 8. o, are independent. That is, a point process evolving without
after-e ects hasindependent increments

De nition 1.5  (Poisson Processes):

Let N (t);t > tog be the counting process associated to a point process de medthe
interval [to; 1 ), this point process is called a Poisson Point Process (aridN (t);t > tog

a Poisson counting process) if the following conditions bl

1. P[N(to)=0]=1;
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2. for to 6 u 6 t; the incrementN ((u;t]) = N(t) N (u) is Poisson distributed with
parameter (t) ( u);ie:

(O (u)"expl () (W) w3

P[N((u;t]) = n] = py

Where :[to;1)! Ry is an arbitrary, non-decreasing deterministic function

satisfying ( tp) =0.

3. fN(t);t > tog has independent increments. That is, the number of points in

non-overlapping intervals are independent random varialsle

Recalling that the mean of a Poisson distribution (and actuallyalso the variance) equals
the single parameter of this distribution, we can see that the geral property (1.1)
implies that the compensator of the Poisson counting process roides with its
parameter function (de ned in point 2 above, therefore justying the use of identical
notation).

The Poisson Process is without doubt the single most important Raom Point Process
model. It can be viewed as the natural benchmark model when @gzing a particular
empirical point process. Most of the point processes covered irgdfsurvey can be
thought of as resulting from relaxing some of the qualitative ssumptions behind the
Poisson Process (summarized in theorems 1 and 2 presented furthbead in this
subsection).

The properties of the parameter function directly a ect thebehavior of the Poisson
point process, in particular,

If (t) (u)is nite, then points do not occur with certainty (i.e. there is never
probability one of observing at least one point) over the intesl (u;t] and there is
also zero probability of observing an in nite number of pointsn that interval.
Additionally, from the well-known fact that for a Poisson distribution the mean
and variance coincide, we see that

EIN((u;tDI=VIN(uthl= ( 1)  (u); (1.4)

The points d; of discontinuity of ( t) correspond tosingular time-points of the
point process. That is, at these points there is a non-zero probiity mass (equal
tol exp (d") (d) )of observing at least one event-point. More
accurately still, at these predetermined time-points the nuimer of events follows a
Poisson distribution with parameter equal to the size of the disatinuity jump in

(1) (e (t7) (),

If ( t)is continuous for allt > ty then event-points do not occur at predetermined
times and IiggP [N(t;t + ))=0] =1.
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De nition 1.6  (Intensity function of a Poisson process):

The intensity function of a Poisson process is de ned at the points of di erentiabtly of

the parameter function ( t) as its rst derivative,

(t+) (1, (1.5)

(t) = Iir!n0

Because, when is di erentiable at t, the expected number of points in the interval
[t;t+ )equals ( t+) ( t) this intensity function can be interpreted as the
instantaneous mean rateat which event-points occur.

If (t)is absolutely continuous then it can be expressed as

Z t
()= ()d: (1.6)

to

So far | have mostly considered theounting statistics associated with the Poisson Point
Process. That is, the statistics associated with the distribution athe number of
event-points over arbitrary intervals of time.

Another important aspect of a Point Process are the so-callddne statistics. These
include both the statistics associated with the distributions othe sequences of
inter-arrival times and with the degree of clusteringof event-points over time.

Two closely related time-sequences can be distinguished,

The sequence obccurrence timesf Ty; Ty; ::1; Ty, g where the event-points were
recorded over the interval {o; t],

The sequence ointer-arrival I1_ijes (or durations) f 1; »;:i; n,0 de ned as
i=T, T, (implying T, = 1!=0 i, with the convention ¢ = to.

Clearly, both these sequences yield the same amount of infornaett about the history of
the point process over the intervaltp; t].

De nition 1.7  (Forward-Occurrence density)

The conditional density of the next inter-arrival time (evetually the rst) given the past
sequence of occurrence times (eventually an empty sequgieealled the

forward-occurrence density
For the case of a Poisson Process this density is given by

f i e Ot punty) = (th 1+ )exp] (é th 1+ ) (th )]
o+ Jep (U

th 1
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the last expression being valid if (t) is absolutely continuous. A special case arises if
the intensity function (t) is constant (this case is termed daomogeneous Poisson point
processy,

foime v O Tt mint)) = exp( t);
so, in this special case, the forward-occurrence density is a Exgntial density with
mean ¥ .

In what follows, two theorems giving qualitative conditionsfor a general point process
to be a Poisson point process are presented. The rst theorem (f@mNing Khinchin,

1956) has mainly a theoretical interest. It presents the weageset of su cient

conditions for an arbitrary point process to be a Poisson proce$ddowever, these
conditions are not easily relaxed for obtaining more generalasses of point processes.
The second theorem, on the contrary, has more an operationaterest. Relaxing some
of the conditions in this second theorem leads to more generdhsses of point processes
that actually contain most of the speci ¢ processes covered inithchapter.

Theorem 1.1 A counting processf N¢;t > tog associated to a point process is a Poisson
counting process if the following qualitative conditionsra met,

1. the point process is uniformly orderly ont};t), for all t >t o,

2. the point process evolves without after-e ects,

3. points do not occur at predetermined times,

4. there is no nite sub-interval of [to; t) where points occur with certainty,

5. P[N(tp) =0] =1.
The second set of su cient conditions for a point process to be a &son process
(assembled under theorem 1.2), unlike the one in theorem 1.1ge$ not imply the most
general Poisson process possible. However, modifying slightlydbeconditions, leads to
a particularly important class of (non-Poisson) point processetje so-called

Self-Exciting point processesWe rst need the concept ofconditional orderliness which
is a stronger version of the orderliness notion already seen.

De nition 1.8  (Conditional Orderliness):

A Counting Process, and the underlying Point Process, ar€onditionally Orderly at

time t > tq if for any given" > 0 there exists a (t;") such that

PIN(t;t+)) > 14F; ]6 "P[N([t;t+ ))=1 jF{]; 8 :0< < (t;"): (1.7)

8These conditions are su cient to obtain the most general (non-singular) Poisson cainting process
possible, one having a continuous nonnegative and non-decreasing parameter functiont), termed an
inhomogeneous Poisson process
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The process is called conditionally orderly if it is conditipally orderly for all t > to: A
conditionally orderly point process is also (unconditiona) orderly but the converse is
not necessarily true.

In intuitive terms this means that the orderliness of the proess stays una ected by any
possible event that may occur in the past history of the process.

A second theorer stating an alternative set of su cient conditions for a point process
to be a Poisson process is now presented.

Theorem 1.2 A counting processf N (t);t > tog, associated with a given point process,
is a Poisson counting process if it satis es the following oditions,

1. the point process is conditionally orderly,

2. for all t > tg the limit

0 = tim PN D=1 R ] w8

exists and is g nite integrable function that dependsonly ont. Therefore, we can
dene (t)= tto ( )d , which is also a nite function 8 ,,

3. PN (to) = 0] = 1,

P
Note that if we setn = N(t) and dene T = {‘:01 i, Where 1; -::::

rst ( n +1) inter-arrival times, then under condition (1) of Theorem 1.2, we can also
interpret (t) de ned in (1.8) as

P[t6e T<t+ [jT>t] (1.9)

(t) = lim_

For any conditionally orderly point process (not necessarily Roisson PP), equation
(1.8) de nes the conditional intensity processof the PP.

In almost all applications, it is necessary to conduct estimatioand inference over
observed Poisson processes. The critical quantity to be computext this purpose is the
Likelihood function at the observed realization of the PoissoRP. This one is basically
the joint probability density of the observed sample path of thé®P, considered as a
functional of the intensity function.

9For a proof see Snyder (1975).
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The Likelihood of a nite sample path of a Poisson Process

Consider a realization of a Poisson counting procebKt) over a given nite interval:
fN(u);to 6 u 6 tgthe Likelihood functional for a given intensity function conditional
on this sample path is given by,

Zt Zt
L( jEN@U)to6 ubtg=exp In ()dN() () (1.10)

to to

The full set of Likelihood-based inference and testing proceihs are readily available for
Poisson PP.

The reason for the importance of the Poisson point process as a rabtbr empirical
point processes is threefold. First, as mentioned, the Poissoniptgprocess provides a
baseline model whose generalizations lead to the two most imtsot classes of point
process models. These are the, already mentioned, self-exgtpoint processes and the
class ofDoubly Stochastic Poisson processeSecond, many empirical point processes
are, in fact, adequately described by a Poisson process. This ispart due to the fact
that the superposition of many independent point processes leatb a Poisson PP (see
Snyder, 1975, for a treatment of some of these Poisson "centraiitl theorems). Third,
a particularly important result, the Random Time Change Theoren{Meyer, 1971,
Brown and Nair, 1988) establishes that any multivariate point ¢ounting) process whose
corresponding (multivariate) compensator is absolutely comuous and unbounded can
be mapped into a set of independent homogeneous Poisson poirtgasses each with
unit intensity.

Then the components of the multivariate point process$(u) = N( ¢(u)), whose
occurrence times are given b s(TS)gl_,, make up a set of independent Poisson point

processes with unit intensity.
Proof. See Brown and Nair (1988).m

As it turns out, see Aalen and Hoem (1978) and also Andersen et al. (B9®Bubsection
[1.5.2.2.), the type of time transformationt 7! u employed in the Random Time Change
Theorem, that isu = 4(t), can be extended to anynon-decreasing adapted, continuous
(and therefore predictable) process {). In what follows | present one extension of the
univariate Random Time Change Theorem for the class of coung processes having a
multiplicative intensity process.
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Theorem 1.4 (Multiplicative Intensity Univariate Random Time Change)

Let N (t) be anF;-adapted counting process observed o\J&j; 1 ], having an absolutely
continuous, unbounded, compensator procegst). Let the corresponding sequence of
occurrence times be denoted d$T,gt_, . Assume that the corresponding intensity process
can be factored as (t) = (t) (t), where (t) and (t) are two F-adapted, @ghad,
non-negative processes, and de n¢ t) = tto ( )d . Further assume that

(1)=lmy (t)=1.

Then, the point processN(u) = N(  (u)), whose occurrence times are given by

f ( Th)gl.,, has theF,-predictable intensity process’(u) = ( (u))= (t), where
Fu=F 1.

Proof. This result is in fact a corollary of Theorem 3.2 in Aalen and Hoer{l978). To

see this simply sek = 1 in that theorem and note that ( tg) =0, ( 1 )= 1 and the

left-derivative of ( t), thatis (t), is left-continuous. Therefore, the random time

transformation u = (' t) is a regular time changefor N (t), as clearly (t) =0 implies
(t)=0. m

De nition 1.9  (Marked Point Processes):

A Marked Point Process is a point process that has an auxiliamandom variable (called
the mark) associated with every event-point. This random rable can take values on
some mark setM . That is, we can think of a marked point process as a paifl,; M)
wheref T,gl_ ; is a real point process andM,, is a random variable de ned oveiM

(either a denumerable or continuous set but independent dietindexn).

As seen, a point process must be both conditionally orderly and @ving without
after-e ects, in order to be a Poisson process. Certain types of ippprocesses not
satisfying the orderliness requirement can be included in théass of Marked point
processes. A conditionally non-orderly point process can be nebed as a marked point
process where the mark represents the number of simultaneougmg recorded atT,,
that is, where the mark space iV = N.

Removing the requirement that the point process evolves withut after-e ects leads to
one of the most important classes of dynamic PP models. Self-éixgy point processes
evolvewith after-e ects. This means, in the most general setting, that, atime t, any
sub-set of the history of the procestN (u); to 6 u 6 tg can potentially in uence any
sub-set of the corresponding futuréN (u); u >tg.

The dependence of the future on the past is formalized throughe conditional intensity
function of the process de ned in equation (1.8).
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De nition 1.10  (Self-Exciting Point Processes):

The conditionally orderly counting proces$ (t) (and the underlying point process) is
termed a Self-Exciting Counting (point) process if (t), as de ned in equation(1.8), is
not merely a function of time, but instead, a stochastic press adapted to the internal

Itration generated by N (t).

Again, we are interested in performing Likelihood-based estirtian and inference
procedures for self-exciting PP models. The important fact lne is that the Likelihood
functional computed for a speci c realization of a general dedxciting PP is completely
similar to the Likelihood functional for a (inhomogeneous) Fsson PP.

The Likelihood functional for Self-Exciting Point Process es

Consider a realization of a Self-Exciting counting proce$$(t) over a given nite
interval: fN(u);to 6 u 6 tg the Likelihood functional for a givenrealization of the
stochastic intensity process conditional on this sample path is given by,
YA t Z t
L(()jfN(u);to6 ub tg) =exp In (; )AN() (;)d (2.12)

to to

Here it is assumed that the admissible intensity processes for a specproblem are
parameterized in terms of the (eventually in nite-dimensioal) vector .

The similarity between the Poisson and the Self-Exciting cases & consequence of the
fact that the intensity process for this last class of Point Proeses is a stochastic process
adapted to the internal ltration of the PP. Parameter estimation can be performed
through the common Maximum Likelihood (ML) methodology. Ina similar, way
Likelihood-based inference procedures are readily availepbfor example the test of two
simple hypothesis:

()= ()9  (; o);to6 6 tg vs. (1.12)
()= ()P (; 1)ite6 6tg (1.13)

can be performed using the standard Likelihood Ratio approach

De nition 1.11  (m-Memory Self-Exciting Point Processes)

In the general de nition of self-exciting point processede entire history of the process
may in uence the conditional intensity process (that is theotal number of occurrences

N (t) and their occurrence timesTy; T; i Ty (r)). By contrast for a m-Memory
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Self-Exciting point process onlythe last m occurrence timesTy ); Tny 15555 Tne) me1
(and, eventually, the total number of occurrencel (t)) in uence the conditional

intensity process.

A particular case of a nite-memory self-exciting process is thclass oRenewal
processes A self-exciting point process with independent, identicall distributed
durations is termed anordinary Renewal proces$® If all durations but the rst (which
is measured from the initial momentty) are identically distributed then the process is
called amodi ed Renewal processln both cases we have an example of a 1-Memory
Self-Exciting PP. The only memory of the process is the last aagence time (in
particular there is no memory of the total number of past occuences). In intuitive
terms one can think that there is an underlying clock which iset to zero at every
event-point. This means that the conditional intensity funt¢ion for these processes
depends only on the (left-continuous version of the) backwamrecurrence time

The basic idea behind Self-Exciting counting (and point) proesses, that is, allowing the
conditional intensity function to depend on the internal Itration of the counting
process, can be taken a step further. By allowing the conditiohatensity function to

be a stochastic process adapted to the Itration generated by sar(eventually
multivariate) “information’ process X we arrive at the class oDoubly Stochastic Poisson
processesalso known asCox processes

De nition 1.12  (Doubly Stochastic Poisson Processes):

Let fN (t);t > tog be a counting process associated with a given point procdss,
fX (t);t > tog be some left-continuous (multivariate) stochastic proceswe say thatN (t)
is a Doubly Stochastic Poisson counting process witfitensity processf (X (t));t > tog
if for almost every given path f X (t;! );t > to;! 2 g of the processX, N(t) is a

Poisson counting process with conditional intensityunction (X (t;! )).

In basic terms this means that the intensity process for this cés of Point Processes is a
deterministic function of the stochastic proces$X (t);t > tog.

ORemark: this actually means that the homogeneous Poisson PP is a special casesoRenewal process
- one where every duration is exponentially distributed with a common mean.
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The Likelihood functional for Doubly Stochastic Poisson Pr ocesses

If the “information’ processf X (t);t > tog is observable, then we can use the result
presented in equation (1.15) in Subsection 1.3.1 to obtain tHakelihood associated with
a sample path from one of these PP. The main problem associated lwNIL estimation
and inference for Doubly Stochastic Poisson Processes comes fthenfact that the “full
information' processX may not necessarily be observable. That is, the Itration
generated by the “information' procesX may be decomposable &; = F°[F ,, where
the observable ltration F? corresponds to the observable components Xf, while F, is
a collection of subsets of connected with the history of the remining (unobservable)
factors.
Z; Z ;
L( jFr)=E exp In (X())dN() (X()nd F? (1.15)
to to
The multivariate integral implied by (1.15) represents a chiéenge for the practical
implementation of estimation and inference procedures fohis class of PP (when some
of the components oiX are latent). In Chapter 5 of this thesis | present a simulation
study comparing three di erent solutions for solving this prollem. These three di erent
methods for (numerically) evaluating the expectation appaing in (1.15), are applied to
a new class ofjeneralized point processestroduced in Chapter 3 of this thesis.
Next | present a theorem expressing a limit to the identi cation 6 latent intensity
factors in multiplicative intensity point process models.

Theorem 1.5 (The Identi ability of Latent Intensity Factors) . Let N(t) be an
F{-adapted counting process observed o\&#; 1 ], having an absolutely continuous,
unbounded,F-compensator procesy t). Let the corresponding sequence of occurrence
times be denoted a$T,g. Assume that the corresponding intensity process can be
factored as (t) = (t) (t), where (t) is a non-negative,F °-adapted, aghd process,
while g) IS a non-negativeF -adapted, aghd process E° F ), de ne

()=, ()d . Further assume that( 1 )=limy (t)=1.

Then, from any given realization of the point proceshl (t) over a nite time-window

[to; T], it is not possible to conduct statistical inference on thendividual values (t)

Proof. We start by applying Theorem 1.4, from where we are able to cdnde that the
time-changed counting procesi(u) = N( *(u)) has the F,-predictable intensity
process™(u)= ( 1(u)) = (t). This means that the F-likelihood functional can be

written as

0 1 2 3
N(T) N+ £y at

L “Fr =@  ( (u))Aexpd ( “upduS;  (1.16)

n=1 n=1 Un 1
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whereu, = ( Ty), T= ( T). Obviously,L =~ F+ =L ( jFr). Consider the process
constructed in the following way.
B ( AL i foru2 ity
W= 2T ™ rdu Uy Uy ) (Te) foru2 (un g%t

(2.17)

The process has sample paths which are aghd piecewise constant. Statisally, this

process is completely indistinguishable from th&ue latent process . In fact for any

realization of the N (t) process over the intervaltp; T] both processes and  have the

same likelihood functional (1.16). However, process only requires the estimation of

two unknown constants for each spellT, ; T, T). =

This theorem establishes the limits to the identi ability of latent intensity factors in

point process data. Although nothing can be inferred with regd to isolated values (t)

whent 2 (T, ;; T, T)andn=1;:::;N(T)+1), fromR(1.16) it is clear that point

process datas informative with regard to the integral u“n” AlT ( Yu)du.

In most of what we have seen so far, when we speak of a (orderly) wariate Random
Point Process, in intuitive terms, we speak of a series of similarvents occurring in a
one-dimensional continuum, usually time, the events beingstinguishable only by
where they occur, i.e., having no qualitative or quantitatre information attached to
them "(Lewis, 1972, page 14). However, in many situations thesgeat-points
correspond totransitions of some individual or observational unit between two
well-de ned states within some denumerablestate space This motivates the de nition
of a Transition process

De nition 1.13  (Generalized Point Processes)

A Transition Process also known as aGeneralized Point Processis a continuous-time
stochastic process$ S(t) : t 2 Rg where eachS(t), for a xed t, is a discrete random

variable taking values over some denumerable ( xed) stafgase.

A particularly important class of continuous-time discrete-spport stochastic processes
corresponds to those processes that actually have both nite-spprt and nite memory.

1.3.2 Continuous-Time Markov Chains

In this subsection, | review some fundamental concepts and retsufrom the theory of
continuous-time nite-state Markov Processes, also known as camiious-time Markov
Chains. These elements provide a useful background to the classreduced formcredit
risk models (see for example Jarrow et al. 1997). Because thigsis makes several
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contributions to this stream of literature, it is useful to reall the related theory. A
comprehensive introduction to Markov theory is provided in @mmet and Stirzaker
(1992). Isaacson and Madsen (1976) is a detailed treatment of Mav chains with an
emphasis on engineering and reliability applications.

Consider a continuous-time discrete-valued stochastic processmed on the interval

[to; 1), FS(t);t > tog and assume that the state spac8 (in which S(t) takes its values)

from the “point wise' de nition of S(t), | will assume for the remainder of this section
that this stochastic process obeys the adhg assumption. Thimeans thatwith
probability one the trajectories ofS(t) are Right-Continuous with Left-Limit functions of
time. This type of trajectories admit a countable representation

f(Sn; Tnh);n 2 Ng;

where theT,;n 2 N sequence consists of thieansition (or occurrence) times, and
Sh = S(Tp).

De nition 1.14  (Markov Chain):

The continuous-time nite state-space stochastic processS(t);t > tog is termed a (&
order) Continuous-Time Markov Chain (CTMC) if it satis es the Markov property:

PISh=]iSh 1=Sh 1;::;S9=S]=P[Sh=j) Sy 1= Sn 1]; (1.18)
for all natural numbersj;so;:::;;sy 1 6 S and any arbitrary sequence
to<t,<:::<t, ;<t, of transition times.!!

This means that the evolution of the chain in a nite time interval [t% t] does not depend
on the history before timet® i.e. it is a memoryless process (or more exactly there is
only memory of the present state).

This makes it possible to de ne a matrix function oft® and t alone, whosei(j )" entry
gives the probability that the chain will be in statej at time t given that it was in state
i at time t°

De nition 1.15 (Transition Probabilities Matrix):

This matrix determines the evolution of the Markov chain. Eny (i;j ) of this matrix is
de ned by
P (6t)=P[St)=jisS®)=i]>0 (1.19)

1A p" order Markov Chain satises a generalized version of the Markov property,
P[Sh =JiSn 1=Sn 1;::::S0=50]=P[Sh =] JSh 1= Sn 1;:::;Sn p = Sn p] and so memory of the
past is limited to the last p-steps
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Note that each row of this matrix sums up to one, as it contains aiscrete probability
function.

Theorem 1.6 The Family of matricesfP (t;t9;t°> t > tog for Continuous-time

Markov Chains satis es the following conditions,
1. P(t;t) = Ig,

2. P (;19 is a stochastic matrix (i.e. all the entries are non-negativand all rows add
up to one, P (t;t9 1 = 14),%?

3.P(ttY=P(t;u)P (u;t9;t 6 u6 t°(Chapman-Kolmogorov Equations).

For a proof of this result see Grimmet and Stirzaker (1992).

De nition 1.16  (Generator Matrix):

This matrix is the equivalent, for continuous time Markov chas, to the 1-step
transition matrix for discrete time Markov chains, and the itensity function for a

Poisson PP. It is de ned as

@

G(t) = @P (t:t9 jro=t (1.20)
Under the adhg assumption we have that:
Itm P(t;t%= I

i.e. the entries of the transition probability matrix P (t%t) are continuous functions of
the second argument, and thus, it follows that the sum of each roaf G (t) is identical
to zero,

G (t) 1s = Os (a column vector} (1.21)

Additionally, the diagonal elements ofG (t) are non-positive. In fact with  (t)
denoting one such component d& (t) we have,

. i (4t 1
i () =1lim %;

and as 06 p; (;t9 6 1, we clearly obtain ; (t) 6 0 by the continuity of p; (t;t9.
On the other hand, for the non-diagonal elements & we have,

) _ o By (519
REE

and so j (t) > 0 by the continuity of p; (t;t9:

121 denotes ans-dimensional column-vector of ones.
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So equation (1.21) together with these results means that

XS
i (t) = i (1): (1.22)
j=1;j8i
Theorem 1.7 The Transition and Generator matrices are related by the faWing

system of partial di erential equations (the Kolmogorov "EMation’ Equations),

%tétt% = P (t;t9G (Y (Forward equation) (1.23)
%t;tt() = G (t) P (t;t9 : (Backward equation) (1.24)

Theorem 1.8 The Transition Probabilities matrix is recoverable from theGenerator
matrix by nding the unique solution to the Kolmogorov Equains that also satis es the
auxiliary condition P (t;t) = ls. This solution is explicitly given by

Ptt)= T{ s+ G()d); (1.25)

where T(Z(' + M ( )d ), for a given (matrix) function M, denotes the product integral
of M.

The product integral T{ 2 (I + M ( )d ) represents a generalization of the usual ( nite)
product, just like the usual integral generalizes the summatiooperator. The next result
is sometimes useful for the numerical evaluation of the produimtegral.?

Theorem 1.9 The product integral ﬂz(l + M ( )d ) can be expressed as the following
in nite Reano series
b X Z Z
Tla+m()y)=1+ i MdgiiMd g (1.26)
a

p=1 a6 1<ii< p6b

An important particular case of a continuous-time Markov chaimarises when the
transition intensities, that is, the individual entries of the Generator matrix, are
constant.

13For an exposition on product integration, and a more detailed treatment of the results presented
here, see Gill (2001), Andersen et al. (1993, Section 11.6) and Goodman and Johsen (1973).
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De nition 1.17 (Homogeneous chains):

A Markov Chain f S(t); t > tog with transition probabilities matrix P (t;t9 is called

homogeneous

P(t:t9 = P (to;to+ (t° 1));8t°> t> to: (1.27)

This means that the transition probabilities matrix does notdepend on historical time,
but only on the amount of time elapsed between the initial and nal moments. In such
case, we can de ne for every displacement> 0, P = P(tp;to+ ).

Generator and Transition matrices for Homogeneous Chains

For homogeneous continuous-time Markov-Chains the Transain Probabilities matrix,
(1.19), as seen, is function only of the displacementbetween the initial and nal time
points, accordingly, if lim 5, P = |, the Generator matrix (1.20) is now a constant
matrix

d_ .
= d—P ] =0 : (1.28)

The Kolmogorov Equations assume a particularly simple form.

Theorem 1.10 For a Homogeneous Continuous-time Markov Chain where the
Transition matrix is a continuous function of the Generator and Transition matrices

are related by the following ordinary di erential equationgKolmogorov equations),

dip =PG=GP: (1.29)

Theorem 1.11 The Transition Probabilities matrix is recoverable from theGenerator
matrix by nding the unique solution to the Kolmogorov DEs tht satis es the auxiliary
condition Py = |s. This solution, known as the matrix Exponential function, iexplicitly
given by:

-
1

exp[ G] or equivalently
Xl n
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Continuous-time Semi-Markov Processes

Continuous-time Finite State-Space Markov processes have awédéimited amount of
memory. Only the current state is recorded at any given momeniThis may be far too
restrictive to model many real-life problems.

A slightly larger class of continuous-time nite state-space proesses, which include the
Markov chains as a special case, is the class of continuous-timmisklarkov processes.
Semi-Markov processes keep track not only of the present stateitlalso of the elapsed
duration (or holding time) in that state. For this class of pro@sses equation (1.18) is
replaced by

P[Sh+1 = ;i X n+1 J(So;To) ;003 (Sny To) = (i51)] = Qy (8 ) (1.30)

In intuitive terms, these processes are characterized by the joint distributi@® (t; ) of
the destination statej and holding timeX,, = T, T, 1 on the current statei, given

that we know this last one, as well as the precise moménthere the system entered this
State.

This means that for a Continuous-time semi-Markov Chain the dries of the generator
matrix are stochastic processes (instead of deterministic funohs of time) which

depend deterministically on the backward-recurrence timeNon-homogeneous
semi-Markov processes are used in Chapter 2 of this thesis for th@nparametric
analysis of Agency credit rating data.

1.4 Observation Driven Point Process Models

Here | brie y review the main speci cations proposed in the nartial literature for
dealing with point processes that evolve with after-e ects. Th focus in this section is
on observation driven models. For all the di erent speci catims in this section, it is
assumed that all relevant information is available to the Stastician.

There are two main approaché$ for modeling a point process evolving with after-e ects.

1. Specifying directly theforward-occurrence densityof a conditionally orderly
process, that is, the probability density function of the next iter-arrival time (or
duration), conditional upon some particular ltration. This approach is somewhat
limited. First, because the conditioning information set is oly updated at each
occurrence time, it is not possible to assess the impact of covaeis varying
between event-times. As a consequence, and strictly speakingjration models'
can only be applied to univariate point processes. This is due the fact that the
occurrence of events of a di erent type during a duration camt be included in

Y Remark: In principle, it would also be possible to parameterize directly the suvivor function, but
apparently, not so many authors have followed this approach. This approach hasxactly the same
limitations as the one resulting from the use of the forward occurrence density.
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the internal Itration of the model. This problem can be cwwmvg,nted by using a

marked "duration model' for the pooled counting proceshl (t) =  _; Ng(t)
associated with aS dimensional PP. In this context, the markM, would
correspond to the specic event type (i.,eM = 1;:::;S). However, not many

authors seem to have taken this path (see also Bowsher, 2007).

2. Specifying directly the Conditional Intensity of the point process. This is a far
more exible approach. The ltration is updated continuously, allowing both the
inclusion of general time-varying covariates and the occuance of events of several
di erent types (i.e. making it possible to model multivariate PPs).

1.4.1 The ACD class of models

This class of processes, introduced by Engle and Russell (1998 good example of the
rst approach mentioned above. The basic underlying idea corssiin specifying directly
the next duration as the product of a parametric (scaling) fuation of past durations by
an i.i.d. noise process with positive support. It is in fact a partular case of the
Multiplicative Error Model introduced in Engle (2002). Therefore, this model has the
same general structure as the GARCH model. It is, in fact, an exartgof a self-exciting
point process model where the conditional intensity functioexplicitly depends on the
backward-recurrence time (1.14).

Econometric speci cation

Let fN(t); T1; T2 11 T 9 denote the past history of a (univariate) condltlonally
orderly point process over the intervaltp; t], the durations are given by , = T, T, 1.
Let be the condltlonal expectation of , given the past sequencey;:::; ,, 1 of

n Elnd naiiiyal= nlnaiiy o ); (1.31)
the ACD class of models consists of parameterizations of (1.3ajntly with the
assumption

n= n'n: (1.32)
The innovations process is assumed to be

f"ng ii.d. with density p("; +): (1.33)

Additionally, " has unit mean, and and - are xed unknown vectors of parameters.
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Clearly, this de nition allows a broad class of point process odels. By using di erent
functional forms in (1.31) and allowing di erent distributions for the multiplicative error
term (1.33) we can arrive at di erent particular ACD models.

The conditional intensity function implied by this mechanismcan be deduced as follows.
Let

" = p("; ) .
o(")= RW, (1.34)

denote the hazard function corresponding to the density (1.33Note that, as the
durations are obtained as modulated versions of i.i.d. randodraws from this density,
the corresponding hazard function can be thought of aslaseline hazardin the spirit
of the proportional hazards model of Cox, 1972, in particutathe expected value of the
standardized durations",, is 1). Now, consider adeformation of the time-axis such that
in the new, transformed, time-axis we read the standardized dations

] n .
n —_—.
n

The image of the original PP over this new, transformed, timexis constitutes a
Renewal process, due to the i.i.d nature of the standardized dations. Accordingly, the
corresponding conditional intensity process is

(t): ot tN(t) ; (135)

wheret denotes time measured over the transformed time-axis. This inigs the
following intensity over the original time-axis
RO 1

N (t)+1 N (t)+1 '

()=

(1.36)

The previous argument also shows that we can think of the ACD metlas an
Accelerated Failure Time (AFT) model. The past of the process changes the speed at
which time will ow over the next duration (through the scaling e ect that |, imposes
to the "natural' durations ",). In contrast, in classic AFT models this change in “speed'
is driven by exogenous covariates.
In computational terms, this speci cation raises two problemsFirst, the admissible
class of parameterizations of (1.31) is restricted to eitherrsttly positive functions of
n1,::0; 1, ) (forany ), ortovalues of thatkeep ,(n 1;:::; 1; ) strictly

the implied likelihood may be problematic. Secondy("; -) is restricted to densities
with strictly positive support.

The simplest ACD model possible corresponds to a homogeneous Paid2oint Process
with intensity

()= 1;

by setting (1.31) identical to a constant, and using a standard Eponential density for
(1.33).
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In most empirical applications of this model, (1.31) is simplyaken to be a linear
function of a nite number of past (observed) durations and pastonditional expected
durations. The so called ACD(p,q) model consists of (1.32) joilyt with the following
linear parameterization of (1.31),

n=!+ (B)ni1+t (B) n 1 (1.37)

whereB denotes the usual lag operator, and

(B) = 1+ B+:::+ ,BP Y
(B) = 1+ B+:::+ 4B

Note that this general ACD(p,q) model has “full memory', in cotrast to a nite
memory PP, due to the autoregressive polynomial (B). This can be seen by noticing
the similarity of (1.37) with the equation de ning an Autoregressive Moving Average
(ARMA) process. However, this similarity also shows that the impact foone speci c
duration, under suitable location of the complex roots of the (B) polynomial, will fade
out exponentially. Therefore, speci cation (1.37) is a ‘shéimemory' duration model.
This similarity also implies that we can obtain a nite p-memory Self-Exciting PP by
taking the (B) polynomial identical to zero.
A convenient property of the (linear) ACD(p,q) model is thatit allows a straightforward
analytical computation of several unconditional moments ahe generated duration
sequences, by taking expectations on both sides of (1.37).
In the original article by Engle and Russell (1998), most of themngphasis was placed on
two particular choices for the innovations process (1.33).i5t of these, the EACD(p,q)
model is obtained by using an Exponential distribution for (133) jointly with the linear
speci cation (1.37) for the conditional duration (1.31). A marticularly simple form is the
EACD(1,1)

n= I+ n 1+ n 1- (138)

In this model the unconditional mean duration is

Vinj naiin;dd = 3
) 1 2 2 2

Accordingly, this model will exhibit excess dispersion in the eesponding unconditional
distribution of the generated durations whenever > 0, this is a feature often observed
in duration data sets.

The alternative particular parameterization, the WACD(p,q) model, uses a Weibull
distribution for the innovations process (1.33) together wh the linear process (1.37).
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The hazard function associated with a Weibull distribution, wih parameters and , is
given by
()= L (1.39)

Other possible distributions for the innovations are the Genatized Gamma,
Log-normal and Log-Logistic distributions (see for example Kl eisch and Prentice,
2002, section 2).

A further extension of the basic ACD speci cation consists in inciding the values of
marks associated with the previousn event-points in the mean equation (1.37). That is,

=1+ B)t, 1+ (B) o1+ °B)zy 1 (1.40)

with (B)= 1+ ,B+:::+ ., 1B™ !andz denotes a vector of marks. Again the
need to insure a positive , requires the use of (non-trivial) constraints over the
parameters in (1.40).

It is equally possible to include deterministic calendar e e, like "time-of-day' e ects
for transaction data. This can be achieved by assuming that theoaoditional expected
duration is a ected by a deterministic function of the correspnding starting moment.
For example, using the multiplicative form

Eln] noiiir =" (Th 20 0) n(s ot )
where = =" (T, 1; ) corresponds to the \diurnally adjusted" durations.

A plethora of di erent extensions and variations on the basic £D(p,q) model have
been proposed in the literature. Next, | provide a brief descripn of the main ideas
behind some of these speci cations.

1. The class ofLog-ACD models introduced by Bauwens and Giot (2000)
circumvents one of the problems connected with the linear AQ{1,1) model,
namely the need for imposing constraints over the model paraises to insure the
positivity of ,, by resorting to the logarithmic transformation. That is, equaion
(1.38) is replaced by

n ,=!'"+ In,1+ In 4 1 (1.41)

2. Generalizing the class of Log-ACD models, Fernandes and @naig (2006)
proposed theAugmented ACD (AACD) by using a Box-Cox transformation.
Therefore (1.41) is replaced by

" =1+ 0" B g'nai B+ a1 (1.42)

where > 0, > 0, band c are unknown parameters. The factor
I"n1 B g"n 1 Bb] appearing in (1.42) is the so-called \news impact
function.”

3. In order to circumvent the “short-memory' characteristicassociated with the
linear conditional duration process (1.37), Koulikov (2002 introduces a class of
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long-memory positive weakly stationary random variables. Eauion (1.38) is
replaced by
=1+ (1 B)YY B) U ni1 n o) (1.43)

where 0< d < 1 and the negative fractional power of the baqs-di erencing
operator can be obtained from the expansion (1B) 9=1+ jlzl GB!. The

coe cients ¢ of this expansion can be obtained recursively from = ¢ 1‘Jﬂ
starting from ¢; = d.

4. A Threshold ACD (TACD) model was proposed by Zhang et al. (2001). The main
idea behind this speci cation, is to use an observable variab{ér example the
previous duration) to select one oP di erent regimes. Each regime has its own
conditional mean equation (1.38) and error distribution (133). Regimej is chosen
if (for example) , 12 [ry 1;rn), Where O<rg<r;<:::<r ;=1 arethe
threshold parameters. For xed values of the threshold paramets the remaining
parameters of the TACD model can be estimated by ML. Performga grid-search
over the threshold values is a feasible solution for obtainindgi¢ corresponding ML
estimates.

5. Meitz and Terasvirta (2006) introduce a class oSmooth Transition ACD

(STACD) models. In contrast with the (discrete) regime switching TACD mdel,
where the DGP ‘jumps' between several di erent regimes, durats in the STACD
model result of a continuous "mixture' of several di erent coditional distributions.
A particular case of this speci cation is as follows. The condibnal duration is
given by

n=l a1t a1+ (1% 9G(>n L, o); (1.44)
with ! © %denoting additional parameters andG(:) is the so-called “transition
function." In general G(:) can be any non-negative, bounded real function of one
real variable. UsuallyG(:) takes values between 0 and 1. A particular choice for

the transition function is the logistic form
" W

G(n , 1;;rq i r3)= 1+exp In n 1 T (1.45)
j=1
where > 0,r; ::: r; are unknown parameters. The integed is normally
chosena priori and determines the shape d6. The STACD model encompasses
several particular cases of the TACD model. A further extensiowould consist in
extending the scope of the transition function in order to inclde the lagged
conditional duration term |, ;, yielding a Time-Varying ACD (TVACD) model.

6. Drost and Werker (2004) propose aemi-parametric class of ACD models by
relaxing both the distributional and i.i.d. assumptions behid the innovations
process (1.33). That is, while the conditional mean is speci edls a parametric
function (as for the other ACD models), the conditional distrbution of the noise
process", is estimated directly from the data using a combination of kerel
density and Nadaraya-Watson regression estimators.
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Estimation and Inference

Observation driven ACD models belong to the class of Self-Exag point processes.
Therefore, the Likelihood associated with a particular ACD sp@ cation can be obtained
by combining the general result (1.11) with the particular fom of (1.36) implied by the
chosen innovations density (1.33) and the precise parametetiion (1.31) of .
However, the construction of the precise data Likelihood im@d by some of the more
complex ACD speci cations can be di cult. More important stil |, if the assumed
distribution for the noise process is mis-speci ed, and unless ghone belongs to the
Exponential family (see Goureroux et al., 1984), the derigd estimators will not be
consistent. Engle and Russell (1998) show that the estimators ofdPACD parameters
derived from the Exponential noise distribution satisfy the Quai-ML(QML) properties.
Therefore these estimators are consistent even under mis-speation of the noise
distribution. Drost and Werker (2004) showed that the QML estim#ors based on the
Gamma distribution are equally consistent but provide no e cigcy gains over the ones
derived from the Exponential distribution. This essentially neans that, for obtaining
the pseudo-Likelihood function implied by a particular ACDtype model, we can
combine the result (1.11) with the particular conditional man function (1.31) used,
assuming the innovations to be i.i.d. Exponential. The estimaits resulting from the
maximization of this pseudo-Likelihood will be consistent.

Recently, Peiris et al. (2008) show that the estimation of botlExponential and Weibull
ACD models is also feasible under thEstimating Functions approach of Godambe
(1985).

Dynamic “mixture' ACD models (for example, the STACD) on thecontrary, cannot be
estimated by ML due to the path dependence of conditional dut@ns (a similar
problem arises for Markov-Switching GARCH models, see Gray, 189 This class of
models requires more sophisticated estimation methods.

1.4.2 The ACI class of models

As mentioned in the introduction to this chapter, while the orginal ACD speci cation of
Engle and Russell (1998) models directly the forward-occurree density (of a univariate
point process) as a function of past observed durations, the Autayeessive Conditional
Intensity model of Russell (1999) models directly the conditil intensity process (1.8).
The added exibility that results from the intensity approach makes it feasible dealing
with multivariate point processes. Additionally, the ACI mechanism allows the inclusion
of time-varying covariates in a regression framework. The basidea of this model
consists in using a Vector Autoregressive Moving Average (VARMA) press for
describing the dependence of the (vector) conditional intsity on the past of the
multivariate point process.
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Econometric speci cation

Consider a set ofS distinct (right-continuous) counting processeNs(t), with

observqg over the interval [PT]. Assume that the pooled counting process
N(t) = le Ng(t) is orderly and the compensator ¢(t) associated withNs(t) is

absolutely continuous. The correspondingitensity process is denoted by s(t).
The ACI mechanism parameterizes each individual intensity omponent as

s(1) = as(t) exp( w(t) + R (er INs(U(D); (1.46)

where ¢(t) is a deterministic function of (chronological) time, interded, for example, for
modeling high-frequency (\intra-daily”) seasonality e ects. Typically, gs(t) is speci ed
as a low-order spline function. The dimensional vectorw(t) contains a collection of
time-varying covariates relevant to all event types, while 5 stores the regression

coe cients corresponding to thes" point process. The multivariate baseline hazard

quantities Us(t) = t tﬁ,s(t) are the amount of time elapsed, i.e. the duration, since the
last occurrence of an event of each type (known in the Point Pcesses literature as the
backward-recurrence timg Therefore, it is possible to assess the impact over tis&

point process of the duration with respect to the last event, bt of that same or of a

Ng(t) =1,and Ns( )=0forevery intheinterval t3_,;t whenever thisis a

non-degenerate one. This multivariatdaseline hazardunction hg can, take di erent
possible parametric forms. For example the product & Weibull or Burr hazards (see
for example Hautsch, 2004).

Although a general VARMA structure is possible, most commonly,, = ( 1;:::; 5)0is
de ned as a Vector Autoregressive (VAR) process of order one,

1 =A o +B, 2 and 1= 0; (1.47)
where ,, = ( Na(tn);:::; Ns(ty))?is a randomselection vector A = (a,s) and
B =(hs) are (S S) matrices of unknown parameters® The vector , =( 1;:::; 3

contains the innovations corresponding to each intensity poess. Later in this section |
shall discuss in detail two possible speci cations for the noise press.

The A matrix determines the degree of persistence of each shock to firecess .

When the last event was of thes" type we have , = es,wherees denotes thes™" column
of the identity matrix |, therefore, thes™ column of B is used for re-scaling the
(univariate) innovation 2 , = 3. This means that theinstantaneousimpact of an event

5Note that the matrix A can be made dependent on,, according to A = [A1:::As](n Is), such
that, when the last event was of types, the S S matrix As is used as the VAR(1) coe cient ( denotes
the Kronecker product and | s is the identity matrix of order S). This adds extra exibility to the model
by allowing a rich set of dependence patterns among the di erent components of the multiariate PP.
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of type s over the intensity process of type equalshs ;, that is

r

—(@n%—l = bs:
The eigenvalues of the matrix of persistence paramete#sare required to lie inside the
unit circle in order for the process to be mean reverting to its unconditional mean of
zero (see proposition 2 and ensuing discussion in Russell, 1999).
The (vector-valued) noise process, can be de ned in, essentially, two di erent ways,
both resulting from a suitable application of the random time ksange theorem. In the
original 1999 article by Russell the vector of innovations, is de ned as

n=(1 1(t]N1(tn) 1;t]N1(tn)); S S(tﬁs(tn) 1;tﬁs(tn)))0’ (1.48)

where ¢(a;b = R} s(t)dt. That is, the innovation associated with each point process,
consists of the increment in the correspondingompensated counting proce¥sover the
interval de ned by the two most recent events of that type. Theefore,  is a
Martingale di erence sequence. When the last event was of tts¥ type, only the s
component of , is used for updating the vector . In this case, ;> 0 (or > < 0)
means that the model over predicted (respectively, under piested) the time length
between two consecutive events of typg Direct application of the random time change
theorem implies that the sequence of (scalar) innovation§ , is an i.i.d. Exp(1) noise
re-centered in zero.
The alternative solution for de ning the innovations ,, was suggested in Bowsher
(2007). Instead of using the increments in the compensated coung processes of each
type, the idea consists in using the increments in the pooled (@pensated) counting
process. That is,

n=(1 n)1ls; (1.49)

where 1s denotes anS column vector of ones and g denotes the sequence of
increments in the compensator associated with the pooled prese

VS
n = s(th 1;tn); n=1;:::;N(T): (2.50)

s=1
In this case ¢ ,, > 0 (< 0) means that the model over predicted (under predicted) the
time length between any two consecutive events (i.e. regaedk of their type). As
previously mentioned, due to the random time change theorem,, is an i.i.d. Exp(1)
noise while ¢ , has zero mean. The computation of the ACI residuals, in both casds
straightforward.

Maximum Likelihood estimation and Inference

As it was seen in Subsection 1.3.1, the Likelihood associated to angde path from a
general univariate Self-Exciting point process is readilyvailable (see equation (1.11)).

8that is, the Martingale processMs(t) = Ng(t)  s(t).
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For the present case of a multivariate ACI process the key consistsapplying the result
(1.11) to the pooled counting process. This leads to

N zZ, z,
LCC)iFr)=  exp In (; )dN() s(;)d (1.51)

s=1 to to

where denotes the full vector of parameters associated with a partiar ACI

speci cation. The computation of ML estimates has to be done usy some numerical
optimization algorithm, as, in general, there are no closedifm expressions obtainable
from (1.51).

ML-based inference procedures are directly available.

Additionally, due to the fact that under correct speci cation of the ACI model, the

Exponential distributed, we can use a Ljung-Box test over the dacorrelations of the
estimated residuals as a diagnostic check on the adequacy of g#simated model. An
additional "goodness-of- t' test is the excess-dispersion test notduced by Engle and

Russell (1998).

1.4.3 Generalized Hawkes models

This intensity-based class of self-exciting multivariate poinprocesses was proposed by
Bowsher (2007), adapting and extending the seminal work of Hae&k (1971) to the
analysis of nancial data. Accordingly, Bowsher (2007) descrés a simple data
transformation for dealing with the fact that nancial transaction data is not
continuously recorded in time, due to the presence of the oveght period when

nancial markets are closed. The generalized Hawkes (g-Hawkespdel also allows the
inclusion of exogenous variables in a regression framework ttlemables the assessment
of their impact over the intensity of each univariate compona of the multivariate PP.

| start by describing the original, univariate, Hawkes (1971) mdel, this is then followed
by the generalized counterpart introduced in Bowsher (200@nd then, nally, the full
multivariate g-Hawkes model.

The Univariate Hawkes model

This is a case of a “full-memory' self-exciting point process. &tentire past history of
the process overtp;t) determines the present value of the conditional intensity mrcess.
Hawkes (1971) introduced the following particular paramete&ation of the intensity
process z,

tN(); Ty Tyt Ta =1+ (t u)dN(u) (1.52)
0
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I' > 0is an unknown parameter. The integrand, (:), is a xed function of time termed
the infectivity measure in the classical literature due to the rst applications of this
model in epidemiology. The most common parameterization ofwas rst suggested by
Hawkes (1971)
X
()= kexp( « ); (1.53)
k=1

where ¢y Oand ¢ 0 are model parameters. The order of the proceksis either set
a priori or chosen using model selection criteria.
This model was initially used in the eld of seismology, see for ample Vere-Jones and
Ozaki (1982) and Ogata and Katsura (1986). The main feature @tis model, besides its
full memory, is the fact that the marginal impact of one eventecorded at calendar time
t, is independent of the remaining history of the PP. The amountfdime elapsed since
tn is the only factor determining the impact of this event over lhe current value of the
conditional hazard rate; regardless of the number of eventsaorded betweer, andt.
This property of the Hawkes model, as argued in Engle and RussglB98), may render
it inadequate for the purpose of analyzing nancial transactins data. In fact some
authors argue that nancial markets evolve intransaction instead ofchronological time
In contrast with this view, Bowsher (2007) adapts the Hawkes spiezation for modeling
nancial transaction data. The g-Hawkes model makes use of a sitepdata
transformation, designed for dealing with the overnight peods when no activity takes
place on the nancial markets. The transformed time axis is dened in the following
way, the origin is set at 9:30 a.m. of the rst recorded trading dy. The overnight
periods are then removed from the time axis, such that only theworking hours of each
trading day (6.5 hours for most nancial markets) are retained This means that
moment x (expressed in hours measured after 9:30 a.m.) in trading day(an integer
number) will appear as time-pointl  (d 1)+ x in the nal data set. Formally, we
have the following partition of the time axis

O;+1)=(0;xa][ (Xxu;xal[ i (Xa 1iXal[ <533 (1.54)

wherexqg=d | (d=0;1;2;:::). With this partition in place, Bowsher (2007) proposes
a special Hawkes-type speci cation for the conditional intensitprocess.

The Univariate g-HawkesE( K) model

Consider a self-exciting, conditionally orderly point procgs de ned over [Q1 ) and
equipped with the above-mentioned partition. Let the condional intensity process of
this PP follow the parameterization

X
tiN(); T Ty Tn = (D) + k(t); (1.55)

k=1
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where (t) is a strictly positive deterministic function of time (designel to
accommodate deterministic intra-daily patterns). Each stochstic component i is
obtained recursively. Starting from (0) = O, the recursion step is given by

Z
k(D)= « k(Xa 1)exp[ «k(t Xq )]+ kexp[ «(t u)]dN(u); (1.56)

[Xg 1:1)

whenxq 1 <t 6 Xq. Additionally, the following sign restrictions need to be impeed,
k>0 >0 (>0and (> 0. Equations (1.55) and (1.56) mean that, added to the

deterministic function (t), there are K stochastic components which account for both a

“spillover e ect' from the trading intensity of the previous trading day (obtaned from

the rst term on the right-hand side of (1.56)), and the past tradng intensity on that

day (given by the second term). Both e ects have an associated monential ‘rate of

memory Io,gs.' Inside a speci c trading day one individual event leads to a “jup’ of

amplitude E:l k in the intensity . This increasg will eventually fade out at

exponential rate. More precisely, at the rate of exp t mkin k . With regard to the

“spillover' term on the right-hand side in equation (1.56), ishould be noted that the
value of each stochastic component at the closing timg,on ddy 1, included in (t)

with x4 1 <t 6 Xq4, fades out' at the (distinct) rate exp t mkin K

The basic self-excitement mechanism of the g-Hawke$E)l model, built using weighted
exponential response-functions, is easily extended to the muériate case by including
terms that account for possiblecross-e ects between the di erent components of the
multivariate PP. Again, for simplicity of exposition and following Bowsher (2007) only
the bivariate case is described. Constructing the general miviériate case is nonetheless
straightforward. In particular, | introduce in this chapter an innovative notation for
describing the bivariate g-Hawkes that lends itself to a triviageneralization for handling
the general multivariate case.

The Bivariate g-HawkesgE( K) model

Consider two distinct, conditionally orderly, point processesvith associated integsity
processes ; (t) and ,(t) assembled into a (column) vector (t) =( 1(t); 2(t)) : The
bivariate g-HawkesE(k) model assumes this vector intensity follvs the
parameterization:

= O+ M (t)1; (1.57)
where (t) =( 1(t); 2(t))°is a bidimensional deterministic function of time. The
P (k)
matrix M (t) = (m; (1)), i;] =1;2 has entrym; (t) = Ezl i (t). Each individual

(k)
stochastic component ; (t) is de ned similarly to the univariate case. That is,
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(k)

i (0) =0, and then

) t L e O !

i (= 5 5 (Xa 1)exp i (U Xda 1) + i exp 5 (tu) dNj(u);

! [Xa 1:t)
(1.58)
whenxgy 1 <t 6 xq. The following restrictions are required, i(jk) > 0 i(jk) > 0 i(jk) > 0
and { > 0. Nj(u) stands for the counting process associated with tfjé'" component
of the PP. The bivariate version basically adds the facility focross-e ects between the

occurrence of events and the intensities of the di erent congment PP.

Maximum Likelihood Estimation

The data Likelihood implied by this class of models follows déctly from equation (1.11)
and the speci cation of the conditional intensity process (1.5. This leads to a general
Likelihood expression similar to (1.51). However, the structuref the transformation of
the time-axis (1.54), allows writing the likelihood as a prduct of daily contributions.
This decomposition in turn, allows the use of the recursive speztion (1.58) in order
to compute the log-likelihood in an e cient way. Additionally, the special parametric
forms in (1.58) mean that the integral of the path of eacls" intensity component
(appearing in (1.51)) can be computed analytically, see Bowsh(2007) for details.

1.5 Parameter Driven Point Process Models

In this section the focus is placed on point process models witimobserved components.
The common feature across the di erent speci cations in this s#ion, is that the

internal Itration generated by all these models can be decoposed as~; = F?[F |,
whereF? corresponds to the observable information set, while, denotes the history of
the unobserved components. The dynamic behavior of these made driven not only
by an observable Itration but also by latent components, thus ombining aspects from
both self-exciting and doubly stochastic point processes. The hier dynamic structure
of this class of models provides added exibility for describg the patterns in empirical
point processes. This added exibility, however, comes at a cos¥IL estimation for this
class of models is hindered by the need to integrate out the etof the unobserved
components. This is a common and well-known problem for parater driven nonlinear
or non-Gaussian dynamic statistical models. The data-density tygpally involves a
high-dimensional integral, which has (due to the unavailabiy of exact closed-form
solutions) to be evaluated either using simulation or other appximate methods.
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1.5.1 Parameter driven ACD models

As seen in Subsection 1.4.1, the class of ACD models constitutes,Historical reasons,
one of the main point process models used in the nancial liteare. Many di erent
extensions and variations on the original speci cation of Edg and Russell (1998) have
been proposed. Some of these were already mentioned in Subsacii.4.1. Here | focus
on those particular extensions of the ACD model that include tant components.

The Markov Switching ACD model

As mentioned in Subsection 1.4.1 ACD models are characterizbg a particular shape
for the conditional duration (1.31), the multiplicative eror structure (1.32) and a
particular set of stochastic assumptions for the noise process

One particular extension of the basic ACD model mentioned in ®gection 1.4.1 was the
TACD model of Zhang et al. (2001). The main characteristic offte TACD speci cation
consists in combining di erent ‘regimes,' i.e. the durationsra generated according to
several di erent conditional mean functions and innovatiordistributions. The particular
regime used to generate the next duration is chosen accordingthe value of the
previous observed duration. An alternative way to shift betwae several di erent
regimes is a (hiddenMarkov switching mechanism. That is, the particular regime
(amongJ possible regimes) generating the next conditional duration,.+; is chosen
according to the value of an unobserved discrete random varlabr,.; (with nite

behind the Markov Switching ACD (MSACD) model introduced by Hujer et al. (2002).
The MSACD model is characterized by the multiplicative erro structure (1.32)
(implying E[",] = 1), the conditional mean depends directly on the unobserderegime
variable r,

X .

n+l = Plrnss = JjFn; ] 51]+)1; (1.59)

i=1
where Pfn+1 = JjFn; ]is the probability that the next regime will be in statej, given
the information set available at timeT,. The regime-speci ¢ conditional mean
r(1]+)l =E[ nsrirner = J; Fns
is normally speci ed according to an autoregressive speci catn of the form (1.37).
As mentioned the latent stochastic proceskr,g follows a homogeneous (discrete)
Markov chain, characterized by the 1-step transition matrixP, with entries
pj =P[rns = jjra = i]. As with the conditional mean duration, the next conditiona
error distribution depends only on the current stater, and the (observable) information
setF,. Thatis, "+ is drawn fromf ("n+1jrn+r = J; Fnj ).
There are two possible ways in which to specify the regime-speciconditional expected
duration U),. First, U), can be regressed only on previous expected durations and

observed durations corresponding to that same reginje Alternatively, f]jﬂl can be
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written as an autoregressive function of both previous expesd and observed durations
regardless of the specic regime. This second possibility raisdgetproblem ofpath
dependencethat is, ,(1’21 becomes dependent on the unobserved past trajectory

trajectories need to be considered. A simplifying aggregatigrocedure for this case was
suggested by Gray (1996), in the context of Markov switching GARE models (see also
Hujer et al., 2002).

The data Likelihood for the MSACD class of models is given by &éhaverage conditional

of the latent Markov chain. Evaluation of this Likelihood function is computationally
demanding. Hujer et al. (2002) suggest a feasible procedure nmakuse of the
Expectation-Maximization (EM) algorithm of Dempster et al. (1977).

The Stochastic Conditional Duration model

The relationship between the Stochastic Conditional Duratin (SCD) and the ACD
models is similar to that between the Stochastic Volatility (¥) and GARCH models.
Instead of specifying the expected conditional duration (113 as a function of previous
observed durations, as in the ACD model, this expected duratiois modeled as a latent
stochastic process.

While the multiplicative error structure (1.32) is retained the conditional expected
duration equation (1.37) is replaced by

N n=!+ In o1+ n;withjj<1 (1.60)

where the latent noise process,, N (0; ?2), is assumed independent df,, givenF, .
The initial value of the latent conditional mean log-duraton process, that is In o, is
drawn from the “steady state' distribution of In .

The SCD model implies a marginal distribution for the duratims |, that results from
mixing the (assumed) log-Normal distribution of ,, with the chosen distribution for" .
In general, it is not possible to compute these distributions @. the unconditional one
and the one conditional uponF,) analytically given a choice of a parametric family of
distributions for ",,. It is, however, possible to obtain these distributions by numezal
integration (see Bauwens and Veredas, 2004).

In what follows | assume that the distribution of",, has nite moments of all orders.
These moments are denoted by

g =E["M]; p=1;2;:::
Two possible choices are the standard Weibull distributiolV ( ; 1) and the standard
Gamma distribution G (; 1) for which

g =  1+°P (Weibull) ;

O = ﬂ (Gamma):

()



1.5. PARAMETER DRIVEN POINT PROCESS MODELS 55

The sequence of durations,, constitutes a strictly stationary process under the
restriction | j < 1, which also implies the stationarity of the latent factor . The
unconditional moments of these processes are given'by

! 1 2
= e —  + = :
X7 2 1 2
= O
2 2 2
= exXp 1
2
2 - 2 @ .
= = ex 1:
gttt 1

The SCD model is able to generate a sequence of duratiopsexhibiting excess
dispersion if

2 2
5> In o

87)

For Weibull distributed innovations, this condition holds if 1( 1 for the Gamma
case) and 2> 0 (evenif =0).
The theoretical autocorrelation function (ACF) of the sequece of durations , is given
by

exp —> 1

- :
ggrexp T 1

This result implies that the ACF decreases geometrically witls. Therefore, the SCD
model is, just like the ACD, a “short-memory' duration process.

As seen on Section 1.3.1 Doubly Stochastic Poisson Processes areeasy to estimate
using Maximum Likelihood. Following Harvey et al. (1994) and Riz (1994), Bauwens
and Veredas (2004) propose a Quasi-Maximum Likelihood (QML)paroach obtained
from the application of the Kalman Iter to the state space repesentation of the SCD
model

In , = + ot 5 (observation equation) (1.61)
n, =1+ In , 1+ 4 (state equation), (1.62)
where ,=In", ,and =E[In ",].

The Kalman Iter would provide the exact Likelihood for this state space model (SSM)
if the | disturbances were Normally distributed. Because this is not thease (unless
the distribution of " is taken to be log-Normal), maximizing the likelihood obtaied
from application of the Kalman Iter to the SSM given by equaions 1.61 and 1.62 is a
pseudo ML and not a full ML procedure.

17See Bauwens and Veredas, (2004) for a proof of these results.
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More recently, Bauwens and Galli (2007) describe the detaits applying the E cient
Importance Sampling (EIS) algorithm of Richard and Zhang (@07) to the estimation of
SCD models. As it would be expected, they nd that (at the cost of a increased
computational e ort) the simulation-based EIS algorithm provides more accurate
estimates of the model parameters, when compared with the angl QML procedure
suggested in Bauwens and Veredas (2004).

1.5.2 Stochastic Conditional Intensity processes

Introduced in Bauwens and Hautsch (2006a), this class of intgity based' point process
models can be considered a parameter driven extension of thelAGodel of Russell
(1999). As it is the case with the SCD and ACD models, the SCI specation results
from enlarging the Itration generated by the original ACI model with the -algebra
generated by a single latent (univariate) stochastic process. @his, although the model
can be applied to an arbitraryS-dimensional point process, it is assumed that a
common latent factor in uences (multiplicatively) the corditional intensity process of
each individual component.

More formally, consider a set ofs distinct (right-continuous) counting processedNs(t),

observed over the interval [pT]. Assuming that the pooled counting process

N(t) = _f:l Ns(t) is orderly and the compensator ¢(t) associated withNg(t) is
absolutely continuous, there is a correspondingtensity process, denoted by 4(t). In
the broadest sense possible, the SCI class of models consists of asibte parametric
speci cations for the vector of intensities (s(t)), where each component can be written

multiplicatively as
s()= Mexp( s (1); (1.63)

with  (t) denoting a univariate unobserved stochastic process with piecewise-constant
@ghd sample paths. In fact, the unobserved process cannot bdenti ed between
successive events of the pooled process (recall theorem 1.5)lyGime integral of this
latent process over a&omplete spell(t, 1;tn] of the pooled process and its boundary
values (t,) are identi able. Accordingly, it is reasonable to consider a cess with
piecewise-constant aghd sample paths (only “jumping' athie occurrence times,, with

process. Clearly, the trajectories of such a process can be ingi@by the left-continuous
counting procesaN (t) associated with the pooled process. Finally, for this class of
models, thelatent information set F, mentioned previously, corresponds to the history
of the process (t). And therefore, it is updated only at the occurrence times ahe
pooled counting proces$ (t).

The observable intensity component 2(t) can, in general, be any predictable process of
the observable Itration F?. In contrast with F,, F? can be updatedcontinuously.

In practice, speci c parametric processes have to be chosen foodeling both the latent
and the observable components ofs. In Bauwens and Hautsch (2006a), the observable



1.5. PARAMETER DRIVEN POINT PROCESS MODELS 57

intensity factor 2 is modeled as an ACI procesS, while an AR(1) speci cation driven
by Gaussian innovations was chosen for the common latent proce3#$at is

N+ = N@ T N "N+ NID(O;1): (1.64)

The latent innovations process is assumed to be independent bktseries of increments
in the compensator of the pooled process (2.4). This assumptiarequired to insure
valid intensity components . The stationarity of the latent AR(1) process (obtained
whenj j< 1) is a necessary condition for the stationarity of the SCI model

Note that ¢ represents the conditional standard deviation of the" log-intensity
component In ¢ given F. For this reason, the latent innovations", have unit variance
(1.64).

The component-speci ¢ standard deviation s means that a shocK', to the common
unobserved factor will have a di erent impact over each indidual component of the
S-variate PP.

As mentioned above, the observable part of the intensity funan for a SCI model 2,
can be parameterized using the ACI mechanism, Bauwens and Hadtg2006a) suggest
the use of a product of Burr hazard functions for the baseline hard function hg
discussed in Subsection refsec1.3.2.

There is, however, one critical di erence between the (origal) ACI speci cation and
the parameterization of the observable component of the imsity process in the SCI
model, as suggested by Bauwens and Hautsch (2006a). If the inniieas process ,, is
computed following either (1.48) or (1.49) then, in both casg ,, will be a function of
previous values of the latent component.

Recall that in the ACI model, the innovation associated with eeh individual counting
processN¢(t), at an occurrence timeT, of the pooled proces$ (t), was either the
increment in the s compensated counting process over the last complete spell of the
associated point process, or the increment in the pooled competeshcounting process.
However, when an unobserved componentis added to the intensity processes, both,
and s(t. ) 1 th.q.)) PECOMe dependent on one or more past values of this latent
factor. Clearly, this means that one cannot separate the comfation of the ACI
residuals from the problem of Itering the (latent) process . In order to separate the
computation of the innovations , from the Itering problem for , Bauwens and
Hautsch (2006a) suggest an alternative speci cation for the AChinovations. The basic
idea is to compute the ACI innovations process based only on the observable intensity
components 2. This simpli es considerably the computation of the (rede nel) ACI
residuals, but at the cost of seriously hindering the determinain of their exact
distribution (which is still unknown). Under the approach of Rissell (1999), Bauwens
and Hautsch (2006a) suggest the following de nition for the ACIesiduals,

n=( I S(tN, ) 1 tha))i it N 2Rty 1 tNen)S (1.65)

R
where 0; 5772 denotes the Euler-Mascheroni constant and(a; b = : o(t)dt. The
alternative speci cation for the noise process suggested by Baems and Hautsch

18See Subsection 1.4.2 for the details of this multivariate point process model.
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(2006a), follows the approach suggested by Bowsher (2007)

e
( In o(th 1:th))1s: (1.66)

s=1

S
1

Clearly, in this last case, , does not depend on the type of the most recently observed
event.

The reason for taking the natural logarithm (apart from leadng to an eventual increase
in the numerical stability of the corresponding computations)s understandable mainly
in the univariate case (i.e.S = 1). Only in this case it is possible to write the
(univariate) disturbance term , as

n= + 10 In q(ty 15ty): (1.67)

That is, because under correct model speci cation(t, 1;tn) is Exp(1) distributed, ,
is the sum of a re-centered standard Gumbel (minimum) random kiable!® with the
latent factor. However in the general (multivariate) case, th log transformation does
not lead to a clear decomposition similar to (1.67). This is tre both for the Russell and
Bowsher speci cations of the ACI innovations?®

Estimation and Inference for the SCI model

The main challenge in estimating this type of models comes frothe presence of the
latent factor, which must be “integrated out' of the conditimal (upon the true path of
the latent process) likelihood function. The data Likelihoodmplied by the SCI model
can be obtained by combining the results (1.15) and (1.51). ®his, if the complete path
of the latent process yry = f igs "+ would be known, then (1.51) would provide
the data-Likelihood for the SCI model when (1.63) is used. L&t jF?; nr)+a

denote this conditional Likelihood. Because y (ry.; is unknown, the likelihood becomes
Z

LCIFD) = L JF7 nmm PO e )d nerpes (1.68)

where andp( yt)+1) denotes the (unconditional) density function of (1y.; -

Several di erent approaches are available for evaluatinghe high-dimensional integral in
(1.68). In Chapter 5 of this thesis, three di erent methods areapplied to a multi-state
extension of the SCI model introduced in Chapter 3. Bauwens drHautsch (2006a)
apply the simulation-based EIS algorithm of Richard and Zhan¢2007) and Liesenfeld
and Richard (2002).

Inference in parameter driven models is not only limited tole estimation and
evaluation of hypothesis concerning the unknown parameteo$ the model. A central
issue is the so-calledignal extraction problem. This consists in two closely related

9A standard Gumbel (minimum) r.v. has mean equal to and variance equal togz.
20Further note that equation (15) on page 458 of the article is clearly inconsisent.
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problems, the Itering and the smoothing problems. Usually, the Itering problem

the latent stochastic process given past observations up to (andciuding) the previous
momentt,. The smoothing problem, on the other hand, consists in obtaingnthe

process given all observations. The di erent feasible estimatiaonethods that can be
applied for evaluating the Likelihood (1.68) can also deal i these signal extraction
problems.

1.6 Conclusion

This chapter provided a short overview of the core economaets literature dealing with
irregularly spaced data. The main concepts and results from ¢htheory of point
processes were also brie y recalled, in order to provide the afieate background for
understanding the underpinnings of the models surveyed.

Statistical models for point processes, like other dynamic statical models, can be
classi ed as eitherobservationor parameter drivenmodels. Most of the econometric
models for point processes, in the literature, are observatiomiden. This is mostly due
to the impact that the ACD model of Engle and Russell (1998) hasdd over the
nancial econometrics literature. Nevertheless, an increaginliterature (to which this
thesis aims to make a contribution) on point process models Witunobserved
componentshas recently appeared. This particular stream of literaturetarted with the
introduction by Hujer et al. (2002) of a parameter driven extasion of the ACD model.
The main obstacle to the wider use of these more exible econometmodels is, clearly,
the complexity and computational load associated with their @gimation. This issue is
addressed in the remaining chapter of this thesis.






Chapter 2

Nonparametric Analysis of Agency
Credit Rating Data

2.1 Summary

This chapter proposes procedures for estimating the time-depdent transition matrices
for the general class of nite non-homogeneous continuousre semi-Markov processes.
The existence, and Fechet di erentiability, of a unique solition for the system of
Volterra integral equations which relates the transition m&ix with the subdensity
functions is established. Therefore, it is possible to estimatéé realized transition
probabilities consistently from window-censored event-histg data. An implementation
of the method is presented, based on nonparametric estimatorstbe conditional hazard
rate functions in the general and separable (multiplicatiecases. The resulting
estimators are used for dealing with a central issue in credit risk he problem of
obtaining estimates of the historical corporate default andating migration probabilities
is addressed using a dataset of corporate credit ratings from &tlard & Poor's. The
contents of this chapter are based mostly on Monteiro, Smirnand Lucas (2006).

2.2 Introduction

The Semi-Markov Process (SMP) introduced independently byely (1954) and Smith
(1955) is a generalization of the Markov process. The SMP with mite state space can
be thought of as a Markov chain (MC) with a random transformaton of the time scale
(Pyke, 1961a). In particular this means that the sojourn time in each state can have
arbitrary distributions that may also depend on the next state o be visited. Therefore
SMP's are more exible than the homogeneous MC as a tool for ¢hstatistical analysis
of transition data.

Stochastic processes evolving in continuous time with jumpseava ( nite) set of states
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(also known in the Finance literature as transition or ‘migrabn' models) constitute the
most natural class of econometric models to consider for moagjicorporate credit
rating and default data, see for example Kavvathas (2000), bdo and Sk deberg (2002)
and D'Amico et al. (2004).

The literature on semi-Markov processes has focused mainly orettime-homogeneous
case, examples are Pyke (1961a and 1961b), Limnios and OuHt$49 and 2005) and
Alvarez (2005). However, in the eld of credit risk, several empcal studies have
explicitly shown that the time-homogeneity assumption is strogly rejected (Kavvathas,
2000, Lando and Sk deberg 2002, Koopman et al. 2005). Additially, Kavvathas
(2000) and Lando and Sk deberg (2002) also present some evidemicat the empirical
distribution function (d.f.) of the sojourn times (or duration) of debt issuers in each
rating class seems to display negative duration dependencethé resulting "maturity'

e ect is severe, then a given rating class will, in fact, be hetegeneous with respect to
the associated default probabilities according to the time speby the issuer in that
rating. This chapter, in particular, answers the following gestion: what is the impact
on the rating migration probabilities (including the defaut probabilities) of this known
non-Markovian feature of credit rating data? The chapter adresses this issue through
its main methodological contribution. General computatioal procedures for estimating
the transition matrices accounting both for the presence of dation dependence and
time-inhomogeneity e ects are developed. These proceduras applicable to any
statistical model inside the class of nite non-homogeneous seMarkov processes
(NHSMP) in continuous time, and do not depend on the particulaestimation
methodology used.

The NHSMP was de ned for the rst time in losifescu Manu (1972). Thediscrete-time
nite state case was treated in De Dominicis and Janssen (1984). Wever, to the best
of my knowledge, this chapter provides for the rst time a formal proof of the existence
and uniqueness of the corresponding (continuous-time) trangih probabilities in any
nite time window. A computationally e cient numerical pro cedure for obtaining the
transition matrices from knowledge of the matrix of subdensityunctions is derived, and
its convergence formally proved. Additionally it is shown thathis procedure preserves
the consistency of any such estimator of the subdensity functionkat may be used as
input in an empirical application.

Such a consistent estimator for the subdensity functions can benstructed (for
example) using nonparametric estimators of the conditionaldzard rate functions. Two
leading references on this topic are Nielsen and Linton (199&hd Linton et al. (2003).
Using the class of piecewise-constant hazard rate estimators, arpiementation of this
new methodology is applied to analyze the CreditPro 7.0 dasat from Standard &
Poor's - containing the detailed rating histories of more tha 7300 U.S. rms recorded at
a daily frequency and over a period of almost 25 years. The hisical (realized) issuer
rating migration probabilities are estimated considering 7 idtinct rating classes. This
leads to some interesting empirical ndings. First, large di eences in estimated default
(and transition) probabilities are found - with respect to wha is obtained using the
Aalen-Johansen estimator (Aalen and Johansen, 1978). Secondgewlestimating
separable hazard functions, and in contrast with Lando and Skeberg (2002), the
baseline hazard is not found to be monotonically decreasingtlvithe elapsed duration.
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Instead, for the great majority of rating classes, there is strongvidence of
non-monotonic behavior. After an initial period of increaseni the downgrade and
default rates, which leads to a peak located around 30 month&( downgrade
movements) or 3 years (for default events) after the date wheme current rating was
issued, the intensity of this type of rating events decreases sigantly. In a similar way
for upward rating movements the peak in the hazard rates is ¢ated, roughly, three
years after the rating was issued.

Transition matrices are a capital input for many credit risk management methodologies
like, for example, J.P. Morgan's Credit Metrics or McKinseys Credit Portfolio View. In
order to "backtest' a particular credit risk model and rating sgtem, it is of paramount
importance that one is able to consistently estimate, ex-posthé empirical transition
probabilities. These should be estimated accounting for the nmastatistical features of
that rating system and in a robust manner. This is so regardless ofhether the nal
aim is assessing compliance with the Basle Il norms, or comparingohwr more
competing models in the development stage. The nonparametrhalen-Johansen
estimator frequently used for this purpose in the literature (s&for example the studies
by Lando and Sk deberg 2002, Jafry and Schuermann 2004, or mman et al. 2008)
allows for time-inhomogeneity but is built upon the unreabtic Markov property. This
assumption, as mentioned, has been strongly rejected empitlggKavvathas, 2000,
Lando and Sk deberg 2002}.

This chapter is organized as follows. Section 2.3 reviewsadnhally the main de nitions
and some important results from the literature on non-homog@&ous semi-Markov
Processes. Section 2.4 presents the simple class of piecewise-aansbnparametric
estimators of the hazard rate functions, both in the general @hseparable
(multiplicative) cases. The explicit formulas of the nonparmetric estimators of the
semi-Markov kernel implied by the estimators of the hazard ratfunctions presented in
the previous section are introduced in Section 2.5. Additiofig the problem of
obtaining the empirical semi-Markov transition probabilities using window-censored
event-history data is formulated rigorously, and solved. A simation study is conducted
in section 2.6 to assess the small-sample behavior of the hazarderastimators
employed. The empirical results are reported in section 2.7e&ion 2.8 concludes the
chapter. The appendix details the proofs of the theorems in&en 2.5.

INote that the results reported in Jafry and Schuermann (2004) concern only the comarison of
estimated transition matrices either through the use of standard matrix norms or their proposed metric,
the \ average of the singular values of the mobility matrix. " Comparisons, across di erent estimation
methods or chronological periods, of estimated transition matrices, as a hole, may not capture relevant
di erences for particular transition probabilities (for example the default probabi lities) for a given rating
class. Therefore, for risk management purposes, the extra-computational cost iptied by an estimation
procedure which accounts for the time-inhomogeneity is not material.
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2.3 Non-homogeneous Semi-Markov Processes

This section brie y recalls the main de nitions and results fom the theory of
non-homogeneous Markov Renewal Processes (NHMRP) which areedity relevant to
the problem under study in this chapter.

Consider an arbitrary bivariate stochastic process; T) = (' Sn; Tn),oy, de ned on a
complete, ltered, probability space ( ;F;fF (g;P), describing the evolution in time of
a given discrete-event system. Directly linked to this processekplicitly consider four
other processes. The procesSy),,,,, gives the sequence of states visited by the
system, and takes values in the se8= f1;2;:::;sg, (s < 1), termed the state space.
The nondecreasing random sequenceé,), , is built from the consecutive transition
times in the setR;. The bivariate process $n;Xn)nZNO whereX, =T, T, 1isthe
sojourn time in state S, ;.2

Finally | consider the continuous-time @adhg processS (t), t 2 R; that records the
current state of the observational unit (or system).

Let Q = (Q; ) be a matrix-valued function of two arguments,Q is called a matrix of
subdistribution functions(s.d.f.) if each entry

is a nondecreasing measurable function of the second argumendt satis es
xS xs
Qi (1 )= lim Qi (t )=1; (2.1)
j=1 ' i=1
for everyt 2 R;. The s-valued functiong = (g), with components
g:Ry! [0;1]
is termed the (time-varying) vector of initial probabilities if it satis es
XS
g((t)=1;8t2 R;: (2.2)
i=1

The bivariate process &,; Xn),,y, IS said to be a NHMRP, and the associated process
S(t), t 2 R; a NHSMP, if the following assumptions hold

P[Sha1 = J; X ns1 J(So;To) i (Sny To) = (51)] = Qy (8 ) (2.3)
and
P[So=1i]To= to] = g (to): (2.4)

The matrix of s.d.f. (Qj ) is called in this context the semi-Markov kernel and together
with the vector of initial probabilities completely determines the stochastic behavior of
the NHSMP.2 Unlike in De Dominicis and Janssen (1984) | de ne the non-homogeous

2By convention Xg = To=0and S ; is left unspeci ed.
3| will always assume that Q; (t; )=0, 82 S
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semi-Markov kernel using as arguments not the last and next traition times, T, = t
and T,+1 = t+ , but instead the last transition time and the duration until the next
transition. In this way the two underlying time-scales are mad explicit: the
chronological time-scalé and the "age' (or duration) scale . Note that | assume the
non-homogeneous semi-Markov kernel to be independent of th&st number of recorded
transitions.

De ne for every t 2 R}

pi ()= lim Q; (t ); (2.5)
and
XS
Hi(t )= Qj(t ): (2.6)
j=1
Due to Condition (2.1), H; (t; ) is a d.f. onRy with respect to the second argument .
This can be interpreted as the d.f. of the sojourn times in statethat start at time t.
Under conditions (2.3) and (2.4) the processY),,,, iS @ non-homogeneous (discrete
time) Markov chain with transition probabilities p; (Tn), this is called the embedded
Markov chain. The d.f. of the sojourn times in state starting at time t that nish with
a transition to state j is given by

1 . .
e y= By (t) Qi ) ;p()>0
Ry (6 ) 0 ; otherwise. (2.7)
It is considered throughout this chapter thatQ; (t; ), as a function of the second
argument , is absolutely continuous with respect to Lebesgue's measure. this case
the partial derivative of Q; (t; ) with respectto is well de ned and | denote it by
g (t ),

@Q(t )
it )= ———:
g (t ) @

In the current credit risk context it is clearly reasonable to onsider that the
semi-Markov kernel satis es the additional condition

Qij (t;0)=0;8t 2 RY:

that is, that there is no probability mass at zero. This assumptio is used in section 2.5
for deriving our numerical procedure for computing the trasition probabilities.

The hazard rate function associated with a transition to statg at time t+ in the case
where the unit has entered state at time t is de ned by

1 . . .
i (4 )=llmoﬁP[Sn+1=J; <X a1 + hj(So;To);::55(Sn;Tn) = (i;t); Xner > ]

(2.8)
Using assumption (2.3), we can obtain the deterministic function; as
AL (1) > 0andH; ()< 1
()= Tac) - Pi i\b 29
i (6) 0 . otherwise. (2.9)
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Inverting this last equation we can also obtain the semi-Markokernel (2.3) from the
hazard rate functions,

Z
Qj (t )= exp[ i (tu)] j (tu)du; (2.10)

where 7
i(t )= j (tu)du; (2.11)

is the total integrated hazard “out' of statei, that is the total cumulative “force' of
transition for leaving statei, this relates directly to the d.f. of sojourn times in state.*
This one-to-one mapping between the semi-Markov kernel antlé corresponding hazard
rate functions means that if we can estimate the latter ones ware also able to obtain
estimates of the former.

2.3.1 Associated counting processes and their intensities

| now de ne the counting processes (c.p.) associated with the press §;T). Let

N(@Uu)=supfn:T, ug;u>ty; (2.12)
n

denote the right-continuous c.p. recording the total numbreof transitions experienced
by the statistical unit in the interval ( to; u]. |1 denote by N (u) the corresponding
left-continuous c.p. For each pair of states andj two c.p. can be similarly de ned, the
right-continuous process

Nj (u) = nr.of direct transitions from state i to state j in (to;u]; (2.13)

and the corresponding left-continuous c.p., which | denoteybN;; . The set of
right-continuous c.p. are related by
X
N(u=  Nj(u;
i6]

and a similar equality holds for their left-continuous courgrparts.

The history of the (S; T) process over a given intervalt§; u] can be completely
determined by the sample path of the multivariate c.p.N = (Nj )ﬁj _, over this interval,
together with information on the initial state Sp. That is the internal Itration
associated with the processS; T) equals the internal lItration associated with the
processN enlarged with the -algebra generated by the random variabl&,.
Throughout this chapter | consider that the compensator of théright-continuous) c.p.

Nj; is absolutely continuous with respect to Lebesgue's measure. érbfore there is a

4In fact the survival probability in state i, thatis, S; (t; )=1 H; (t; )is directly givenby S; (t; )=
exp[ i (t )]
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correspondingcaglad intensity process j given by

i (u) = IihrLl0 %P Nj(u+ h) N;(u)>O0jF,
= YW Ta@UQ) (2.14)
where .
Y= b= (2.15)

0 ; otherwise,

is an exposureindicator and
U (U) =u TN (u)

is a left-continuous version of thebackward-recurrence timethat is, the elapsed duration
in the current state.

2.3.2 Transition probabilities

For continuous-time Markov chains it is well known that the mérix of transition
probabilities over a given time window (;t + ] denoted by

Pj (Gt+ )=P[S(t+ )=jjS@®)=i]; >0 (2.16)

is the unique solution to the Kolmogorov system of “backward' ah' forward' PDEs
(Goodman and Johansen, 1973). In the current context, and due the presence of
duration dependence, we are interested in the following “agpeci ¢’ or "left-truncated'
transition probabilities,

P (6 o )=P[S(t+ )=jjUt+ o= oS+ o)=il; o0>0  (217)

That is, from a risk management perspective, | am interested in estating the
probability of nding a particular unit ® in state j by time t+ when it is known that at
time t + o the unit is in state i, and the elapsed duration in that state is preciselyg
units of time.

For obtaining these left-truncated' transition probabilities we must start by considering
the related ‘renewal’ transition probabilities

pi (6 )=P S(t+ )=jiN® N@®=1iSyy=i; >0 (218

these are the probabilities of nding the unit in statej, units of time after it entered
state i, given that this transition happened at (chronological) tine t.

These probabilities satisfy the following system of non-homogeous Volterra linear
integral equations of the second type on two independent vables ¢ and )

x 4
pi (6 )= (1 Hi(t )+ i P (t+u;  wae(tu)du, i) =1;:::s; (2.19)
k=1

5In the empirical application of section 2.7, the statistical units are the comporate debt-issuers rated
by Standard and Poor's .
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where j denotes Kronecker's symbol. These equations are the direcuaterpart to the
Kolmogorov “evolution' equations in the Markov setting. Fomriting down an expression
for the "age-speci ¢’ transition probabilities (2.17), letg; (t; o; ) represent the density
corresponding to the “left-truncated’ s.d.f. of the duration in statei starting at time t
which are larger than o units of time and which end with a transition to statej, that is

Qi (t ) Qy(t o)
" t; ; = :
Qi (t or ) 1 Qj(t o)
The "age-speci ¢' transition probabilities in equation (2.X) are given by
x £
P (o )= 4 (1 H (& o )+ P (t+u;  u)g(t osu)du;  (2.20)
k=1 ©

whereH, (t; o; ) is the d.f. function of left-truncated sojourn times in statei and is

transition probabilities de ned in equation (2.18).

2.4 Nonparametric estimation

In this section, | consider the problem of estimating nonparantecally the main
guantities of interest associated with any NHSMP. Keeping in mindhe size of the
Standard and Poor's dataset, and in order to keep the requiretbmputational volume at
a manageable level, | make use of the class of kernel hazard eators known as "bin
smoothers,' this corresponds to the use of indicator functions dhe underlying
smoothing kernels. Hastie and Tibshirani (1990) provide a discussiof this class of
smoothers in the context of nonparametric regression. Howevérjs conceptually
straightforward to use nonparametric hazard rate estimatorsdsed on other classes of
smoothing kernels as the input to the mapping yielding the tnasition probabilities.
Nielsen and Linton (1995) and Linton et al. (2003) are two leadg references on the
general issue of conditional hazard rate estimation using ketnmaethods, both for the
general and separable cases.
Besides the general (non separable) case of a bivariate hazaaterfunction, | also
implement the separable case where the hazard rate functions ed in (2.8) have the
multiplicative form©

i (G )= () 5@+ ): (2.21)
This multiplicative speci cation for the hazard rate functions encompasses the
celebrated Proportional Hazards (PH) model of Cox (1972) fohe case of a
homogeneous population. In this particular NHSMP, one positde existence of a
time-invariant transition-speci ¢ baseline hazard j ( ), which is multiplied by a
function of chronological time j (t+ ) to yield the hazard rate. In the original PH

5The coordinates ¢; ) in the Lexis diagram represent a straight line segment departing from the pait
(t; 0) to the point (t + ; ) in the Cartesian (t; ) plane.
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model, without unit-speci ¢ covariates, ; can be seen as the combined e ect of the
(common across units) time-varying regression covariates.

Speci cation (2.21) encompasses both the homogeneous SMP assidered for example
by Limnios and Ouhbi (1999 and 2005), and the non-homogeneocontinuous-time
Markov Chain (CTMC) process. The former is obtained by setting j (t+ ) 1, the
later by setting j () 1.

To identify ; and j simultaneously | impose the arbitrary normalization

Therefore j can be interpreted as a relative ‘risk’ index regarding transons of the ij
type. That is, as time-index of clustering e ects.

2.4.1 Piecewise constant hazard rate estimators

Consider a panel oK units following independently a NHSMP characterized by a
common SM kernel as in (2.3) and arbitrary vectors of initiaprobabilities. | consider
estimation in the presence of left-truncation at timet = 0 and independent
right-censoring of type | at timet = T, for the entire panel. In order to proceed some
additional notation is required. Consider for unitk (right-continuous) c.p. N (t) and
N (t) de ned as in (2.12) and (2.13). Also, let

X
N@®=  NU;
k=1

denote theglobal pooled c.p.i.e., the process counting the total number of transitions of
any type recorded across all units in the panel. Ldp <t; <:::<t y) = T1 denote
the corresponding sequence of ‘jump' times of the procdét), together with the
censoring timeT;.
Consider for every possible transition from state to state j, and unit k an indicator
process de ned as

N (D) = Ni () Ny (1)

whereN is the left-continuous c.p. associated withN). Let Y,*(t), de ned as in (2.15),
denote an indicator variable taking the value 1 if unitk is in statei at time t , where

t t is arbitrarily small. The Likelihood function for such a panelconditional on the
observed initial state of each unit can be written as,

; B N L K K NK (tm)
LCIFn) = i (tm U (tm); U (tm)) (2.23)
m=1 k=1 i6j
tm T
exp  Y&(tm) i U UK@); Uk dt
tm 1

| start by considering the general case where the hazard rate fttions depend
simultaneously onUX(t + )andt+ without imposing any parametric assumptions
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over the structure of this function. In order to obtain simple omputational procedures,
| approximate this bivariate hazard rate using a piecewise cetant function,

Mg 1
ij (t1 ) = ijpm 1(Xij;p Xiip +1 ] ( ) 1(tij;m tigm +1 ] (t + ) (224)

p=0 m=0

The sequence 0 =, o <Xj; 1 <:::<Xjwm ; consists of an arbitrary partition of the
interval  0; X{"™* , where X" denotes the maximum between the largest observed
duration in state i that ended with a transition to state ] and the largest right-censored
duration in state i. In a similar way, the sequence 0 %o <tj 1 <:ii<tjL,+«1 = Ts
denotes an arbitrary partition of the time-window [Q T,].

Substituting (2.24) in (2.23) taking the natural logarithm and collecting terms yields the
loglikelihood function,

_ X X Mt
I( JFr)= (Gjpm N jjpm  Gjpm ijpm ) ; (2.25)
i6j m=0 p=0
where
X Z T1 ) )
qum = 0 1(Xij;p Xiip +1 1 U (t) 1(tij;m Lijm +1](t)lej (t)’

k=1
denotes the total number of transitions from state to state j and

X Z T1
ajpm = 1(Xij;p Xijp +l] Uk(t) 1(tij;m ;tij;m +1] (t) Ylk(t)dt’
k=2 O

is the total exposure (i.e. the cumulative length of time) obseed in cell (p; m) of the
bivariate grid generated by the Cartesian product of both pditions

xij;o:O <X <:iI<Xijm i andtij;ozo <tjo<:iii<tijyL i+l = T.. The rst order
conditions for maximizing the loglikelihood function (2.8) with respect to the unknown
parameters j,m , yield the following estimators,

Npm = Pm_. (2.26)
ajpm

The corresponding asymptotic variance can be estimated by
q.
V[N 1= 37 (2.27)
Eom

Similarly for the separable (multiplicative) case (2.21) | aproximate both (univariate)
components of the hazard rate function; by two piecewise constant functions ; and
j de ned by,

Nb( 1
ij ( ) = ijp 1(Xij;p Xijp +1 ] ( ) ; (228)
p=0
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and

X

j (t+ )= ip Litjm tim 1+ )1 (2.29)

m=0
Due to the scaling condition (2.22), we have o = 1. The sequences
Xij;ozo <X <:iI<Xiim i andtij;o: to<tjr<:ii<tjL g+l = T, are similar to
the ones de ned for the nonseparable case.
Substituting (2.28) and (2.29) in (2.23), taking the naturallogarithm and collecting
terms yields the loglikelihood function

_ X Mt X Xi
I ;5 JFm) = dip In jip + Bjm N jm
i6] p=0 i6j m=1
X Xi M 1
iim ijp Sjpm (2.30)
i6)] m=0 p=0
where
X Z T1
dijp = 1(Xij;p Xijp +1 1 Uk(t) dNi}((t); (231)
k=1 O
X VA T1
bjm = 1(tij;m ijm +1](t)dN|:< (t)1 (232)
k=1

and’ gj;m denotes again the total exposure in cellp(l) of the bivariate grid. Now, the
loglikelihood | is strictly concave as a function of the unknown values of the egb
functions i and i (denote these by the vectors™; and ~; of dimensionsL; and Mj;

respectively). Additionally when we let the components of theectors 7 and ~;
increase tol we see thatl decreases tol |, therefore there is a unique pair ’\i,- » i

which maximizesl. Numerical optimization of (2.30) is, under this setting, a prblem
for which there are available several fast and robust algorithen A particularly simple
computational procedure is as follows. The rst order conditins for maximizing the
loglikelihood function given in (2.30) with respect to its aguments, yield the two
following sets of estimating equations,

€ T = (dip=ip) (€po)

e~ = (bjm = ijm ): (2.33)
The matrix e; = (&jpm ) contains all the g;,,» elements withp=0;:::;M; 1 and
m=1;:::;L; . Iterating these two sets of nonlinear equations starting froran arbitrary

(strictly positive) value for one of the unknowns, yields a sequee of vectors which
converges to the unique solution Aij ;™ . This is so because this procedure is

Ny (T o PNy (o) LGy -

. P
"These statistics satisfy .,
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interpretable as a gradient ascent method applied to the maxization of a concave
function.

The asymptotic variance of the resulting estimators can be estated, for example, by
evaluating the symmetrical of the inverse of the Hessian matrix,

eij

_ A .
Hess= 0

ij
at the estimates resulting from the system of estimating equatien(2.33), where
A =diag 9!} , C =diag Bm_ are two diagonal matrices, and agai®j = ( &jpm ).

ijip ijm

2.4.2 Smoothing parameter estimation

As seen in section 2.4.1 the piecewise constant estimators for theabiate hazard rate
i » and for the hazard rate components; and ;j, depend on the choseknots
Xj;1 <Ili<Xjm; 1andtyg<:iii<ty, . Although there are many di erent methods
for choosing the number and location of the knots (see for exateHastie and
Tibshirani, 1990, Chapter 9) | shall employ in the empirical sé¢on of this study a
simple adaptive procedure. After xing the total number of knots for each dimension
(Mj; for the duration and L +1 for the length of the time-window) | choose as knots
the corresponding empirical quantiles for that dimension.
The remaining problem consists in estimating the "smoothing' nrdces L; and Mj; .
However this type of problem has been extensively studied in thigerature (see among
others, Tanner and Wong, 1984, Sheather and Jones, 1991 and Halt Johnstone,
1992). In this section | adapt to the piecewise constant hazardte estimators, a
conceptually simple data-driven procedure for choosing the smwthing parameter. This
consists of a generally applicable method, not only in the catt of hazard rate
estimation but in the wider subject of curve estimationcross-validation
The general idea behind cross-validation is to choose the smoiatih parameter(s) in
such a way as to minimize an appropriate loss function. It is iratt an attempt to
mimic the use of training and test samples for prediction. In th@resent case it works

cross-validation function

MM
CV((Lj);(My)) = (diIn® +bin"™ ~ " e (2.34)

=1

where | and " | denote the correspondingackknifed estimators evaluated at the
point corresponding to the excluded spefl.

These are obtained by solving the system of equations (2.33) basedthe (incomplete)
data set after removing thel™ spell. The matrices ;) and (M) are chosen in order to
maximize the cross-validation functionCV. It is relevant to point out that

8The statistics d |, b | and e | are appropriately chosen fromd;jp , bjm and ejpm as in equation
(2.30), according to the excluded spell.
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CV((Lj); (Mj)) is separable ovei, that is, its (global) optimization can be
implemented separately for each" term (a function of 2(s 1) integer arguments).
Due to the integer nature of the components of the matriced () arﬂpl (Mj; ) (these
belong to the nite setslj = f1;:::;N; (Ty) 19, whereN; (Ty) = NK(Ty) this
is done simply by performing an exhaustive search. Therefordyis procedure is very
time consuming. Nevertheless, because the class of nonparametgstimators chosen
(2.33) are simple and quick to compute, this approach is stileasible.

2.5 Empirical Transition Probabilities

As shown in section 2.3 it is possible to obtain the semi-Markov kezh(2.10) from the
estimated hazard rate functions. The rst required step consistsiobtaining the
integrated hazard. The estimator of the integrated hazard ass@ted with state i over a
given path (t; ) as de ned in equation (2.11) is obtained as,

Xs Wi
Ai (t; ): /\Ij;n " Xij;n Xij;n 1 (2-35)
j=1 n=1
wheren indexes chronologically the cellsp; m) of the ij -grid which have a nonempty
intersection with the path (t; ) and Dj is the total number of these cells. The
estimator of the (constant) value of the hazard rate j over celln is denoted by 4., .
Equation (2.10) suggests an estimator for the subdensity functie g;

Gt )=exp it ) No,s (2.36)

and explicitly for the semi-Markov kernel,

R” h | A, ex n 1 A A
: Nin X MNin (X N P = X';k( ik +1 ik) .
Qi (t )= e "X 1 g " (") - . (2.37)
n=1 ;N
where 4, = jszl Njn - The points x;,, result from the reunion of the set of pointsx;,

of the partition of the duration-scale with the pointst;;,, t whenever these are positive
and smaller than . In a similar way the pointsx;,, are obtained from the reunion of the
sets of pointsx;., overj =1;:::;s.

| now consider formally the problem of estimating the transitia probabilities over a
speci ¢ time-window and for a given backward recurrence-timspent in the current
state. That is, the aim is to estimate consistently the quantity inequation (2.17). For
doing this we need to obtain the empirical ‘renewal’ transitin probabilities p; by
solving the Volterra integral equations (2.19) using as inpud consistent estimator of the
subdensity functions. | start by stating an existence and uniguess theorem regarding
these transition probabilities over the time-window correspading to the available data
(the proofs are contained in the appendix).

Let T, = maxi; :1.....sfxij“ax g. SetT(t)=minfT,; T, tg,

T=1( )joO t T5;0 T(t)gandT =f(t; )jO t T3;0 <T (t)g.
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Consider a space€ar(T) of bounded functionsf : T ! R satisfying the following
conditions:

1.f(; ):[0;T; ]! Ris measurable forall 2 [0;T,],
2. f(t; ):[0;T(t)]! R is continuous for almost allt 2 [0; T4],
The spaceCar(T) equipped with the norm
jficar = Sgpjf (t )]
is a Banach space. Consider also a Banach sp&tars(T) of matrix-valued functions

Car(T). The norm in Carg(T) is de ned by

JPicar, = Max - sup jp; (t; )j:
WS 2T

Assume that the functionsQ; : T ! R, i;j =1;:::;s, satisfy the following conditions
(C):
1. there exist non-negative functionsyj 2L, (T),°i;j =1;:::;s such that
z

Qi(t )= . g (buydu; (t; )2T ;

2. Qi (T(D) =lim 7y Qy (t; )+ hy (1), whereh; :[0;T1]! R,i;j =1;:::;s, are
non-negative measurable functions,

3. P v Qu(tT(t)=1forall t2[0;Ty].

Now consider functionsP; : T ! R, de ned by

xs
Pi (6 )=p (6 )+ ( TOh(t); i) =15
k=1

where () is the Heaviside step function, and the functiong; : T ! R;

Theorem 2.1 (Existence and Uniqueness) Equation (2.19) has a unique solution
P
p2 Cars(T) satisfyingp; (t; )2 [0;1], (t; )2T,i;j =1;:::;s, jS:l B (t; )=1 and

function of the matrix of subdensity functiongg; ).

°L; (A)
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This theorem implies that if one could directly computeptising as input estimates of
(g; ) obtained from a consistent estimator, the resulting estimator fathe “renewal’
transition matrix would also be consistent.

Corollary 2.1 (Consistency)  Given a consistent estimator of the matrix of subdensity

functions (6;) i (q; ), let p denote the solution of equatiorf2.19) corresponding to
(6; ), then

pr p
In this corollary, it should be noted that the (implicit) running index for each sequence
g ; with i;j =1;:::;sis the sum of the number of observed durations in statethat

ended with a transition to statej with the total number of right-censored durations
recorded in statei. That is, the number of recorded trajectoriest{ ) in state i (let this
number be denoted asn;). Therefore, to index the estimator of the whole matrix of
subdensity functions (and of the transition matrix) we can use

m = min m;:
110 s

In practice we need to approximate numerically the solutiom;{t; ) over T by means of
a nite system of algebraic equations. | now turn to this issue.

Considerg; 2 L4 (T) with the norm less than or equal toM > 0. Assume that there
exist a partition of the interval [0;T;], 0 = to <t; <::: <t = Ty, a partition of the
interval [0; T2, 0= o< 1<:::< |, = Ty, aconstantL > 0, and functionsg*"*(t; ),
n,=1;:::;N1, np =1;:::; N>, satisfying the Lipschitz condition

() g L P+ P (2.38)

Gt )= o™ ) (6 )2T\ [tay, 1ita) [n 25 n)

with

Without loss of generality there exist positive integeréN; Nj; and N, N7 such that
Ti=N; = T,=N,= 7 ft,jn=1;:::;Ny 1g f I~jl=1;:::;N; 1g, and
fojn=21;:::;N, 1g f17jl=1;:::;N, 1g. Put

k()= S(ToL +2M)K(STL,M)K 1k =1:2;:::
and

O+ 10

1 n() (STzM)n:n!’ n:1;2;::::

n( )=
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(my+1+r=2N)y~:(my, | r=2M)), 1=0;:::;m,, r=0;:::;2Y 1, by the following
system of linear equations

B (my+ 1+ r=2")~(my | r=2V)y
= 5@ Hi((me+1+r=2")~:(my | r=2Y)y)
X m X1
+ B ((ma+ T+ 1+ r=2Y)"(mz |1 r=2%)) ge((me+ 1) 75(10 1)) ¢
k=1 1=2 r=0

(2.39)
From a computational perspective, the remarkable feature afiis numerical
approximation method consists in the fact that the resulting near system of (matrix)
equations can be solved simply by backward substitution. Themfe, there is no need to
invert the corresponding square matrix of coe cients, which igypically very large.° |
now provide a theoretical upper bound for the error implied Y this numerical
approximation. This inequality insures not only the convergnce of the method to the
true solution, but also the consistency of the estimator of the trasition matrix which
results from its application using estimates of the matrix§; ) obtained from a
consistent estimator.

Theorem 2.2 (Numerical Approximation) Let n be a positive integer such that

(sT,M)"=n< 1. If ~ satises

(SToM)™
() <1
then for allm; =1;:::;N; andm, =1;:::; N, the following inequality holds

B meTimeY  Py(maTmeY | (s+ £)2M 2T, exp(( s+ L)MTo) + (7 ;

where

(L+4sMT)N2 1 1

= + : + M + + +
(' = maxf2L M;LT2+ M +(LT2+16NM)(1+ () 0 2SMT,

Obtaining a consistent estimator of the “left-truncated' trarsition probabilities (2.17)
can be easily done by evaluating numerically the expression33) using the discrete set
of valuespf .

101 section 2.7 this matrix is of order 3500
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2.6 Simulation Study

In this section | present the results of a small Monte Carlo study emlucted with the
aim of assessing the small-sample behavior of the estimators of trezard rate functions
presented in section 2.4. The simulation setup is as follows, tieeare 3 states
S=11;2;3g, state 3 is absorbing and denotes default. | consider a time-widow [0 T]
with xed-length T = 300 time units. At time t = 0 there are K=2 units in each one of
the two non-absorbing states. For each one of the units | consider a set of four
intensity processes as de ned in (2.14) with corresponding hadarate functions as in
(2.21). | restrict myself to the simplest case where the baselinezsad is a constant and
the time-index is identically equal to one. This correspond® the simple case of a
homogeneous continuous time MC. Therefore, | can test if thagqeewise constant
estimators of the hazard rate functions are capable of recowey this particular case of a
SMP.

The simulation itself can be made in at least two di erent ways. Irthis chapter |
describe one of this feasible methods of simulating a panel oflividual event histories
generated byK units, each one following a NHSMP. Chapter 3 presents a more gealer
method, one that is also valid when the semi-Markov property (3) is relaxed. The
simulation algorithm described in Chapter 3 allows the simuladn of a panel of units
whose individual event histories are governed by an arbitrarget of F-predictable,
transition-speci ¢, intensity processes j . That is, when the value of the
transition-speci c intensity processes don't simply depend on #current state, elapsed
duration and chronological time as in (2.14) but on the ente Itration F;.

A simulation algorithm speci cally adapted to NHSM processes is asllows. Recall
that from knowledge of the hazard rate functions we are abl@tobtain the
subdistribution functions according to (2.10). We can then #rate the following steps

1. Pick one particular unit, say unitk, sett = 0 and assume its starting state at that
timeisi 2 S

2. Drawu UIO0; 1], then solveH;(t; )= u with respect to and with the givent,

3. Draw the next statej for that unit from the Multinomial f j (t; )g distribution,

where each probability j (t; ) = aui ((tt;; )),

4. Updatet = tggq +

5. Ifthe newt< T, andj is non-absorbing, then go back to step 2, otherwise go to
step 1 and choose a di erent unit.

When all the units have been selected, we have the full set of silaed event-histories.
That is, we have a set of sequencé¢Se; 0); (Sf; Tr); 15 (S\k 1y Tik(r)) With
k=1;:::;K. I consider two caseX =200 and K =600 units. For both cases I
perform 500 replications of the simulations. Each replicatioconsists in obtaining a set
of K individual event-histories, followed by the estimation of thawo components of the

underlying hazard rate functions (2.21). The results are shawin gures 2.1 through 2.4.
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It should be noted that as more and more units enter the absorhinstate, the lower will
be the total exposure to each one of the feasible transitions (sthe discussion before
formulas (2.26) and (2.27)) over the “cells' corresponding tater chronological periods.
As formula (2.27) clearly shows, the lower the total exposure ingiven “cell' is, the
higher the variability of the hazard rate estimator will be. Athough no such simple
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Figure 2.1: Empirical distributions of the NPML estimators of tie baseline hazard
200 units - the SM model and the simulation set-up are explained in the text. The true baeline hazards

appear as the thin solid line, while the corresponding MC average nonparametric émate is represented
as the thick solid one. Also depicted are the 2 MC standard deviations from the MCaverage. Depicted
on the top left picture is the estimated baseline hazard for a transition from state 1 to state 2. The
top right plot corresponds to transitions from state 1 to state 3. On the lower left picture we have the
estimated baseline hazard for transitions from state 2 to state 1. Findly the lower right graph depicts

the estimated baseline hazard for transitions from state 2 to state 3.
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Figure 2.2: Empirical distributions of the NPML estimators of he baseline hazard
(600 units - the baseline model and the simulation set-up are explained in the text. fie structure of the

plot is as in gure 2.1)
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Figure 2.3: Empirical distributions of the NPML estimators of e time-index
( 200 units - the SM model and the simulation set-up are explained in the text. The truevalues of
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nonparametric estimate is represented as the thick solid one. Also depicted are tha MC standard
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index for a transition from state 1 to state 2. The top right plot corresponds to transitions from state

1 to state 3. On the lower left picture we have the estimated time index for transtions from state 2 to

state 1. Finally the lower right graph depicts the estimated time index for transitions from state 2 to

state 3.)
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Figure 2.4: Empirical distributions of the NPML estimators of te time-index
( 600 units - the baseline model and the simulation set-up are explained in the text. fie structure of the

plot is as in gure 2.3.)



80 CHAPTER 2. NON-HOMOGENEOUS SEMI-MARKOV PROCESSES

formula is available for the multiplicative case (2.21) a sinfar e ect is to be expected.
For this reason | impose a type-I right-censoring limifl = 300. This value was
empirically selected in order to keep, on average, the totakgosure (to each type of
transition) in the later “cells' above half of those values obsexd at the beginning of the
time window.

It is possible to see as the number of units increases (and theref@also the number of
recorded transitions of each type, and the total exposure to tise transition-types) the
estimated components of the hazard rate functions in equatiq2.21) seem to approach
the true values with decreasing variance (as it is to be expext). This e ect, however,
appears stronger for the baseline hazard componentthan for the time-inhomogeneity
index . This may be a hint that the estimator of the index of clusteringe ects may
have a lower asymptotic rate of convergence, when comparedhiihe estimator of the
baseline hazard.

2.7 Empirical Application

In this section | report the empirical results obtained with a lasic SMP model for the
credit rating process. | start by considering only two rating clases, investment grade
(from BBB up to AAA) and subinvestment or speculative grade (below BBB),

Default is considered an absorbing state. | do not model expligi the non-rated (N.R.)
class as a state, instead all transitions into N.R. are taken as c@red observations. The
“cells' or "bins' used for the estimation of the hazard rates weoenstructed using a
simple adaptive method. The number of observations is taken tme constant across
“bins," while the dimensions of each "bin' are random. There&g the "'smoothing'
parameter (equivalent to the "bandwidth' parameter in germal kernel methods) is, in
this case, the number of observations used to de ne each bin.

By looking at the number of quarterly recorded defaults by issrs rated as
subinvestment grade level, depicted in gure 2.5, we can see, bgnditioning on the age
of the rating (depicted at a yearly resolution), that most defalts take place within the
rst four to ve years after receiving this rating. This is to b e expected, as speculative
grade rated issuers represent, by de nition, risky investments.

The total exposure (measured in rm-years) in each "cell' (coveg one quarter in
calendar time and one year in "age’), gure 2.6, indicates &hconcentration of rms in
that interval of time with a similar rating "maturity.' In thi s plot it is possible to see the
existence of 4 historical periods where there was a large inese in the number of rms
entering the speculative grade level (both due to the downgia from the investment
level and to the request of a rst rating). The rst cohort at the start of the
time-window (1 January 1981, this cohort is somewhat speciald to the fact that most
of its rms would most probably already had their rating for an- unknown to us -
period of time). A second cohort corresponding to the period stang on late 1986 and
ending on early 1990 (this large cohort was mostly due to rmséing downgraded to the
subinvestment grade in this period, this conclusion results fno the analysis of the grid
count of this type of event - see next graphic). A third cohort arresponding to the
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period of the middle nineties (which was mostly due to initiaratings - most likely
connected to the "dot-com' boom). And nally a fourth cohort @rresponding to the
period from 1999 to early 2001 also due to (new) initial ratirsy

Figure 2.7 documents the recorded number of downgrade ragiractions. With exception
of a high-intensity period between 1985 and 1987 the picture here much more
homogeneous throughout time, when compared with the one defing the recorded
defaults for subinvestment grade issuers.

The total exposure of rms in the investment level category, gire 2.8, shows that the
largest such cohort, by far, corresponds to rms which entereche DB at the left-limit
of the time-window.

Assuming a multiplicative structure for the hazard rates, it is pasible to extract the
marginal impacts of both the chronological and rating "ages ects. The time-index
component expresses the relative degree of ‘risk’ of a given bigtal period with respect
to a reference period. Due to the identifying restriction (22), this reference period is
the rst chronological period (for the case of defaults by subiestment grade issuers
this was the period covering from January 1981 to late 1984) the dataset. We can
clearly see, for example, a very high intensity of defaults imte 1990, early 1991 and
then again in the early 2000's.

With regard to the “rating maturity' e ect, we can clearly seethat there is a peak in the
default intensity for subinvestment grade rated issuers roughlthree years after they
received that rating. This non-monotonic pattern is in contast with the results reported

10

Number of default events

5

l(‘)5\ grade ralind
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Figure 2.5: Recorded Number of Defaults: subinvestment gradeted issuers

(each grid cell covers a quarter in calendar time and one year in age-time.)
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Figure 2.6: Total Exposure: subinvestment grade rated issuers
(each grid cell covers a quarter in calendar time and one year in age-time)
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Figure 2.7: Downgrade from Investment to speculative gradeumber of events

(each grid cell covers a quarter in calendar time and one year in age-time)
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Figure 2.9: Recorded defaults, subinvestment grade rated isssietime index

(Here | plot the estimated time index The rst time period is taken as the basis for comparison,
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Figure 2.8: Total Exposure: investment grade rated issuers

(each grid cell covers a quarter in calendar time and one year in age-time)
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the time index was estimated using 36 “time bins' each one of these "bins' encompas&3sobservations.

This choice of the number of “bins' was made using (Likelihood) cross-validatio. Also plotted are the

upper and lower .95 con dence bands. It is possible to see that, although the average afitude of these

con dence bands is rather large, the time-homogeneity is strongly rejected at this level, irparticular in

the period from early 96 to late 2001 the overall intensity of this type of event was signi cantly lower -

when compared to the reference period - from early 1981 to the middle of 1984.)
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Figure 2.10: Recorded defaults, subinvestment grade rated isssiebaseline hazard
(The topmost plot depicts the baseline hazard estimated with 52 “bins." This numberwas chosen by

cross-validation. In the lower pane | enforce a higher level of smoothness by chongi only 6 “bins,’
each cell or “bin' encompasses 139 observations. Also plotted are the upper and low&5 con dence
bands. In both cases it is possible to see that the strong non-monotonic behaviaf the baseline hazard
is statistically signi cant at the .95 level.)
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Figure 2.11: Downgrade from investment to subinvestment gradéme index
(Here 1 plot the estimated time index . The rst time period is taken as the basis for comparison,

the time index was estimated using 36 "time bins' each one of these "bins' encompas&dsobservations.
This choice of the number of “bins' was made using (Likelihood) cross-validatio. Also plotted are the
upper and lower .95 con dence bands. It is possible to see that, although the average afitude of these
con dence bands is rather large, the time-homogeneity is strongly rejected at this level, ths takes place
for several periods in 1983, 1986, 1989 and from 1996 to 1999 the owuiatensity of this type of event

was signi cantly lower - when compared to the reference period - from early 1981a middle 1982.)
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Figure 2.12: Downgrade from investment to subinvestment gradéaseline hazard
(The topmost plot depicts the baseline hazard estimated with 54 “bins." This numberwas chosen by

cross-validation. In the lower pane | enforce a higher level of smoothness by choagi only 6 “bins,’
each cell or "bin' encompasses 128 observations. Also plotted are the upper and low&5 con dence
bands. In both cases it is possible to see that the strong non-monotonic behaviaf the baseline hazard
is statistically signi cant at the .95 level.)

in Lando and Sk deberg (2002), this is most likely due to the f& that | have dropped
the parametric assumption used in that study. The Gompertz baseke hazard used in
that article is not su ciently exible to accommodate non-monotonic behavior, and
therefore seems to have captured only the right tail of the balége hazard. However as
it is possible to see, (Likelihood) cross-validation seems to bedersmoothing on the
current dataset. It is well-known that cross-validation, and m particular Likelihood
cross-validation provides ine cient estimators of the “smooting' parameters in several
di erent nonparametric estimation set ups (see for example Liral Racine, 2007, Hall
and Marron, 1987a and Park and Marron 1990). In particular ihas been pointed out
(Hall and Marron, 1987a, Park and Marron, 1990) that cross-valation frequently leads
to an estimator of the smoothing parameter that exhibits an exassive level of variability
and seems to be overly sensitive when the underlying density istrsonooth (in fact
these drawbacks were one of the main motivations behind thewdgopment of the
literature dealing with the so-called “plug-in' methods).

Throughout all cases, the cross-validation selection of the optal number of "bins'
seems to lead to very irregular estimates of the rating "age' ect. Unless there are in
fact multiple peaks in the “duration' component, this nding is most likely due to the
“undersmoothing' characteristics of cross-validation. Thei®re, using trial-and-error, |
enforced a higher degree of smoothness by choosing a lower nunabéage bins." This is
denoted in gures 2.10, 2.12 and 2.14 as the "ad-hoc' bandwidselection.

Next | present the empirical transition matrices for the 7 grade rating system (the CCC
class includes all issuers with a credit rating lower than B,
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Table 2.1: Empirical SM transition matrix for 1992

This table contains the nonparametric estimates of the one- year semi-Markov transition matrix for the year 1992. This

matrix gives the empirical probabilities (i.e. the observe d frequencies) of a rm being found in each one of the 8 rating
classes (ordered through the columns of the table) at 31/12/

1992 given that it received a speci c credit rating (represe nted
by the rows of the table) at 31/12/1991.

AAA AA A BBB BB B CCC Dt
AAA 0.98417 0.01297 0.00285 0.00005 0.00001 0.00000 0.0000 0.00000
AA 0.00536 0.95795 0.03336 0.00139 0.00118 0.00070 0.00004 0.00003
A 0.00108 0.00401 0.95287 0.03726 0.00413 0.00049 0.00008 .00008
BBB 0.00001 0.00121 0.02380 0.92771 0.04122 0.00288 0.00116 00237
BB 0.00000 0.00100 0.00290 0.02353 0.89034 0.06412 0.00854 .00943
B 0.00000 0.00025 0.00127 0.00439 0.02231 0.81334 0.07894 .07832
CCC 0.00000 0.00003 0.00014 0.00446 0.02238 0.08001

0.3447 0.53435

Table 2.2: Aalen-Johansen estimator for 1992

This table contains the nonparametric Aalen-Johansen esti
1992. This matrix gives the empirical probabilities (i.e. t
the 8 rating classes (ordered through the columns of the tabl
(represented by the rows of the table) at 31/12/1991.

mates of the one-year Markov transition matrix for the year
he observed frequencies) of a rm being found in each one of
e) at 31/12/1992 given that it was in a speci c credit rating

AAA AA A BBB BB B CCcC Dt
AAA  0.92403 0.07458 0.00137 0.00005 0.00000 0.00000 0.0000 0.00000
AA 0.00928 0.93742 0.05191 0.00133 0.00006 0.00000 0.00000 0.00000
A 0.00013 0.01540 0.93625 0.04572 0.00242 0.00009 0.00000 .00000
BBB 0.00000 0.00061 0.06099 0.90047 0.03644 0.00140 0.00007 ©0003
BB 0.00000 0.00006 0.00584 0.11514 0.81013 0.05227 0.01102 .00554
B 0.00000 0.00003 0.00476 0.02748 0.11240 0.73119 0.07736 .04678
CCC 0.00000 0.00003 0.00041 0.00274 0.03017 0.09973

0.495® 0.37102

Table 2.3: Empirical SM transition matrix for 1993

This table contains the nonparametric estimates of the one- year semi-Markov transition matrix for the year 1993. This

matrix gives the empirical probabilities (i.e. the observe d frequencies) of a rm being found in each one of the 8 rating
classes (ordered through the columns of the table) at 31/12/

1993 given that it received a speci c credit rating (represe nted
by the rows of the table) at 31/12/1992.

AAA AA A BBB BB B CccC Dt
AAA 097629 0.02063 0.00300 0.00005 0.00002 0.00001 0.0000 0.00000
AA 0.00511 0.95637 0.03528 0.00134 0.00118 0.00072 0.00002 0.00002
A 0.00074 0.00370 0.95881 0.03336 0.00291 0.00041 0.00005 .00006
BBB 0.00001 0.00120 0.02375 0.92131 0.04757 0.00312 0.00117 ©0203
BB 0.00000 0.00101 0.00339 0.02088 0.90965 0.05787 0.00354
B 0.00000 0.00026 0.00136 0.00515 0.02291 0.90651 0.03219
CCC 0.00000 0.00004 0.00020 0.00509 0.02302 0.18516

00363
.03143
0.38%8B 0.39272
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Figure 2.13: Upgrade from subinvestment to investment grade:ntie index
(In this graphic | plot the estimated time index . The rst time period is taken as the basis for

comparison, the time index was estimated using 36 "time bins' each one of these nbi encompasses 16
observations. Also plotted are the upper and lower .95 con dence bands. It is possibleo see that the
time-homogeneity is strongly rejected at this level, this takes place for several griods like 1986, from
1988 to 1992 and from 1994 onwards the overall intensity of this type foevent was signi cantly lower -

when compared to the reference period - from early 1981 to late 1983.)

0.0006 Bandwidth selection by Cross-Validation (grid-search)

0.0004

0.0002;

—— Baseline hazard - Upper 95% C.B,.
——- Lower 95% C.B.
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Ad-Hoc bandwidth selection

—— Baseline hazard - Upper 95% C B.
——- Lower 95% C.B.
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Figure 2.14: Upgrade from subinvestment to investment grade: saline hazard
(The topmost plot depicts the baseline hazard estimated with 51 “hins." This numbemwas chosen by cross-

validation. In the lower pane | enforce a higher level of smoothness by choosing ony "bins," each cell or
“bin' encompasses 96 observations. Also plotted are the upper and lower .95 con dence bands. both
cases it is possible to see that the strong non-monotonic behavior of the baselifezard is statistically

signi cant at the .95 level.)

Comparing the estimated SM ‘renewal' transition matrix with s Markov counterpart,
obtained using the Aalen-Johansen (A-J) estimator, it is possibletsee the impact of
the (estimated) non-constant baseline hazards on the transitioprobabilities. Several
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Table 2.4: Aalen-Johansen estimator for 1993

This table contains the nonparametric Aalen-Johansen esti mate of the one-year Markov transition matrix for the year 19  93.
This matrix gives the empirical probabilities (i.e. the obs erved frequencies) of a rm being found in each one of the 8 rat ing
classes (ordered through the columns of the table) at 31/12/ 1993 given that it was in a speci ¢ credit rating (represente d
by the rows of the table) at 31/12/1992.

AAA AA A BBB BB B CccC Dt
AAA 095487 0.04361 0.00149 0.00003 0.00000 0.00000 0.0000 0.00000
AA 0.00011 0.94244 0.05639 0.00104 0.00002 0.00000 0.00000 0.00000
A 0.00333 0.00663 0.95886 0.03031 0.00084 0.00002 0.00000 .00000
BBB  0.00009 0.00033 0.04699 0.89641 0.05163 0.00424 0.00024 @0007
BB 0.00001 0.00620 0.00845 0.08211 0.82690 0.06865 0.00652 .00116
B 0.00001 0.00044 0.00505 0.01420 0.12686 0.82013 0.01681 .01651
CCC 0.00000 0.00004 0.00015 0.00179 0.03572 0.31275 0.490B 0.15866

features are apparent. First for investment grade rated issueitsis possible to see that
there is much more "'mass’ on the main diagonal (if an issuer has justeived a given
rating in the investment grade level then this issuer is much lesmobile’ than another
issuer - with the same rating - but with a longer "history') than gven by the A-J
estimator (which e ectively "averages' the issuers in a given tiag class over the "age' of
that rating). This e ect is still visible for BB and B rated issuers. On the contrary for
CCC rated issuers the opposite e ect is present, these issuers seenbéoeven more
‘mobile’ than what the A-J estimator indicates. Simultaneouslythe A-J estimator seems
to underestimate the probabilities of more extreme rating m@ments - this is
particularly true for the default probabilities - these are sgtematically higher than the
A-J estimator indicates, for some cases the di erence corresportdsa factor larger than
two. Additionally many transition probabilities away from the main diagonal are
estimated as zero (at this number of digits) in the A-J estimator bt not for the SM
case. On the contrary the A-J estimator overestimates the probdity of a rating

movement of a single class. This shows clearly the large impacttbé ‘rating' age over
the transition probabilities.

In table 2.5 | check the stability of the estimated SM “renewalransition matrices
(corresponding to the year 2000) with respect to the number ofgmnts of the grid where
the integral appearing in (2.19) is to be evaluated numeridlg, which leads to the linear
system (2.39). There is almost no noticeable di erence betwedime use of 500 or 2000
grid points (I therefore used 500 points for estimating the SMransition matrices).

In these two tables we can see two SM transition matrices from thear 2004. The rst
is a renewal' one (like the SM transition matrices in the pragus tables). At the left
point of the time window (31/12/2003) | assume there is an occuence of a rating
action which leads to the rating displayed in the rows of the ntex. Then across the
columns, the probability that the debt issuer will be in any one bthe possible 8 ratings
is shown. The second table is di erent. Here | assume that at the telfmit
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This table contains the nonparametric estimates of the one-

Table 2.5: Empirical SM transition matrices for 2000

year semi-Markov transition matrix for the year 2000. Here |

89

increased the resolution of the discrete grid used to apply t he numerical integration algorithm discussed in section 2. 5. We
are thus able to see the impact of the number of points of the gr

id over the nal estimates. This matrix gives the empirical

probabilities (i.e. the observed frequencies) of a rm bein g found in each one of the 8 rating classes (ordered through th e

columns of the table) at 31/12/2000 given that it received a s

peci c credit rating (represented by the rows of the table) a

31/12/1999.
500 points
AAA AA A BBB BB B CCC Dt
AAA 0.98926 0.00781 0.00286 0.00005 0.00001 0.00000 0.0000 0.00000
AA 0.00643 0.94603 0.04396 0.00189 0.00116 0.00073 0.00003 0.00003
A 0.00068 0.00532 0.95399 0.03659 0.00284 0.00048 0.00006 .00011
BBB  0.00001 0.00092 0.01359 0.94701 0.02973 0.00440 0.00109 ©@0347
BB 0.00000 0.00071 0.00150 0.00993 0.89104 0.08014 0.00721 .00932
B 0.00000 0.00024 0.00062 0.00140 0.00630 0.86747 0.05977 .06343
CCC 0.00000 0.00001 0.00004 0.00366 0.00230 0.04137 0.331® 0.60614
1000 points
AAA AA A BBB BB B CCC Dt
AAA 0.98926 0.00781 0.00286 0.00005 0.00001 0.00000 0.0000 0.00000
AA 0.00643 0.94603 0.04401 0.00189 0.00116 0.00073 0.00003 0.00003
A 0.00068 0.00533 0.95399 0.03656 0.00284 0.00048 0.00006 .00011
BBB  0.00001 0.00092 0.01358 0.94701 0.02973 0.00440 0.00108 ©@0343
BB 0.00000 0.00071 0.00150 0.00993 0.89104 0.08018 0.00721 .00932
B 0.00000 0.00024 0.00062 0.00140 0.00630 0.86747 0.05977 .06337
CCC 0.00000 0.00001 0.00004 0.00366 0.00230 0.04139 0.331® 0.60554
2000 points
AAA AA A BBB BB B CCC Dt
AAA 0.98926 0.00781 0.00286 0.00005 0.00001 0.00000 0.0000 0.00000
AA 0.00643 0.94603 0.04398 0.00189 0.00116 0.00073 0.00003 0.00003
A 0.00068 0.00533 0.95399 0.03657 0.00284 0.00048 0.00006 .00011
BBB  0.00001 0.00092 0.01359 0.94701 0.02973 0.00440 0.00109 ©@0343
BB 0.00000 0.00071 0.00150 0.00993 0.89104 0.08017 0.00721 .00931
B 0.00000 0.00024 0.00062 0.00140 0.00630 0.86747 0.05977 .06335
CCC 0.00000 0.00001 0.00004 0.00366 0.00230 0.04138 0.331® 0.60564

(31/12/2003) each debt issuer had already been one year in itsreent rating (displayed
in the rows). That is, the debt issuer had received its rating on 312/2002. The most

striking feature is the dramatic reduction in the realized diault probability from CCC
rated issuers from 39 to only 9 percent.

t
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Table 2.6: Empirical SM transition matrices for 2004
The rst table below contains the nonparametric estimates o f the one-year semi-Markov transition matrix for the year
2004. This matrix gives the empirical probabilities of a deb t issuer being found in each one of the 8 rating classes (order ed
through the columns of the table) at 31/12/2004 given that it received a speci ¢ credit rating (represented by the rows of
the table) at 31/12/2003. The second table contains the equi valent “left-truncated' semi-Markov transition matrix. H
the initial rating was received at 31/12/2002 and by 31/12/2 003 the issuer was still in that same rating.

ere

‘renewal’ transition matrix
AAA AA A BBB BB B CCC Dt
AAA 097868 0.01821 0.00305 0.00007 0.00002 0.00001 0.0000 0.00000
AA 0.00722 0.93740 0.05120 0.00219 0.00129 0.00074 0.00003 0.00001
A 0.00067 0.00530 0.94608 0.04024 0.00715 0.00065 0.00008 .00010
BBB  0.00006 0.00091 0.01020 0.94776 0.03308 0.00400 0.00130 00292
BB 0.00000 0.00071 0.00158 0.01076 0.89995 0.07767 0.00503 .00413
B 0.00000 0.00025 0.00064 0.00170 0.00981 0.91680 0.04880 .02203
CCC 0.00000 0.00002 0.00006 0.00448 0.00317 0.09810 0.48% 0.39976

“left-truncated' transition matrix
AAA AA A BBB BB B CCC Dt
AAA  0.96332 0.03397 0.00325 0.00007 0.00003 0.00001 0.0000 0.00000
AA 0.00615 0.90949 0.07935 0.00273 0.00140 0.00069 0.00003 0.00002
A 0.00093 0.01766 0.91809 0.05869 0.00477 0.00057 0.00009 .00014
BBB  0.00001 0.00090 0.01748 0.92622 0.04986 0.00424 0.00065 ©@0085
BB 0.00000 0.00064 0.00328 0.03001 0.88430 0.07521 0.00396 .00286
B 0.00000 0.00023 0.00050 0.00244 0.04147 0.89297 0.04299 .01885
CCC 0.00000 0.00001 0.00005 0.00356 0.00370 0.06070 0.837D 0.09212

2.8 Conclusion

In this chapter the existence and uniqueness of the empiricabm-homogeneous
semi-Markov transition matrix was established for any realistisetting. An e cient
numerical method for consistently estimating these time-depdent transition matrices
from consistent estimates of the subdensity functions was intraded and its
convergence established. A feasible implementation of the rhetl was constructed using
piecewise-constant nonparametric estimators of the hazardteafunctions. The resulting
estimators were applied to the analysis of a dataset on corpoeatredit ratings from
Standard & Poor's. Large di erences were found between the g@mical default
probabilities obtained from the semi-Markov assumption and thir Markov counterparts.
These results con rm the existence of a signi cant "aging' or "ntarity’ e ect in Agency
credit ratings, as previously reported in the empirical nane literature. The
methodology proposed in this chapter, however, makes it poslglio adequately quantify
the impact of this “rating maturity' e ect over the rating tr ansition matrix. As the
transition matrix constitutes a critical input for most credit risk management
methodologies, the availability of estimators of this matrixderived from realistic
reduced-form models (that take into account most of the styled facts of rating data) is
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crucial. This chapter represents one step in that direction.

From the theoretical results presented in this chapter it is &b possible to derive

con dence intervals for the empirical transition probabilties, this however, falls outside
of the scope of this thesis and its left for future research.

2.9 Appendix

Here | use mainly the notation of section 2.5. Let& T, T;. Consider a space
Car([0; T{] [0;T,]) of bounded functionsf : [0;T,] [0;T,]! R satisfying the
following conditions:

1.f(; ):[0;T! R is measurable for all 2 [0;T,],
2. f(t; ):[0;T2]! R s continuous for almost allt 2 [0; T4],

In the theory of ordinary di erential equations these functons are known as
Caratheodory functions For a brief revision of the main properties of the functions
f 2 Car([0; Ty] [0;T,]) see Ekeland and Temam (1976, Chapter 8).

Theorem 2.3 (Lusin) Letf 2 Car([0;T;] [0;T,]) and let :[0;Ty]! [O;T,] be

measurable. Then the functiort ! f (t; (t)) is measurable.

Theorem 2.4 (Scorza-Dragoni) A bounded functionf belongs to the space
Car([0; Ty] [0;T]) if and only if for any > 0 there exists a compact set

K  [0;T4] such thatmeas([0T;JnK ) < and the functionf : K  [0;T,]! Ris
continuous.

2.9.1 Proof of Theorem 2.1

Theorem 2.1 is an immediate consequence of Lemma 2.3 below.pfove Lemma 2.3 we
need some auxiliary results.

Lemma 2.1 If q2L; (T) andp2 Car(T), then the function
z

I(t; )= p(t+u; u)q(tu)du; (t )2T;
0

belongs toCar(T).
Proof. Set

Sy b)) (5 )2T; Sy aqto) (6 )2T,
it )= o & y2RrznT: AED)= g (t )2 R2nT:
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and 7
It )= p(t+u  ugtudu; (4 )2T:

0
By Theorem 2.3 the integral exists. We havé(t; )= I(t; ), whenever (¢ )2T.
There existM > 0 such thatjpj;jgg M, and sequences of continuous functions
Pn:Gh - R2! [ M;M ] converging top and g, respectively, in the space. ;(R?). Put

Z
In(t; )= pa(t+u;  UR(tu)du; (6 )2T:

0
Let 2 [0; T,]. Combining the Scorza-Dragoni and the Lusin theorems we sdwt the
function (w;t) ! p(w; w + t) is measurable. We have

Z
jn(t ) 1t )] OJ'|0(t+ u;,  u) pa(t+u; wjjg(tu)jdu
Z
+ 0J'q(t;U) Gh(tu)jjpa(t+ u;  u)jdu
Z
M 0(J'lD(t+ up u) pa(t+u; u)j+jo(tu)  ga(tu)j)du
A Z

M jpw;  w+1)  po(w;  wHDjidw+ M jo(tu)  gi(tu)jdu= Jn(t):
0 0

From the Fubini theorem one obtainsJ,() 2 L 1([0; T1]) and
Z g, Z
h(@dt - M- Gp(; ) (G JiFJaG ) (s )pd d:
0 R
This implies that the sequencel,( ) tends to zero in the spacd. ,([0; T1]). Therefore
there exists a subsequench, () converging to zero almost everywhere in {J;]. Since
the functions|,( ; ) are measurable, we see that the functioh( ; ) and, as a
consequence, the functiom( ; ) are measurable in [0T,].
Put
o(t: ) = p(t; );  (t )2T;
’ p(t; T(1); (t )2 (0T [GTD)nT:

Obviously p-2 Car([0; T;] [0;T2]). Let > 0. By the Scorza-Dragoni theorem there
exists a compact seK  [0; T;] such that meas([0T;JnK ) < =M 2 and the function
p: K [0;T;]! R s continuous. Lett 2 [0; T;]. Consider ; + 2 [0;T(t)]. We have

jre + ) 1 )i
ya
jpt+u; + U pt+u wjgtu)jdu+j M2
0
ya

jplt+u; + u) plt+u wjgtu)jdu+ +jjM? (2.40)
0; MK B
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There exists 2]0; =M ?[ such thatjp( ¢ 9 p(; )j< =(T.M) whenever
(% 9:(; )2T\ (R K). Thus the right-hand side of inequality (2.40) does not
exceed 3whenever 2 ( ; ). This ends the proof.2

For each matrixq=(q; ), with g; 2L 1 (T) consider a linear operatorA (q) de ned by
x 2
(A(Qp); (t )= P (t+ U uoge(tu)du; ij =150

k=1 O

By Lemma 2.1A(q) transforms Cars(T) into itself.

Lemma 2.2 Assume thatjqj,, M. Then for any positive integern the inequality

. . SMT))"
A" (9] %
holds.
Proof. Indeed, we have
Z Z un 1 Z up I Up 1
JA"(@picars  (SM)"jpicar, o= dug:::du, 1: (2.41)
0 0 0
By induction one can easily prove the equality
Z Z Un 1 Z usz 0 Un 1 n
. . dUo...dUn 1—m

Combining this with (2.41) we obtain the result. 2

Consider, for each matrixq as above(q) 2 Cars(T) given by
(bl@)y (& )= 4@ Hit ) (& )2T; ij =158
and the mapB(q) : Cars(T)! Carg(T) de ned as
B(@)p= bd) + A(d)p: (2.42)

Let P denote the set

xs
fp2 Carg(T):0 pi(t )i Pt )=1; p(60)= 3 t2 [0l iij =1;::05sg;
j=1

that is, the subset ofCars(T) de ned by the transition matrices. The setP is closed.

Lemma 2.3 The equationp = B(q)p has a unique solutiomp 2 P .
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Proof. Let p2 P. Since

XS
0 B@@p; ) @ Hit N+  Qu(t )= (@ Hi(t )N+ Hi( ) 1
k=1
(see condition (C3)), and
x| x £ )
i (1 Hi(t )+ P (t+ U, uge(tu)du =
j=1 k=1 O
w Z (s )
1 Hi(t )+ P (t+u;  u) oe(tu)du=1;
k=1 9 j=1

B(g) transforms P into itself. By Lemma 2.2 there existsn such that B"(q) is
contractive. This implies the existence of a unique solutiorotthe equation

p= B(q)p:

Now set ((0); = Hi(t; )(q). Consider a mapp = G(q) associating toq the
solution to the equationp = A(g)p+ b(g). Note that jpj = jG(g)] 1. Letjg M. Put

Ph = A(Q+ h)pn + b(q+ h)

and p=p, p. Then we have
p= A(q+ h)p, + blg+ h) A (gp b(g)

=A@ ptAMPtrh)= (@gpn( P:

Therefore X 1
P= ?q;pn;h)( p) = An(q) p+ Ak(q)(A(h)ph + r(h))

k=0
Since
JAT(@]  (SMTy)"=nl;

we see that there exists the mapl( A "(g)) ! whenever 6MT,)"=n! < 1. Fix n
satisfying this condition. Then we obtain

X 1

p=(1 A ") * A*(A(h)p+r(h)+ A(h) p): (2.43)
k=0

Observe thatj pj j pnjtjp 2. Since

X (sMTy)" |
n!

R .
A" = (A"Q) =1 (sMT2)"=n) %

=1 i=1
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from (2.43) we get
!
X1 (sMTp)k

i P 4sTa(l (sMTy)"=ni) ! n

ihj:

k=0
Now (2.43) can be written as
G(q+h) G(@= p= h+ (h)

where

X 1
h=(1 A"@) ' A“QAMNG( + r(h)

k=0
is the Fechet derivative of G at q computed ath and

i ()i (constjjhj*:

This implies the Fechet di erentiability of the G map and the end of the proof.2

2.9.2 Proof of Corollary 2.1

The Fechet di erentiability of the G map overL3"3(T) implies its continuity over
L3*3(T). Therefore the conditions of the Continuous Mapping The@m (see, for
example, theorem 18.11 in vd Vaart, 1998) are satis e®

2.9.3 Proof of Theorem 2.2

De ne functions
& (t )= g (tmaxto;l 297 ;
with
(t )2T; 2[00 21751y &) =21;::0;8; 1=1;:::;Ny:
Consider the linear operatorA- : Carg(T) ! Cars(T) de ned by

x £
A-(P) (t )= P (t+u;  we(tu)du;, i) =1;:::;s:
! k=x O
Obviously we have
S X 2
jA(p) A:(p)jCars jijars ~jqj (t; U) Q'j (t; U)jdu
k=1 fl 11~ T(t)g 1
Z 1)

+ jg (u) g (tu)jdu  SToL Tjpicar.:
[~

95
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Consider also the linear operatoA - : Carg(T)! Carg(T) de ned by
|

x o Zi-
(A-(P)); (& )= pg (t+ U udu gt (1 17T ;

k=1 1=2 D~

(t, )2T; 2Mm~;(m+1)Yy; m=1;:::;N, 1, i;j =1;:::;s:

Since |
x x 2 '
A-(P) ()= P (t+ U wdu gt 1)Y
Y k=1 1=2 (D~
x Z- ! o Z
+ pg (t+u;  u)du ek (t 0)+ P (t+ U, udu ge(G(m 1Y ;
k=t O k=t M7
(t )2T; 2[m~7;(m+1)Y; m=1;:::;N, L1 i) =1;:::5s;
we get

jA ~(p) A~-~(p)jCars 2sM ~jijarS:
Therefore we have

JA(P) A ~(Picar.  S(ToL +2M) Tjpicar.: (2.44)

Lemma 2.4 Let n be a positive integer such thagsT,M )"=nl < 1. If = T,=N,

satis es
(7 <1 EEUT (2.45)
then the equation
p=B-(p)= b+ A-(p) (2.46)
has a unigue solutiomp™ 2 Carg(T) satisfying
P Picars  n(): (2.47)

Proof. SincejAj;jA -] sT,M, from (2.44) we obtain
A AR A S AA KT AR A e AR Y ()
Therefore (see Lemma 2.2)

(sToM)™

AT A LA AT a0+ 2

From this we see that condition (2.45) implies the existence af unique solution
p 2 Cars(T) to equation (2.46). Observe that
X 1
P~ Picar, = BY(P) B "(Micars JA L(P) A "(Mica, + (AL A )b

k=1 Cars
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|
- X1 .
JA TP ) A Y(Picas AT A Y(P)jcars + k(Y JBcars
k=
! |
- X1 .
jA rl”p p]-Cars'+'J-'A\rl A njjijars+ k(T quars:
k=1
I
sTL,M)" | - . - X1 .
% 1P Bicars * n(Y JBcars + k(T JBcar:

k=1

n(T+
SincejPicar. 1l andjbca. 1, we get (2.47).2

SetT, =f(t; )2T j m ~g. From (2.46) we see that the functions

Pj Tm+r ! [0;1] satisfy

|
o Zi- '

97

Pt )= (@ Hit )+ pg(t+u;  udu gt (I 1)) ; (2.48)

k=1 |=2 (I 1)~

()27 2[m=(m+1)7J; ij =158

and are completely determined by their values on the sét,. This implies that (2.48)

T T M TNZ'

Lemma 2.5 The solutionp; to equation (2.48) is Lipschitz continuous in
M 7;(my+1)Y  [Mmy™;(ma+1) Y \T ,my=0;:::;N; 1, my=0;:::;N>p
with the constant

(1+4sMTpNe 1

C=maxf2sL ™+ M;sLT,+ SM +(sLT,+ 16SNaoM)jp jcar 9 2SMT
2

Proof. Consider ¢% 9;(t% %92 [m;~;(my+1) Y [my~;(my+1) Y \T , where

m, =0 or m, = 1. Then we have

oy (15 9 oy (1% %= yiHitS 9 Hit® %

Xs ZO ZOO I

= Gk (t% u)du Gk (t%u)du
k=1 0 0
s Z o-
jG(t8U)  age(t®u)jdu+ sMj O % Lyt F+j° o)
k=1 O

whereL; =2sL =+ sM.
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Suppose thatpi; is Lipschitzian in [m,;~;(my+21) Y  [mya~;(m+1) 7 \T ,
(% 9@ 92 M7 (m+1)y M7 (m+1) ) \T , we have

Py (5 ) Py (1% %)= (HiS 9 Hi® %)
!

x o L=
+ Py t°+u; © wdu g (30 1Y
k=1 1=2 - | '
Z [~ . H

pg (%% u; @ uydu gt 1)y
(I n-
= G (Hit% 9 Hi@® %)
Z,- !
+ 0 pg (%% u; @ u)du (G310 DY g0 1))
-
xs x L i
+ (Iij(tOJr u; © u) pkj(t00+ u; © u)ddu g (A 1))
k=1 1=2 D~
From this we obtain

jp{(tq 9 pJ(tO? %
s((m+1)L* M)Gt® t%F+j % P+ smLjp jear, Tjt° tF

xs o L= i
+M ipg %+ u; © u) pg (%% up 0 w)jdu: (2.49)
k=1 1=2 (D7

Set

U@® %% 9= fuj 9l;luwv: P+ u+rw=1t"%v; © u+w= ©

t°+u; © uw v, © v 2[l DTLRT (2 DTLT e
If jt° t%9+j° 9 < ~=4, then from elementary geometric considerations we get

v,

measU(t% %t% %) T, 2Gt° t9+j° PNy

Therefore for ¢ 9;(t% %92 [m,:~;(my+1) )Y [m~;(m+1) ) \T satisfying
it t%+j % %< ~=4 we have

NI Z - ) ~
ipg 0+ U © ) pg (%% u; @ u)jdu
k=1 =2 (I 1~
XS Z
jipg %+ u; © u) pg (1% U w)jdu
k=1 u(t% 0to0 09
x £ ] ~
' g 0+ U © W) pg (™ up ® wjd
1= [ 1)1 T nu(tS; 9t%Q 09
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(SLm 1Tz +4SNajp jear)(t® 9+ % %)
Combining this with (2.49) we see that the functionpk]- is Lipschitzian in
[m:~;(m+21)Y [m~;(m+1)Y \T , with the constant

Lm=s((M+1)L* M)+ smLjp jcar. *4( SLm 1T2+4SNajp jcar.):

By induction we obtain
Ln, 1 C
(L+4sMTy)N2 1 1
4sMT, '

=maxf2sL =+ M;sLT,+ SM + (SLT,+ 16SN2M)jp jcar.d

This ends the proof.2

Lemma 2.6 The sequence
0=0; =« = + . =01
satis es the inequality
“ 2@+ ):

P
Proof. SetS = _, and =S=.WehaweS., =1+ )S + ?and

S +1 — (l'+ ) + 2:

+1
By induction we obtain
2A+@Q+ )+ e+ ) H= @+ ) 1
Therefore

a= (+ ) 2@+ ):2

Lett=(my+l)7and =(m; |)7~ Observe that (see (2.48))
!

) X %! L
py (6 )= (1 Hi(t )+ Py (t+ U; udu ot (1 1))
k=1 I=2 D~
= (@ Hit )
X me 12X 1
+ Pt +((1 D+r=2")~ (1 D+r=2Y)) gt (1 1)y
k=1 1=2 r=0
X me 12X 1
+ iKlr s (2.50)

k=1 =2 r=0
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where 7 !
(I 1+(r+1)=2N)~ _
ikir = Pg (t+u;  udu gt (I 1))
(I 1+r=2N)~
pgt+ (1 D+r=2%)~ (1 D+r=2) Y (0 DY
Put
j(my+1+r=2m, | r=2V)
= jp; (Mg + 1+ r=2Y)";(my | r=2Y)7

By (my+ 1+ r=2")"(my | r=2Y)7 |

(see (2.39)). By Lemma 2.5 we havgj, j LM 2. Combining (2.39) and (2.50) we
obtain

j(me+ 1+ r=2m, | r=2V)
xXs m X1
M (me+1+r=2"%m, | r=2Y)+r):
k=1 1=2 r=0

Applying Lemma 2.6 with = (s+ )M , we get
i (m;my)  (s+ 0)°M? N2V (1+(s+ L)) N22"
(s+ £)°M 2T, exp(( s+ D)MT,):
(Here | used the well-known inequality (1 + a2 exp(a).) This and the inequality
P Jcars J Picars + i Picar, 1+iP P car,

together with Lemma 2.4 imply Theorem 2.2









Chapter 3

The Multi-State Latent Factor
Intensity Model for Credit Rating

Transitions

3.1 Summary

This chapter introduces a new empirical reduced-form modér credit rating

transitions. It is a parametric intensity-based duration modelith multiple states and
driven by exogenous covariates and latent dynamic factors.h€ model has a generalized
semi-Markov structure designed to accommodate many of the siydid facts of credit
rating migrations. In this chapter, parameter estimation is lased on Monte Carlo
maximum likelihood methods whose details are presented. A sifation experiment is
carried out to show the e ectiveness of the estimation proceder An empirical
application is presented for transitions in a 7 grade rating sysi. The model includes a
common dynamic component that can be interpreted as the crigdycle. Asymmetric

e ects of this cycle across rating grades and additional serilarkov dynamics are found
to be statistically signi cant. Finally, an investigation is carried out on whether one
common factor su ces to capture systematic risk in rating transiton data by

introducing multiple factors in the model. The contents in his chapter are mostly
derived from Koopman, Lucas and Monteiro (2008)

3.2 Introduction

Ratings play a prominent role in the credit industry. Their key purpose is to provide a
simple qualitative classi cation of the solidity, solvency and pospects of a debt issuer.
The importance of credit ratings has increased signi cantly h the introduction of the
new regulatory framework known as Basel Il (BCBS, 2004). In th framework, ratings
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can be used directly to determine the size of a bank's capital l@ui. As capital
constitutes a relatively costly source of funding for a bank, tangs and rating changes
directly a ect the banks' willingness to grant credit to individual rms. Moreover, if
ratings and thus capital requirements co-vary with the busiess cycle, economic
uctuations may be exacerbated by capital becoming increasjly scarce in adverse
economic conditions, precisely when it is needed most. It is alethat a good
understanding of the dynamic behavior of ratings and ratinghanges is therefore
important from both a regulatory and nancial industry perspective.

In this chapter a new model for rating transitions is introdued. The main novelty of
the model is that rating transitions are modeled continuouslyn event time rather than
calendar time and are subject to common dynamic latent facter Although the model is
relatively complex, it is shown that it can be feasibly estimaté using modern
importance sampling techniques for non-Gaussian models in stagpace fornt.

The literature on modeling credit events such as defaults an@ting changes has grown
rapidly over the past 10 years. Wilson (1997a,b) modeled defauates using logistic
regressions with macroeconomic explanatory variables. NidkéPerraudin and Varotto
(2000) and Bangia et al. (2002) show that upgrade, downgradand default probabilities
di er over di erent economic regimes, whether characterizi by NBER business cycle
classi cations or by GDP growth rates. Default and downgrade iensities are higher
during recessions. In the same spirit, Kavvathas (2001), Carlingdacobson, Lince and
Roszbach (2002), Couderc and Renault (2004), and Du e, Saitaand Wang (2007) use
a duration approach conditional on observed macroeconomindh rm characteristics
and show that average times-to-default decrease if economidiaty decreases.
Koopman and Lucas (2008) and Koopman, Lucas and Klaassen (2p@ave adopted a
direct time series approach and identi ed the time-varying yclical nature of default
rates over a long historical period. Also Fledelius, Lando and Ng&n (2004) corroborate
the existence of time- uctuations for credit rating migration rates.

Whereas some of the contributions in the literature introdue observed macro-variables
to capture co-variation in default intensities between rmsand industries, an alternative
approach is to estimate the common components of default riskrelctly from the data.
An advantage of such an approach is that one is less prone to misspmtion caused by
the use of an incorrect macroeconomic proxy for the credit dgc Couderc and Renault
(2004) tested a large number of macroeconomic variables fovetr predictive ability and
found ve signi cant factors. Still, a large part of the uctua tions in systematic default
probabilities could not be accounted for. Second, by estimag the default dynamics
directly from the data, one obtains an integrated frameworkor capital determination
and risk management, see Koopman, Lucas and Klaassen (2005). Bytecast, if
observed macroeconomic variables are used, one needs an iamyiforecasting model for
such variables, see for example Du e et al. (2006a,b).

Suggestions for dynamic models with latent components are @eardini and Gourieroux
(2004), McNeil and Wendin (2006), and Koopman, Lucas and Dais (2005). These
models, however, are all set in a calendar time framework: rag transitions are

lIn chapter 5 two other feasible estimation methodologies are presented, and compea to the one
discussed in this chapter.
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observed empirically over discrete time slots, e.g., years oragters. The observed
frequencies are subsequently modeled by non-Gaussian time sepmcesses. By
contrast, in this chapter a duration model with unobserved coponents is used. The
duration (continuous time) approach is the more natural apmach in the current
context, where durations to transitions are endogenous ragh than exogenous. In this
way, all the information available in the data-set is used. Laho and Sk deberg (2002)
provide a further detailed discussion of the advantages of theminuous-time approach.
The new model can be regarded as a multi-state extension of theo&hastic Conditional
Intensity (SCI) model of Bauwens and Hautsch (2003, 2006a). TI&CI model is a point
process model for stock transactions in tick-time. Durationsiithe SCI model are the
time to the next trade. By contrast, in the current model it is ot only the time to the
next rating event that is unknown, but also the type of event tlat is going to occur, e.g.,
upgrade, downgrade, or default. In that sense, the model intdoiced in this chapter is
set in the so-called competing risks framework. Given a rm's ihal rating, there are
multiple states for the rm's next rating. Each of these states ks its own duration
process and only the minimum of those is observed. This leads taramre complicated
likelihood structure than considered by Bauwens and Hautsch (28, 2006a).

The likelihood function of the new model contains a high dimmesional integral involving
the latent common risk factor. In this way, this parameter drven model di ers from
well-known observation driven counterparts like the Autoregessive Conditional
Duration model (ACD) of Engle and Russell (1998), or the Autoregssive Conditional
Intensity model (ACI) of Russell (1999). In this chapter, the lkelihood of this new
model is evaluated using a multivariate extension of the Mont€arlo techniques that
are developed by Durbin and Koopman (1997, 2001). The e ewéness of the method is
demonstrated by means of a simulation experiment.

The model is estimated for the CreditPro7.0 data set from Staradd & Poor's,
containing all issuer ratings over the period 1981 { 2005. In &épresent study rms are
classi ed into 7 standard rating categories and a dynamic modébr upgrades,
downgrades, and defaults is speci ed using all available datdhis yields a data set
including almost 7000 rms and almost 14000 informative ratig events (more than
25000 if sample extension and attrition are also taken into aagot). The analysis leads
to some interesting empirical ndings. First, there is signi can evidence of a persistent
common component in rating transitions. It is further shown thathe impact of this
common component with respect to downgrade and upgrade prdhlities is asymmetric.
Upgrades are idiosyncratic to a large extent, whereas downgdes and defaults tend to
cluster together in time. Further, experiments with multiple (latent) factor models cast
doubt on the suitability of (widespread) single factor modelsoir risk management and
capital bu er determination. Finally, there is statistically signi cant evidence of
semi-Markov e ects in transitions and defaults. Investment grde transition intensities
tend to increase over the rst few years and become more stableetteafter.
Sub-investment grade companies, by contrast, show increasedrisition activity at short
durations, probably due to momentum e ects, and at longer durdgons, possibly due to
debt roll-over.

This chapter is organized as follows. In Section 3.3, the mdds presented. Section 3.4
contains the details of a computationally e cient estimation methodology for this model.
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Section 3.5 discusses how to obtain default probabilities overte time periods from
the event time speci cation. Section 3.6 contains the resultsf a Monte Carlo study. In
Section 3.7 the results of the empirical study are presented. ¢Ben 3.8 concludes.

3.3 The Multi-State Latent Factor Intensity model

The multi-state latent factor intensity (MLFI) model is a mult i-state generalization for
multivariate point processes of the latent factor intensity (IFI) model of Bauwens and
Hautsch (2003). Consider a set d units (or rms) whose event-histories can be
adequately described by the history of transitions between a ite set of states. The
states in the empirical application will be the set of credit riings for issuers as assigned
by Standard and Poor's (S&P). The data set has a clear panel sttture and consists of
the exact dates, and the corresponding type, of the rating chges recorded for each rm
in the sample. In order to account for unobserved dependencetbeen the transition
histories in a parsimonious way, a common factor(t)is introduced. In this modeling
framework it is assumed that conditional on (t), rating events are independent across
rms (i.e., along the cross section dimension). This assumptios standard in the credit
risk literature and is used to prevent the model's correspondinjoint state-space
becoming quickly unmanageable due to its size. Gagliardinnd Gourieroux (2004)
provide a short discussion of this curse of dimensionality problem

The multi-state feature of the model is represented as a s8tof transition types,
S=11;2;:::;Sg. For example, in the case of three rating classes (AAA,AAAE =1
denotes a downgrade from AAA to AA,s =2 from AAA to A, s= 3 an upgrade from
AA to AAA, :::;, uptos= S =6 an upgrade from A to AA. Next, de ne the
right-continuous counting processebl (t) and N (t) (their left-continuous counterparts
are denoted ad\ (t) and N (t)). The processesN (t) and N (t) make a jump of unit size
at each time there is a rating event for one of th& units.? Similarly, N*(t) (and N¥(t))
jumps at the times there is a credit event for unitk such that

X
N = N¥);

k=1
with a similar relationship holding for their left-continuous counterparts. These point
processes are marked because at each event time we also observidhsition type of
the unit, i.e., the speci c type of upgrade or downgrade. In fet, the counting process
NK(t) (and N(t)) can be expressed as the sum &f counting processed X(t) (and
NX(t) respectively) that keep track of the total number of transitons of types for rm
k. It follows that

X X X X

Nt = N&();  N@®=  N¥B= N&(t);

s=1 k=1 s=1 k=1

2It is assumed that there are no simultaneous rating transitions. In practice the S&P's database is
recorded at a daily frequency. This means multiple rating actions can be observed on drgle day (for
distinct rms). The likelihood speci cation in Section 3.4 incorporates this phenomenon.



3.3. THE MULTI-STATE LATENT FACTOR INTENSITY MODEL 107

and similarly for their left-continuous counterparts. Corrsponding to each of these
point processeNX(t) it is assumed there is a nite stochastic intensity~s(t). In
practical terms this intensity describes the instantaneous pbability of unit k
experiencing a types rating transition at time t conditional on the information available
just before timet. Naturally, such transition intensities are only de ned at timet if the
unit actually is "at risk' for transition type satt <t, wheret t is arbitrarily small.
For example, the downgrade intensity from AAA to AA for rm k at time t is only

de ned if rm k actually has an AAA rating just prior to t. The intensity for each point
proces$d ~X(t) can be (informally) de ned by

)= fim PNEEF) ) NE() > 0jF
S - #0 '

see for example Andersen et al. (1993, p. 51). The conditionafanmation up to (but
not including) time t is represented byF; = [ « F for an appropriate Itration F .
De ne YX(t) as a dummy variable that takes the value one if unik is “at risk' for
transition type s2 Sattime t , and zero otherwise. Note that unitk can be at risk for
multiple transition types at the same time. For example, both he AAA to AA and the
AAA to A transitions may be at risk simultaneously. Obvious reasonsof a transition
type not to be at risk for rm k at time t are that unit k has the incorrect current initial
rating, has defaulted, or dropped out of the sample earlier f@other reasons.

The main assumption used to build the parametric intensity procses

NOEENOIAG!

is the log-linearity of the instantaneous hazard rate (t) conditional on the observed
path of any relevant covariates. The model speci cation for ta conditional hazard X(t)
is thus given by

s =exp s+ W+ s (1) HID); (3.1)

with s=1;:::;Sandk =1;:::;K, where (i) scalar s, m 1 vector g, and scalar ¢
are xed unknown coe cients, (i) m 1 vector wX(t) contains explanatory variables
(covariates), (iii) scalar (t) represents a latent dynamic factor, and (iv) scalar function
H¥(t) represents the generalized baseline hazard function, whican be used to model
duration dependence of the multivariate type (i.e. depenaee on the quantity of time
elapsed since the previous rating transitions). This speci caih encompasses for
example the homogeneous continuous-time Markov chain modkeét is frequently used
in the empirical credit risk literature, see, for example, Kavathas (2001) and Lando and
Sk deberg (2002). Note that X(t) is assumed to be de ned only if the corresponding
YX(1) = 1.

A more detailed discussion of the intensity speci cation (3.1) ftows below. The
parameter s represents the reference-level log-hazard of transition tgs. It is

SNX(t) is assumed to be a conditionally orderly process, i.e., it satis es
P NX(t+) ) NXt)>1jF, = o() P NX(t+) ) NXt )=1jF, , such that the
probability of a jump larger than 1 in NX(t) can be discarded.
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and scalar s measure the sensitivity of unitk's log-hazard for transition types with
respect to observed covariateg®(t) and the unobserved process(t), respectively. The
m-dimensional vector of covariatesvX(t), is taken as xed givenF, and can contain, as
in Du e, Saita and Wang (2007), unit-speci ¢ information such as leverage and

pro tability ratios, industry dummies, stock volatilities or st atistics depending on the
rating process® Further, wX(t) can include macroeconomic information such as
economic growth rates, interest rate levels and term structureariables. In this case
subscript k can be dropped from the notation. Note that phenomena like ratg
momentum can also be included in*(t) such that past downgrades and upgrades make
subsequent downgrades and upgrades more likely, respectively

The coe cients ¢ depend on the transition types 2 S. This implies that ¢ can
depend on both the origin and the destination state. In the emptal literature it is
common practice to let s parameters depend on the origin state, i.e., the initial ratig,
only. Here, however, the impact of the common risk factor (t) depends on the type of
transition, and therefore on the destination state as well. Foexample, upgrades might
be less subject to common risk factors than downgrades, see Gaglisi and Gourieroux
(2005). Restrictions on ¢ can be tested explicitly using the maximum likelihood based
procedure of Section 3.4.

Following the empirical work in the credit risk literature, dl intensities are assumed to
be subject to the same unobserved dynamic common factoft). Relaxing this
assumption by making (t), for example, rating or industry speci c is conceptually
straightforward in this modeling framework. The latent pro@ss might even be unit
speci ¢ as in Bauwens and Hautsch (2003, 2006a). In the case ofimgttransition data,
however, specifying unit-speci ¢ processes is not really fedgib The number of rating
events for an individual rm is usually too small, even over a pslonged period of time.
This is a direct consequence of the rating agencies' policy togpide stable ratings to
the investment community.

denotes the time index of the last observation (right-censornof type I). The

speci cation of (t) as a stochastic process with piecewise constant (left-continus)
sample paths is intuitive since the intensity of the pooled prass (pooled over rms and
transition types) is not identi ed between two consecutive ev&s. Moreover, in the
context of credit rating transitions, (t) is intended to capture low-frequency
co-movements in the vector of migration intensities. In the epirical illustration of
Section 3.7, the average duration of the pooled process is di&'s. Therefore, no serious
bias will arise from disregarding possible changes in the maccoaomic variables over
the almost bi-daily spells of the pooled process.

Let , = (t,) denote the value of the common risk factor (t) over the interval

t 2 (t, 1;tn]. In order to capture serial correlation in the intensity of the pooled process,
the dynamic process for ,, can be speci ed, for example, by a rst order autoregressive

4The possible endogenous nature of a selection of (time-varying) covariates lead® tan inference
procedure that can no longer be interpreted as full (conditional) maximum likelihood. In such case
a partial likelihood inference framework results from treating as either xed or de ned any internal
covariates, see Lancaster (1990) and Kalb eisch and Prentice (1980, 2002).
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(AR) equation
n = " n 1+ n"n; (32)

where", is a set of i.i.d. N(Q 1) innovations, the AR parameter 2 [ 1;1], and where
» may depend on the length , of the interval (t, 1;t,). The speci cation in (3.2) has
small changes in (t) over short spells. This is in line with the interpretation of (t) as
an economy wide risk factor, which one would not expect to vanyildly at high
frequencies. As not all ¢ parameters from (3.1) and , can be identi ed simultaneously,
n IS normalized to

(1 2°0)1 2P) for 1< < 1,

n for =1, (3:3)

2 =

n
in the empirical work of Section 3.7, witht, measured in days of & = 260 day business
year. This brings (t) close to an Ornstein-Uhlenbeck (fof j < 1) or Brownian Motion
(for = 1) process observed at the event days,. More general dynamic speci cations
for , can be easily incorporated in the state space framework of thexteubsection.
For example, di erent AR processes can be considered for speciating transitions. See
also the empirical application in Section 3.7.
The baseline hazardHX(t) is speci ed by the deterministic function

HS() = He(t to;t th; it they) (3.4)

wheret tX denotes the backward-recurrence time of unk with respect to its pastith
transition moment. The function Hg () can be any non-negative function of its
arguments. The inclusion ofH X(t) introduces duration dependence into the model and,
therefore, relaxes the Markov assumption. More precisely, kfX(t) is allowed to depend
only ont t‘,ilk(t), then each unit follows a semi-Markov process. In the generalseaa
generalized semi-Markov process is obtained, see Glynn (1988pssible choices for
H&(t) include the hazard function of a multivariate Weibull distribution, given by

Hs(Xo;:i5iXn) = asix b (3.5)

with X, 0 and xed coecients a5, > 0 andby > 0 forn =0;1;:::;N. Another valid
alternative is the self-excitation mechanism introduced by Hakes (1971) and also
considered for the LFI model by Bauwens and Hautsch (2003).

should be noted thatk's observed duration or spelty, ti«q, ; is the minimum of

< YX(t) latent durations corresponding to the set of feasible transitins “at risk' for unit
k at time t. Here the standard practice of assuming that the latent duratioprocesses
are mutually independent conditional on the common factor (t) is adopted® See van
den Berg (2001) for a detailed discussion of identi cation prdbms in this setting.
To complete the model speci cation, an additional set of ideiftying assumptions for the
parameters is required. The global identi cation of intengy speci cation (3.1) requires

5If no exogenous covariates are included, as in the empirical illustration of SectiorB.7, this is an
innocuous assumption, see Tsiatis (1975, Theorem 2).
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a sign restriction for 5. Changing the sign simultaneously for all s's and for the
complete path of (t) clearly yields the same path for the intensity™(t). Therefore, the
restriction < O fors= S is enforced.

For a vector of unknown parameters, the likelihood function conditional on the initial
ratings, pre-sample event historie§,and on the complete path of the unobserved

process, as de ned by yry = f gl ™, can be written as
N+ K VAIWS
L jFr N = exp  Ng(ta)Inf $(ta)g  Yo'(tn) s(tdt
n=1 k=1 s=1 th 1

(3.6)
where dummy variable NX(t) = NX(t) NX(t) is one if unit k at time t experiences a
rating event of type s, and zero otherwise, andFt denotes the relevant observable
Itration. The likelihood function (3.6) has an intuitive i nterpretation. Unit k only
contributes to the (conditional) likelihood if it is at risk, that is if YX(t,) = 1. In this
case, the likelihood contains the probability of survival of nit k in its current state over
each spell of the pooled point process if there was no rating avéor this unit at risk.
When rating eventn takes place at the end of the spell of the pooled process for rky
thatis if NX(t,) = 1, the survival probability is multiplied by the hazard rat e to yield
the probability density of the rating event.
The likelihood in (3.6) can be decomposed in a likelihood of aelplength in the pooled
point process, and a likelihood of the associated mark. The spadhpth follows from the
cumulated (over all's and k) intensities at risk, YX(t) ¥(t). The mark then follows from
the multinomial distribution with probabilities

X
YS(0) s()= YEM) s

s;k
for rm k experiencing rating event types. See also Section 3.6. This is the most
general speci cation! More restrictive speci cations can of course be accommodated a
well. For example, one might take the ordered nature of ratgs into account by
restricting the ¢ parameters to depend on the initial/input rating only, and rot on the
output rating. In this chapter, however, | stick to the more geeral speci cation.
In order to estimate the parameter vector , the conditional likelihood function must be
integrated with respect to the complete path ()., of the unobserved process(t).
The maximum likelihood problem becomes

maxL( jFr); (3.7)

A discussion of the initial conditions problem in event-history models is provided ly van den Berg

(2001).
’Given the close resemblance of the process for the marks with qualitative respmse models, well-

known problems for those classes of models like (in)dependence of irrelevant altetnas (11A), will be an
issue here as well, at least for the general multinomial speci cation. Though not he issue of this chapter,
the current methodology is also applicable in more general classes of point procemodels that are less
subject to such problems. Moreover, in the current application to credit risk modelng within a 7 grade
ratings system, IIA is not a key issue.
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where z
LCJFr)= L jFr; N PO nep+)d nmyens (3:8)

and p( n(t)+1) denotes the density function of ). -

3.4 Monte Carlo Maximum Likelihood Estimation

The main di culty with maximum likelihood estimation in (3.8 ) is the computation of
the high-dimensional integral. In a typical application suchas the one in the next
section, this integral is much more than 4000 dimensional. McN@nd Wendin (2006)
address a similar problem by adopting a Bayesian perspectivebalt in a lower
dimensional space (around 50). Bauwens and Hautsch (2003, 200&aopt the
simulated maximum likelihood method of Liesenfeld and Richdr(2003) and Richard
and Zhang (2007) for the estimation of a single-state LFI model.

By contrast, in this chapter, the general method of Monte Cad maximum likelihood is
used to estimate a multi-state LFI (MLFI) model. To overcome theine ciency problem
of direct Monte Carlo estimation of the high-dimensional intgral in (3.8) a combination
of importance sampling and the Kalman Iter and smoother is usedas described in
Durbin and Koopman (Part I, 2001). It is shown that the methodlogy can be made
applicable for high-dimensional problems. In this section, thmodel is formulated in
state space form in Subsection 3.4.1. The Monte Carlo simulationethod for likelihood
evaluation is discussed in Subsection 3.4.2.

3.4.1 State Space representation

The MLFI model considers the following three sources of stochasvariation: (i) the
duration between events in the pooled process, denoted hy= t, t, 1; (ii) the
transition types s being at risk att, for unit k, denoted by YX(t,); (iii) the specic
transition type s at time t,, for unit k, denoted by NX(t,). These stochastic variables

are collected in the vectorz, forn =1;:::;N(T) + 1, where z, is de ned as
0
Zo= n YAt 5 i YE(t) s Ni(th) s i N&(t)
The vector z, can be constructed (or observed) at each event=1;:::;N(T)+1. The

analogue of the observation equation far, is implied by the non-Gaussian conditional
likelihood in (3.6). In particular, for the ith event time of the pooled process, the
conditional log-density is

¥ X Z a1
Inp(zaj niFy )= NEta) Inf K(ta)g  Y&(tn) K(t)dt; (3.9)

s=1 k=1 th 1
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The intensity speci cation (3.1) can be formulated more genatly via vector x, that
contains latent processes and xed e ects. That is,

() = exp(ZanXa) HE();  fort, 1<t to; (3.10)
whereZq, is a xed and known “selection' vector, fos=1;:::;S,k=1;:::;K, and
n=1;:::1;N(T)+1. IncaseH(t) = 1, intensity X(t) is constant fort, ; <t t,. To
show that speci cations (3.1) and (3.10) can be equivalent, osider

xo = fFasiniss i 25 (th)d
Zekn = 6‘2 ; e(s) Wk(tn)o; s

whereeg is the s-th column of Is. It follows that ZgnXn = s+ MWK(t)+ s n. If
another speci cation for X(t) is considered, the speci cations foZ¢, and x, need to
be adjusted accordingly.

The vector x, can contain both xed unknown coe cients and dynamic latent
processes. Therefore, is modeled by the general Markovian process

Xn = FaXn 1+ Ry n; n NID(;Qn); n=21;:::;N(T)+1; (3.11)

with initial condition xo N(a;P). The vector a and the matrix processe$,, R, Qn

and P are predictable with respect to the observable ItrationF; and may also depend
on the parameter vector . If the vector x,, only consists of xed unknown coe cients,
thenseta=0, F, =R, =1,Q,=0and P = | , where is the so-called di use prior
constant. Usually, is set to some large value in numerical software, see Harvey (1989,
pp. 367-8). Exact solutions for 1  are available as well, see Durbin and Koopman
(2001, Ch. 4). If the vectorx, only contains the latent autoregressive process (3.2), that
iSX, = n,oneshouldsea=0,F,= ",R,=1,Q,= 2andP=(1 2 LA
combination of unknown coe cients and latent time series proesses can be
incorporated in (3.11) in a straightforward way. For examplgin the case of (3.1) with

wWK(t) =0, we havex, =( 1; :::: s; n)with a=0,
I 0 0 I 0

In case multiple latent factors or higher order dynamics of th latent factors are part of
the model, the state vectorx, can be extended in a natural way. The state space

matrices need to be adjusted accordingly. A general framewodior the MLFI model can
be summarized by the observation log-density faz, conditional on the statex,. This is
given by (3.9) where X(t) is given by (3.10) fort, ; <t t,, and wherex, is modeled

non-Gaussian state space model as considered by Shephard and @i&97) and Durbin
and Koopman (1997, 2001). Importance sampling methods enalthe evaluation of the
likelihood function but also the estimation ofx,, and the computation of the

given in Subsection 3.4.2.
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The high dimension of the state vectok, should be noted, since it includes the scalars

space analysis can accommodate this aspect of the model in a telasiay since it relies
on computationally e cient methods such as the Kalman Iter and associated
algorithms. Furthermore, it leads to a signi cant reduction d the size of the parameter
vector . Since needs to be estimated via the numerical optimization of theKelihood,
computation time is also reduced as a result. The remaining paneters in are and
the ¢s. These coe cients can be placed in the state vectot, as well although in this
case the model becomes nonlinear in the state equation. Theeam Markovian process
(3.11) modeling of the state vectok, is not applicable anymore. The treatment of
nonlinear state processes is more involved and computatioryathore demanding. The
details of the estimation procedures fox,, and in the current framework are presented
in the next subsection.

3.4.2 Monte Carlo likelihood evaluation

Given the statistical model speci cation of the previous subseicn, the likelihood
function (3.8) can be reformulated by
8 9
Z < N §F)+1 =
LCjFs) = . P(ZnjXn;Fn 1), P(X ] Fr)dx; (3.12)

n=1

0
wherep(z, jxn; Fn 1) is given by (3.9) and the model foxx = x9;::: ;xﬁl (Ty+1 is

implied by (3.11). Both p(z, jxn;Fn 1) and p(xjF ) depend on the parameter vector
Y y P(Zn]) p(X] Y p

therefore we must rely on numerical techniques for the evalian of (3.12). In this
chapter, the technique of Monte Carlo integration with impaotance sampling
acceleration is employed. The basic idea is simple. First, we silate M paths of x from

p(xjF 1) denoted byx!;:::;xM whereM is a large number. Second, we compute the
Monte Carlo estimator of (3.12) given by
8 9
XA < NQ)+1 =
BCjFr)=m * P (20 X7 Fn 1), (3.13)
m=1" n=1 ’

wherex)! is the ith element fromx™. The estimator (3.13) is poor sinc™ is simulated
“unconditionally' and is therefore likely to make little cantribution to the Iikelihoogi. A

more e cient approach is to simulate fromp(xjz; Ft), with z= 2% :::; z,(\’I Tyl but
this is not feasible since no analytical expression exists for shdensity. The idea of
importance sampling is to replace(xjz; F1) by the more convenient Gaussian density

pc(Xjz; F1) for simulating x's. The basic algorithm is then adjusted as follows. First,
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number. Second, compute the Monte Carlo estimator of (3.125aiven by

8 9
XA <NQ)+1 = m:

p(z XM Fy 1), PETIET)

» Pa(xMjz;Fr)

8 9
W< N+ =

H 1 iyyM. - 1 .
Pc(zjF )M : P(znjXqy; Fn 1); pe(Zix™ F1)’ (3.14)

[
<

B( jFr)

sinceps(XjF ) = p(XjFr) and ps(xjz; Fr) = ps(zjX;F1) pe(XjF1)=ps(zjF ). This
estimator is referred as the Monte Carlo likelihood. The consiction of pg(xjz; F+) and
the evaluation of the di erent densities is described in detabelow.

Step 1: Simulate paths of x from  pg(Xjz;Ft)

To build a device for simulating from the conditional Gaussian ehsity ps(Xjz; Ft), an
approximating linear Gaussian model needs to be formulatedahrepresents the joint
density ps(X; zjF ). This density for the linear Gaussian model ideally resemblebe
true density p(Xx; zjF 1) as close as possible because samples generated from the
conditional Gaussian densityps(Xjz; Ft) may then be similar to samples from the
conditional density p(xjz; Ft). An appropriate linear Gaussian model can be obtained
using the method described in Durbin and Koopman (2001, sectidi.4) and is based on
the linearization of the observational log-density using a seed-order Taylor expansion.
In the context of the model described in Subsection 3.4.1, theasic idea is to construct
a linear Gaussian state space model for the series of rating everdicators at eventn as
given by

The rating event is triggered by the signaZenxn = s+ MWX(t,)+ s . which
determines the intensity X(t) fort, 1 <t t,, see Subsection 3.4.1. To establish an
approximating Gaussian model that relates the sign@ X, to  NX(t,), consider the
linear Gaussian observation equation

Ng(tn) = Cskn T Zsann +  skn, skn N”D(O;Cskn) ; (3-15)

scalar varianceCg, are considered as auxiliary and unknown variables that need be
constructed in a consistent fashion as is shown below. The obseiwat NX(t,) is linear
in vector x, and modeled by the linear Gaussian process (3.11). Thereforbservation
equation (3.15) and the dynamic latent process (3.11) make @pstandard linear
Gaussian state space model, see Durbin and Koopman (2001, partd) & detailed
discussion on this class of models.

The constantcsk, and varianceCgy, of the observation equation (3.15) are constructed
in such a way that the conditional density of the model of intersgt p(zjx; F+) and the
conditional density of the approximating modelps( Njx;F+1) have the same mode for
x, where N =( NZty);:::; N&(tn))° The joint solution for cg, and Ce, to
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obtain the mode denoted byx can be obtained recursively, see the treatment in Durbin
and Koopman (2001, Chapter 11).

The implementation of this procedure is relatively simple. Annitial guess for the mode
X needs to be found that is denoted bg©. The linear Gaussian model (3.15) is
constructed forj = 0 by

Cskn = Ng(tn) Zsknbgj) Cskn Zsknr In p(ZjX; I:T)n;
(3.16)
Cskn = [ZsknT ZIn p(ZjX;FT)nngn] 1;

where )
@np(zjx; Fr)

@x x=x () ’

@ In p(zjx; Fr) :

@x@% x=x0) '
A new guess of the mode fox is obtained by estimating the conditional mean ok
conditional on N for the approximating linear Gaussian state space model (3.15nc
(3.11). The conditional mean ofx can be computed by the Kalman Iter and smoothing
(KFS) algorithm. More formally, the KFS method computes E(xj N) where Eg() is
with respect to the approximating linear Gaussian model. It is @ll-known that the
mode and the mean are equivalent in a Gaussian model. The new mstte of x is
denoted byk(*Y . New guesses for the mode are obtained by the KFS based on (3.16)
forj =1;2;::: until convergence is reached according to some metric. Usually
convergence takes place after 5 to 10 iterations.
The approximating linear Gaussian model consists of (3.11) an8.05), with joint
density ps(X; zjF t) and where (3.16) is evaluated ak = k with k as the estimated
mode. This model is adopted to generate conditional samples & from ps(Xjz; F).
Direct sampling from such a high-dimensional Gaussian density ngges many
high-dimensional matrix operations. These numerical problesncan be overcome
because the model is formulated as a linear Gaussian state spacelehoTherefore, the
simulation smoothing algorithms of de Jong and Shephard (1996r Durbin and
Koopman (2002) can be used to generate conditional samples %qrdenoted asx™ for

r Inp(zjx; Fr)n

r 2Inp(zjx; Fr)a

Step 2: Compute the Monte Carlo likelihood (3.14)

Given a set of simulated samples froms(xjz;Ft) ps(Xj N;F1) and denoted byx™,
the computation of the Monte Carlo likelihood (3.14) is relavely simple. The Gaussian
density pc(zjx;Ft) ps( Njx;F1) is conditional on x and its expression is
well-known for the linear model (3.15). Further, the obserion density of interest
p(z.jXn; Fn 1) is given by equation (3.9) and can also be computed straightf@ardly.
The Monte Carlo likelihood is then maximized with respect to for a particular choice
of M. The maximization can be carried out by a numerical optimizzon procedure. For
example, a quasi-Newton method can be used for this purpose. Tcsere a likelihood
surface that is continuous (or smooth) in , the same random numbers are used for the
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sampling in Step 1 of theM signals frompg(Xjz; F1). The optimization procedure
requires an initial estimate of that is chosen ideally in the neighborhood of its nal
estimate®

Step 3: Smoothed estimates of the state vector

The state vectorx, contains xed unknown coe cients and dynamic latent processe
Estimating the state vector for eachn leads to estimates of regression parameters and
latent processes such as,. A straightforward estimate of the state vector, given the
data, is obtained by weighting each simulated state vectot' by its contribution to the
likelihood function, that is

hd " hd
RniN(T)+1 = Wn  Xp Wmn (3.17)
m=1 m=1
where 8 9
< NY(T) ="
W = P(znjxysFn 1), pe(zix™;Fr): (3.18)

i=1
Standard errors for®y 1)1 are obtained by taking the square root of

"( ), i I#
Wm  (XM)? Win Rojn (1)1 )2 (3.19)

m=1 m=1

X

3.5 Implied Transition Matrices

| now turn to the issue of estimating the transition matrix given he Monte Carlo
maximum likelihood estimates of the parameters. Typical exaptes include 1-year
transition matrices as the ones published by Standard & Poorand Moody's. | start by
recalling the connection for unitk between thein nitesimal generator matrix Gg(t) and
the implied matrix Py of transition probabilities for a continuous-time nite-state
Markov process. The case of semi-Markov processes is dealt witretabn® The matrix
Gk (t) contains the hazard rates for each origin and destination & combination. In
particular, the (i;j )th element of G(t) equals X(t) for s corresponding to a transition
from origin state i to destination statej. The diagonal elements oG (t) are such that
the rows of G¢(t) sum to zero. Consider an intervalT; T + ]. Then the matrix of

8In the Appendix to Chapter 5, | provide some simple estimators that may be used dr this purpose.
9For a Markov chain, the entries of the generator matrix are either constants o (deterministic) func-

tions of time. However, for generalized semi-Markov processes the entries of themerator matrix are, in
general, stochastic processes.
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transition probabilities over the interval [T; T + ] is given by the product integral ©

T+

P(T:T+)= J{ (Is + Ge(t)d): (3.20)

T

For the MLFI model, a parametric form for G(t) conditional on observed regressors and
an unobserved factor is assumed. In Aalen and Johansen (1978), bytcast, G (t) is

left completely unspeci ed under the assumption that duratiorand self-excitation

e ects are absent. Therefore the Aalen-Johansen estimator is dsi& the empirical
section as a benchmark for evaluating model adequacy. | assurhattthe elements of

Gk (t) are adapted to the observable lItrationF,. In this situation Py (T;T + )

becomes a random variable, and we want to compute its expetitan conditional on F.
This expectation can be interpreted as the transition matrixover the interval [T; T + ],

2 3

T+

P (T;T+)=E[ P (T;T+) jF7]1=E4 J{ (1 + Gy(t)dt) F+5: (3.21)
T

To estimate the conditional expectation in (3.21), | suggest ta approximating schemes.
In the rst scheme, a large number of high frequency (say daily)gihs from the process

(t) are generated, compare (3.2) and (3.3) in Section 3.3. Usingese paths, a
consistent estimator forP,(T; T + ) is given by

N W P
P(T;T+ )= Mi TU 0 + 6Pt (3.22)

m=1 T

where G} (t) denotes unitk's realized matrix of intensities for replicationm. This
approximation skips the fact that in the empirical model speatation, (t) only jumps
at event times. This last assumption, however, is not material ithe model's
speci cation, and jumps at higher frequencies (such as evergny) are easily allowed for.
The second scheme to obtain estimates of annual transition prdibbties uses the
bootstrap. Here, | build on the empirical model's assumption thathe common factor
(t) only jumps at event times. The starting point is the set of estimees of the
unknown model parameters and the smoothed estimates of thedat process, E[,jF 1]

paths over the [T'; T + ] interval for the full panel of K rms as well as for the
unobserved risk factor .11

10see Gill (2001) for an exposition on product integration. The product integrd is the continuous
counterpart of the standard, discrete product operator, just as the integral is thecontinuous counterpart
of the summation operator. Informally, the product integral of a function f (t) over the interval [T; T + ]

is ]'(I+ A+df (1) =lim y1n Ezl (A+f (ty) f(tp 1)) forapartition T =tp<t;<:::i<tp=T+.
111f weakly exogenous covariates were included in equation (3.1), then an auxiligrmodel is needed to

forecast the future path of these covariates (as mentioned in the introduction).One resulting possibility
is the estimation of scenario forecasts.
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The pooled process ovef[, T + ] for replication m provides a partition

T=1tg <tP<:::<t] =T+, over which the product integral can be factored, see
Andersen et al. (1993, p. 91). For the empirical model in Sectid3.7 these calculations
become particularly manageable.

The estimates ofP¢[T; T + ] can be used to compute several interesting risk measures.
For example, one can compute the average transition probakigs over a speci c time
interval for a portfolio of rms,

X
PIT;T+1= K ' PRTT+]:
k=1

One can also compute (non-linear) functions of the default pbabilities in P[T; T + ]
to obtain direct estimates of capital requirements accordgto the o cial Basel Il
regulations. This is especially interesting if one does not aage over simulations of

(t), but considers quantiles instead. See the forecasting exsecin Section 3.7. This
also allows one to consider stress scenarios in terms of extren{e) realizations.
So far, | have discussed how to obtain estimates of transition mates for Markov
processes. If we move on to semi-Markov processes, the equationgimecmore
involved. In the current case of semi-Markov behavior and a canon risk factor (t),
the relevant equations are worked out in Monteiro, Smirnovand Lucas (2006). If we
follow the rst approximation scheme above, we then have to sadva system of Volterra
integral equations for a xed path of (t) to obtain the transition matrix. This matrix
subsequently has to be averaged over di erent simulated path$ o. Alternatively, one
could follow the second approach and simulate the complete pdrof rms to obtain a
realized path of that only jumps at event times. This could then be used in the
Volterra equations to obtain a transition matrix. The resulting matrix again would have
to be averaged over many replications. Working out the nite saple properties of these
di erent approaches is beyond the scope of the current work. Ieethe focus is placed on
estimating the empirical dynamics of systematic credit risk. Idave the implication of
these dynamics for one-year default probabilities and risk rasures for future research.

3.6 Simulation Results

To assess the performance of the Monte Carlo maximum likelihoagethod in a
controlled environment, a simulation experiment is carriedut. The modeling
framework resembles closely one of the model speci cations metempirical study of
Section 3.7. In both cases 7 rating classes are considered. Theest@an be interpreted
as the familiar grades AAA, AA, A, BBB, ..., CCC, and default. Defaul is modeled as
an absorbing state. In the simulation section, the intensities arrestricted to

Kt) = Y&) expls+ s (D]

where (t) is a step function that jumps at the endogenous event times, as in (3.2).
The rm heterogeneity in this speci cation enters through the di erent parameters
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latent process (t) that can be interpreted as the (unobserved) macroeconomiceet.
The benchmark model in this simulation exercise abstracts frowiuration dependence
by setting HX(t) 1. This assumption is relaxed in the empirical section. Further
parsimony is introduced by setting ¢ = 9" < 0 for downgrades, and s = ' > O for
upgrades. The parameter values used for the simulation can beufwl in the rst column
of Table 3.1.

Note that the number of parameters, even in this simple model sgemation, is large.
For 7 rating classes, we have 49 possible rating transitions. Givelmetunderlying data
generating process (DGP) in this simulation study, some of thednsitions are extremely
unlikely, e.g., from AAA to default. As a result, in a particular smulation run there
may be no transitions of this type. In such cases, the correspondins parameter is not
estimated. This means that not all s parameters can be estimated for every simulation.
Table 3.1 only reports the simulation results for thoses parameters for which a
reasonable (50 out of 500) number of simulations exists for atkt one of the four data
generating processes (DGPs) presented in Table 3.1. The modetisgs considered are
K =70 and K =700 combined with autoregressive parameters=1 and =0:9.

For both K =70 and K =700, a panel of rms and rating transitions is generated as
follows. At time to = 0, the sample contains an equal number of rms in each rating
category. The unobserved process(t) is initialized at zero. Given the parameters, this
completely speci es the intensities up to the event daté;,. For the time interval

(tn 1;tn], the intensity of the pooled process is de ned by

X X6
(tn) = K(tn); (3.23)

k=1 s=1

with  (t;) applicable over the rst spell (to;t1]. The length of any spell in the pooled
process can therefore be drawn from the exponential distridon with intensity

parameter (t,). Given the durations of the spells{, i;t,]forn=1;:::;N(T)+1,
the rm experiencing a rating event is drawn from the univarate
Multinomial f 1(t,);:::; « (tn)g distribution where the probability of drawing unit k is
given by
x
) =0 )]t K(tn); k=1;::::K: (3.24)
s=1

Next, the type of rating event for unit k is drawn from the multinomial distribution
with the probability of state s being drawn for unit k given by

" #
)§ k 1 k
sk(th) = s(tn) s(tn); (3.25)
s=1
fors=1;:::;Sandk =1;:::;K. If the event is a default, the dummy variableYX(t)

jumps to zero. Finally, the unobserved common risk factor, = (t,) is updated using
(3.2) with =1 or =0:9 and where the disturbances,, n=1;:::;N(T) +1, are
drawn from a standard normal distribution. This process is remed until all units have
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entered the absorbing default state, or until the event time, exceeds the maximum
period of 25 years. For each panel size, 500 replications of gimulations were
performed. All calculations in this chapter were performedsing the Oxmatrix
programming language of Doornik (2002) and the estimation dnsmoothing routines in
the packageSsfPack of Koopman, Shephard and Doornik (1999).

The simulation results for the Monte Carlo maximum likelihoodprocedure discussed in
Section 3.4 are shown in Table 3.1. | rst concentrate on the mad with a random walk
factor ( = 1). We see that many of the parameters are estimated accurayefor a panel
with 70 rms. The parameters that are estimated less accuratelgorrespond to larger
rating transitions (e.g, AAA to BB or AA to CCC). As the larger ratin g transitions are
much less likely, the Monte Carlo averages of the correspondins parameters are based
on less replications and, therefore, less accurate themselvBy.contrast, the presented
averages for the smaller rating transitions are all very close the true parameter values.
The accuracy of the ¢ parameters increases further if the number of units is incread

to K =700. This is due to the fact that for a larger panel, we will oberve more types of
transitions in the same period of 25 years. The increase in preoisialso holds for the ¢
parameters. By considering the average estimate, it appearsatithe estimator for ¢ is
somewhat biased toward zero. This implies the magnitude of themmon risk factor is
underestimated. Consequently, it is more di cult to nd signi cant evidence of such a
factor in the empirical section later on. The strength of the ammon factor actually
found in the empirical section might thus be a lower bound onsttrue value.

If a stationary speci cation for with = 0:9 is considered, the results are similar.
Parameters for small rating transitions are estimated accuraty. Parameters for the
larger rating transitions are more di cult to estimate for the smaller panel due to the
limited number of observations. For the large panel, the biagithe estimates of
appears smaller than for a non-stationary (t). For the stationary model, one has to
estimate the additional AR(1) parameter . For the small panel ofK = 70, the average
estimate is near its true value of 0.9. The slight negative ni&-sample bias is well-known
from the linear model context. If the panel size increases ¥ = 700, the estimate of
remains stable, while its Monte Carlo standard deviation deeases somewhat. The mild
improvement is largely due to the parameterization chosen.HE cross-sectional
dimension of the panel was increased while keepifigat 25 years. This increases the
number of event times, without increasing the calendar time avable. Given the scaling
of the parameters of the autoregressive process with the lengththe spell intervals,
there is limited additional information on the long-term dynamics of the AR process.
There is only a moderate precision gain caused by a more preciséneate of the signal
given the increased number of events.

As explained in Section 3.4 (Step 3), we can use smoothing teajunes to obtain an
estimate of the unobserved (t) factor. Figure 3.1 illustrates the result for a single
‘representative’ simulation. For this simulation, the true véue of (t) was plotted
against its estimated (smoothed) counterpart using the Durbilcoopman importance
sampling scheme. The 95% con dence bounds are also provided.eTdlgorithm clearly
performs adequately in recovering the characteristics of ¢htrue, unobserved (t)
process from the observed data. As expected, the trugt) is much more volatile at
high frequencies than its smoothed counterpart. Local andajal peaks and troughs of
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the series, however, appear correctly positioned in calendame. The true process also
falls inside the 95% con dence interval most of the time.

—— Truey
— Smoothed/

S S S S RS SR B
0.0 2.5 5.0 7.5 10.0 125 15.0 175 20.0 22,5 25.0

Figure 3.1: True versus smoothed estimate of{(t)
The baseline model and the simulation set-up are the same as explained in the note ftable 3.1. The

thick, solid curve is the smoothed estimate of (t). The thin solid curve is the true (t) path in a typical
simulation. The dotted lines give the 95% con dence band of the smoothed (t).
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Table 3.1: Monte Carlo Results

This table contains parameter estimates for the MLFI model, X(t) = YX(t) exp[s+ s (t)]; for
k=1;:::;K with K the number of units, s =1;:::;49. The true parameters are taken in accordance
with the empirical results in Section 3.7, with di erent loading ¢ for up and down-grades, model C in
Table 3.3. There are 7 rating classes. Initial ratings are distributed evenlyover these classes. The model is
estimated forK =70 and K = 700, both with a random walk common factor and with a stationary AR,
parameter =0:9. The maximum time T is set to 25 years, unless the complete sample has defaulted at
an earlier stage. 500 replications were performed for each parameter combinati. Monte-Carlo averages
and standard errors (in parentheses) are presented for those parameters that hawesu cient number of
occurrences over all simulations.

True K=70 K=700 K=70 K=700
true — 1 true — 1 true — 0:9 true — 0:9
A An 347 3.48 (0.79) 351 (0.27) 355 (0.88) 350 (0.16)
AL A -5.88 -5.20 (1.36) -5.99 (0.64) -5.35 (1.32) -6.04 (0.51)
AMA 1 BBE  -8.38 -5.39  (1.10) -7.67 (1.02) 552  (1.37) -7.72  (0.93)
AA 1 BB -7.55 -5.73  (1.10) -7.36  (1.08) -5.64 (0.89) -7.44  (0.75)
AL AAA -5.04 -4.81 (0.93) -5.05 (0.23) -4.84 (1.00) -5.07 (0.15)
AL A -3.04  -310 (0.80) -3.07 (0.26)  -3.12 (0.63) -3.08 (0.14)
a1 BB -5.84 -5.38  (1.40) -5.92  (0.55) -5.49 (1.38) -6.00 (0.41)
AAL BB -8.47 -5.65 (1.23) -8.01 (1.00) -5.74  (1.30) -8.06 (0.72)
AAL B -7.59 -5.78  (1.44) -7.49 (1.08) 554 (1.32) -7.65 (0.83)
a1 ccc -9.63 -6.03 (1.57) -8.03  (0.90) -5.50 (1.05) -8.20 (0.69)
Al AAA -7.06  -6.27 (1.65)  -7.03 (0.50)  -5.93 (0.82) -7.22  (0.59)
Al AA -3.96 -3.99 (0.63) -3.93  (0.10) -3.96 (0.56) -3.96 (0.08)
Al BBB -3.38 -3.49 (0.78) -3.41 (0.25) -3.49 (0.72) -3.40 (0.14)
Al BB -6.18 -5.91  (1.41) -6.30 (0.52) -5.80 (1.32) -6.27 (0.33)
Al B -6.89 -6.34 (1.65) -6.95 (0.73) -6.16  (1.23) -7.06  (0.56)
A1 D -7.75 -6.52 (1.69) -7.77 (0.98) -6.34 (1.28) -7.86 (0.78)

BB | A 878  -6.17 (1.18)  -8.09 (0.92)  -591 (0.74)  -8.02 (0.64)
BB | aa 588 566 (1.15)  -5.94 (0.36) -5.39 (0.87)  -6.00 (0.26)

BBE | A -3.08  -3.12 (0.42) -3.06 (0.08) -3.06 (0.29)  -3.07 (0.05)
ees 1 s 341  -350 (0.84)  -3.44 (0.26)  -3.49 (0.64)  -3.43 (0.15)
BBB | B 581  -561 (1.31) -587 (0.54) -568 (1.26) -5.90 (0.35)
BB | ccc  -7.94 651 (1.26)  -7.89 (0.92)  -6.23 (1.02)  -7.92 (0.79)
BBB | D 651  -6.19 (125  -6.61 (0.56) -597 (1.39) -6.65 (0.52)
BB Aaa  -7.62 560 (1.15) -7.36 (0.81)  -5.41 (0.96)  -7.45 (0.68)
BB AA 675  -5.46 (0.92)  -6.74 (0.79)  -527 (1.12)  -6.91 (0.71)
BB A 520  -4.86 (1.11)  -526 (0.28)  -4.93 (0.94)  -524 (0.20)
es1 e 261  -260 (0.35) -2.61 (0.08) -259 (0.28)  -2.59 (0.05)
BB B -3.02  -3.13 (0.85) -3.06 (0.27) -3.12 (0.75)  -3.05 (0.14)
881 ccc 583  -553 (1.63) -5.87 (0.51)  -5.32 (1.48)  -594 (0.43)
BB D 551  -526 (1.17)  -5.61 (0.49)  -526 (1.30) -5.66 (0.34)
Bl AA 706  -5.04 (0.76)  -6.98 (0.84)  -512 (1.15) -7.10 (0.70)
Bl A 614  -5.03 (1.10) -6.24 (0.65)  -4.90 (1.17)  -6.41 (0.60)
B! BBB 537  -479 (1.10)  -5.47 (0.46)  -4.86 (0.96)  -5.44 (0.28)
B! BB 2,64  -2.65 (0.48)  -2.62 (0.08) -259 (0.28)  -2.63 (0.05)
B1 coc 314  -323 (0.93) -3.19 (0.28)  -3.22 (0.75)  -3.17 (0.16)
B! D -3.97  -4.03 (0.89) -4.02 (0.33)  -403 (1.03) -4.01 (0.18)
ccel A 524  -3.40 (1.00) -521 (0.75)  -3.63 (1.11)  -5.30 (0.70)

ccct see 484  -3.48 (1.12)  -4.89 (0.74)  -3.49 (0.86)  -5.05 (0.62)
ccct g 412 -3.42 (0.90)  -424 (0.45)  -3.36 (1.03)  -4.30 (0.43)

cccl B -1.74  -1.76 (057)  -1.73 (0.10)  -1.79 (0.51)  -1.72 (0.05)
ccel b -1.24  -1.37 (0.73)  -129 (0.22)  -1.32 (0.55)  -1.28 (0.14)
up 1.60 1.43 (0.81) 1.47 (0.36) 1.46 (1.40) 1.56 (0.36)
down 320  -2.64 (1.05) 290 (0.64) -2.83 (1.41)  -3.12 (0.63)

o o 0.85 (0.20) 0.83 (0.15)
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3.7 Empirical Results

3.7.1 Data

The data consist of rating transitions obtained from Standard &oor's. The rating
histories of all issuers are recorded in the CreditPro 7.0 databe. The sample period is
from the end of 1980 (the left-truncation time point) until June 2005. The durations of
the pooled process were expressed as a fraction of the business. yi¢ate that there
may be multiple rating events on a single day. This is captureby the variables NX(t,)
in (3.6). The rating histories in the data set distinguish betwee more than 18 di erent
rating classes. To illustrate this methodology, only seven broadasses were considered,
namely AAA, AA, A, BBB, BB, B, CCC (and lower), and default. This produces 49
possible rating transitions. Out of these 49, 42 are observed in tearrent sample. In
terms of model (3.9), we therefore hav8 =42, K is almost 7000, andN > 25000 (or
14000 if the (t) process does not jump at transitions involving the non-ratedlass).
Even with these sample sizes, the model can be implemented on a si@l desktop PC.
New rms enter the sample when they receive a rating for the rstime. Firms leave the
sample when they enter the default state or when their rating iwithdrawn. However,
S&P continues to track rms whose ratings are withdrawn. It isindicated in the
database when such rms default at a later stage. This should substially mitigate
any biases caused by strategic behavior of rms in maintaining ating at S&P. If a rm
rst enters the non-rated class and later defaults, the transitn to the non-rating class
is skipped. In total, we observe 7000 rms, though many of these nns are only
observed over part of the sample. The number of rated rms incases over time.
Accounting for attrition (defaults and transitions to non-rated) and sample extension,
the time series average of the number of rms available at any ement is around 2200.
As the clustering e ect of defaults is the main interest, | rst clean the database for
alternative forms of clustering. Two lters were used. First, he data is inspected in
order to look for rms that have long histories of coincident ating increases and
decreases. Typical examples of these are rms that have mergearidg the time of the
database. In such cases, one of the two rms is excluded from thetaset from the time
of the merger onwards. Second, there appeared to be some potityhe rating agencies
in clustering re-ratings, e.g., centered around meeting timeof the committee. To
account for this, the "number of events per day' was Winsorizeds3 by replacing
N&(tn) by N&(tn) min3; Ng(tn))= Ns(tn), with  Ng(tn) = k N (tn).
Experiments with Winsorizing values between 1 and 5 yieldedrsilar results. The
Winsorizing procedure has the largest e ect on the estimationfahe dynamics of the
latent component, summarized by the AR parameter. Erratic clustering due to rating
agencies' policies, e.g., around committee meetings, corrgghe dynamics of and
causes a downward bias in the estimate of This e ect is mitigated considerably by the
Winsorizing procedure. In future research, these anomalousustering e ects can be
dealt with di erently, e.g., by trying to model them explicitly.
Some descriptive features of the data are as follows. The pablerocess has a high
intensity of migrations, resulting in an average duration beteen transitions, "births,' or
withdrawals of 1.2 days. There is a large number of downgrades and upgrades. The
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counts of transition events is given in Table 3.4. It is clearhiat most transitions take
place to adjacent rating categories. Some of the transitionseavery rare, e.g., large
down-grades or up-grades. In order to check the sensitivity dfi¢ results to these rare
events, a robustness check was also performed. This consisted insatering only those
transition types with more than 20 recorded events. The resuligre not sensitive to this.
The data are visualized in Figure 3.2. In order to keep the nunds of graphs
manageable, the ratings were, temporarily, further clusted into investment grade
(AAA{BBB) and sub-investment grade (BB{CCC). The upper two plots in Figure 3.2
show the number of investment grade downgrades and defaults ardaily basis since
December 31, 1980, respectively. We can see that downgraded dafaults tend to
cluster in time. This follows from the concentration of verttal lines, which originate
dark and bright areas along the horizontal (time) axis. The lver two plots in Figure 3.2
contain the number of sub-investment grade upgrades and dowages on any given day,
respectively. Interestingly, the plots complement each otheWhen downgrades and
defaults cluster, upgrades are more sparse, and vise versa. Thiggasts that the model
speci cation used with a single common risk factor (t) might already captures the
most salient features of the data. However, multiple factor maads were also estimated
at a later stage in the analysis.

Investment Grade Downgrades Investment Grade Defaults

|

|

1985 1990 1995 2000 2005 1985 1990 1995 2000 2005
3 Sub-investment Grade Upgrades ~ Sub-investment Grade Defaults

1

1985 1990 1995 2000 2005 1985 1990 1995 2000 2005

Figure 3.2: Daily number of rating actions and recorded defitts
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3.7.2 Homogeneous continuous-time Markov chain model

To get a rst impression of the adequacy of the empirical model specation, a MLFI
model without any latent dynamics was considered. In this casthe model has

K(t) = exp( s) and the MLFI model reduces to a simple homogeneous continustime
Markov chain (HCTMC) model. The maximum likelihood (ML) estimator of ¢ for the
HCTMC model has a closed-form expression and is given'fy

0 1 0 1
NQ)+1X< Nﬂ)+1x<
n=|n @ NE(t)A In@ DYE(E)A (3.26)

n=1 k=1 n=1 k=1

Table 3.2 presents the parameter estimates based on (3.26) adlase the estimates
obtained by using the Monte Carlo methods of Section 3.4. As eagied, the parameter
estimates are almost identical for all transition types for whih the number of
observations is su ciently large. But even for the transition types with only one
observation, the importance sampling estimates (SML) never dr more than 10% from
their closed form counterparts. This is well within a bound ofwo standard errors. As
stated before, a robustness check was also performed by inclgdonly the transition
types with 20 observations or more. Here the di erences betwe¢he sampling and
analytic approach appear negligible. Also note that the estima of the likelihood di ers
by less than 0.01% from its analytic counterpart. Again, this derence shrinks to zero if
only transition types with more than 20 observations are used.

12These estimators may also be used to obtain starting values for the corresmding parameters in the
general speci cation (3.1). See also the footnote at the end of section refsec32.



126 CHAPTER 3. THE MLFI MODEL

Table 3.2: Parameter estimates of the HCTMC model

This table presents estimates of a homogeneous continuous-time Markov chain GTTMC) model with
intensities  K(t) = exp( s). The transition types are sorted on their number of observations. The rst
two columns provide the rating transition type. The third column indicates the num ber of steps taken
for this transition type in the 7 grade system. The fourth column contains the number of observations
for this transition type. The column headed ML-"¢ contains the closed form maximum likelihood (ML)
estimates from (3.26). Its ML asymptotic standard error is in parentheses in column six. The Monte
Carlo maximum likelihood estimates SML-" and their simulated standard errors (using 100 samples)
follow in columns seven and eight. The column "5 and s:e: give the di erence between the ML and
SML estimates, and between their standard errors, respectively.

From To #steps #obs ML- ¢ SML-"g Ny s.e:
B ! CCcC 1 855 -2.50 (0.04) -2.50 (0.03) 0.00 0.00
BB ! B 1 769 -2.39 (0.04) -2.40 (0.03) 0.00 0.01
A ! BBB 1 714 -2.86 (0.04) -2.86 (0.04) 0.00 0.00
ccc ! D 1 678 -0.53 (0.04) -0.52 (0.04) -0.01 0.00
BBB ! BB 1 605 -2.93 (0.04) -2.94 (0.04) 0.01 0.00
B ! BB 1 524 -2.94 (0.04) -2.96 (0.04) 0.02 0.00
AA ! A 1 475 -2.55 (0.05) -2.56 (0.04) 0.00 0.00
BB ! BBB 1 467 -2.89 (0.05) -2.88 (0.04) -0.01 0.00
BBB ! A 1 457 -3.20 (0.05) -3.21 (0.05) 0.01 0.00
B ! D 2 349 -3.35 (0.05) -3.34 (0.06) -0.01 0.00
A ! AA 1 219 -4.06 (0.07) -4.07 (0.07) 0.01 0.00
CcCcC ! B 1 135 -2.12  (0.09) -2.11  (0.08) -0.01 0.01
AAA ! AA 1 95 -2.96 (0.10) -2.97 (0.10) 0.00 0.01
BB ! D 3 65 -4.85 (0.12) -4.88 (0.10) 0.03 0.03
BBB ! B 2 53 -5.34 (0.14) -5.32 (0.14) -0.02 0.00
BB ! CcccC 2 48 -5.16 (0.14) -5.18 (0.13) 0.02 0.02
A ! BB 2 40 -5.72 (0.16) -5.70 (0.15) -0.02 0.01
BB ! A 2 36 -5.44 (0.17) -5.46 (0.17) 0.02 -0.01
AA ! AAA 1 34 -5.14 (0.17) -5.14 (0.11) 0.00 0.06
B ! BBB 2 34 -5.67 (0.17) -5.63 (0.16) -0.04 0.01
BBB ! AA 2 27 -6.02 (0.19) -6.01 (0.15) 0.00 0.04
AA ! BBB 2 25 -5.45 (0.20) -5.38 (0.20) -0.07 0.00
BBB ! D 4 24 -6.13 (0.20) -6.04 (0.21) -0.10 -0.01
A ! B 3 19 -6.46 (0.23) -6.44 (0.22) -0.02 0.00
B ! A 3 16 -6.43 (0.25) -6.43 (0.24) 0.01 0.01
ccc ! BB 2 13 -4.46 (0.28) -4.49 (0.27) 0.03 0.01
A ! AAA 2 10 -7.11  (0.32) -7.16 (0.30) 0.06 0.02
A ! D 5 9 -7.21 (0.33) -7.31 (0.33) 0.10 0.01
AAA ! A 2 8 -5.39 (0.35) -5.40 (0.26) 0.01 0.09
BB ! AA 3 8 -6.95 (0.35) -7.06 (0.31) 0.11 0.04
ccCc ! BBB 3 8 -4.95 (0.35) -5.17 (0.36) 0.22 -0.01
BBB ! cccC 3 6 -7.52 (0.41) -7.48 (0.40) -0.04 0.01
B ! AA 4 6 -7.41  (0.41) -7.38 (0.36) -0.03 0.05
AA ! B 4 5 -7.06 (0.45) -7.20 (0.45) 0.14 0.00
ccc ! A 4 5 -5.42 (0.45) -5.59 (0.40) 0.17 0.05
BB ! AAA 4 4 -7.64 (0.50) -7.93 (0.61) 0.29 -0.11
AAA ! BB 4 2 -6.78 (0.71) -7.14 (0.73) 0.36 -0.03
AA ! BB 3 2 -7.97 (0.71) -7.97 (0.59) -0.01 0.12
BBB ! AAA 3 2 -8.62 (0.71) -8.93 (0.88) 0.32 -0.17
AAA ! BBB 3 1 -7.47 (1.00) -7.88 (0.91) 0.40 0.09
AA ! CCcC 5 1 -8.67 (1.00) -9.43 (1.15) 0.76 -0.15
CcCcC ! AAA 6 1 -7.03 (1.00) -7.63 (1.03) 0.61 -0.03

log-likelihood -25582.7 -25584.4 1.7 <0.01%)
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3.7.3 Estimation results for the MLFI model

This empirical exercise starts with the introduction of a singt random walk component
n capturing systematic credit risk. This implies the AR parameter is set to unity.
The estimation results are in Table 3.3, model B. Due to the resation =1, (t;) and

latent process (t)issetto ;= (t;) =0. This means that (t) can be interpreted as
a relative credit index compared to its starting level in Deaaber 31, 1980.
For the intensity speci cation (3.1) in model B, | set = < 0 for downgrades and
s = > 0 for upgrades. Since , is interpreted as the (unobserved) credit cycle, these
sign restrictions on ¢ imply an increase in the probability of downgrades and defatsl if
n IS negative, and a simultaneous decrease in the probability @ting upgrades.
Conversely, if |, is positive, it leads to an increase in the probability of rms leing
upgraded. The sign restrictions are relaxed later on.
It is worth mentioning here that all models reported in Table3.3 have an additional 42
(unreported) ¢ parameters that need to be estimated. This is the number of nezeros
in Table 3.4. Given space constraints, | do not report them herélhey are however a
part of the estimation problem as sketched in Section 3.4.





























































































































































































































































































