Enzymatic Activity and Excited State Processes in Protochlorophyllide Oxidoreductase
Sytina, O.

2010

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address: vuresearchportal.ub@vu.nl
Content

List of Abbreviations 4

~ CHAPTER 1 ~

1.1. Introduction 5
1.2. POR enzyme 6
1.3. Structural flexibility of proteins 8
1.4. The aim of this thesis 9
1.5. Synopsis 10

~ CHAPTER 2 ~

Conformational changes in an ultrafast light-driven enzyme determine catalytic activity 13
2.1. Introduction 14
2.2. Methods Summary 14
2.3. Results 16
2.4. Supplementary Information 21
2.4.1. Global analysis 21
2.4.2. Target analysis 21
2.4.3. Assignment of bands in FTIR spectra 23
2.4.4. Supplementary figures 24

~ CHAPTER 3 ~

Enzymatic photoconversion of Protochlorophyllide in NADPH:protochlorophyllide oxidoreductase characterized by ultrafast visible pump-probe spectroscopy and kinetic modeling 29
3.1. Introduction 30
3.2. Materials and Methods 33
3.2.6. Kinetic analysis of a non-reversible reaction 38
3.3. Results 43
3.3.1. Spectroscopic signatures of chlorophyllide formation 43
3.3.2. Kinetics in mesophilic and thermophilic enzymes 44
3.3.3. Dynamics upon excitation at 475 nm or 640 nm 55
3.3.4. Lifetime of the POR activated state 55
3.3.5. Enzymatic activity in second turnover 58
3.3.6. Kinetic isotope effect measurements 60
3.3.7. Validity of the model 65
3.3.8. Aggregated state of photoactive complex 65
3.4. Discussion 68
3.4.1. POR kinetic model 68
3.4.2. Species-associated difference spectra 68
3.4.3. Kinetic parameters of Thermo- and Mesophilic POR 70
3.4.4. Kinetic isotope effect 72
3.5. Conclusions 73

~ CHAPTER 4 ~ 77

Vibrational Spectroscopy of the POR:Pchlide:NADPH Complex 77
4.1. Introduction 78
4.2. Materials and Methods 80
4.3. Results 81
4.3.1. Fluorescence Line Narrowing Spectroscopy 81
4.3.2. Variation of difference absorption FTIR spectra 82
4.3.3. Mid-IR transient absorption spectroscopy 85
4.4. Discussion 86
4.4.1. Assignment of bands in FLN spectrum 86
4.4.2. Assignment of bands in FTIR spectrum 88
4.4.3. Ultrafast mid-IR dynamics in POR 91
4.5. Conclusions 93
4.6. Appendix 95
Resonance Raman Spectra of Protochlorophyllide in Solution 96
ATR FTIR spectra of Aggregated Pchlide 96

~ CHAPTER 5 ~ 97

Protochlorophyllide Excited State Dynamics in Organic Solvents Studied by Time-Resolved Visible and Mid-IR Spectroscopy 97
5.1. Introduction 98
5.2. Material and Methods 100
5.3. Results 101
5.3.1. Absorption and fluorescence steady-state spectra 101
5.3.2. Time-Resolved Fluorescence 103
5.3.3. Visible Transient Absorption Spectroscopy 105
5.3.4. Mid-IR Transient Absorption Spectroscopy 109
5.4. Discussion 112
5.4.1. Dynamics of Pchlide in THF upon 630 nm excitation 112
5.4.2. Dynamics of Pchlide in THF upon 475 nm excitation 113
5.4.3. Dynamics of Pchlide in methanol upon 475 nm excitation 115
5.4.4. Comparison with previously reported Pchlide studies 118
5.4.5. Relevance for the catalytic reaction mechanism in the POR enzyme 120
~ CHAPTER 6 ~

Single and Multi-Exciton Dynamics of Protochlorophyllide Aggregates in Aqueous Solution

6.1. Introduction 122
6.2. Materials and Methods 124
6.3. Results 125
6.3.1. Steady-State Absorption and Emission Spectra 125
6.3.2. Time-Resolved Fluorescence 127
6.3.3. Transient Absorption Spectra 128
6.3.4. Saturation of the transient absorption signals 132
6.3.5. Describing the saturation dynamics in a target model 134
6.3.6. Time-resolved mid-IR spectroscopy 136
6.4. Discussion 138
6.4.1. Dynamics in Pchlide aggregates 139
6.4.2. Structure of Pchlide water adduct states 143
6.5. Conclusions 145

~ CHAPTER 7 ~

Modeling of Multi-Exciton Transient Absorption Spectra of Protochlorophyllide Aggregates in Aqueous Solution

7.1. Introduction 148
7.2. Theoretical approach 149
7.3. Results 150
7.3.1. Steady-state and transient absorption difference spectra 150
7.3.2. Simulation of TA spectra of linear aggregate 152
7.3.3. Simulation of real TA data 154
7.3.4. Simulation of TA decay dynamics 156
7.4. Discussion and Conclusions 158
7.4.1. Energy level scheme in Pchlide aggregate 158
7.4.2. Explaining fast and slow dynamics 159
7.4.3. Possible physical origin of the CT state in Pchlide aggregate 160
7.4.4. Relevance to dynamics in light-harvesting complexes 161

SUMMARY 163

SAMENVATTING 166

REFERENCES 169