References

(1) D. Zhong, "Ultrafast catalytic processes in enzymes". Current Opinion in Chemical Biology, 2007, 11(2)

(2) C. Aubert, M.H. Vos, P. Mathis, A.P.M. Eker, and K. Brettel, "Intraprotein radical transfer during photoactivation of DNA photolyase (vol 405, pg 586, 2000)". Nature, 2000, 407(6806)

(3) L.O. Essen and T. Klar, "Light-driven DNA repair by photolyases". Cellular and Molecular Life Sciences, 2006, 63(11)


(8) N. Lebedev and M.P. Timko, "Protochlorophyllide photoreduction". Photosynthesis Research, 1998, 58(1)


(10) B. Schoefs, "The light-dependent and light-independent reduction of protochlorophyllide a to chlorophyllide a". Photosynthetica, 1999, 36(4)


examined by site-directed mutagenesis". Proteins-Structure Function and Genetics, 2001, 44(3)

(13) S.J. Benkovic and S. Hammes-Schiffer, "A perspective on enzyme catalysis". Science, 2003, 301(5637)


(17) D.J. Heyes, J. Kruk, and C.N. Hunter, "Spectroscopic and kinetic characterization of the light-dependent enzyme protochlorophyllide oxidoreductase (POR) using monovinyl and divinyl substrates". Biochemical Journal, 2006, 394

(18) D.J. Heyes, A.V. Ruban, and C.N. Hunter, "Protochlorophyllide oxidoreductase: "Dark" reactions of a light-driven enzyme". Biochemistry, 2003, 42(2)


(20) D.J. Heyes, C.N. Hunter, I.H.M. van Stokkum, R. van Grondelle, and M.L. Groot, "Ultrafast enzymatic reaction dynamics in protochlorophyllide oxidoreductase". Nature Structural Biology, 2003, 10(6)


(22) T.P. Begley and H. Young, "Protochlorophyllide Reductase .1. Determination of the Regiochemistry and the Stereochemistry of the
References

Reduction of Protochlorophyllide to Chlorophyllide". Journal of American Chemical Society, 1989, 111(8)


(32) P.K. Agarwal, "Role of protein dynamics in reaction rate enhancement by enzymes". Journal of the American Chemical Society, 2005, 127(43)


(35) D.D. Boehr, D. McElheny, H.J. Dyson, and P.E. Wright, "The dynamic energy landscape of dihydrofolate reductase catalysis". Science, 2006, 313(5793)


(37) D.J. Heyes, P. Heathcote, S.E.J. Rigby, M.A. Palacios, R. van Grondelle, and C.N. Hunter, "The first catalytic step of the light-driven enzyme protochlorophyllide oxidoreductase proceeds via a charge transfer complex". Journal of Biological Chemistry, 2006, 281(37)

(38) D.J. Heyes and C.N. Hunter, "Identification and characterization of the product release steps within the catalytic cycle of protochlorophyllide oxidoreductase". Biochemistry, 2004, 43(25)


(40) I.H.M. Van Stokkum, D.S. Larsen, and R. Van Grondelle, "Global and target analysis of time-resolved spectra". Biochimica et Biophysica Acta (Bioenergetics), 2004, 1657

(41) G.J. Zhao and K.L. Han, "Site-specific solvation of the photoexcited protochlorophyllide a in methanol: Formation of the hydrogen-bonded intermediate state induced by hydrogen-bond strengthening". Biophysical Journal, 2008, 94(1)

(42) A. Barth and C. Zscherp, "What vibrations tell us about proteins". Quarterly Reviews of Biophysics, 2002, 35(4)


(45) W.G. Mantele, A.M. Wollenweber, E. Nabedryk, and J. Breton, "Infrared Spectroelectrochemistry of Bacteriochlorophylls and Bacteriopheophytins - Implications for the Binding of the Pigments in the Reaction Center from Photosynthetic Bacteria". Proceedings of the National Academy of Sciences of the United States of America, 1988, 85(22)


(48) D.J. Heyes, M. Sakuma, and N.S. Scrutton, "Laser excitation studies of the product release steps in the catalytic cycle of the light-driven enzyme, protochlorophyllide oxidoreductase". Journal of Biological Chemistry, 2007, 282(44)

(49) O.B. Belyaeva and F.F. Litvin, "Photoactive pigment-enzyme complexes of chlorophyll precursor in plant leaves". 2007, 72(13)

(50) T. Masuda and K. Takamiya, "Novel insights into the enzymology, regulation and physiological functions of light-dependent protochlorophyllide oxidoreductase in angiosperms". 2004, 81(1)

(51) O.A. Sytina, D.J. Heyes, C.N. Hunter, and M.L. Groot, "Ultrafast catalytic processes and conformational changes in the light-driven enzyme protochlorophyllide oxidoreductase (POR)". Biochemical Society Transactions, 2009, 37


(54) D.J. Heyes, P. Heathcote, S.E.J. Rigby, M.A. Palacios, R. van Grondelle, and C.N. Hunter, "The first catalytic step of the light-driven enzyme protochlorophyllide oxidoreductase proceeds via a charge transfer complex". Journal of Biological Chemistry 2006, 281(37)


Measurements of Solvent Dynamics and Functional Kinetics in a Light-Activated Enzyme”. 2009, 96(5)


(58) M.J. McFarlane, C.N. Hunter, and D.J. Heyes, "Kinetic characterisation of the light-driven protochlorophyllide oxidoreductase (POR) from Thermosynechococcus elongatus". 2005, 4(12)


(60) N. Sugimoto and M. Sasaki, "Substituent Effects on Proton Tunnelling - Reaction between 2,4,6-Trinitrotoluene and 1-Substituted Piperidines in Acetonitrile". American Chemical Society-Faraday Transactions I, 1985, 81

(61) D.J. Heyes, B.R.K. Menon, M. Sakuma, and N.S. Scrutton, "Conformational events during ternary enzyme-substrate complex formation are rate limiting in the catalytic cycle of the light-driven enzyme protochlorophyllide oxidoreductase". Biochemistry, 2008, 47(41)

(62) A. Barth, "The infrared absorption of amino acid side chains". Progress in Biophysics & Molecular Biology, 2000, 74(3-5)


(65) F. Ariese, A.N. Bader, and C. Gooijer, "Fluorescence line-narrowing spectroscopy for probing purposes in bioanalytical and environmental chemistry". Trac-Trends in Analytical Chemistry, 2008, 27(2)


(67) M.L. Groot, J. Breton, L.J.G.W. van Wilderen, J.P. Dekker, and R. van Grondelle, "Femtosecond visible/visible and visible/mid-IR pump-


(73) M. Fujiwara and M. Tasumi, "Resonance Raman and Infrared Studies on Metal-Substituted Chlorophyll-a in Solution - Correlations between the Vibrational Frequencies and the Core Size”. Nippon Kagaku Kaishi, 1988, 90(22)


(76) M. Chen, H.P. Zeng, A.W.D. Larkum, and Z.L. Cai, "Raman properties of chlorophyll d, the major pigment of Acaryochloris marina: studies using both Raman spectroscopy and density functional theory”. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 2004, 60(3)


(80) E.A.P. V. N. Uversky, "Book "Methods in protein structure and stability analysis. Vibrational spectroscopy.". 2007,


(82) N. Lebedev, O. Karginova, W. McIvor, and M.P. Timko, "Tyr275 and Lys279 stabilize NADPH within the catalytic site of NADPH : protochlorophyllide oxidoreductase and are involved in the formation of the enzyme photoactive state". Biochemistry, 2001, 40(42)


(87) I.H.M. van Stokkum, B. Gobets, T. Gensch, F. van Mourik, K.J. Hellingwerf, R. van Grondelle, and J.T.M. Kennis, "(Sub)-picosecond spectral evolution of fluorescence in photoactive proteins studied with a synchroscan streak camera system". Photochemistry and Photobiology, 2006, 82(2)


(95) R. Vladkova, "Chlorophyll a self-assembly in polar solvent-water mixtures". Photochemistry and Photobiology, 2000, 71(1)


(97) P. Hamm, S.M. Ohline, and W. Zinth, "Vibrational cooling after ultrafast photoisomerization of azobenzene measured by femtosecond infrared spectroscopy". Journal of Chemical Physics, 1997, 106(2)


(99) S. Savikhin and W.S. Struve, "Femtosecond Pump-Probe Spectroscopy of Bacteriochlorophyll a Monomers in Solution". Biophysical Journal, 1994, 67(5)


(110) G.J. Zhao and K.L. Han, "Ultrafast hydrogen bond strengthening of the photoexcited fluorenone in alcohols for facilitating the fluorescence Quenching". Journal of Physical Chemistry A, 2007, 111(38)


(115) S.I. Beale and J.I. Yeh, "Deconstructing heme". Nature Structural Biology, 1999, 6(10)


(117) M. Kash, "Energy Transfer Mechanisms and Molecular Exciton Model for Molecular Aggregates". Radiation Research, 1963, 20(1)


(122) J.J. Katz, "Green Thoughts in a Green Shade". Photosynthesis Research, 1990, 26(3)
References


(126) J. Alster, A. Zupcanova, F. Vacha, and J. Psencik, "Effect of quinones on formation and properties of bacteriochlorophyll c aggregates". Photosynthesis Research, 2008, 95(2-3)


(131) V.M. Helenius, P.H. Hynninen, and J.E.I. Korppitommola, "Chlorophyll a Aggregates in Hydrocarbon Solution, a Picosecond Spectroscopy and Molecular Modeling Study". Photochemistry and Photobiology, 1993, 58(6)


(133) F.K. Fong, "Molecular Symmetry and Exciton Interaction in Photosynthetic Primary Events". Applied Physics, 1975, 6(2)


(139) B. Bruggemann and V. May, "Exciton exciton annihilation dynamics in chromophore complexes. II. Intensity dependent transient absorption of the LH2 antenna system". Journal of Chemical Physics, 2004, 120(5)

(140) C.E. Strouse, "Crystal and Molecular-Structure of Ethyl Chlorophyllide A.2h2o and Its Relationship to Structure and Aggregation of Chlorophyll A". Proceedings of the National Academy of Sciences of the United States of America, 1974, 71(2)

(141) J.J. Katz, "Chlorophyll interactions and light conversion in photosynthesis". Naturwissenschaften, 1973, 60(1)


(143) F.K. Fong, "Molecular-Basis for Photosynthetic Primary Process". Proceedings of the National Academy of Sciences of the United States of America, 1974, 71(9)

(144) S. Vaitekonis, G. Trinkunas, and L. Valkunas, "Red chlorophylls in the exciton model of photosystem I". Photosynthesis Research, 2005, 86(1-2)

(146) R.N. Frese, M.A. Palacios, A. Azzizi, I.H.M. van Stokkum, J. Kruip, M. Rögner, N.V. Karapetyan, E. Schlodder, R. van Grondelle, and J.P. Dekker, "Electric field effects on red chlorophylls, [beta]-carotenes and P700 in cyanobacterial Photosystem I complexes". Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2002, 1554(3)


(152) J. Barber, "Photosystem II: the engine of life". Quarterly Reviews of Biophysics, 2003, 36(1)


(156) P. Heathcote, P.K. Fyfe, and M.R. Jones, "Reaction centres: the structure and evolution of biological solar power". Trends in Biochemical Sciences, 2002, 27(2)

(157) B. Brüggemann, N. Christensson, and T. Pullerits, "Temperature dependent exciton-exciton annihilation in the LH2 antenna complex". Chemical Physics, 2009, 357(1-3)

(158) J.M. Linnanto and J.E.I. Korppi-Tommola, "Modelling excitonic energy transfer in the photosynthetic unit of purple bacteria". Chemical Physics, 2009, 357(1-3)

(159) M. Sener, J. Hsin, L.G. Trabuco, E. Villa, P. Qian, C.N. Hunter, and K. Schulten, "Structural model and excitonic properties of the dimeric RC-LH1-PufX complex from Rhodobacter sphaeroides". Chemical Physics, 2009, 357(1-3)


(165) B. Mirjam van, A.W. Douwe, and D. Koos, The dynamics of one-dimensional excitons in liquids. 1995, AIP. p. 20-33.

(166) J. Knoester, "Modeling the optical properties of excitons in linear and tubular J-aggregates". International Journal of Photoenergy, 2006,


(175) D.R. Buck, S. Savikhin, and W.S. Struve, "Ultrafast absorption difference spectra of the Fenna-Matthews-Olson protein at 19 K: Experiment and simulations". Biophysical Journal, 1997, 72(1)


(177) J.S. Frähmcke and P.J. Walla, "Coulombic couplings between pigments in the major light-harvesting complex LHC II calculated by the transition density cube method". Chemical Physics Letters, 2006, 430(4-6)


(180) A. Vogler and H. Kunkely, "Charge transfer excitation of organometallic compounds: Spectroscopy and photochemistry". Coordination Chemistry Reviews, 2004, 248(3-4)

(181) A. Vogler and H. Kunkely, "Photochemistry induced by metal-to-ligand charge transfer excitation". Coordination Chemistry Reviews, 2000, 208(1)


properties and pigment-pigment interaction characteristics". Biophysical Journal, 2007, 93(7)


(192) T. Polivka, T. Pullerits, J.L. Herek, and V. Sundstrom, "Exciton relaxation and polaron formation in LH2 at low temperature". Journal of Physical Chemistry B, 2000, 104(5)


(195) T.R. Middendorf, L.T. Mazzola, K. Lao, M.A. Steffen, and S.G. Boxer, "Stark effect (electroabsorption) spectroscopy of photosynthetic reaction centers at 1.5K: Evidence that the special pair has a large excited-state polarizability". Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1993, 1143(2)


