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1 Problem Statement

In highly automated domains such as aviation, air traf“c control, nuclear power plants
and the military, there is an alarming amount of challenges: More complex missions, less
manning, higher information density, increased computer autonomy, more ambiguity,
more time pressure and higher cooperation demands are causing a very spacious gap
between the automated (computers) and the non-automated (humans). Simply put, one
of the main problems is that the non-automated as well as the automated are insuf“ciently
aware of each other•s capabilities and limitations, while they heavily depend on one
another.

Cooperating humans behave socially, i.e., they estimate the other•s need for assistance
and adapt their support to this estimation. Though state-of-the-art human-computer in-
terfaces more and more contain user models to pro-actively adapt their support, unfortu-
nately in many cases human-like social behavior is nearly absent or still underdeveloped.
Especially interfaces that comprise dynamic and real-time computer support adaptation
to the current state of humans (as opposed to using prede“ned user pro“les) can be seen
as relatively new.

In critical situations, non-existence of social behavior in the interaction between hu-
mans and computers can have devastating effects: A famous example is the aircraft pilot
being assisted by several support systems in his cockpit at the same time. This abundance
of automated support often leads to information overload, possibly resulting in overlook-
ing important information about the failure of a plane engine. Another famous example is
the same aircraft pilot over-relying on the auto-pilot while the aircraft•s support systems
do not take into account the possibility of this complacency. The problem brought for-
ward in these two examples is that pilots, or humans in general, and their support systems
are insuf“ciently aware of the dangers as a result of each other•s limitations. Taking the
possibility of these limitations into account, could result in much better human-computer
cooperative behavior.

This dissertation is about overcoming the above stated problem by increasing the rea-
soning capabilities of support systems with respect to their own limitations and especially
those of their human users (the human factor). System awareness of, and adaptation to,
limitations in human-computer cooperation can lead to more social and therefore coop-
erative behavior of the supporting system. Support systems could for example be aware
of information overload, over- and under-trust, complacency, con“rmation and automa-
tion biases and cognitive under- or over-load. Currently, humans need to specify when
support systems are needed, considering the type of support they provide. But in the
near future, socially capable support systems will also be able to determine when and in
what way they should be used. They adapt pro-actively to the situation and user at hand.
Especially in time constrained situations, this would relieve the user of the dif“cult task
to con“gure support systems appropriately, given the current situation. This could lead to
better performances due to freed cognitive resources or due to the system•s understanding
of limitations the user would otherwise be unaware of.
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2 Research Objective

The objective of the research reported in this thesis is to investigate means for integrat-
ing knowledge of the human factor in human-computer cooperation into the reasoning
capabilities of support systems. This is done to reduce the amount of problems caused
by insuf“cient mutual understanding of the capabilities and limitations of humans and
of support systems. The studies described in this thesis are mainly concerned with sup-
port systems that are part of highly automated environments as is described in Section 1.
The increased reasoning capabilities of support systems are reached by incorporating ex-
ecutable cognitive models, which describe human cognition as accurately as possible,
including its limitations, into these systems. Subsequently, these executable cognitive
models are used to detect occurrences of limitations. Such detections are then used as
triggers for adaptation of the support to the human need for assistance, ideally resulting
in an increase, or prevention of a decrease, of human-computer team performance. The
speci“c adaptive support explored in this thesis focuses onadaptive autonomyandde-
cision support. The speci“c cognitive models explored in this thesis focus ontrust and
attention. These types of adaptive support and cognitive models, and the used support
system design, are further explained in Section 3.

3 Background

3.1 Adaptive Support for Human-Computer Teams

One way of adapting to the human need for assistance is to design systems that let au-
tomation determine the division of work between humans and computers. Given a set of
tasks to be executed, such work division is de“ned as the allocation of either the human
or computer to speci“c subsets of this set of tasks. The allocation of tasks by the com-
puter can be seen asadaptive autonomy: high computer autonomy is equivalent to large
portions of these tasks allocated to the computer, and low computer autonomy equiva-
lent to small portions. There are generally speaking two reasons for the adaptation of
computer autonomy.

The “rst reason is that the situation at hand can be subject to change: the appropriate
work division is dependent on which subtasks currently have priority to be executed
given the state of the (outside) world. For instance, in the case of a classi“cation task,
when it is important to classify a certain object and this object has not been classi“ed
yet, the adaptive system could indicate this by highlighting this speci“c object. In this
way, in fact, the support system is advising the human to do something about it, i.e., it is
trying to allocate a subtask to the human (low computer autonomy). The support system
could also have taken care of it and thereby allocating the subtask to itself (high computer
autonomy). One could say that each support system is a task allocation mechanism, but
mostly by only allocating tasks to humans. Support systems are often not intelligent
enough to do a (complex) task themselves, butare able to provide relevant information
or advice, leaving the “nal decision to humans (which in fact isdecision support).

The second reason for computer adaptation is that appropriate task allocations depend
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on the state and the capabilities of the involved agents (human or computer) to which
those tasks are to be allocated. For instance, a human may be overloaded with work
such that currently it is best to allocate tasks to a computer. Task re-allocations for this
reason, need to have some sense of how human cognition works in order to determine
states like •cognitively overloaded• or •inattentive to a certain object•. This •sense• can
be accomplished by the integration of models of human cognition, describing concepts
such as •cognitive overload•, into support systems.

3.2 Exploring the Use of Cognitive Models of Trust and Attention

The cognitive models explored in this thesis for the above explained adaptive support
focus ontrust andattention. There are many more cognitive functions, concepts or pro-
cesses that would be very good candidates for the purpose of adapting automated support
to the human state and capabilities, but it was simply chosen to only focus on these two
since they are very important in many tasks involved with human-computer interaction.

Trust is one of the primary regulators for taking information into account while rea-
soning, making decisions or generating plans. It also regulates whether a human decides
to rely on another (human or computer) or accepts, for instance, an increased level of
autonomy of the support system. Being able to describe trust accurately could revolu-
tionize adaptive support systems, because knowledge of acceptance, reliance or impact
of information on decisions and plans could then be used to determine when and how to
communicate information or when and how to change autonomy. This can be done in
such a way that the support is optimally accepted, used and appropriately relied upon.
For instance, new support systems would advise against relying on automatic pilots when
they estimate this is inappropriate given the current weather conditions. Another possi-
bility is to communicate information more intrusively when it is expected an operator
distrusts the system but at the same time both the reliability and urgency of the informa-
tion is estimated to be very high. The system could for instance give more arguments to
convince the operator of this reliability and urgency.

Attention is the one cognitive process or state which is involved in the selection and
understanding of information from the •external world• (overt attention) and the •internal
world• (covert attention). This means that attention is broader than just where somebody
is looking at; it also determines of which concepts or subjects one is aware. If support
systems are able to identify the concepts or subjects a human is attending to, it could also
revolutionize the effectiveness of the support: it would not be doing things which are not
relevant anymore. The given support would be “ne-tuned to the concepts or subjects the
human user is attending to. For instance, when many contacts on a radar screen need to
be monitored, the detection of to which contacts a radar operator is attending can give
an indication to which other contacts the support system could attend, with signi“cantly
less required interventions by the operator.

The approach used in the development of such adaptive systems is based on a com-
parison between the estimation of the cognitive state of the human and some normative
cognitive state. If there exists a large enough discrepancy between the two, this can lead
to an adaptation of the given support. For instance, in the above example of the radar op-
erator monitoring contacts, the estimated attentional state of the operator could indicate
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that the operator is not paying attention to a certain contact, but the normative cognitive
state is indicating that he should. This would result in a detected discrepancy and some
intervention can be triggered. For instance, an intervention might be an increase of auton-
omy: the computer takes over part of the operator•s task to deal with suspicious contacts.
This obviously raises ethical questions related to whether humans are still responsible
for actions performed by autonomous systems. For discrepancies between estimated and
normative trust, an adaptation could be for instance to ask humans whether they think it
is sensible not to take certain information into account.

4 Support System Design

The number of possible applications of the described approach seems in“nite and it is
impossible to deal with many of them in one thesis. It has been applied “ve times:
Trust model-based support systems have been studied using a pattern learning task and
a classi“cation task. Attention model-based support systems have been studied using
an air traf“c control task, naval tactical picture compilation task and a shooting game
task. The focus in these task environments has been primarily on the increase or de-
crease of computer autonomy (taking over or delegating (sub)tasks) and the informing
of discrepancies between estimated and normative cognitive states (manipulation of trust
and attention through advice). For each of these studies the same support system design
has been used. This support system design is shown in Figure 1 and is further described
below.

(1) Human (team): Each support system assists either one or multiple humans in a
team that have to perform a certain computer task.

(2) Human-computer interface: The human is able to interact with the computer
through a human-computer interface. This interface is build on a normal personal
computer with one computer screen, or more computer screens in the case of hav-
ing two or more tasks at the same time. The human caninform the interface with
his wishes related to the task he is performing. Vice versa, the interfaceinforms
the human of any important information.

(3) Task environment: The task the human has to perform is a task in which either
trust or attention plays a key role. For all of these tasks it holds that there is limited
time available and mostly the human is responsible for multiple subtasks at the
same time. The type of tasks used for the research described in this thesis do not
require any direct interventions by a human in the task environment and are always
executed via the computer interface.

(4) Task support component: The task support component assists the human in his
task and canchangethe task environment (or world state) directly based on its
own reasoning the observedenvironmental data. The task support component can
informandbe informedthrough the human-computer interface, i.e., as a way to for
instance give advice to the human or to get orders from the human, respectively,
with respect to the task.
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Figure 1: The support system design used in this thesis.
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So far, the different components of the support system design are very similar to most
other support systems. There are no models that monitor or estimate human cognition
in order to use this estimation for triggering adaptation to the human state. This is done
through the remainder of the components in Figure 1, explained below.

(5) Human cognition description component:First of all there is the human cogni-
tion description component which generates its output using adescriptive cogni-
tive model. This model usesbehavioral datacombined withenvironmental data
to generateestimated behavior dataandestimated cognition data. The estimated
behavior data represent the model•s expectations that certain behavior (s.a. an ac-
tion or a sequence of actions) just has taken place (a description of the current
situation) or is going to take place in the very near future (a prediction of the next
situation). The estimated cognition data represent certain covert cognitive states of
the current or next situation. Actual human behavior can be measured, but actual
human cognition not.

(6) Human cognition prescription component: The human cognition prescription
component generates its output using aprescriptive cognitive model. This model
generatesnormative cognition datausing solelyenvironmental data, whereas the
descriptive cognitive model requires behavioral data as well to determine its esti-
mation. The normative cognition data is meant as a prescribed or suggested cog-
nitive state for the human in order to perform the task optimally.

(7) Model adaptation component: The model adaptation component compares the
estimated behavior data from the descriptive cognitive model with theactual be-
havior datameasured from the human. These measures can be both subjective,
such as those based on questionnaires, as well as objective, such as those based on
data from sensors (e.g., an eye-tracker or mouse). The model adaptation com-
ponent can use this comparison toimprove the descriptive cognitive model in
(semi)real-time: given actual and estimated data one can learn the proper parame-
ters of the model by maximizing the accuracy of the model. This process is called
parameter tuning or adaptation.

(8) Support adaptation component: The support adaptation component compares
the estimated cognition data from the human cognition description component
with the normative cognition data from the human cognition prescription compo-
nent. By this comparison, the support adaptation component can detect a possible
discrepancy, based on which it can be triggered to do two kinds of interventions:
1) changethe human-computer interface, “ltering or highlighting certain informa-
tion, or 2)informthe task support component to alter its autonomy (remember that
these were the two main adaptive support types evaluated in this thesis).

5 Research Methodology

For the development and application of the in the previous section described support
system design, also a speci“c research methodology has been used. This methodology is
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graphically depicted in Figure 2 and each phase is further described below.

(a) Determination of domain and related Human Factors issues:The developed
technology has the purpose of (eventually) being applied in speci“c domains (s.a.
air traf“c control, military and crisis response management) in which speci“c chal-
lenging Human Factors issues (s.a. over- and under-trust, con“rmation biases,
complacency and cognitive under- or over-load) can be (partially) solved by this
technology. These domains and the related Human Factors issues have to be deter-
mined preferably through identi“cation of real-world problems which preferably
society itself mentions as being important to solve and can be (or sometimes can
potentially be, in cases of more exploratory research) solved within the current
technological design space. Research based on this principle, i.e., generating new
or enhanced support systems by increasing insight in the human factor in human-
computer interaction, is also called Cognitive Engineering (CE) (Neerincx, 2003).
The combined approach of taking into account both Human Factors knowledge as
well as the technological design space when developing intelligent support systems
is called the CE+ methodology. Where the CE+ is for the development of support
systems in general, the methodology described in this chapter (i.e., the introduc-
tion) is more speci“cally for adaptive support systems based on cognitive models,
which is the topic of this thesis. This thesis• methodology can therefore be seen as
an instantiation of CE+. The CE+ method is further described in Chapter 2. The
output of the determination of domain and related Human Factors issues is a set
of requirements for both the cognitive models as well as the support system using
these cognitive models. From here these requirements propagate through all fur-
ther methodological phases (including the veri“cation, validation and evaluation
phases, explained below).

(b) Development of informal cognitive models: Given the requirements from the
previous methodological phase, the relevant literature is reviewed to gain knowl-
edge on the underlying problems of the Human Factors issues. Also it is investi-
gated to what extent these issues are already solved in theory or in practice. This
should eventually lead to an informal (meaning not executable by a computer) de-
scription of the relevant cognitive processes of humans that interact with certain
support systems in the chosen domain. One could see this as a blueprint for the
further development of the cognitive model as an executable program on a com-
puter. As shown in Figure 1, two types of cognitive models can be developed:
descriptive and prescriptive cognitive models. It depends on the speci“c type of
support envisioned what kind of descriptive and prescriptive models need to be
developed.

(c) Psychological experimentation:For those issues that have not been investigated
in suf“cient detail for the chosen domain, psychological experiments are designed
and performed that help in gaining the lacking knowledge. This eventually leads
to a larger or more psychologically valid informal model.

(d) Formalization of cognitive models: The above described blueprints of the cog-
nitive models are used for the implementation of executable formal models, i.e.,
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models that can be understood and run by a computer. The implementation can
be done in different languages: from lower-level programming languages such as
JAVA, C#, MATLAB, VB, VBA, Lisp, to higher-level modeling languages such
as LEADSTO (Bosse et al., 2007a) and TTL (Bosse et al., 2009a), ACT-R (An-
derson and Lebiere, 1998), Soar (Laird et al., 1987), CLARION (Sun, 2002) and
2APL (Dastani, 2008). Both language types have been used for this dissertation.

(e) Veri“cation of cognitive models: Veri“cation of cognitive models is important
since it is not trivial whether the intended behavior of the model indeed is observed
after its implementation. The implementation of the model can have many software
engineering-speci“c challenges, which can lead to deviations from the intended
model output. An example of these challenges is for instance to keep the extensive
amount of code needed to implement each cognitive model clear from any bugs. In
order to check whether the implemented model is internally sound and whether the
(intermediary) output of the models is consistent with the expectations from the
informally identi“ed required behavioral properties, these behavioral properties
are checked against simulation results. The properties are by themselves also “rst
informally described and then formalized in order to let the computer use it to
check against the executable formal model. The checking of the properties is done
using statistical and veri“cation tools such as the Matlab Statistics Toolbox, SPSS,
Statistica, the TTL-checking tool (Bosse et al., 2009a), or checking algorithms are
implemented on demand in either one of the previously mentioned programming
or modeling languages. Based on the outcomes of the veri“cation simulations,
the models are improved incrementally, eventually ending once a certain stopping
criterion is reached. For reasons of ef“ciency, checking can also be done for mere
parts or simpli“cations of the model, so that one can be sure the structure of the
model is sound, before one continues to implement the model in a more extensive
way.

(f) Validation and tuning of cognitive models: This methodological phase is per-
formed to check whether the validity of the output of the cognitive model is suf-
“cient for the envisioned support system. Each validation experiment is basically
a comparison between gathered validation data and output of the executable cog-
nitive model. In this phase it is important to verify if the gathered validation data
indeed represents the psychological concept which is supposed to be captured in
the cognitive model. Both the outcome of the model as well as the validation data
arebehavioral consequencesof this psychological concept and not cognition itself.
Based on the outcomes of the validation experiments, the models are improved in-
crementally, eventually ending once a certain stopping criterion is reached. This
can be done by hand, by means of altering the code of the model, but it can also
be done by means of tuning the parameters of the model given a representative
dataset. Properly chosen and tuned parameters are also expected to increase model
validity.

(g) Development of adaptive support system:In this stage the different (pre- and
descriptive) cognitive models are combined within an adaptive support system,
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using the support system design shown in Figure 1. A comparison of the imple-
mented descriptive and prescriptive cognitive models leads to interventions that
try to guide human cognition from the current to the desired state. The devel-
oped adaptive support system has to be designed in such a way that it meets the
requirements related to the Human Factors issues in the chosen domain.

(h) Veri“cation of adaptive support system: In this methodological phase, it is veri-
“ed whether the behavior of the support system is as expected. The tools used are
similar to the ones used for the veri“cation of cognitive models. The difference in
veri“cation lies in the used simulation data: it involves the veri“cation of the reac-
tions of the support system given certain pre-conditions. Based on the outcomes of
the veri“cation simulations, the support system is improved incrementally, eventu-
ally ending once a certain stopping criterion is reached.

(i) Evaluation of adaptive support system:The support system is both objectively
as well as subjectively evaluated through experimentation. An object evaluation
would for instance be whether human-computer team performance increases com-
pared to non-adaptive support. Subjective evaluation is always done using dif-
ferent questionnaires regarding for instance satisfaction, trust and responsibility.
Again, based on the outcomes of the evaluation experiments, the support system
is improved incrementally, eventually ending once a certain stopping criterion is
reached.

Results regarding the extent to which the above research methodology is applicable
is further described in Section 1, as further details are probably better understood after
reading the studies in the different chapters.

6 Overview of the Thesis

The format of this thesis is a collection of articles. All chapters are reprints of papers
which were published or submitted for publishing elsewhere. References to the respec-
tive published papers are given on each chapter title page. The papers are unchanged,
with the exception of some layout, grammar and spelling issues. This has three impor-
tant implications. In the “rst place, there is overlap between a number of chapters. For
example, each chapter contains a speci“c section in which the modeling approach is in-
troduced again, with special attention to the aspects of the approach that are relevant
for the domain in question. Secondly, the fact that most chapters correspond to existing
papers implies that each of them can be read in isolation. In other words, this thesis
does not have any speci“c reading order, which is for instance similar to reading the pro-
ceedings of a conference. However, those readers that prefer to read the complete thesis
are recommended to follow the normal order, starting with Chapter 1 and “nishing with
Chapter 16. Thirdly, since the different chapters in this thesis are relatively untouched
after their publication, the deeper understanding of the subject of this thesis after pub-
lishing the newer chapters could not have its impact on the older chapters. The possible
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Figure 2: The research methodology used in this thesis.
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negative effect of this on the older chapters (or the absence of the positive effect) is lim-
ited by an elaborate revisit of all chapters, both in the introduction and conclusion. Also
possible newer insights on topics in older chapters have been described in newer chap-
ters, while referring to the older ones. In this way the increased insight over the years is
reported as much as possible, while each chapter can still be seen as authentic papers.

In this dissertation two types of cognitive processes (trust and attention) in “ve differ-
ent domains are studied. This results in two parts named •Trust• (Part II) and •Attention•
(Part III) which comprise13 papers in total (6 about trust and7 about attention). Also
an •Introduction and Methodology• part (Part I) has been included which comprises the
present chapter and a paper discussing more general methodological aspects of the re-
search conducted. The thesis ends with a •Research Overview and General Discussion•
(Part IV) and •Appendices• part (Part V). The appendices contain the acknowledgments,
bibliography, biography and a complete list of published dissertations under the auspices
of the SIKS research school.1

Below, the in total16chapters of only Parts I, II, III and IV are further described.

(I) Introduction and Methodology
In Part I the topic of the thesis and the research methodology are introduced.

(1) Chapter 1 (this chapter) introduces the topic of the thesis: (a method for) the
development and evaluation of adaptive support for human-computer teams
based on the usage of validated computational cognitive models of attention
or trust.

(2) In Chapter 2 a general research methodology CE+ is introduced, where spe-
cial focus is given on the integration of Human Factors research and AI while
developing human-computer cooperative systems. The CE+ method can be
seen as a generalization of the research method used for the research re-
ported in this dissertation. The general research methodology CE+ represents
the combined approach of taking into account both the technological design
space (what technology is currently available in order to develop adaptive
support?), as well as Human Factors knowledge (what are the limitations of
users interacting with the developed adaptive support?). This approach along
with several case-studies is further explained in this chapter and is considered
an important background paper for understanding the remainder of the thesis.

(II) Trust
In Part II the general and speci“c methodology described in Part I is applied to
adaptive support for human-computer teams using cognitive models oftrust.

(3) In Chapter 3 an abstract experimental task environment is discussed in which
one can study human trust and reliance (which is a behavioral implication of
trust) dynamics and apply adaptive support using cognitive models of trust.
A speci“c type of adaptive support is also described, using a prescriptive and

1A digital version of this thesis along with the source code and material used for the studies reported, can
be found at the author•s personal website, which is currentlyhttp://www.few.vu.nl/�pp .
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descriptive cognitive model of trust, where tasks are dynamically allocated
in a human-computer team in order to improve the team performance. Fur-
thermore, a preliminary experimental design is given using this environment
and support type. This design can be used to validate theoretical aspects of
the cognitive model and to evaluate the support in terms of human-computer
team performance.

(4) As mentioned, the type of support developed and tested in this thesis takes
human cognitive processes into account. When such support is able to seam-
lessly adapt to human cognition, one can think of such support as an augmen-
tation of human cognition. This augmentation can be compared to the way
two humans would work and think cooperatively.2 Chapter 4 argues that it is
important to study issues concerning trust when developing systems that are
intended to augment cognition. It is important because humans often are mis-
calibrated with respect to their trust in support systems that perform certain
cognitive tasks autonomously. Several conceptual designs and their design
requirements are described of adaptive support systems which make an esti-
mation of the extent of this mis-calibration (under different circumstances).
When there is a high expectation of mis-calibration, a system can intervene in
three ways: 1) advising the human whether to trust a certain agent or not, but
letting the human make the reliance decision (minimal autonomy support),
2) taking over the reliance decision all together and thus taking out the hu-
man factor with respect to calibration of trust (maximal autonomy support),
or 3) only taking over when it is expected that the human is worse in making
reliance decisions, i.e., trust is mis-calibrated (adaptive autonomy support).
The possibilities in terms of the application of these ideas are explored and
the further development of this concept in terms of the task environment ex-
plained in Chapter 3 is also a topic in Chapter 4.

(5) As was argued in Chapter 4, it is important to study Human Factors issues
concerning mis-calibration of trust in support systems. The study discussed
in Chapter 5 is an example of such research, based on the environment de-
scribed in Chapter 3. More speci“cally, the effects of order of advice and the
causes of mis-calibration are studied. These “ndings are potentially applica-
ble for the design of decision aids and training procedures.

(6) In Chapter 6 the in Chapter 4 announced types of support are experimentally
evaluated. A combination of laboratory and simulation experiments is done
to test whether support of human-computer teams in the second type (max-
imal autonomy support) indeed leads to an increase of team performance,
when comparing to when no such support is applied. Furthermore it is tested
whether the third type (adaptive autonomy support) results in an even further
improvement of performance. The results are analyzed and further discussed.

2One could even say that future versions of such augmented cognition will outperform cooperating human
teams. Some in”uential futurists already think such superiority of computer intelligence is near (Kurzweil,
2005).
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(7) Because the previously used experimental environment was of a more ab-
stract type (learning patterns and pushing buttons) and also the human-computer
team consisted of mere one human and one computer, another more contex-
tually rich experimental environment has been developed that requires the
cooperation between two humans and their supporting computers. This en-
vironment is used in Chapter 7 to further explore the possibilities of the ap-
plication of cognitive models of trust in adaptive support systems for human-
computer teams. In the environment a human has to decide on certain courses
of action based on several criteria and video footage from Unmanned Areal
Vehicles (UAVs). In this chapter the validities of two types of descriptive
cognitive models of trust are tested by using validation data retrieved from
experiments done using this more contextually rich environment. The “rst
model estimates human trust based on performance feedback of the human
independently from the estimated trust in other agents (human or computer),
whereas the second model does a relative estimation of human trust. The
latter is expected to have higher validity since relativity of trust-calibration
is observed in human reliance behavior. Both models are trained on the data
retrieved from the experiments, after which the two models are compared to
each other. The source code of the trust model tailored for the experiment is
also added as an appendix to the chapter.

(8) In Chapter 8 the same environment as used in Chapter 7 is used in order
to evaluate two types of adaptive support based on a variant of the second
trust model described in Chapter 7 (for descriptive trust) and a variant of the
trust model described in Chapter 6 (for prescriptive trust). These two types
of adaptive team support have been developed based on the support types
described in Chapter 4, namely 1) a minimal autonomy support type (type 1),
where the degree of mis-calibration of trust in the self, another human and
the computer, is decreased using a graphical representation of the estimation
of this degree, and 2) an adaptive autonomy support type (type 3), where
the reliance decisions are taken over only when the computer estimates the
degree of trust mis-calibration is above a certain threshold. The effects in
terms of team performance and satisfaction are discussed for varying human
task performance and task dif“culty conditions.

(III) Attention
Similar as in Part II, in Part III the general and speci“c methodology described
in Part I is applied to adaptive support for human-computer teams using cognitive
models ofattention.

(9) In Chapter 9 the possibilities of adaptive support based on cognitive mod-
els of attention are explored. A system is described which is able to reason
about the allocation and timing of certain cognitive tasks (also called meta-
cognition) requiring visual attention. The domain of naval warfare is intro-
duced, which is composed of complex and dynamic situations in which one
has to deal with a large number of tasks in parallel. The envisioned support
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system supports naval personnel in dynamically allocating tasks in two in-
troduced task environments, namely 1) an air traf“c control environment and
2) a tactical picture compilation task. The envisioned support system and
introduced tasks are also used further on in this thesis.

(10) In Chapter 10 the “rst task introduced in Chapter 9 (the air traf“c control
task) is used to further explore the means for supporting humans by using
cognitive models of attention. The formalization of a descriptive cognitive
model of attention is explained and a case study is described in which this
model is used to simulate a human subject•s attention. This simulation is
based on gathered eye-tracker and task execution data from participants ex-
ecuting the task. This simulation of attention is then discussed and formally
analyzed. The formal analysis is based on temporal relational speci“cations
for attentional states and for different stages of attentional processes. Five
kinds of stages of attentional processes are de“ned and implemented in log-
ical format which can be automatically checked against the simulated data.
The different attentional stages are related to 1) the allocation of attention, 2)
attention during the examination of multiple objects, 3) attention during de-
cision making and selection of certain actions to perform, 4) attention during
preparation and execution of actions, and “nally, 5) attention during action
assessment. The automatic detection of the above stages can have several
implications for human attention-based adaptive support systems, which are
also shortly discussed in this chapter. The source code of the attention model
tailored for the experiment and a pre-processing and visualization module are
also added as appendices to the chapter.

(11) In Chapter 11, the cognitive model described and analyzed in Chapter 10 is
also applied to the second task introduced in Chapter 9. Also a variant of the
support system envisioned in Chapter 9 is implemented, of which the results
are reported in this chapter. The system is described as an adaptive coop-
erative agent assisting humans having trouble to allocate attention appropri-
ately. The design is discussed of a component of this adaptive agent, called a
Human Attention-Based Task Allocator (HABTA), capable of managing the
attention of the human and his assisting agent. The HABTA-component real-
locates the human•s and agent•s focus of attention to tasks or objects based on
an estimation of the current human allocation of attention and by comparison
of this estimation with certain normative rules. First, an experiment is de-
scribed which had the purpose of validating the cognitive model of attention.
Then an experiment is described which evaluated the HABTA-based support
approach. Finally, the results are discussed.

(12) As the developed cognitive model-based support needs to be accurate enough,
the used models also need to be valid and robust enough: wrong estimations
by the models might even result in worse support, compared to non-adaptive
support. For this reason, in Chapter 12, different psychological aspects of
the validity of variants of the in Chapter 10 described cognitive model of at-
tention are studied. The effects of task performance and task complexity on
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this validity are studied for three different models, namely 1) the gaze-based
model, which uses gaze behavior to determine where the subject•s attention
is, 2) the task-based model, which uses information about the task, and 3) the
combined model, which uses both gaze behavior and task information. The
models are applied to the second task introduced in Chapter 9 (the tactical
picture compilation task), where validation data is gathered by letting partic-
ipants indicate where their attention is allocated to during different stages of
the experiment. These indications are then compared with the estimations of
the three models. The results are discussed in the light of possible improve-
ments of the model and applications for the models as fundamental part of
adaptive support systems.

(13) In Chapter 13 a new task environment is introduced. The task involves the
identi“cation of incoming ”ying objects and deciding whether to shoot the
object or allowing it to maintain its course. An improved variant of the model
described in Chapter 10 is tailored to this new task. Similar as in Chapter 7
in Part II about trust, exploring new applications is expected to lead to bet-
ter understanding of the scalability and the further possibilities of using the
methodology of applying cognitive models in adaptive support systems. Fur-
thermore it is investigated whether it is possible to improve the validity of
the model by personalizing the models to each participant given the data of
these participants from different experiments. Similar as in Chapter 12, it
is stressed that cognitive model-based adaptive support systems can bene“t
from this increased validity. The idea of personalization is based on the fact
that different characteristics might determine the optimal parameter values
in the used cognitive models. A Simulated Annealing (SA)- and Area under
the Curve (AUC)-approach is used to “nd the optimal validities of either the
personalized or the “xed models.

(14) In Chapter 14 a more elaborate version of a variant of the in Chapter 11 dis-
cussed support system is studied. This chapter is about the architecture of a
supporting agent that is able to manipulate the visual attention of a human.
Like in Chapter 11, this agent model is applied to the second task introduced
in Chapter 9 (the tactical picture compilation task). The agent model consists
of four formalized sub-models, namely 1) a dynamic attention model based
on the model studied in Chapter 10, 2) a model for beliefs about attention,
3) a model to determine the discrepancy between the estimated subject•s at-
tention (descriptive attention) and normative attention (prescriptive attention)
and 4) a decision model for attention adjustment (i.e., the •manipulation• of
the subject•s attention). A large amount of data has been gathered during
different experiments with the described agent. This data is used to formally
analyze and verify the support system, using automated checking tools. The
results of this analysis and veri“cation is discussed in the light of possible
future improvements of the support system. The source code of the attention
model tailored for the experiment is also added as an appendix to the chapter.

(15) In Chapter 15 three variants of the in Chapter 14 described support system are



20 Chapter 1.Introduction

evaluated, using the second task environment introduced in Chapter 9. The
differences in bene“ts of these three types are investigated in terms of the
resulting team performance (similar as in Chapter 8), trust, understandability
and responsibility. The types of adaptive support are different with respect
to their level of conservativeness. In the “xed support condition, the partic-
ipant•s attention is drawn by highlighting contacts which are automatically
classi“ed by the support system. In the liberal adaptive support condition, at-
tention is drawn to contacts that are most likely to be incorrectly classi“ed by
the participant. And “nally, in the conservative condition, attention is drawn
to these same contacts, but only when participants are not expected to be
attending to them. It is expected that adaptive decision support reduces inap-
propriate reliance on advice from a support system. The results are discussed
in the light of new possible improvements for attention allocation support
systems in complex visually aided computer tasks.

(IV) Discussion

(16) In Chapter 16 a summary of the conclusions of this dissertation is discussed
together with related and possible future work.
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Abstract„Increasing machine intelligence leads to
a shift from a mere interactive to a much more
complex cooperative human-machine relation requiring
a multidisciplinary development approach. This paper
presents a generic multidisciplinary cognitive engineering
method CE+ for the integration of human factors and
arti“cial intelligence in the development of human-machine
cooperation. Four case-studies are presented which contain
a description of the developed human-machine cooperation
and the adjusted CE+ method used. For each case-study
the method supported research and development activities
in such a way that sound knowledge bases, methodologies,
and user interfaces for human-machine cooperation could
be established. However, the method always needed to be
tailored to the speci“c goals and circumstances, such as
the available time, novelty, and required integration.

Index Terms„Human-machine cooperation, integrated
system design, cognitive engineering, human factors, intel-
ligent user-interfaces.

1 INTRODUCTION

Living, travel and working environments con-
tain a growing number of networked information
compilations and electronic services (e.g., health-
care and security services), which are accessible
to an increasing number of diverse user groups. In
current human-computer interaction (HCI) research,
personalization, adaptive interfaces and electronic
assistants are proposed to enable easy access to the
proliferating functions and services in such envi-
ronments for both the consumer and professional
domain (e.g., Aarts et al., 2001; Abowd et al., 2002;
Satyanarayanan, 2001). The increasing intelligence

of machines leads to a shift from HCI to human-
machinecooperation(HMC) (Hoc, 2001). Future
machines will either be designed to cooperate, or
designed to learn how to cooperate, with humans.
They will be able to assess and adapt to human goals
(Castelfranchi, 1998). It was only “rst mentioned in
(Hollnagel and Woods, 1983) that there is a growing
need for humans and machines to comprehend each
other•s reasoning and behavior. And since the last
decade or so, one is beginning to realise that ex-
actly this really requires researchers with different
backgrounds to believe in a more multidisciplinary
approach.

For HMC the aim is to customize support by
accommodating individual user characteristics, tasks
and contexts in order to establish HMC in which
the computer provides the •rightŽ information and
functionality at the •rightŽ time and in the •rightŽ
way (Fischer, 2001).

The customization that one encounters today at
work, during travel or at home is rather limited,
appearing as static user interfaces with simple or
•localŽ adaptations (Schneider-Hufschmidt et al.,
1993; Aarts et al., 2003). The possibilities for HMC
are extensive, however knowledge is lacking on both
the speci“c human factors (HF), the arti“cial intel-
ligence (AI) prospects and on ways of successfully
integrating both HF and AI during development.
This paper focuses on the latter, the integration
of HF and AI during research and development
(R&D) of HMC. An extensive and diverse set of HF
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methods and tools are distinguished and proposed
for the design of tasks and user interfaces, for in-
stance from the perspective of (cognitive) task anal-
ysis (e.g., Kirwan and Ainsworth, 1992; Schraagen
et al., 2000; Hollnagel, 2003), HCI (e.g., Helander
et al., 1997; Jacko and Sears, 2003) and usability
engineering (e.g., Mayhew, 1999; Maguire, 2001;
Rosson and Carroll, 2001). Furthermore, there is an
extensive and diverse set of guidelines and standards
for HCI in general (e.g., Bevan, 2001), and for
speci“c application domains (e.g., NASA standards,
1998). A major challenge for the development of
complex and dynamic human-machine systems „
such as industrial process control, aerospace and
traf“c control „ is to develop HMC and real-
ize concrete design practices in the near future.
A suitable candidate for this activity is cognitive
engineering with its roots in both principal con-
tributors HF and AI. Other available development
methods are too heavily focused on their own origin
(human or technology), and have a blind spot for
the other domain. Methods focused on integration
such as MUSE (Lim and Long, 1995) or even
ISO 13407 are not well suited for innovation. An
extended generic cognitive engineering method CE+
is presented and four case-studies illustrate the use
of this method and the required adjustments based
on speci“c project requirements and circumstances.

2 THE COGNITIVE ENGINEERING METHOD CE+

Cognitive engineering (CE) approaches origi-
nated in the 1980s to improve computer-supported
task performance (e.g., Rasmussen, 1986; Norman,
1986) and emerged from the “elds of cognitive
science and AI. CE aims at generating new or
enhanced HCI by increasing insight in the cognitive
factors of human performance (Neerincx, 2003).
Furthermore, CE guides the iterative process of
development in which an artifact is speci“ed in
more-and-more detail and speci“cations are as-
sessed more or less regularly to re“ne the speci-
“cation, to test it, and to adjust or extend it. The
original CE methodology was extended with an
explicit technology input thus creating the CE+
method. This extension was primarily made because
of two reasons. First, the technological design space
sets a focus in the process of speci“cation and
generation of ideas. Second, the reciprocal effects

of technology and HF are made explicit and are
integrated in the developent process. In Figure 1
the development process of the extended method
CE+ is shown. The HF knowledge provides relevant
expertise (i.e., guidelines and support concepts) and
techniques for the speci“cation and assessment of
HMC. The technological design space sets the tech-
nological and operational requirements for HMC.
In the speci“cation both the guidelines and the
technological design space must be addressed con-
currently. In the assessment it is checked whether
the speci“cations agree with these guidelines and
the technological design space. An assessment will
provide qualitative or quantitative results in terms
of effectiveness, ef“ciency, satisfaction and user
experience which are used to re“ne, adjust or extend
the speci“cation. Eventually, the process of iteration
stops when the assessment shows that the HMC
satis“es all requirements (Neerincx et al., 1999).
The above thus suggests dynamic integration of
knowledge into the design process rather thana
priori speci“cation of guidelines.

3 CASE-STUDIES

3.1 Personal Assistant for onLine Services

The Personal Assistant for onLine Services
(PALS) project was aimed at substantially improv-
ing the user experience of mobile internet services
(Lindenberg et al., 2003). It focused on a generic
solution: a personal assistant, which attunes the
interaction to the momentary user needs and use
context (e.g., adjusting the information, presentation
and navigation support to the current context, device
and interests of the user).

The PALS project was carried out using CE+. The
method was adjusted to “t the speci“c needs of the
PALS project. The goal of the project was not only
to realize an effective and ef“cient PALS but also to
generate fundamental HF and AI knowledge. There-
fore, three research lines can be distinguished within
the adjusted method for the PALS project (Figure 2):

1) PALS creation: using a cognitive engineering
approach.

2) Basic HF research: extending the HF knowl-
edge base.

3) Basic technological research: extending the
AI knowledge and engineering base
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Figure 1. The development process of the CE+ method.

Figure 2. The CE+ development process in the PALS project.

The “rst research line focused on the actual re-
alisation of a PALS demonstrator guided by the
cognitive engineering process (Figure 3). In differ-
ent stages knowledge and/or technology was needed
that was not available at that time. This knowledge
was developed within the two, discipline focused,
research lines of PALS, both enabling the realization
of an effective PALS and extending the HF and
AI knowledge base. For example, the in”uence of
attention on mobile user interaction, and the AI
techniques to attune the interaction to the users
attentional state. These issues were examined by

developing a rule-based in-car system that predicted
the momentary mental load caused by the driving
task and attuned the dialogue accordingly to prevent
overload. In addition to the CE+ generated questions
that •fedŽ the basic research, autonomous processes
within the basic research line •fedŽ the CE+ pro-
cess by providing new interaction concepts. The
speci“c circumstances of this project such as the
combination of fundamental research with prototype
development, the relatively long running time, and
the physical distance between the participating part-
ners gave rise to the speci“c method that was used.
The integration of HF and AI technology in PALS
resulted for example in a Point of Return indicator,
an Interactive Suspension Point and a Tailored Infor-
mation View, based on mining and (graph) modeling
of user behaviour data and the identi“cation of HF
bottlenecks in mobile environments.

3.2 Context Aware Communication Terminal and
USer

The Context Aware Communication Terminal and
USer (CACTUS) project aimed at researching tech-
nological and usability aspects of human-machine
and machine-network interaction with personalized,
intelligent and context-aware wearable devices in
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Figure 3. Scenario based design was used to specify the interaction.

ad-hoc wireless environments such as the future
home, of“ce, or university campus. In this paper we
will focus on a part of the project which was con-
cerned with the selection and identi“cation of agents
in an ubiquitous computing environment. Future AI
and HF problems were identi“ed by a technology
assessment early on in the project. It turned out that
current techniques for identi“cation and selection of
agents in ubicom environments were not scalable
leading to all types of HF and AI performance prob-
lems. This instigated a research program containing
both an AI and HF challenge: create a scalable
decentralized agent system which enables users to
identify and select the best service to obtain their
goals. The CE+ method described in the previous
section contained two separate, domain speci“c,
research lines which are integrated by a third devel-
opment line. That particular set-up was not suited
for CACTUS because of the limited amount of
time that was available and the strict interactions
between the AI and HF challenge. Therefore, both
domains were studied in an integrated manner. A
realistic technological solution for the predicted HF
problems was conceived and implemented within a
limited environment. This technology enabled the
user to simply express his goal, in a decentralized
manner each agent decided whether or not it was
capable. The most capable agents would rise to the
surface and offer their services to the user. Early on
in the development the technology was empirically
tested with a realistic mock-up in which the actual
behavior of the technology was simulated by a

human operator (Wizard of Oz) (see (Lindenberg
et al., 2007) and Figure 4). Because experiment
showed a signi“cant increase in user performance
the decision was made to extend the implementation
to a larger environment. The data that was gained
during the experiment was actually used as excellent
training data for the “nal implementation providing
another argument for joint HF and AI research
(Pasman and Lindenberg, 2006).

Figure 4. Early empirical testing of ubicomp agent archtecture with
end-users.

The development process of the method that was
used is shown in Figure 5. The assessment in the
“nal iteration of the development showed that both
AI and HF challenges for agent selection in a
dynamic, large and ad-hoc agent environment were
met.

3.3 Situated Usability Engineering for Interactive
Task Environments

Intelligent operation support is crucial for human-
machine performance in space laboratories. A tool
kit for •Situated Usability engineering for Interac-
tive Task EnvironmentsŽ (SUITE) was developed to
guide the design of such operation support, in order
to harmonize the activities of diverse stakeholders
who implement various applications (platform sys-
tems and so-called payloads), apply speci“c design
techniques and focus on the development of either
(intelligent) task support or displays (Neerincx et al.,
2004). SUITE consists of a usability engineering
handbook that provides context- and user-tailored
views on the recommended HF method, guide-
lines and best practices. Furthermore, it provides
a generic task support and dialogue framework,
called Supporting Crew OPErations (SCOPE), as
both an implementation of these methods and guide-
lines, and an instance of current interaction and
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Figure 5. The CE+ development process in the CACTUS project.

AI technology for HMC. This framework de“nes a
common multi-modal interaction with a system, in-
cluding the integrated provision of context-speci“c
task support for nominal and off-nominal situations.
Furthermore, SCOPE detects system failures, guides
the isolation of the root causes of failures, and
presents the relevant repair procedures in textual,
graphical and multimedia formats (see Bos et al.,
2004). The diagnosis is a joint astronaut-SCOPE
activity. Taken HF into account, the tasks of the
human and machine actors, and their interactions,
were speci“ed and assessed as a joint activity.
When needed, SCOPE asks the astronaut to perform
additional measurements in order to help resolve
uncertainties, ambiguities or con”icts in the current
machine status model. SCOPE will ask the user to
supply values to input variables it has no sensors for
measuring by itself. Each new question is chosen
on the basis of an evaluation function that can
incorporate both a cost factor (choose the variable
with the lowest cost) and a usefulness factor (choose
the variable that will provide the largest amount

of new information to the diagnosis engine). After
each answer, the diagnosis re-evaluates the possible
fault modes of the system on the basis of the
additional values (and new samples for the ones
that can be measured). As soon as SCOPE has
determined the likeliest health state(s) of the system
with suf“cient probability, it presents these states to
the user, possibly with suggestions for appropriate
repair procedures that can be added to the todo list
and executed. As soon as the machine has been
repaired, SCOPE will detect and re”ect this.

SCOPE was applied for the Cardiopres, a portable
payload for medical experimentation (see Figure 6).
In the evaluations of the SCOPE system for the

Figure 6. SCOPE showing a successful completion of a diagnosis
process (green status bar at top), procedure generation (left), and
reference documentation (right).

Cardiopres, the user interface and AI-based task
support functions proved to be effective, ef“cient
and easy to learn, and astronauts were very satis“ed
with the system (Neerincx et al., 2004).

The development of the SUITE tool kit is an
iterative process in itself, and new experiences with
its application (e.g., currently for a new payload)
will improve it. Currently, the SCOPE framework is
being applied for the development of an intelligent
user interface for the Pulmonary Function System
(PFS) payload. Its task support functions will be
improved to deal with dependencies of actions with
each other and the usage context. Assessments will
help to establish adequate performance and user
experience of this component (see Figure 7). In
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Figure 7. The CE+ development process implemented as design
guidance for intelligent user interfaces of space missions.

general, the SUITE toolkit reduces the time and
cost of development efforts, whereas it improves
the usability of intelligent interfaces. Embedded in
a HF engineering process, user interfaces and the
underlying AI methods are systematically and co-
herently speci“ed, implemented and assessed from
early development phases on, which is in itself ef-
“cient and prevents the need for late harmonisation
efforts between user requirements and technological
constraints.

3.4 Human-Machine Task Integration

In contrast with the previous subsections, this last
subsection describes the analysis of the CE+ appli-
cability on anongoingprogramme. Resultingly, this
case-study is based on expectation resulting from
previous cases rather than on plain results. In the
•Human-Machine Task IntegrationŽ (HMTI) pro-
gramme human-machine task integration concepts
are developed, tested, and evaluated in order to
come to a recommended methodology to consid-
erably improve performance with respect to HMC
on future navy platforms, based on non-“xed HF
and AI knowledge. Those scenarios are considered
that contain dynamic, unreliable, and ambiguous
environments, and systems that operate under time
pressure, and with less resources (e.g., manning).
Notably, these situational aspects are nowadays re-
peatedly mentioned as typical for what we can
expect already in the near future. Exactly these
(should) motivate governments to fund research on
the integration of tasks through HMC systems. In
Figure 8 an implementation of early HMTI for

future navy platforms is shown.

Figure 8. Early HMTI for future navy platforms.

Adaptive HMC (AHMC) systems attempt to
adapt to the human-machine relation complexity.
AHMC is an approach to design where tasks are
dynamically allocated over time between humans
and machines for the purpose of optimizing overall
system performance. The apparent underpinnings
of AHMC consisted of, among others, loss of ex-
pertise, automation-induced complacency, over- and
undertrust, and loss of adaptivity (e.g., Parasura-
man and Riley, 1997; Moray, 1997; Rouse, 1994).
To overcome these problems, future HMC systems
should detect and adapt to those situations that cause
them.

Research in HMTI can be divided into two main
foci. The “rst focus is on when speci“c types
of cooperation should be changed (triggering or
invocation strategy), and the second one is on what
and how it should be changed (response or allo-
cation strategy). Guided by HF and AI research,
these together span the whole AHMC system design
space. In general, invocation strategies are based on
the characteristics of, and changes in, the human-
machine system, its environment, and estimated
future performance models. After this, chosen al-
location strategies cause new characteristics and
changes. In complex, ambiguous, and dynamic en-
vironments this choice must be madea posteriori,
i.e., real-time.

What can be determineda priori, i.e., during
design, is everything that constitutes the design
purpose, such as the choice that the allocation
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strategy is based on a left-over, economic, or com-
parison method (Rouse, 2001). Another choice a
designer can make is what type of support HMC
should provide and more speci“cally what type of
sharing of control. The type of sharing of control
designates in what way agents (machine or human)
cooperate to achieve the system•s goals. There are
three sharing of control strategies, namely exten-
sion, relief, and partitioning (Sheridan, 1992). It is
clear that these control strategies require different
intelligence of the cooperating partner. In many
cases extension simply requires precompiled tools,
whereas partitioning sometimes needs an agent to
be even more intelligent than the subject. Also, in
partitioning cooperation will require the cooperating
agents to perform additional meta-operations (Hoc,
2001), which are to be relieved by means of a well-
equipped AHMC design methodology.

Given the research aims of the area of integrated
system design, we can de“nitely claim that there
is still a lot of work to be done. With respect to
AHMC design, in spite of its popularity in the past
decades, there is very little formal research to be
found that can improve the design of large complex
systems (e.g., Fuld, 1993; Scallen and Hancock,
2001). There are few usable models for predicting
the dynamics of human or machine state, perfor-
mance, and environment. Therefore more research
on its theoretical framework is needed. Models need
to be developed that can closely predict situation
awareness, vigilance, mode awareness, automation-
induced complacency, mental load, boredom, emo-
tion, skill, experience, stress, self-con“dence, trust,
and commitment (to name but a few), and determine
their characteristics in terms of for example demand
for transparency, machine autonomy, responsibility,
•out of the loopŽ-ness, task switching, and delega-
tion strategy. These models may depend on speci“c
task, environment, machine, user, or organization
characteristics. Further research also applies to the
formalization, veri“cation, and validation of these
models. This is for the reason that well-balanced
models should be consistent when combined, re-
frain from under- as well as over“tting instances
of reality, and result in implementations that are
application valid. The latter may imply theories
with low construct validity, as is discussed recently
in (Campbell and Bolton, 2004).

As an important “rst result of the HMTI pro-
gramme the above clearly implies that HF and AI
research are thoroughly intertwined into the HMC
system design process. This suggests the applicabil-
ity of the CE+ method and this is why the HMTI
programme has adopted it. In Figure 9 the proposed
CE+ development process is shown. The initial
knowledge helps in setting system constraints and
show important gaps that indicate a need for fur-
ther research. After an experimental phase, results
are re”ected upon the initial theory by means of
comparing desired and resulting perfomance. This
gains new knowledge and new concepts are further
studied. Important here is that after several of such

Figure 9. The proposed CE+ development process in the HMTI
programme.

iterations the resulting methodology is not tech-
nology driven, but rather realistic for future navy
platform scenarios in a generic sense. This is why
the current technological design space is missing in
this diagram and AI research is directly integrated in
the speci“cation and assessment processes. Indeed,
few gaps will be identi“ed when not using any CE+
method. Eventually the resulting AHMC system
design methodology will be useable without “rst
going through phases of trial and error.

4 CONCLUSION

Increasing machine intelligence leads to a shift
from a mere interactive to a much more complex
cooperative human-machine relation. Exactly this
really requires researchers and engineers to believe
in a more multidisciplinary approach. This paper
stressed validity and therefore usability of a generic
multidisciplinary cognitive engineering method CE+
in human-machine cooperation system design by
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means of four case-studies. For each case-study
the method supported research and development
activities in such a way that sound knowledge bases
and user interfaces for human-machine cooperation
could be established. This was done for example by
deriving arti“cial intelligence and human factors re-
quirements for the attention driven dialogue (PALS),
for the hypotheses generation, approval or falsi“-
cation (SUITE, (Bos et al., 2004)), for adaptivity
of automated decision support (HMTI), and agent
selection in large ad-hoc environments (CACTUS,
(Pasman and Lindenberg, 2006; Pasman, 2004)).
However, the method always needed to be tailored
to the speci“c goals and circumstances, such as the
available time, novelty, and required integration. We
can conclude that due to the complexity of system
design processes, their success depends upon inte-
gration of human factors and arti“cial intelligence
research early on in the development process.
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Abstract„An important issue in research on human-
machine cooperation concerns how tasks should be dynam-
ically allocated within a human-machine team in order to
improve team performance. The ability to support humans
in task allocation decision making requires a thorough
understanding of its underlying cognitive processes, and
that of relative trust more speci“cally. This paper presents
a computational agent-based model of these cognitive
processes and proposes an experiment design that can be
used to validate theoretical aspects of this model.

1 INTRODUCTION

The increasing intelligence of machines leads to
a shift from HCI to human-machinecooperation
research (Hoc, 2001). Problems arise when small
human-machine teams try to cooperate on a cog-
nitive level. A goal in human-machine cooperation
research is to solve these problems. Optimizing per-
formance of the human-machine team is not likely
to be gained by improving human-alone or machine-
alone performances. It is important that cooperative
tasks within the team, and more speci“cally the
dynamic allocation of tasks, are improved as well.
This requires an understanding of the cognitive
processes underlying task allocation decisions. A
useful cognitive theory of task allocation decision
making should represent those attributes and their
relations that are considered in making decisions on
task allocation. A validated model can subsequently
be used by decision support systems to support
1) the acquisition of information concerning these
attributes, 2) the analysis and integration of this
information, 3) the selection of appropriate changes
in task allocation, and 4) the execution of these

actions (Parasuraman et al., 2000).
Although there has recently been an increase

in human factors research concerning trust and
automation reliance (Dzindolet et al., 2003; Lee
and See, 2004; Lee and Moray, 1992, 1994; Para-
suraman and Riley, 1997; Gao and Lee, 2004),
few attempts have been undertaken to formalize
the cognitive processes underlying task allocation
decisions (Fuld, 1993; Scallen and Hancock, 2001).
Therefore more research on its theoretical frame-
work is needed. In the AI and sociology community
research on the formalization of trust and delegation
decisions is present (e.g., Falcone and Castelfranchi,
2001; Gambetta, 1990), but not speci“cally with
respect to dynamic decision making in human-
machine cooperation.

The present research attempts to bridge this gap
between human factors and AI research by develop-
ing a computational model of task allocation deci-
sion making that can be used in further understand-
ing and supporting human-machine cooperation. It
is work in progress. First, the theoretical aspects of
task allocation decision making are introduced. Sec-
ond, a formal cognitive model is de“ned. And third,
based on this model, an experimental environment is
described that can be used to validate the theoretical
aspects.

2 COGNITIVE THEORY

As in (Falcone and Castelfranchi, 2001), in this
paper the termtrust is used to refer to a mental
state, a belief of a cognitive agenti about the
achievement of a desired goal through another agent
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j or through agenti itself. In trusting agentj , agent
i has, to some level, a positive expectation that
agentj •s actions will achieve the goal that agenti
desires. Agenti •s expectation ofj •s performance is
calibrated by direct experience withi •s performance.
Trust is dynamic, but it does not simply increase
and decrease with positive and negative experiences.
How trust changes by successes and failures, for
one, depends on how increases and decreases in
performance are interpreted and causally attributed
(Falcone and Castelfranchi, 2004; Lee and See,
2004). Trust is more than other concepts subject
to error. One type of error is that humans tend
to overestimate their own performance. Humans,
for instance overestimate the number of tasks they
can complete in a given period of time (Buehler
et al., 1994). Another type of error occurs when
humans form expectations about the performance
of automation. It is found, for instance, that humans
have a bias toward automation (Dijkstra et al., 1998;
Dzindolet et al., 2002).

There are also indirect sources of knowledge
about performance. Reputation and gossip, for in-
stance, enable agents to develop trust without any
direct experience. In the context of trust in automa-
tion, response times to warnings tend to increase
when false alarms occur. This effect was coun-
teracted by gossip that suggested that the rate of
false alarms was lower than it actually was (Bliss
et al., 1995). Trust can also be based on analogical
judgments, i.e., judgment about the trustworthiness
of a category rather than on the actual performance
of one of its presumed members. Although not
always recognized by analytical approaches to trust,
it should be noted that humans are cognitive misers
and try to save the effort that is required in de-
liberation. In naturalistic setting it is observed that
decision makers seldom engage in extensive infor-
mation acquisition, conscious calculations or in an
exhaustive comparison of alternatives (Klein, 1998).
In these multi-tasking environments automatic pro-
cesses play a substantial role in attributional activ-
ities, with many aspects of causal reasoning occur-
ring outside conscious awareness. In (Miller, 2002)
for instance it is suggested that computer etiquette
may have an important in”uence on human-machine
cooperation. Etiquette may in”uence trust because
category membership associated with adherence to

a particular etiquette helps people to infer how
automation will perform.

Many theories in the human factors literature
about the cognitive processes underlying task allo-
cation decisions include a notion of relative trust,
i.e., differences of trust in two agents. Empirical
results from human factors experiments show that
as the trust in machine performance is signi“cantly
higher than trust in own performance, humans in-
tend to allocate tasks to the machine, and when the
reverse is true, humans prefer to allocate tasks to
themselves (Lee and Moray, 1992; Moray et al.,
2000; Dzindolet et al., 2000; De Vries et al., 2003).
Theories on these results describe factors that affect
trust in machine performance, such as machine
performance reliability and error costs. Factors that
affect trust in own performance are for instance task
dif“culty, skill, cognitive biases and the effects of
social and motivational processes (Dzindolet et al.,
2000).

Trust is distinguished from the decision to allo-
cate a task to an agent or rely on an agent. The
term task allocation decisionis used to refer to the
decision to rely on an agent•s goal-directed actions
to achieve a desired goal. One might argue that
an agent is more likely to rely on another agent
when its workload is high compared to when it
is moderate or low. In (Parasuraman and Riley,
1997), however, it is pointed out that the relation
between workload and the reliance decision has not
been empirically validated and it is suggested that
this relation is obscured by individual differences.
In (Kirlik, 1993) it is shown that humans do not
simply allocate tasks to automation so as to free up
mental resources for concurrent tasks. It has been
hypothesized that reliance decisions are not only
in”uenced by individual differences, such as skill
on the task or costs of delaying concurrent tasks,
but also by the effort or time needed to engage
automation. It is expected that the in”uence of the
effort or time for the actual allocation of tasks will
be particularly evident when the workload of the
agent is already high.

The task allocation decision is also bounded by
a certain inhibitory bound or allocation preference
threshold (Moray et al., 2000). This threshold deter-
mines when relative trust does not result in a pref-
erence difference high enough to rely on an agent.
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Theory development on these factors is immature,
but it is expected that the height of the threshold will
be in”uenced by the difference between the trust
uncertainty and the urgency and importance of the
task allocation.

Finally, the task allocation decision is distin-
guished from the goal-directed actions of allocating
a task or actually relying on an agent. The termtask
allocation is used to refer to the overt behaviors of
agenti that are required to actually rely on agent
j . The decision to rely on agentj may not be
suf“cient to reach the state in which the task is
actually allocated to agentj . There may be unantic-
ipated obstacles interfacingi and j that hinder the
actual allocation of a task. This refers to the ability
of the agent and opportunity in the environment.
Furthermore, there can also be an action to allocate
a task to an agent without a decision to allocate
this task. This can be the case for instance when
execution errors are made.

3 FORMAL COGNITIVE MODEL

Suppose a decision maker is given a (meta) task
� m for which it has to make a best choice in
allocating a certain (object) task� o to either a human
agent H or a machine agentM . The Decision
Field Theory(DFT) is a mathematical framework
for describing the dynamics of such choices (Buse-
meyer and Townsend, 1992). In this section a formal
model of task allocation decisions inspired on DFT
is shown, which is used in describing the dynamics
of the proposed experiment in Section 4.

The following formal model is described by
means of four de“nitions, that is, of thetask exe-
cution state, trust state, allocation preference state,
andpreferred task execution state. These are called
states because they are time-dependent. The (pre-
ferred) task execution states are strings (sequences
of characters). The trust and allocation preference
states are real values.

De“nition 1 (task execution state). Let � i be atask
execution state:

� i (j, � o, tn ) = APPEND n
k=0 si (j, � o, tk) (1)

where i, j � Agents = { H, M, �} , � o � Tasks
and si is a recall function wheresi : Agents ×

Tasks× T ime � Actions, according to agenti .
Agent� represents the infallible agent. The function
� i thus returns a string of sequentially ordered
actions resulting from the execution of task� o by
agentj according to agenti until time pointtn . Note
that � i (� , � o, t) thus indicates the task execution
state of the infallible agentaccording to agenti .
The functionAPPEND appends an action at the
tail of a given string.

Example 1. An example of a task execu-
tion state � H (H, � o, t3) = Ž� 1� 3� 2� 4Ž, where
� 1, � 3, � 2, � 4 � Actions are the executed tasks
at time pointst0, t1, t2, and t3, respectively, and
H � Agents.

The recall functionsi might result in actions
falsely identi“ed by agenti as executed on a certain
time point by a certain agent. Such errors can
be modeled by means of decays, e.g., by using a
time-dependent randomization function. This means
that � i (j, �, t n ) is not necessarily the “rst part of
� i (j, �, t m ) for tn � tm and arbitraryj (including
j = � ) and � . In contrast, fori = � the latter is
not the case, which in other words means that the
infallible agent has no regrets.

Similar to (Jonker and Treur, 1998), trust is
considered a mental agent concept that depends on
the past experiences that coincide on discrete time
points with events that affect the agent•s trust state.
In this paper experiences are given by evaluating
task execution states of an agent by means of
comparison with those of the supposed infallible
agent. This idea of the infallible agent and the
comparison may be different for each agent.

De“nition 2 (trust state). Let Ti be a trust state:

Ti (j, � o, t) = 1 Š
Di (� i (j, � o, t), � i (� , � o, t))

| � i (� , � o, t) |
(2)

where Di is a function calculating the distance
between two strings according to agenti . Trust
states based on execution states with length0,
i.e., when| � i (� , � o, t) | = 0, have initial values.
Furthermore,Di (� i (j, � o, t), � i (� , � o, t)) can also be
written as the error rateei (j, � o, t).

The distance functionDi can be aform of the
Hamming Distance (HD ), i.e., for trust calculation
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based on real performance history by means of 1-
to-1 distance, or for instance the Levenstein Dis-
tance (LD ), i.e., for determining model validity by
means of the calculation of basic edit distance. The
remaining ofDi is determined by agenti •s interpre-
tation and causal attribution resulting in in”ation of
penalties on errors due to for instance the workload
and resource boundedness of agentj , complexity
of � o, and memory decay, at time pointstk � t,
or eventk > t when future events are anticipated
in these terms. Three cases of memory decay are
for instance modeled in (Jonker and Treur, 1998).
Initial values of trust states, when| � i (� , � o, t) | = 0,
are determined by only such indirect indicators.
Furthermore, all agents but� can make errors or
are biased in distance calculation, as in mistaken
memory recalls and prejudices, respectively.

Example 2. Please recall Example 1 of agentH .
Let � H (� , � o, t3) = Ž� 1� 2� 3� 4Ž. Let•s assume that
exactlyDH, 1 = HD is used. This means that trust
stateTH (H, � o, t3) = 1 Š 2

4 = 1
2. But if we assume

that exactlyDH, 2 = LD is used, then the trust state
TH (H, � o, t3) = 1 Š 1

4 = 3
4. In this case always holds

that DH, 2 � DH, 1.

Task allocation decisions are based on allocation
preferences. As is proposed in (Gao and Lee, 2004;
De Vries et al., 2003) the following model assumes
that preferences are determined by trust in the
self, trust in the other, and a certain corresponding
inhibitory bound or allocation preference threshold.

De“nition 3 (allocation preference state). Let Pi be
an allocation preference state:

Pi (� o, t) = Ti (j, � o, t) Š Ti (i, � o, t) (3)

where the trust stateTi (j, � o, t) means that agent
i trusts agentj with respect to its performance in
executing task� o at time point t. Agent i prefers
allocation of � o to j iff 1 � Pi (� o, t) > � i (� o, t)
and to i iff Š1 � Pi (� o, t) < Š� i (� o, t) at time
point t. The function� i represents the inhibitory
bound of agenti . In other words, positive values
for Pi indicate the tendency to allocate to the
other and negative values to itself, if it exceeds a
certain threshold(Š)� i . The real interval[Š� i , � i ]
indicates indifference of the agenti with respect
to its allocation preference. The value of� i (� o, t)

depends on the characteristics of its parameters,
such as decay due to costs of waiting (Busemeyer
and Rapoport, 1988).

Example 3. Please recall Example 2 of agentH .
Suppose thatDH = HD , that � H (M, � o, t3) =
Ž� 2� 2� 3� 4Ž, and thusTH (M, � o, t3) = 3

4, for an-
other agentM � Agents. This means that the
allocation preference statePH (� o, t3) = 3

4 Š 1
2 = 1

4.
Hence, if� H (� o, t3) < 1

4, then at time pointt3 agent
H prefers the allocation of task� o to agentM .

The above does not yet take into account that task
allocation decisions also concern the effort or time
needed for engaging (re)allocation and all other con-
sequences afterwards, such as task switching costs
relating other tasks and additional overhead (like in
Hoc, 2001). In fact, this may result in the opposite
of what one might expect from mere difference in
trust states. This thus suggests a different view of
relative trust, namely trust relating the differences in
desirability of the resulting outcome ofcommencing
the allocation of a certain task to a certain agent,
with respect to the overall system performance. In
the context of the experiment proposed in the next
section initially the “rst de“nition is chosen.

The allocation task� m itself can result in a task
execution state� i (j, � m , t), trust stateTi (j, � m , t),
and allocation preference statePi (� m , t) with its
inhibitory bound � i (� m , t) for i, j � Agents by
means of Equations 1, 2, and 3, respectively. In
other words, this enables a decision maker to make
preferred decisions on the allocation of the alloca-
tion task.

De“nition 4 (preferred task execution state). Let � i

be apreferred task execution state:

� i (� o, tn ) = APPEND n
k=0 si (j, � o, tk) (4)

where each agentj � Agents \ {�} is preferred at
time pointtk by the preferred allocator determined
by � (� m , tn) according to agenti � Agents.

Example 4. Please recall Example 3 of agent
H . Suppose that task� m is allocated to agent
H . In this case the preferred task execution state
� H (� o, t3) = Ž� 1� 3� 3� 4Ž, because of allocation
preference states indicating the preferred allocation
of task� o to agentH, H, M , andM , at time points
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t0, t1, t2, andt3, respectively. This might be different
if task � m is allocated to agentM at a certain time
point, possibly due to differences in states, inhibitory
bounds, recall, and distance functions.

Finally, true states are subscripted with a� , i.e.,
states according to the infallible agent; e.g.,� � (� o, t)
denotes the actual preferred task execution state.
Performance of a cooperative MAS is therefore
calculated by means ofHD (� � (� o, t), � � (� , � o, t)) .

4 EXPERIMENT DESIGN

In order to validate implications of the theory
introduced in Section 2 a simple experimental task
is developed. The goal of this experimental task is to
predict, as a human-machine team, the location of a
disturbance. In every trial the disturbance can occur
at one of three locations. Also each trial consists of
three phases: a prediction phase, a selection phase,
and an update phase. The human and the machine
are both required to execute three tasks (� o,m,u ),
one for each of these phases. The “rst task is to
decide on the location of the next disturbance based
on an internal prediction model. This decision is
retrieved by letting both indicate a speci“c button.
Given both predictions, the next task is to let them
decide on which advise to trust the most based
on their internal selection model.1 This is again
retrieved by letting both indicate a speci“c button,
either following the prediction of itself, the other,
both, or nobody. In the last phase the location of the
disturbance is revealed according to a predetermined
string � � (� , � o, t), which both agents are required to
process by means of updating their internal models
for task� o and� m . In Figure 1 the interface of a “rst
implementation of the experimental environment is
shown.

The independent variables are the error rates of
the machine for each task, and the dif“culty of the
string. The error rate of the machinee� (M, �, t )
is manipulated by having it choosee� (M, �, t )· |
� � (M, �, t ) | times a random action in stead of
the actionsM (M, �, t ), for each task� and time
point t. The dif“culty of the string is manipulated

1This task is actually not a task allocation decision task in the
precise sense of the de“nition given in Section 2. It is meant to
catch an important prerequisite for the allocation decision, namely
reasoning with allocation preference states.

Figure 1. The interface of a “rst implementation of the experimental
environment StringTask. A selection phase is shown, where the
human predicted location 1 and the machine location 2. The allocator
should indicate which button to select, based on both predictions and
its internal selection model. After this the update phase indicates its
soundness, which is used for updating the internal models.

by changing its length and generation rules, which
has been subject in the study of human sequential
processing some decades ago (e.g., Jones, 1971).

The measured dependent variables are human-
machine system performance and the error rates
of the human for each task. These are simply
calculated by means of theHD s of the preferred
task execution state� (�, t ) and task execution state
� � (H, �, t ), respectively, with the infallible task ex-
ecution state� � (� , �, t ), for each task� and time
point t.

In the following experiment the effort and time
to engage (re)allocation is kept the same for both
human and machine. In order to ascertain that the
experimental task can be reliably used to validate
implications of the theory two straightforward hy-
potheses should hold:

€ At each moment the participant prefers allo-
cation of a task to the machine instead of
to himself (or herself) when his trust in his
own performance is expected to be signi“cantly
lower compared to his trust in the performance
of the machine.

€ At each moment the participant prefers alloca-
tion of a task to himself instead of to the ma-
chine when his trust in the performance of the
machine is expected to be signi“cantly lower
compared to his trust in his own performance.

To validate the “rst hypothesis, the trust state
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TH (H, � o, t) is experimentally manipulated by vary-
ing the error rateeH (H, � o, t). This is done by
decreasing the complexity of the string. If error
ratee� (M, � o, t) remains low enough, this ought to
result in an allocation of the task� o to agentM
by agentH , due to 1 � PH (� o, t) > � H (� o, t).
In this experiment the task can be executed in
three levels of dif“culty. The level of dif“culty is
manipulated by increasing the memory-load of the
internal prediction model that the agentH needs to
use for executing task� o. It is known that human
working memory has a limited capacity and that
performance errors will result when more capacity
is demanded by the task than can be supplied by
the human. The memory-load of the internal models
is manipulated by increasing the dif“culty of the
string.

Validation of the second hypothesis is symmetric.
Trust in machine performance is manipulated by
varying machine reliability. In this experiment agent
M will perform the task at a reliability of 100,
70 and 50% independently of the dif“culty of the
task for agentH . In prior research it is often
found that reliability lower than 70% will result
in disuse of automation (Moray et al., 2000). The
above manipulations result in a 3 (dif“culty)× 3
(reliability) experiment design as shown in Table I.

It is expected that higher� H values will result in
higher error ratese� (H, � m , t) in the selection task
due to unwanted indifference. Undoubtedly decision
support is needed when in this diagonal region. How
to support this and other results of this experiment
will be subject of further experimental research.

5 DISCUSSION

In this paper a computational model of trust based
task allocation decision making and an experiment
design used for theory validation are proposed.
Though task allocation decision support by means
of cognitive modeling of trust is clearly relevant, it
is a “eld in AI that is quite new.

The present research is work in progress. After
being con“dent on the replicability of previously
found experimental “ndings in various domains in
literature (Lee and Moray, 1992; Moray et al.,
2000; Dzindolet et al., 2000; De Vries et al., 2003)
by means of validating the two above mentioned
hypotheses, the experimental environment will be

used for further research, such as on indirect ac-
quisition of knowledge (e.g., reputation, gossip),
analogical judgments, allocation engagement costs
(e.g., waiting, cooperation, and overhead costs),
allocation implementation errors, level of autonomy,
the allocation decision inhibitory bound, quantity
and seriality of tasks, and time pressure. Extensions
of (agent-based) cognitive models of trust and in-
vocation concepts for machine monitoring of the
allocation task (adaptive systems) are subject of
investigation in the near future. Future research on
cognitive modeling of trust aims at support in the
four stages of information processing deliberation
(Parasuraman et al., 2000): the acquisition of in-
formation relevant for trust, its integration to trust
concepts, task allocation decision making based on
trust concepts, and the implementation of the allo-
cation decision. Moreover, future research foci on
investigating the degree to which new or extended
cognitive theories, based on formal modeling and
controlled laboratory experiments, are translatable
to more complex real world situations.
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Abstract„This paper argues that it is important to
study issues concerning trust and reliance when developing
systems that are intended to augment cognition. Operators
often under-rely on the help of a support system that
provides advice or that performs certain cognitive tasks
autonomously. The decision to rely on support seems to be
largely determined by the notion of relative trust. However,
this decision to rely on support is not always appropriate,
especially when support systems are not perfectly reliable.
Because the operator•s reliability estimations are typically
imperfectly aligned or calibrated with the support sys-
tem•s true capabilities, we propose that the aid makes
an estimation of the extent of this calibration (under
different circumstances) and intervenes accordingly. This
system is intended to improve overall performance of
the operator-support system as a whole. The possibilities
in terms of application of these ideas are explored and
an implementation of this concept in an abstract task
environment has been used as a case study.

1 INTRODUCTION

One of the main challenges of the Augmented
Cognition Community is to explore and identify
the limitations of human cognitive capabilities and
try to let technology seamlessly adapt to them.
This paper focuses on augmenting human cognitive
capabilities concerning reliance decision making.

Operators often under-rely on the help of a sup-
port system that provides advice or that performs
certain cognitive tasks autonomously. The decision
to rely on support seems to be largely determined by
the notion of relative trust. It is commonly believed

that when trust in the support system is higher than
trust in own performance, operators tend to rely on
the system. However, this decision to rely on help
is not always appropriate, especially when support
systems are not perfectly reliable. One problem is
that the reliability of support systems is often under-
estimated, increasing the probability that support is
rejected. Because the operator•s reliability estima-
tions are typically imperfectly aligned or calibrated
with true capabilities, we propose that the aid makes
an estimation of the extent of this calibration (under
different circumstances) and intervenes accordingly.
In other words, we study a system that assesses
whether human decisions to rely on support are
made appropriately. This system is intended to im-
prove overall performance of the operator-support
system as a whole.

We study a system in which there is an operator
charged with making decisions, while being sup-
ported by an automated decision support system. As
mentioned above, the aim is to make the operator-
support system as a whole operate as effectively as
possible. This is done by letting the system automat-
ically assess its trust in the operator and in itself,
and adapt or adjust aspects of the support based on
this trust. This requires models of trust, including a
way of updating trust based on interaction data, as
well as a means for adapting the type of support.

In this study, trust is de“ned as the attitude that
an agent will help achieve an individual•s goals,
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possibly the agent itself, in a situation character-
ized by uncertainty and vulnerability (Lee and See,
2004). Trust can refer to the advice of another
agent or to one•s own judgment. Trust, like the
feelings and perceptions on which it is based, is a
covert or psychological state that can be assessed
through subjective ratings. To assess trust, some
studies have used scales of trust (e.g., Lee and
Moray, 1992) and some studies have used scales of
perceived reliability (e.g., Wiegmann et al., 2001).
The latter is used because no operator intervention
is needed. We distinguish trust from the decision
to depend on advice, the act of relying on advice,
and the appropriateness of relying on advice (Klos
and La Poutŕe, 2006; van Maanen and van Dongen,
2005).

As a “rst implementation of this closed-loop
adaptive decision support system, the operator-
system task described in (van Dongen and van Maa-
nen, 2006) has been extended.1 This architecture
instantiation leads to an overview of the lessons
learned and new insights for further development
of adaptive systems based on automated trust as-
sessment. The present paper discusses some key
concepts for improving the development of systems
that are intended to augment cognition. The focus
is on improving reliance on support.

In Section 2 an overview is given of the the-
oretical background of reliance decision making
support systems and its relevance to the Augmented
Cognition Community. In Section 3 the conceptual
design of a reliance decision making support system
is given. In Section 4 an instantiation of this design
is described and evaluated. We end with some
conclusions and future research.

2 THEORETICAL BACKGROUND

The goal of augmented cognition is to extend
the performance of human-machine systems via
development and usage of computational technolo-
gies. Adaptive automation may be used to augment
cognition. Adaptive automation refers to a machine
capable of dynamic reallocation of task responsi-
bility between human and machine. Reallocation
can be triggered by changes in task performance,

1A description and analysis of this system will be published in
another paper in preparation.

task demands, or assessments of workload. The
goal of adaptive automation is to make human-
machine systems more resilient by dynamically
engaging humans and machines in cognitive tasks.
Engaging humans more in tasks may solve out-of-
the-loop performance problems, such as problems
with complacency, situation awareness, and skills-
degradation. This may be useful in situations of
underload. Engaging machines more in tasks may
solve performance degradation when the demand for
speed or attention exceeds the human ability. This
may be useful in situations of overload.

It should be noted that the potential bene“ts
of adaptive automation turn into risks when the
system wrongly concludes that support is or is not
needed, or when the timing or kind of support is
wrong (Parasuraman et al., 1999). For the adaptive
system there may be problems with the real-time
acquisition of data about the subject•s cognition,
with determining whether actual or anticipated per-
formance degradations are problematic, and with
deciding whether, when, and in what way activities
need to be reallocated between human and machine.
When the adaptive system is not reliable we create
rather than solve problems: unwanted interruptions
and automation surprises may disrupt performance
and may lead to frustration, distrust, and disuse of
the adaptive system (Parasuraman and Riley, 1997).
In this paper we focus on computational methods
that can be used to adjust the degree in which the
machine intervenes.

When machine decisions about task reallocation
are not reliable under all conditions the human
operator should somehow be involved. One way
is to make the reasoning of adaptive automation
observable and adjustable for the operator. Under-
standing the machine•s reasoning would enable her
to give the system more or less room for inter-
vention. Another and more ambitious way to cope
with unreliable adaptive automation is by having
a machine adjust its level of support based on a
real-time model of trust in human reliance decision
making capabilities. In this case it is the machine
which adjusts the level of support it provides. The
idea is adjusting the level of support to a level that
is suf“ciently reliable for the user, that problems
with frustration, distrust and disuse of the adaptive
system are reduced.
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A rational decision maker accepts support of an
adaptive system when this would increase the prob-
ability of goal achievement and reject this support
when it would decrease goal achievement. We rely
more on support when we believe that it is thought
to be highly accurate or when we are not con“dent
about our own performance. People seem to use a
notion of relative trust to decide whether to seek
or accept support (Moray et al., 2000; Dzindolet
et al., 2003; van Dongen and van Maanen, 2006).
We also rely more on support when the decision of
the system to provide support corresponds to our
own assessment. The performance of an adaptive
support system has to be trusted more than our
own performance as well as be appropriately timed.
In making a decision to accept support, users are
thought to take the reliability of past performance
into account. This decision to accept support is not
based on a perception of actual reliability, but on
how this is perceived and interpreted. Unfortunately,
research has shown that trust and perceptions of reli-
ability may be imperfectly calibrated: the reliability
of decision support is under-estimated (Wiegmann
et al., 2001; van Dongen and van Maanen, 2006).
This could lead to under-reliance on systems that
provide adaptive support. In this paper we argue
that, because of this human bias to under-rely
on support, reliance decision support designs are
needed that have the following properties:

€ FeedbackThey should provide feedback about
the reliability of past human and machine per-
formance. This would allow humans to better
calibrate their trust in their own performance
and that of the machine, and support them to
appropriately adjust the level of autonomy of
adaptive support.

€ Reliance They should generate a machine•s
decision whom to rely on. Humans could use
this recommendation to make a better reliance
decision. This decision could also be used
by the machine itself to adjust its level of
autonomy.

€ Meta-reliance They should generate a ma-
chine•s decision whom to rely on concerning
reliance decisions. This decision could com-
bine and integrate the best reliance decision
making capabilities of both human and ma-

chine. This could also be used by the machine
itself to adjust its level of autonomy.

In the following sections we show how the above
three functions could be realized by a system that
automatically assesses trust in real-time.

3 CONCEPTUAL DESIGN OFRELIANCE

DECISION SUPPORT

In this section the three properties mentioned
above are described in more detail, in terms of
three increasingly elaborate conceptual designs of
reliance decision support. First we abstract away
from possible application domains in order to come
to a generic solution. The designs presented in this
section are applicable if the following conditions are
satis“ed:

€ The application involves a human-machine co-
operative setting concerning a complex task,
where it is not trivial to determine whether the
machine or the human has better performance.
In other words, in order to perform the task at
hand, it is important to take both the human•s
and the machine•s opinion into account.

€ Both the human operator and the automated aid
are able to generate solutions to the problems
in the application at hand. In other words, both
are in principle able to do the job and both
solutions are substitutable, but not necessarily
generated in a similar way and of the same
quality.

€ Some sort of feedback is available in order
for both machine and human to be able to
estimate their respective performances and gen-
erate trust accordingly. In other words, there
is enough information for reliance decision
making.

In many cases, if for a certain task the above
conditions do not hold (e.g., the operator•s solution
to a problem is not directly comparable to the aid•s
solution, or no immediate feedback is available),
then for important subtasks of the task they gen-
erally still hold.

One could say that for all automated support
systems the aid supports the operator on a scale
from a mere advice being asked by the user, to com-
plete autonomous actions performed and initiated by
the aid itself. More speci“cally, for reliance deci-
sion making support, this scale runs from receiving
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advice about a reliance decision, to the reliance
decision being made by the aid itself. In a human-
machine cooperative setting, areliance decisionis
made when either the aid or the operator decides to
rely on either self or other. In the designs presented
below the termshuman adviceandmachine advice
refer to the decision made for a speci“c task. The
termshuman relianceandmachine reliancerefer to
the reliance decisions made by the human and the
machine, respectively, i.e., the advice (task decision)
by the agent relied upon. Finally, the termmachine
meta-reliancerefers to the decision of the machine
whether to rely on the human or the machine with
respect to their reliance capabilities.

3.1 Feedback

Agreement or disagreement between human and
machine concerning their advice can be used as
a cue for the reliability of a decision. In case
of agreement it is likely that (the decision based
on) the corresponding advice is correct. In case of
disagreement, on the other hand, at least one of
the advices is incorrect. To decide which advice
to rely on in this case, the operator has to have
an accurate perception of her own and the aid•s
reliability in giving advice. The machine could pro-
vide feedback about these reliabilities, for instance
by communicating past human and machine advice
performance. This would allow humans to better
calibrate their trust in their own performance and
that of the machine, and support them to adjust
the machine•s level of autonomy. In Figure 1 the
conceptual design of machine feedback is shown.

Human advice Machine advice

Human reliance Machine feedback

�

����������

�

Figure 1. Both human and machine generate an advice on which
the human•s reliance decision is based. The machine provides feed-
back, for instance about the reliability of past human and machine
performance. This allows humans to better calibrate their trust.

3.2 Reliance

Unfortunately, by comparing advice, one intro-
duces an extra cognitive task: making a reliance
decision. In this particular design the machine aug-
ments the cognitive function of reliance decision
making, resulting in a decrease of the operator•s
workload. This can be in the form of a recom-
mendation, or the reliance decision can be made
autonomously by the machine, without any interven-
tion by the human operator. The machine or human
could adjust the machine•s level of autonomy in that
sense. Additionally, the human could provide feed-
back in order to improve the machine•s decision.
For instance, the human can monitor the machine
in its reliance decision making process and possibly
veto in certain unacceptable situations. In Figure 2
the conceptual design of such machine reliance is
shown.

Human advice Machine advice

Human feedback Machine reliance

� � � � � � � � �� �

�

Figure 2. The machine generates a reliance decision. In this
particular design the machine augments the cognitive function of
reliance decision making. Both human and machine generate an
advice on which the machine•s reliance decision is based. It is
possible that the human gives additional feedback.

3.3 Meta-reliance

Since in some situations humans make better re-
liance decisions, and in others machines do, reliance
decision making completely done by the machine
does not result in an optimal effect. Therefore, it
may be desirable to let the machine decide whom
to rely on concerning making reliance decisions. We
called this processmeta-reliance decision making
and it combines the best reliance decision making
capabilities of both human and machine. If the ma-
chine•s meta-reliance decision determines that the
machine itself should be relied upon, the machine
would have a high level of autonomy, and otherwise
a lower one. Hence the machine is capable of adapt-
ing its own autonomy. In Figure 3 the conceptual
design of machine meta-reliance is shown.
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Human advice Machine advice

Human reliance Machine reliance

Human feedback Machine meta-reliance

� � � � � � � � �� �

�

� � � � � � � � �� ��

����������

Figure 3. The machine generates a meta-reliance decision. It
combines the best reliance decision making capabilities of both
human and machine. Both the human and the machine generate
advices and reliance decisions, on the latter of which the machine•s
meta-reliance decision is based.

4 IMPLEMENTATION AND EVALUATION

In this section we describe a proof-of-concept for
the ideas presented above. In previous work (van
Dongen and van Maanen, 2006), a collaborative
operator-aid system was used in laboratory exper-
iments to study human operators• reliance decision
making. None of the additions described in Sec-
tion 3 were employed, the setting was essentially
that described in Section 3.1, without the aid•s
feedback. We have now extended the aid•s design
to provide the reliance and meta-reliance properties,
and simulated the extended system•s performance,
compared to the results from the laboratory ex-
periments. Below, we “rst describe the original
and the extended task, and then the corresponding
extensions in the aid•s design. Finally, we present
the improvements in system performance resulting
from these additions.

4.1 The Task

For the experiment described in (van Dongen
and van Maanen, 2006), participants read a story
about a software company interested in evaluating
the performance of their adaptive software before
applying it to more complex tasks on naval ships.
The story pointed out that the level of reliability
between software and human performance was com-
parable and around70%. Participants were asked to
perform a pattern recognition task with advice of

a decision aid and were instructed to maximize the
number of correct answers by relying on their own
predictions as well as the advice of the decision aid.
The interface the participants were presented with is
presented in the “rst3 and the6th rows of Figure 4.
The task constitutes making a choice between3

Figure 4. An example interaction between the operator and the
automated decision aid. The rows represent the different phases of
the operator-aid task. For the current research, phases 4 and 5 were
added to the task environment described in (van Dongen and van
Maanen, 2006).

alternatives, as shown in each of the rows in the
interface. In phase1 the operator chooses, based
on her own personal estimation of the pattern to be
recognized. Then in phase2 the machine chooses,
with a pre-“xed average accuracy of70%. Finally,
in phase3, the operator makes a reliance decision,
by selecting the answer given in the “rst2 phases
by the agent she chooses to rely on. (The operator is
free to choose a different answer altogether, but this
happened only rarely in the experiments.) The last
action of each trial consists of the feedback given by
the system about which action was the correct one
(phase6), the corresponding button colored green
if the operator•s reliance decision was correct, and
red if it was incorrect.

In order to support the operator in making re-
liance decisions the above operator-aid task was ex-
tended by adding2 phases representing the aid•s re-
liance (Section 3.2) and meta-reliance (Section 3.3)
decisions. The next section details the aid•s design
in this respect.

4.2 Design of the Aid

In the original experiments, the aid did nothing
more than provide an advice to the human operator.
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The enhancements to the aid•s design were intended
to provide the properties Reliance and Meta-reliance
discussed in Section 3, to allow improvement upon
the operator•s Reliance Decision Making (RDM) in
the form of Reliance Decision Making of the Ma-
chine (RDMM) and Meta-Reliance Decision Mak-
ing of the Machine (Meta-RDMM).

Both RDMM and Meta-RDMM are based on a
generic trust model (Klos and La Poutré, 2006) that
allows the aid to estimate the operator•s and the aid•s
abilities to make advice (task-related, prediction)
and reliance decisions. The RDMM module makes
the decision in phase4 in Figure 4 (•Reliance Aid•),
based on a comparison of the aid•s trust in the
operator•s and the aid•s own prediction abilities
(phases1 and2). Like the operator in phase3, the
aid proposes in phase4 the answer given in phases1
and2 by the agent it trusts most highly, where trust
refers topredictioncapability. In case of disagreeing
reliance decisions in phases3 and4, the aid chooses
among the operator and the aid in phase5, this time
based on a comparison of its trust in the two agents•
reliance decision makingcapabilities.

As mentioned above, the same basic trust model
is used for both estimates (prediction and reliance
decision making capabilities). Essentially, the re-
spective abilities are modeled as random variables
0 � � x

a � 1, which are interpreted as the probabili-
ties of each of the agentsa � { operator, aid} mak-
ing the correct decisionx � { prediction, reliance} .
The aid uses Beta probability density functions
(pdfs) over each of these4 random variables to
model its belief in each of the values of� � [0, 1]
being the correct one. Based on the feedback ob-
tained in phase6, each of the answers given in
phases1 through 4 can be classi“ed as •success•
or •failure• depending on whether the operator and
the aid, respectively, were correct or incorrect in
their prediction and reliance decisions, respectively.
At the end of each trial, the aid uses Bayes• rule
to update each of its estimates given the newly
obtained information from phase6. The advantage
of using a Beta pdf as a prior in Bayesian inference
about a binomial likelihood (such as that of� ), is
that the resulting posterior distribution is again a
Beta pdf (D•Agostini, 2003; Gelman et al., 2004).

In the next trial, the aid uses the new estimates
about the agents• prediction abilities for RDMM

in phase4, and the estimates about the agents•
reliance decision making abilities for Meta-RDMM
in phase5.

4.3 Experimental Results

The original experimental design and results are
discussed in (van Dongen and van Maanen, 2006).
Here, we show to what extent the elaborations of
the aid•s design were able to enhance the system•s
overall performance. Table I shows these results.

Table I
PERFORMANCE(PERCENTAGE CORRECT) OF OPERATOR

RELIANCE DECISION MAKING (OPERATOR-RDM), RDMM, AND

META-RDMM. PER ROW, THE DIFFERENCES BETWEEN

OPERATOR-RDM AND RDMM, AND OPERATOR-RDM AND

META-RDMM, ARE SIGNIFICANT.

Operator-RDM RDMM Meta-RDMM

Exp. 1 0.65 0.70 0.70
Exp. 2 0.67 0.70 0.69
Both 0.66 0.70 0.69

Each participant played two experiments of101
trials each. For each row, the improvements from
operator reliance decision making (Operator-RDM)
to RDMM, and from Operator-RDM to Meta-
RDMM are signi“cant. No signi“cant difference in
performance is found between RDMM and Meta-
RDMM. There are no signi“cant differences be-
tween experiment1, 2, and both, for RDMM and
Meta-RDMM. However, the differences between
experiment1, 2, and both, for Operator-RDM are
signi“cant. This means that, in our experiments,
there was no measurable effect on performance of
(Meta-)RDMM due to operator learning effects.

Our results indicate that the quality of the deci-
sion to rely on the prediction of either the operator
or the aid is higher when it is made by RDMM
than when it is made by human participants. When
a computer would make reliance decisions based on
RDMM it would outperform most human partici-
pants. However, it also became clear that in some
situations humans make better reliance decisions
than aids, and in others aids do. This means that
reliance decision making completely done by the aid
does not necessarily result in optimal performance.
Meta-RDMM tries to take advantage of this and is
based on the idea that the aid itself decides when
to rely on RDMM and when to rely on the operator
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for reliance decision making (meta-reliance). Our
results show that Meta-RDMM also outperforms
human participants in reliance decision making,
but (surprisingly) signi“cant differences between
RDMM and Meta-RDMM were not found.

5 CONCLUSION

The goal of augmented cognition is to extend
the performance of human-machine systems via
development and use of computational technology.
In the context of the current work, performance can
be improved when, like in human-human teams,
both human and machine are able to assess and
reach agreement on who should be trusted more and
who should be relied on in what situation.

In this paper we showed that human reliance
decisions are not perfect and reliance decision mak-
ing can be augmented by computational technology.
Our machine reliance decision making model out-
performs human reliance decision making.

Now that we have our proof-of-concept in an
abstract task, we intend to investigate how human-
machine cooperation can be augmented in more
complex and more realistic situations. We intend to
focus on how models of trust and reliance can be
practically used to adjust the level of autonomy of
adaptive systems. We want to investigate in what
domains this kind of support has an impact on
the effectiveness of task performance, and how the
magnitude of the impact depends on the task•s and
the domain•s characteristics. How serious are the
conditions mentioned in section 3, both in terms
of limiting the scope of application domains, and
in terms of determining the effectiveness of our
solutions. An important question is whether the
properties of our abstract task environment are par-
alleled in real-world settings.
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Chapter 5

Reliance on Advice of Decision
Aids: Order of Advice and
Causes of Under-Reliance

This chapter is partly based on (van Dongen and van Maanen, 2005, 2006b,a).
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Abstract„This study investigates the effects of order
and reliability of advice on reliance on decision aids.
Effects are measured in terms of attribution of errors,
estimation of reliability, understandability of processes,
and accuracy motivation. Anchoring effects predict more
reliance on advice when provided before the own judg-
ment. Attribution biases predict underestimation of the
reliability of the decision aid. Asymmetry in understand-
ability of process predicts reliance on self. Accuracy
motivation predicts willingness to accept advice. 79 Par-
ticipants performed an uncertain pattern learning task
with a decision aid and received performance feedback.
Advice was presented before or after the own judgment.
Participants chose to rely on their own judgments or on
advice of the decision aid. Reliance on the decision aid
was not higher when advice was presented before the own
judgment, surprisingly perceived reliability of self was.
Operators did not rely more often on the decision aid
when in disagreement, although they perceived it to be
30% more reliable. Errors of the decision aid were less
attributed to temporary and uncontrollable causes and
its reliability was underestimated persistently. Reliance on
self was not only predicted by a biased relative trust,
but also by relative understandability and responsibility
felt for accuracy. Cuing effects are found, but only when
people trust themselves more than the decision aid. Under-
reliance can be caused by asymmetries in estimation
of reliabilities and attribution of errors, asymmetries in
understandability of underlying process, and low accuracy
motivation. These “ndings are potentially applicable for
the design of decision aids and training procedures.

1 INTRODUCTION

Information and communication technology is
changing the nature of work. The use of decision
aids in complex systems, such as aviation, nuclear
power, health care or command and control is be-
coming increasingly common. The assumption be-

hind the introduction of decision aids is that a team
of human and decision aid will be more effective
than either human or decision aid working alone.
Performance improvement by introducing decision
aids is dif“cult to predict, because decision aids
are not always used appropriately. It is often found
that users tend to rely too much or too little on
decision aids (Parasuraman and Riley, 1997). For
instance, Skitka et al. (1999) found that unaided
participants made fewer errors than participants who
worked with a decision aid. The last group relied too
much on the aid and missed events that they could
have discovered manually. Like human operators,
in complex domains, it is not likely that decision
aids are100% reliable. A problem with decision
aids is that these systems often have incomplete or
unreliable data or knowledge and use simplifying
assumptions that make them brittle (Guerlain et al.,
1999). This means that users cannot blindly accept
advice of a decision aid; sometimes they need to
reject advice and rely on their own decision. The
tendency to accept advice depends among others on
the reliability of the decision aid.

The relationship between the reliability of the
decision aid and the users• reliance on decision aids
is complex and multifaceted (Thomas and Rantanen,
2006; Parasuraman and Riley, 1997; Dzindolet et al.,
2003; Lee and See, 2004). It seems not possi-
ble to determine a “xed threshold for an accept-
able level of unreliability (Thomas and Rantanen,
2006) (though Wickens and Dixon (2007) suggest
a threshold level of70%). Reliance on advice is
mediated by a range of cognitive variables of which
trust in oneself (self-con“dence) and trust in the
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decision aid are two central concepts. To increase
the effectiveness of human-computer collaboration
several frameworks have been developed to better
understand how people use decision aids.

This paper is composed of the following sections.
In Section 2 related work on the psychological
effects on reliance on decision aids is discussed. In
Section 3 our contribution is explained by posing
several research questions and motivating a number
of hypotheses with respect to 1) the self bias and the
order of advice, 2) understandability of underlying
reasoning, 3) feeling of responsibility, 4) accuracy
of perceived reliability and 5) the attribution bias.
After this, in Section 4 the method of the exper-
iment is described of which the results are given
in Section 5. In Section 6 the paper ends with a
discussion and conclusions.

2 BACKGROUND

Several frameworks of trust have been developed
to identify factors that affect reliance on decision
aids (e.g., Dzindolet et al., 2001; Lee and See,
2004). The framework of Dzindolet et al. (2001)
emphasizes cognitive, social and motivational fac-
tors in reliance on decision aids. Concerning cog-
nitive factors, users for instance compare the per-
ceived reliability of the decision aid with how they
perceive their own. Whether this leads to appro-
priate reliance on the advice of the decision aid,
depends on whether these perceptions of reality
correspond to reality. Dzindolet et al. (2001) how-
ever have suggested that users often wrongly expect
that decision aids perform nearly perfect due to
their seemingly infallible calculation capabilities.
Another example of a cognitive factor is that users
sometimes rely on decision aids to save mental
effort. Mosier and Skitka (1996) have used the term
•automation bias• to refer this tendency.

Concerning social factors, trust is an important
factor. People rely more on decision aids when they
trust the decision aid more than themselves (Mosier
and Skitka, 1996). Other examples of social factors
are: feelings of control and moral obligation to rely
on oneself. Finally, motivational factors such as the
effort invested in relying on oneself or decision
aid are also part of the framework. Motivation is
affected by context factors such as workload and
penalties or rewards when (not) using decision aids.

The strengths of the framework of Dzindolet
et al. (2001) is that it identi“es many psychological
factors that may affect reliance decisions. A disad-
vantage of the framework is that it is less speci“c on
the dynamics of trust and reliance and less speci“c
on the appropriateness of trust.

The framework of Lee and See (2004) and that
of Gao and Lee (2006) emphasize the dynamics
of trust in, and reliance on, automation and take
into account the role of feedback. Trust is not
static, it changes in time as it is in”uenced by
direct and indirect sources of knowledge. Trust is
de“ned as the attitude that an agent will help achieve
an individual•s goals in a situation characterized
by uncertainty and vulnerability. A distinction is
made between, trust itself on the decision aid, the
decision to rely on it, the act of reliance on it, and
the appropriateness of this reliance on the decision
aid (van Dongen and van Maanen, 2006). Trust is
affected by positive and negative experiences with
the decision aid; by reputation and gossip about
it, but also by properties of the user such as the
propensity to trust (Merritt and Ilgen, 2008). It can
be based on analogical judgments, judgment about
the trustworthiness of a category rather than on the
actual performance of one of its presumed members.
Etiquette may for instance in”uence trust because
category membership associated with adherence to
a particular etiquette helps people to infer how
automation will perform (Miller, 2002). Like the
framework of Dzindolet et al. (2001) this framework
recognizes relative trust as a basic component of
decisions about reliance: reliance is determined by
the difference between a decision maker•s trust in a
decision aid and the con“dence he has in his own
performance. If this difference exceeds a particular
threshold, i.e., when the trust in the decision aid is
higher by some amount than the decision maker•s
self-con“dence, then he will switch from relying on
oneself to relying on the decision aid and vice versa.
Trust, in turn, depends upon previous performance
of oneself or decision aid. This creates a feedback
loop which is an important element of the frame-
work (Gao and Lee, 2006).

The framework of Lee and See (2004) also
emphasizes how changes in trust and reliance are
affected by system factors such as interface fea-
tures; factors such as the tendency to trust; by
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organizational factors such as gossip and reputation;
cultural factors such as norms and expectations; and
task and context factors such as workload and time
constraints. In addition to a focus on the dynamics
of trust this framework also provides concepts to
determine the appropriateness of trust. It integrates
concepts like trust calibration.

3 HYPOTHESES

In this section the research questions and hy-
potheses on which the present research is based are
given and motivated. We try to give answers to the
following research questions:

1a) When do we observe a self bias rather than
an automation bias?

1b) What is the effect of relative trust and the
order in which advice is presented (i.e., either
before or after making one•s own opinion
explicit) on these biases?

2a) Can performance be used to accurately predict
reliance behavior on a decision aid?

2b) What is the effect of asymmetric availability
of to the reasoning underlying the advice
of the decision aid and one•s own decision
making?

3) Does the level of responsibility felt for achiev-
ing the task outcome in”uence reliance on
advice?

4) Does feedback about performance result in
over- or underestimation of the reliability of
oneself and the decision aid?

5) Are the causes of unreliability differently at-
tributed for oneself and decision aid?

The above questions 1 (a and b), 2 (a and b), 3,
4 and 5 are further discussed in sections 3.1, 3.2,
3.3, 3.4 and 3.5, respectively. These discussions lead
to 7 hypotheses.

3.1 Self Bias and Order of Advice

In many operational settings, it takes less mental
effort to use advice of a decision aid than to vig-
ilantly seek and process information oneself. This
however is not always the case. In some situations
it takes more effort to seek, accept and use advice
of a decision aid than to rely on one•s own opinion.
For the same reason people heuristically rely on a
decision aid, people may heuristically rely on their
own thinking: that is to save mental effort. Theself

bias or self heuristic is expected to be observed
when the effort to rely on one•s own judgment is
perceived to be lower than the effort required by
accepting advice of a decision aid. This may for
instance be the case when one•s own judgment is
cognitively more •available• than advice of a deci-
sion aid or when advice of a decision aid con”icts
with one•s initially held beliefs. According to the
availability heuristic people base their prediction
on how easily knowledge can be brought to mind
(Tversky and Kahneman, 1973). This suggests that
the availability of one•s own judgment relative to
that of the decision aid will affect whether an
automation biasor a self bias is induced.

The degree to which advice is available to one•s
own judgment may for instance be in”uenced by the
order in which advice is provided by decision aids.
Advice of a decision aid can either be presented
before or after the decision maker has formed his
own opinion. When advice is presented “rst, people
can automatically follow that advice without think-
ing about the problem themselves. This causes their
own knowledge about the decision problem at hand
to be mentally less available. Sniezek and Buckley
(1995) found that the answers of participants who
received advice “rst, matched more often with the
answers of the advisor compared to participants who
“rst formed their own opinion. This tendency to rely
on advice may be reduced by actively involving
humans in decision making. This can be done
by providing advice after the decision maker has
formed his own judgment, instead of before. This is
for instance also done in critiquing systems (Guer-
lain et al., 1999; Silverman, 1992). When advice
is presented after people have formed their initial
decision, they cannot automatically follow advice.
They are required to “rst think for themselves,
which makes their own cognitions more available.

However, presenting the advice after an own
judgment is formed might cause other problems.
The literature on decision making suggests that
people are often reluctant to change their mind;
tend to commit to their initial judgments; wish to
be consistent in their thoughts and actions; tend to
ignore or under-utilize con”icting information or
simply tend to rely on the “rst alternative that is
good enough.

Further, advice that is provided after one has
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formed one•s own judgment makes possible dis-
agreement with a decision aid also more salient.
Madhavan and Wiegmann (2007), for instance,
found that when participants were forced to answer
before they received advice of a decision aid, they
disagreed more often with the decision aid com-
pared to participants who “rst received advice.

Together with the availability effect, this tendency
to stick to one•s initially formed judgment may in-
duce a self bias when advice is presented after one•s
own judgment. Changing the order of advice takes
the human in the loop and reduces the automation
bias, but may be replaced by a self bias.

The in”uence of order of advice on reliance
behavior is also expected to be affected by rela-
tive trust. Relative trust is the difference between
trust in own performance and trust in that of the
decision aid. Relative trust is for an important part
determined by perceptions of reliability (Lee and
See, 2004; Gao and Lee, 2006). When people trust
the decision aid more than themselves we think that
the tendency to rely on oneself is not induced. This
boils down to the following hypothesis:

Hypothesis 1. The self bias is observed when
con”icting advice is presented after people have
formed their initial judgment, but only when they
trust themselves more than the decision aid.

3.2 Understandability of Underlying Reasoning

In contrast to one•s own reasoning, the reasoning
of a decision aid is often not easily accessible
or understandable to the user, especially when the
decision aid is a computer rather than a human.
At best, only part of the decision aid•s reasoning
can be made transparent. However, this is often
not understandable and therefore cognitively not
available. In most cases, only a small part of the
decision aid•s reasoning is transparent. Yaniv and
Kleinberger (2000) argue that advice is often under-
used because decision makers have direct access
to the reasons supporting their own judgment as
well as to the strength of those reasons, but often
have no direct access to the reasons underlying the
advice of an advisor or in this case a decision
aid. A common assumption in cognitive psychology
is that the weight placed on a judgment depends
on the evidence that is recruited to support that

judgment (Tversky and Koehler, 1994). Because the
processes underlying the decision aid•s advice are
less available and understandable compared to one•s
own judgment, we expect that reliance on advice
of the decision aid cannot be solely predicted by
relative trust in performance reliability.

The above leads to the following two hypotheses:

Hypothesis 2. Decision makers rely less on the
decision aid than would be expected based on
relative trust in performance reliability alone.

Hypothesis 3. Decision makers rely less on con-
”icting advice when they perceive the advisor•s
reasoning to be cognitively less available and un-
derstandable than their own reasoning.

3.3 Feeling of Responsibility

Working in a team has advantages and disadvan-
tages. Although two may know more than one, a
disadvantage of teamwork may be that responsi-
bility may diffuse between its members and that
they do not feel accountable for the task outcome.
Several researchers think of the humancomputer
system as a team in which one member is not
human (e.g., Bowers et al., 1996). The human may
feel less responsible for the outcome when working
with a decision aid than when working alone and
may invest less mental effort. It is expected that
the less responsible the person feels, the less mo-
tivated the person is to invest mental effort in the
task and the more likely he is to act heuristically.
In situations that induce the automation heuristic
one expects users to heuristically rely on advice.
In situations that induce a self bias, however, we
expect the opposite effect. When disagreement with
the decision aid is salient, we expect people to
invest the mental effort that is needed to overcome
commitments to initial judgments, but only when
they feel responsible for the task outcome. When
the felt responsibility for task outcome is low, we
expect that people do not change their mind and
tend to reject con”icting advice. This results in the
following hypothesis:

Hypothesis 4. In situations that induce a self bias,
people who feel more responsible for the task out-
come, rely more on con”icting advice than people
who feel less responsible.
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3.4 Accuracy of Perceived Reliability

The above mentioned psychological concepts
(i.e., perceived reliability, relative trust, cognitive
availability, understandability and responsibility)
may explain how reliance decisions are made, but
do not explain whether reliance on advice is appro-
priate or not.

For appropriate reliance on advice one would
expect a rational decision-maker to rely on advice
when this would increase the probability of goal
achievement and to reject advice when it would
decrease this probability. The decision to accept or
reject advice is, however, not based on a comparison
of the actual reliability of oneself or decision aid,
but on how these are perceived. Unfortunately these
perceptions not necessarily correspond to reality and
may be prone to random and systematic errors.
Perceived reliability of oneself and decision aid
may be under-estimated or over-estimated and when
the direction or magnitude of error differs between
oneself and decision aid this could lead to over-
reliance or under-reliance on advice.

Concerning perception of one•s own performance,
studies of judgment under uncertainty have indi-
cated that humans are often over-con“dent (e.g.,
Alba and Hutchinson, 2000). An explanation for this
is that people tend to focus on supporting rather
contradictory evidence for a judgment, decision
or prediction. Although pervasive in the literature,
over-estimation of one•s own performance is not
universal (Brenner et al., 1996). May (1987, 1988)•s
results for instance yielded 9% over-con“dence
when con“dence in performance was estimated af-
ter each answer, whereas a 9% under-con“dence
was found when con“dence in performance was
estimated after each block. An explanation for this
is that estimated percentage correct is likely to be
based on a general evaluation of the dif“culty of the
task or based on feedback about performance, rather
than on a balance of arguments for and against each
speci“c judgment (Brenner et al., 1996). Whether
over- or underestimation of one•s own performance
is observed seems to depend on how and when
people are asked to estimate their performance rate.

Concerning the perception of the decision aid•s
performance, Wiegmann et al. (2001) found that it
is often underestimated. One reason for this may

be that decision aids do not perform as expected.
Dzindolet et al. (2001) argue that the perception of
the reliability of an automated decision aid is “ltered
through the operator•s •perfect automation schema•
or expectation that automation will perform at near
perfect rates. This sometimes unrealistic expectation
may lead operators to pay too much attention to in-
formation that is in con”ict with the schema: errors.
Consequently, errors made by automation trigger a
rapid decline in trust when decision aids make errors
(Dzindolet et al., 2002). Whether the decision aid•s
performance is over- or underestimated depends on
what level of performance is expected in advance.

Providing users of decision aids with realistic
information about the user•s reliability and that
of the decision aid results in more appropriately
calibrated trust. Although performance feedback
is expected to improve the accuracy of perceived
reliability of oneself and decision aid, it is not
expected to lead to a perfect correspondence. It has
been argued that trust is a nonlinear function of
performance and that it tends to be conditioned by
negative experiences. Negative experiences have a
greater in”uence on the perception of the reliability
of the decision aid than positive experiences (Lee
and See, 2004). Although performance feedback
is expected to improve perceptions of reliability,
underestimation of performance is expected because
of this negativity effect. This leads to the following
hypothesis:

Hypothesis 5.Perceived reliability of both oneself
and decision aid is underestimated when feedback
about performance is provided.

3.5 Attribution Bias

Reliance on decision aids is not only affected by
beliefs about performance reliability itself, but also
by beliefs about the processes that affect this per-
formance (Lee and See, 2004). When the processes
underlying the decision aid•s advice and the factors
that affect the reliability of these processes are
not observable, causes of unreliability areinferred
instead of observed. According to Weiner (1986)•s
attribution theory, these causal attributions result in
affective reactions, which may affect the level of
trust in the decision aid or oneself. The attribution
theory claims that how people assign success and
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failure can be divided into three categories. The “rst
is internal or external attribution (locus). External
attribution means that performance is perceived to
be in”uenced by attributes outside the decision aid,
such as the dynamics, complexity or unpredictabil-
ity of the task. Internal attribution means that perfor-
mance is perceived to be in”uenced by factors inside
the decision aid, such as the competence or motiva-
tion to perform the task. The second is attribution to
factors that are temporary or permanent (stability).
When errors are thought to be caused by temporary
factors, more optimism is expected than when errors
are attributed to permanent attributes of the agent or
task. The third category is attribution to factors one
can or cannot control (controllability). When errors
are assigned to causes that are not under control
(e.g., unpredictability of situation) people are more
forgiving than when errors are perceived to be under
control (e.g., motivation).

Unfortunately, people are known to be biased in
how causes are attributed to success and failure
and asymmetries in attribution of one•s own per-
formance to causes and that of others are often
found. One common bias in assigning causes is
called thefundamental attribution erroror corre-
spondence bias. This is the tendency of people to
under-emphasize situational causes for the behavior
of others. Our own errors are more likely to be
attributed to temporary, external or uncontrollable
factors, while errors of others are more likely to
be attributed to permanent, internal and controllable
factors. In other words, we have excuses for our
own errors, but not for others. Gilbert and Malone
(1995) point out that for a correct attributional anal-
ysis that takes into account the role of situational
causes for the behavior of others one must not
only have realistic expectations about their perfor-
mance but also perceive and recognize situational
constraints for the other. The problem is, however,
that factors that constrain the reliability of decision
aids, such as the unreliability of the data it uses
or the inherent unpredictability of the situation it
operates in is often not known or observable for
the user. Because situational causes that constrain
the users task performance are more salient from
the user•s perspective than those that constrain the
performance of the decision aid these causes are
also be expected to be cognitively less available

when causal attributions are made. As a result users
are expected to be less forgiving and less optimistic
about the performance of the decision aid than about
their own performance.

Since one can think of the human-computer
system as a team in which one member is not
human (e.g., Bowers et al., 1996), one can also think
of the theory on causal attribution in humans alone,
to also hold in the context of human-computer
collaboration. This would lead to the following
hypotheses:

Hypothesis 6.Underestimation of the reliability of
the decision aid is expected to be more prevalent
and more persistent than underestimation of relia-
bility of oneself.

Hypothesis 7. Unreliability of the decision aid is
less attributed to temporary, external and uncon-
trollable causes.

4 METHOD

4.1 Participants

79 College students participated in the experi-
ment. Ages ranged from18 to 38 years (M = 23).
Participants were paide 35 for their participation.

4.2 Apparatus

4.2.1 Task and Procedures:Before the training
and experimental trials participants read a cover
story about a software company interested in eval-
uating the performance of their pattern learning
software before applying it to more complex tasks
on naval ships. To neutralize the effect of unrealistic
expectations (i.e., perfect automation schema) the
story pointed out that the level of reliability of
both software and human performance was imper-
fect and, depending on the amount of training,
was correct for70% of the time. This level was
chosen because by this threshold humans tend to
”ip between relying on themselves and a decision
aid (Wickens and Dixon, 2007). Prior pilots also
showed that this was indeed the case.

Participants were asked to maximize the number
of correct “nal predictions by relying on their own
predictions as well as the advice of the decision
aid. The task required participants to predict what
number (1, 2 or 3) would occur in the present trial
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(see for instance row one in Figure 1). This predic-
tion had to be based on the gradual discovery of
a repeated pattern of numbers revealed in previous
trials. The pattern used (i.e.,2, 3, 1, 2, 3) was re-
peated until a sequence of100numbers was formed.
These numbers were then partly randomized (10%).
This randomization was done in order to control
the dif“culty of detecting the pattern and make the
participants think they still did not fully “nd the
correct pattern (and otherwise performance would
become100% after a while; for more on this see
Section 4.2.3). In each trial the correct number was
revealed by the highlighted button on the last row
of the interface (see Figures 1 and 2).

After the instructions participants performed 40
practice trials in which they had to discover a
pattern in the data. The sequence of numbers for the
practice trials was constructed in a similar way as
described above. The participants could experience
that their own performance and the advice of the
decision aid was not perfect. For the “rst (practice)
trials participants had no information about the
correct sequence of numbers and could only guess.
After a few trials, participants could form a more
or less stable, but imperfect, mental model of the
pattern of numbers based on the feedback they
received. By building up, remembering, using and
adjusting this model, participants could predict with
some degree of success (i.e., aiming at an on average
success of around70% under normal conditions)
which button should be pushed next. After the
training trials the actual experiment started.

To be able to observe possible learning effects
each participant performed two experimental blocks,
each consisting of 100 trials. After each experimen-
tal block participants had to “ll in questionnaires.
Between each two blocks participants had a short
break.

4.2.2 Reliability of Decision Aid:The actual re-
liability of the decision aid was set to vary between
60 and 80% with an average reliability of70%
(similar as the human performance) and anSD
of 3% for each block (100 trials). Errors were
de“ned as a deviation from the correct pattern of
answers as provided by the feedback (last row).
The average of70% was used since the success of
this experiment depended on an on average equal
amount of situations where participants could rely

on themselves or on the decision aid (i.e., an average
reliability of, for instance,90% or 50% would
result in less challenging reliance decisions for the
participants; A similar argument can be given for the
choice for aiming for a performance average of70%
as suggested by Wickens and Dixon (2007)). The
causes of unreliability were not made transparent
to the user and were made to occur at random
intervals such that the time of occurrence could not
be anticipated.

4.2.3 Task Predictability: Since the reliability
of individual participants was not under experi-
mental control, we controlled the predictability of
the task which in”uences the reliability of their
advice. Ten percent of the pattern in the sequence
of numbers (last row) differed randomly from what
would be expected by extrapolating the dominant
and recurring pattern (i.e.,. . . , 2, 3, 1, 2, 3, . . . ).
Like the unreliability of the decision aid•s advice,
the unpredictability of the pattern occurred at ran-
dom intervals. This made the decision to rely on
oneself or the decision aid more dif“cult. Without
the control of task predictability, ”oor or ceiling
effects in the performance of reliance could occur,
i.e., when the reliability of the participants• advice
becomes predictable, their reliance decision also
becomes predictable. The used sequence of numbers
(of length 100) was determined beforehand and
tested to have a Hamming distance of 10. Pilots
(and later post-experimental questionnaires) showed
that this partial randomization was enough to vary
in a controlled manner the dif“culty of the pattern.
Participants did not suspect any randomization and
did not “nd out that the pattern would never be
discovered. Participants just suspected that their
idea of what the pattern should be was imperfect
and hence the con“dence in oneself decreased (or
increased when they were right). If the decision
aid was correct, the con“dence in the decision aid
increased.1 This was due to the fact that humans
tended to see patterns in noise and because of
the convincing story told in the beginning of the
experiment (which was also both con“rmed in post-

1Note that the reliability of the decision aid was not affected by
randomization for the control of task predictability. Randomization
for adapting the reliability of the decision aid was done using the
already randomized sequence which was used to give feedback to
the participant.
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experimental questionnaires). Appropriate calibra-
tion to these occurrences would lead to appropriate
improved reliance decisions. Of course participants
were unable to predict whether there was an instance
of randomization, but the mentioned reliance deci-
sion could be made independent of the advices given
(i.e., the reliance decision could already be made
before the advices of oneself and the decision aid
are given).

4.3 Design

A between-subjects design was used with •order
of advice• as independent variable. Participants were
randomly allocated to either the •human “rst• (40)
or •decision aid “rst• (39) condition.

4.4 Independent Variables

Order of Advice: In the •human “rst• condition
the order of activities in each trial was: predict;
receive advice from decision aid; revise prediction
(or re-select same prediction); and receive feedback
with the correct answer, which corresponds to each
row in Figure 1, respectively. Participants “rst made
their own independent prediction (initial decision)
by clicking on one of the three numbers in the
“rst row. Then the decision aid communicated its
advice by highlighting one of the three numbers on
the second row. Neither the data nor the rules, on
which this advice was based, were made transparent
to the participant. On the third row participants had
to formulate their answer again (“nal decision) and
were allowed to revise their initial decision. When
their initial prediction differed from the advice of
the decision aid, they could either follow their own
initial prediction or the advice of the decision aid.
On the fourth row the correct answer (highlighted
button) and feedback about the success of the “nal
decision (red or green color) was provided. By
comparing the correct answer with the responses on
the “rst three rows participants were able to cali-
brate their perceptions of the reliability of 1) their
own initial predictions, 2) the decision aid•s advice,
and 3) the reliability of their “nal decisions. This
calibration is expected to determine the decision to
rely on the advice of themselves or on that of the
decision aid.

In the •decision aid “rst• condition the order
of activities in each trial is: receive advice from

Figure 1. Interface of the pattern learning task: Human “rst.

decision aid; predict and receive feedback with
correct answer, which corresponds to each row in
Figure 2, respectively. In each trial participants
“rst received advice before they could express their
own prediction. On the second row the participants
expressed their own prediction. They could follow
the advice of the decision aid or make their own
prediction that. On the third row, the correct answer
(highlighted button) and feedback about the success
of the decision (red or green color) was provided.

Figure 2. Interface of the pattern learning task: Decision aid “rst.

4.5 Dependent Variables

Agreement with the Decision Aid:Percentage
agreement or matching with the decision aid is
measured during experimental trials and is de“ned
by the correspondence of the “nal decision of the
participant with the advice of the decision aid
(Bonaccio and Dalal, 2006). Percentage agreement
allows us to compare the degree to which partici-
pants rely on themselves rather than on the decision
aid in both conditions.

Agreement or matching measures are insensi-
tive to changes in pre-advice and post-advice deci-
sions. They cannot distinguish between whether one
agrees with a decision aid because one is holding
to one•s pre-advice decision or whether one adopts
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advice of a decision aid that con”icts with one•s pre-
advice decision. However, only the latter is a true
decision to rely on the decision aid. To determine
what factors affect decisions to rely on oneself or
the decision aid we measured reliance when human
and decision aid disagreed. Note that this could only
be done in the •human “rst• condition.

Perceived Reliability: After each experimental
block participants estimated the reliability of both
their own performance and that of the decision
aid on a scale between0 and 100% correct with
steps of10%. Relative trust in oneself is calculated
by subtracting perceived reliability of the decision
aid from perceived reliability of oneself. A positive
value indicates that trust in oneself is higher than
trust in the decision aid and a negative value that
trust in oneself is lower.

Actual Reliability: Actual reliability of both the
participant and the decision aid was measured dur-
ing task execution. Reliability is de“ned as the
percentage correct predictions (in rows 1, 2 and 3
in Figure 1 and rows 1 and 2 in Figure 2).

Understandability: Participants indicated on a
Likert-scale fromŠ3 to 3 (in steps of one) whether
they thought the decision making process of them-
selves and that of the decision aid was understand-
able, whereŠ3 indicated that it was completely not
understandable and3 meant that it was completely
understandable. Relative understandability of one-
self is calculated by subtracting understandability of
the decision aid from understandability of oneself.
A positive value indicates that understandability of
oneself is higher than that of the decision aid and
a negative value that understandability of oneself is
lower.

Responsibility:Participants indicated on a Likert-
scale fromŠ3 to 3 (in steps of one) whether they
felt responsible for the outcome of the task, where
Š3 meant they did not feel responsible at all and3
meant they completely felt responsible.

Attribution of Unreliability: Participants indi-
cated on a Likert-scale fromŠ3 to 3 (in steps of
one) whether unreliability in performance of oneself
and decision aid is attributed to •temporary factors•,
•external factors• and •uncontrollable factors•, re-
spectively (i.e., three times), whereŠ3 meant that
they thought that performance can absolutely not
be attributed to those factors and3 meant that they

thought those factors absolutely play a role.

5 RESULTS

5.1 Self Bias and Order of Advice (Hypothesis 1)

The percentage agreement with the decision aid
in the •decision aid “rst• condition (M = 72.2%)
did not differ from that in the •human “rst• condition
(M = 72.5%), t(155) = Š0.19, p = .85. In
both conditions, on average, trust in the decision aid
was higher than trust in oneself. But participants in
the •human “rst• condition perceived the decision
aid to be 30% better than themselves compared
to only 6% in the •decision aid “rst• condition,
t(154) = 3.97, p < .01. Whereas the perceived
reliability of the decision aid•s performance was
only 7% higher in the •decision aid “rst• condition
(M = 67.2%, SD = 13.7) than in the •human
“rst• condition (M = 63.1%, SD = 14.0),
t(154) = 1.93, p = .055. The perceived reliability
of own performance was30% lower in the •human
“rst• condition (M = 48.5%, SD = 17.4) than
in the •decision aid “rst• condition (M = 63.1%,
SD = 14.4), t(154) = Š5.72, p < .01. Differ-
ences in agreement with the decision aid between
the •human “rst• and •decision aid “rst• conditions
did not show up. This was probably because there
was a signi“cant difference between the conditions
in relative trust. The lower percentage agreement
that is expected in the •human “rst• condition as
a result of the self bias was not observed because
participants in •human “rst• condition on average
thought their performance was30% less than that
of the decision aid.

Participants agree more with the decision aid
when trust in oneself is lower than trust in the
decision aid. This difference was signi“cant in the
•human “rst• condition (left side of Figure 3),
t(76) = 2.15, p = .03, but not in the
decision aid “rst condition (right side of Figure 3),
t(76) = 0.97, p = .33, probably because the dif-
ference in perceived reliability of own performance
and that of the decision aid was less pronounced in
the •decision aid “rst• condition.

When trust in oneself is higher than trust in
decision aid (right side of Figure 4), the percentage
agreement with the decision aid in the •human “rst•
condition (M = 68%) is lower than that in
the •decision aid “rst• condition (M = 72%),
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Figure 3. Agreement with the decision aid is higher when trust in oneself is lower than trust in the decision aid (lower relative trust), but
only in the •human “rst• condition.

t(65) = 1.95, p = .056. This indicates that a
self bias is observed when participants “rst form
their own opinion, but only when trust in oneself is
higher than trust in the decision aid.

When trust in oneself is lower than trust in
decision aid (left side of Figure 4), no difference
in the percentage agreement between the •human
“rst• and •decision aid “rst• condition is found,
t(87) = 0.1, p = .9.

The results seem to be in agreement with Hy-
pothesis 1: People rely more on themselves when
they make their decision before receiving advice of
a decision aid, but only when they trust themselves
more than the decision aid. When trust in the
decision aid exceeds trust in oneself no self bias
effect is found.

5.2 Understandability of Underlying Reasoning
(Hypotheses 2 and 3)

The data from the •human “rst• condition was
used to determine whether factors like relative un-
derstandability of underlying reasoning and feeling

of responsibility in addition to relative trust in
performance explain reliance on oneself or decision
aid when in disagreement.

On average, participants estimated their own re-
liability to be 48.5% and that of the decision aid
63%. In other words, they thought the decision
aid was14.5% more reliable than themselves (and
30% more relatively speaking),t(79) = Š5.79,
p < .01. When the initial answer of the participant
differed from the advice of the decision aid, partici-
pants relied for52% on the decision aid and for48%
on themselves. This difference is not signi“cant,
t(79) = Š0.78, p = .44. When participants would
base their decisions to rely on oneself or decision
aid on relative trust alone, one would expect them to
at least rely30% more often on the decision aid than
on themselves. The results seem to be in agreement
with Hypothesis 2: decision makers using decision
aids rely less on the decision aid than would be
expected based on relative trust alone. Participants
did not rely more often on the decision aid when in
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Figure 4. Agreement with the decision aid is higher in the •decision aid “rst• condition, but only when trust in oneself is higher than trust
in the decision aid (higher relative trust).

disagreement, although they perceived it to be30%
more reliable.

Also a regression analysis was performed in
which reliance on oneself, when in disagreement
with the advice of the decision aid, is regressed
on relative trust, relative understandability of un-
derlying processes and responsibility. The results
indicate that relative trust has a unique contribution
in predicting reliance (� = .32). The higher
trust in oneself is relative to trust in the decision
aid, the more participants also relied on their own
decision rather than on the con”icting advice of the
decision aid. These results are in agreement with the
previously tested hypothesis that decision makers
are less likely to accept con”icting advice when
they perceive the advisor to be less reliable than
themselves and vice versa.

As expected, on average, participants found their
own decision making process to be understandable
(M = 0.64, SD = 1.4), in contrast to that of
the decision aid (M = Š0.93, SD = 1.32),

t(79) = 7.07, p < .01. Despite a correlation
between relative trust and relative understandability
(r = .27, p < .05), which is caused by
a correlation between perceived reliability of one-
self and understandability of oneself (r = .37,
p < .05), results of the regression analysis indicate
that relative understandability also contributes to
predicting reliance on oneself (� = .28). The
more understandable participants thought their own
decision making process was compared to that of
the decision aid, the more they relied on their own
initial decision. These results are in agreement with
our Hypothesis 3: decision makers rely less on
con”icting advice when they perceive the advisor•s
reasoning to be cognitively less available and un-
derstandable than their own reasoning.

The results not only suggested that the more par-
ticipants thought they understood how they formed
their judgments, the more reliable they perceived
themselves to be, but also that participants that were
optimistic about their own performance, were also
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optimistic about the performance of the decision aid
(r = .45, p < .05).

5.3 Feeling of Responsibility (Hypothesis 4)

On average participants felt responsible for the
accuracy of the “nal decision (M = 1.25,
SD = 1.11). Differences in responsibility be-
tween individuals ranged between negative (Š2) and
absolutely positive (3). Results of the regression
analysis indicate that responsibility also contributes
to predicting reliance on oneself (� = Š.29).
The more responsible the participants felt for task
outcome the more they relied on the con”icting
advice of the decision aid rather than their own
initial decision. These results are in agreement with
Hypothesis 4: decision makers are more likely to
accept (more reliable but) con”icting advice when
they feel more responsible for the outcome of the
decision.

Together relative trust, relative understandability
and responsibility explain38% of the variance in
reliance. Based on the magnitudes of the beta-
coef“cients, the squared partial and semi-partial
correlations (see Table I), the relative contribution
of these factors seems to differ little.

5.4 Accuracy of Perceived Reliability (Hypothe-
sis 5)

Perceived Reliability of Oneself:Results show
that some participants underestimated their relia-
bility, while others overestimated their reliability
(Figure 5), but averaged over two blocks perceived
reliability of own performance was4% lower than
it actually was,t(79) = Š2.53, p < .01.

For the “rst block participants underestimated
their performance with5%, t(39) = Š2.16,
p < .05. But underestimation was not statistically
signi“cant in the second block,t(39) = Š1.46,
p > .05(Figure 6). Correlations between perceived
reliability and actual reliability of own performance
increased fromr = .42, p < .05 in the “rst
to r = .51, p < .05 in the second block.
We also found that estimations of own reliability
improve after time and that underestimation seems
to disappear after time.

Perceived Reliability of the Decision Aid:Most
participants underestimated the reliability of the
decision aid, but both pessimists that over-weighed

Figure 5. Calibration human reliability.

Figure 6. Effects of learning on estimation of reliability of oneself
and decision aid.

errors as well as optimists that under-weighed errors
were found (Figure 7). Averaged over two blocks
the perceived reliability of the decision aid was
7% lower than it actually was,t(79) = Š4.41,
p < .01.

For the “rst block participants underestimated
the performance of the decision aid for7%,
t(39) = Š2.47, p < .05 and for 8% in the
second block,t(39) = Š3.79, p < .01 (Figure 6).
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Table I
REGRESSING RELIANCE ON RELATIVE TRUST, RELATIVE UNDERSTANDABILITY AND RESPONSIBILITY.

Regression coef“cients Squared partial Squared semi-partial
Beta Std error correlations correlations

Relative Trust .32* .098 .12 .09
Relative Understandability .28* .097 .10 .07
Responsibility Š.29* .094 .11 .08

* p < . 01

Figure 7. Calibration decision aid reliability.

In the “rst block the standard deviation of perceived
reliability was slightly higher (SD = 14.30) than
in the second block (SD = 13.53).

These results are in agreement with Hypothesis 5:
On average reliability of own performance and that
of the decision aid is underestimated when people
are provided with feedback about performance.

5.5 Attribution Bias (Hypotheses 6 and 7)

The above results are also in agreement with
Hypothesis 6: underestimation of the reliability of
the decision aid is expected to be more prevalent and
more persistent than underestimation of reliability of
oneself. In sum, we found underestimation for both
oneself and decision aid, but underestimation was
higher for the decision aid. Also underestimation of

own reliability decreased after practice; that of the
decision aid did not.

On average, unreliability of the decision aid is
less attributed to temporary factors (M = 0.05)
than own unreliability (M = 0.41), t(79) = 2.02,
p < .05. Unreliability of the decision
aid is also less attributed to uncontrollable fac-
tors (M = Š0.85), than own unreliability
(M = Š0.26), t(79) = 2.92, p < .05. However,
both own unreliability (M = Š0.79) and that of
the decision aid (M = Š1.09) was not attributed
to external factors, no difference between self and
decision aid was found,t(77) = 1.66, p > .05.
The above results are partly in agreement with
Hypothesis 7: unreliability of the decision aid is less
attributed to temporary and uncontrollable causes,
but like own unreliability is not less attributed to
external causes.

6 CONCLUSION

A self bias is expected when the effort to rely
on one•s own judgment is perceived to be lower
than to change one•s mind and to accept the con-
”icting advice of a decision aid. This tendency is
expected when one•s own judgment is cognitively
more •available•, for instance because it is formed
before rather than after receiving advice. Self bias
can only occur when given advice con”icts with
one•s initially held beliefs. The results have shown
that the self bias can be observed and that people
disagree more with a decision aid when they express
their decision before rather than after receiving
advice. The results also show that this is only the
case when decision makers trust themselves more
than the decision aid (Hypothesis 1). No self bias
was found when trust in the decision aid exceeded
trust in oneself. We therefore argue that in existing
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frameworks of automation use, the notion of au-
tomation bias needs to be complemented with that
of the self bias. Whether self biases lead to desirable
outcomes or not, depends on whether perceptions of
reliability of one•s own performance and that of the
decision aid are appropriate. When people wrongly
think they perform better than the decision aid, self
reliance can result in undesirable outcomes.

There is reason to believe that decision makers
do not suf“ciently rely on advice of decision aids.
Our results show that decision makers rely less
on the decision aid than would be expected based
on relative trust in performance reliability alone.
Participants did not rely more often on the decision
aid when in disagreement, although they perceived it
to be30% more reliable (Hypothesis 2). Our results
suggest that decision makers rely less on con”icting
advice because they perceive the advisor•s reasoning
to be cognitively less available and understandable
than their own reasoning (Hypothesis 3). Together
with relative trust, relative understandability and re-
sponsibility explain38% of the variance in reliance.

People who felt more responsible for the task
outcome relied more on con”icting advice than
people who feel less responsible (Hypothesis 4). It
seems that when people feel more responsible that
they are more willing to invest the mental effort that
is required to let go their initial decision and accept
con”icting advice of the decision aid.

Perceived reliability of both oneself and decision
aid is underestimated when feedback about perfor-
mance is provided (Hypothesis 5) and it seems that
negative experiences have a greater in”uence than
do positive experiences. Since relative trust is based
on the difference between perceived reliability of
oneself and decision aid, as long as the degree
of underestimation does not differ between oneself
and decision aid, no problems with the decision
to rely on advice is expected. However, when the
magnitude or direction of underestimation differs,
inappropriate reliance decisions may be the result.
Our results suggest however that the underestima-
tion of the reliability of the decision aid is more and
more persistent (Hypothesis 6).

It seems users are less forgiving and less opti-
mistic about the performance of the decision aid,
even though on the group level it performs30%
more reliable, probably because errors are less

attributed to temporary and uncontrollable causes
(Hypothesis 7).

A note on the scalability of this research. The
reason for using a pattern learning task in this study
is that it can be controlled very well and hypotheses
can be tested quite precisely. More realistic settings
in which the results of this study are expected to
scale to are for example all tasks that incorporate de-
cision making based on advice from different agents
(man or machine). The reliance decisions studied in
this paper can be seen as largely independent of the
task at hand and therefore the drawn conclusions
are expected to scale to these more realistic tasks
and more ecologically relevant.

Finally some decision aid design implications of
the present research. Appropriate reliance on deci-
sion aids is not guaranteed when only focusing on
optimizing the reliability of decision aids. There are
several things one could do in the design phase of a
decision aid. First of all, give people feedback about
their own individual performance, that of the deci-
sion aid and team performance, but correct for the
bias that negative information is given more weight.
This feedback can improve the calibration of trust
in oneself and decision aid and therefore stimulate
appropriate reliance. Secondly, by providing advice
after, rather than before, more knowledge is brought
to the task. Such a design is not focused on reducing
workload by automation, but focused on human-
machine collaboration with the goal of increasing
accuracy and resilience. Receiving advice afterward
may also increase con“dence of the decision maker
when both human and system agree or make people
think twice when both disagree. The designer should
aim at reducing the effort to rely on oneself and
decision aid to make human-computer collaboration
more ”exible. One should make the reasoning of
the decision aid available and understandable in
the human-computer interface. Also, make people
feel accountable for the outcomes of the human-
computer team. Hold people responsible for quality
of outcome of the human-computer team. Finally,
one should control for the attribution of errors. For
instance by making sources of error transparent
or by making operators aware of their biases in
attribution. The idea is that providing information
regarding why the automation might be mistaken
increases trust (Dzindolet et al., 2003).
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Abstract„This paper involves a human-agent system
in which there is an operator charged with a pattern
recognition task, using an automated decision aid. The
objective is to make this human-agent system operate
as effectively as possible. Effectiveness is gained by an
increase of appropriate reliance on the operator and the
aid. We studied whether it is possible to contribute to
this objective by, apart from the operator, letting the
aid as well calibrate trust in order to make reliance
decisions. In addition, the aid•s calibration of trust in
reliance decision making capabilities of both the operator
and itself is also expected to contribute, through reliance
decision making on a meta-level, which we call meta-
reliance decision making. In this paper we present a
formalization of these two approaches: a reliance (RDMM)
and meta-reliance decision making model (MetaRDMM),
respectively. A combination of laboratory and simulation
experiments shows signi“cant improvements compared to
reliance decision making solely done by operators.

1 INTRODUCTION

Human-aid cooperation in complex domains,
such as aviation, nuclear power, or health care,
is becoming increasingly common. The idea of
this is that the performance of humans in closer
cooperation with decision aids (agents), and vice
versa, perform better than humans or decision aids
working separately, without taking the other into
account. Although this performance bene“t is often
observed in human-aid teams, cooperation effective-
ness of the decision aid is not always fully realized.

In recent work (van Dongen and van Maanen,

2006; van Maanen and van Dongen, 2005) a human-
aid team was studied where a human operator,
charged with a pattern recognition task, was sup-
ported by an automated decision aid. The objective
of the task was to make this human-aid team operate
as effectively as possible. It turned out that in
many occasions the operator made wrong reliance
decisions and therefore effectiveness decreased.

Ideally humans rely on their own decisions when
these are best and rely on the decision aid•s when
those are best. But operators cannot be expected to
base their reliance decisions on comparisons of true
reliabilities of themselves and those of the decision
aids. Rather, perceived reliabilities are used which,
unfortunately, are usually imperfectly calibrated to
true reliabilities, even after practice (van Dongen
and van Maanen, 2006). It is often found that
humans rely either too much or too little on decision
aids or themselves (Parasuraman and Riley, 1997;
Skitka et al., 1999; Dzindolet et al., 1999; van
Dongen and van Maanen, 2006).

People use relative trust to decide whom to rely
on (Moray et al., 2000). Trust is de“ned as the atti-
tude that an agent will help achieve an individual•s
goals in a situation characterized by uncertainty and
vulnerability (Lee and See, 2004). Trust can refer
to the advice of another agent or to one•s own
judgment. Trust, like the perceptions of reliability
on which it is based, is a covert or cognitive state
(Falcone and Castelfranchi, 2001).
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Perceptions of reliability may be prone to system-
atic and random error. One such error is over-trust:
humans may overestimate their own performance or
that of the aid. Humans are for instance known to
overestimate the number of tasks they can complete
in a given period of time (Buehler et al., 1994).
Another error is under-trust: humans may under-
estimate their own performance or that of the aid.
Concerning the perception of the aid•s performance,
in (Wiegmann et al., 2001; van Dongen and van
Maanen, 2006) it was for instance found that the
reliability of decision aids is often underestimated.
When the direction or magnitude of such errors
differ between self and aid, this could lead to
inappropriate reliance decisions: Under-reliance or
over-reliance may be the result.

Because the aid is unaffected by cognitive biases,
like humans are, the “rst question raised in this pa-
per is whether it is possible to let the aid make more
accurate trust assessments, and therefore reliance
decisions, than the operator. In that case, reliance
decision making done by the aid is expected to lead
to a decrease of over- and under-reliance.

Nonetheless, the transparent character of the op-
erator•s own motivation for his performance may
result in a substantial amount of occasions in which
humans make better reliance decisions than aids. In
these cases, the suggested reliance decision making
completely done by the aid does not result in an
optimal performance. The second question therefore
raised is whether it is possible to let the aid make
even more accurate reliance decisions when based
on a prediction if such situations are at hand and
then the decision is made to rely on the operator
if that is more appropriate. This type of decision
making is on a meta-level and therefore is called
metareliance decision making. It is expected to
result in a further decrease of over- and under-
reliance.

This paper is composed of several sections ad-
dressing the above two questions. First, in Section 2
it is shown how an extension of the task environ-
ment from (van Dongen and van Maanen, 2006)
is used as a base for studying the effectiveness of
aiding human reliance decision making. Decision
aid design and the formalization of the reliance
decision making models used by the aid, i.e., a
reliance (RDMM)andmetareliance decision making

model (MetaRDMM), respectively, are presented in
Section 3. Section 4 describes the method of the ex-
periment and simulation done. The results in terms
of model performance by comparison with operator
performance from (van Dongen and van Maanen,
2006) are presented in Section 5. Section 6 ends
this paper with some conclusions and suggestions
for further research.

2 TASK ENVIRONMENT

For the experiment described in (van Dongen and
van Maanen, 2006) participants read a story about a
software company interested in evaluating the per-
formance of their adaptive software before applying
it to more complex tasks on naval ships. Participants
were asked to perform a pattern recognition task
with advice of a decision aid and were instructed
to maximize the number of correct answers by
either relying on their own or the decision aid•s
predictions.

The interface of the task contained 4 rows. Each
row consisted of a progress bar, buttons numbered
1, 2, and 3, and a phase description. In Phase 1 the
operator had to predict which button to push, based
on what they thought the pattern was. In Phase 2
the aid had to do the same. In Phase 3 the operator
again had to decide which button to push, this time
also taking the prediction of the aid into account,
which required the operator also to make a reliance
decision. In the “nal phase feedback was given on
what button was correct. Each experiment contained
101 trials, each consisting of these four phases.

In order to support the operator in making re-
liance decisions the above rows were extended to a
total of six (see example interaction in Figure 1),
which means two phases were added: In Phase 4
the aid had to make a reliance decision similar as
the operator•s in Phase 3. In Phase 5 the aid had to
decide when to follow the reliance decision of the
operator and when its own. These kind of decisions
are calledmetareliance decisions. After this, Phase 6
was the feedback phase.

In Figure 1 the following scenario is shown:
the operator predicts number 3 (Phase 1), the aid
number 2 (Phase 2), then the operator wants to rely
on himself (Phase 3), the aid also relies on itself
(Phase 4), then the aid decides tometarely on itself
again (Phase 5), and “nally the feedback shows
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Figure 1. Example operator-aid interaction. The rows represent
different phases.

this was the appropriate decision (Phase 6). Both
interpret the outcome and go on to the next trial.

Note that no other support than mentioned above
is given to the operator (e.g., no correct answer
history is kept for the operator and the operator
was not allowed to write things down). Feedback
is based on a prede“ned but then partly randomized
sequence of the numbers 1, 2, and 3. The predictions
of the aid were also prede“ned. Each participant got
a comparable but different sequence. See Section 4
for more details.

3 DECISION AID DESIGN

In this section the design of the aid is described
in terms of how the aid•s decisions in Phases 4
(RDMM) and 5 (MetaRDMM) are made (see end of
Section 4 for details on Phase 2), building on (Klos
and La Poutŕe, 2006; van Maanen and van Don-
gen, 2005). In these phases the aid estimates and
compares the task-related (prediction) and reliance
decision making capabilities, respectively, of the
operator and itself. The idea is to let the aid estimate
its trust in the operator•s and its own prediction and
reliance decision making capabilities each time that
feedback is given in Phase 6. As a model, we use
a Beta probability density function (pdf) over the
different values that the agents• (operator•s or aid•s)
respective capabilities can have. Upon receiving the
feedback in Phase 6, the aid uses Bayes• rule to
update its estimations (for a generalization to the
Dirichlet distribution see Krukow, 2006) (Gelman
et al., 2004; Jøsang and Ismail, 2002; Klos and
La Poutŕe, 2006).

From the perspective of the aid, each agent•s
behavior can be seen as a sequence of Bernouilli
trials, governed by a bias or probability of
the outcome •success• in each trial, called� x

a
for x � { prediction , reliance } and a �
{ operator , aid } . It is this probability that the aid
needs to estimate for the two possible values of both
x anda. For x = prediction, this yields two values
for RDMM, and for x = reliance, it yields two
values for MetaRDMM. In the remainder of this
section we drop the sub- and superscriptsa andx.

The probability ofn successes inN Bernouilli
trials (0 � n � N ) is given by the Binomial
probability mass function

p(n|� ) =
�

N
n

�
� n(1 Š � )N Š n. (1)

This also gives the Binomial likelihood of� , when
interpreted as a function of the second argument
� with n held “xed. This likelihood may be used
to update the posterior probabilityp(� |n), using
Bayes• rule:

p(� |n) =
p(n|� )p(� )

p(n)
. (2)

The Beta pdf is a conjugate prior for the Binomial
likelihood, which means that if it is used as the prior
p(� ) in Eq. 2, the posteriorp(� |n) is again a Beta
pdf. The Beta pdf is the following:

Beta(� |r, s) =
1

� (r, s)
� r Š 1(1 Š � )sŠ 1, (3)

for 0 � � � 1 ands, r > 0, where� (r, s) is the beta
function, ands and r are the number of successes
and failures, respectively.1 The expected value of
the Beta distribution isE(� ) = r

r + s .
As explained above, the posterior distribution is

still a Beta distribution (disregarding the normaliza-
tion factor in the denominator of Bayes• rule, since
it does not depend on� ):

posterior
� �� �
p(� |n, N, r, s ) �

likelihood (see Eq . 1)
� �� ��
� n (1 Š � )N Š n

	
prior (see Eq . 3)

� �� ��
� r Š 1(1 Š � )sŠ 1

	

� � n+ r Š 1(1 Š � )N Š n+ sŠ 1,

1The beta function is

� (r, s ) =
�( r )�( s)
�( r + s)

,

where�( x) = ( x Š 1)! is the Gamma function, wherex is a positive
integer.
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Figure 2. The Beta pdf of� for different values ofr ands.

with expected valueE(� ) = r + n
r + s+ N . In effect, one

simply adds the new counts of successes (n) and
failures (N Š n) to the old values of the parameters
of the Beta distributionr and s, respectively, and
obtains a new distribution with parametersr � ands�.

In the context of trust models, an agenti •s trust
� i (j ) in another agentj •s capabilities or intentions,
is usually calculated as the expected value of the
beta function� (u+1, v +1) , whereu andv are the
current counts of positive and negative experiences
i has had withj . In the absence of such experiences,
the valuesr = s = 1 are typically used for binary
outcomes, yielding a uniform prior, and an expected
value of 0.5 for the value estimated to governj •s
behavior. Updating this uniform prior with positive
an negative evidenceu and v, respectively, yields
E(� ) = u+1

u+ v+2 . Figure 2 gives the shape of the
Beta probability density function of� given different
amounts of evidence, where the expected values of�
are indicated by vertical lines. Because we have
3 possible outcomes in each phase, we initialize
the prior asp = 1

3, by settingr = 1 and s = 2.
Furthermore, we discount old evidence (Jøsang and
Ismail, 2002), by using a discount factor0 � � � 1,
with which old evidence is multiplied before new
evidence is added.

For each trial, when the two agents• predictions or
reliances differ, (Meta)RDMM selects the prediction
(in Phase 4) or reliance (in Phase 5) made by
the most highly trusted agent, using four updated
trust values� x

aid (a) of the aid. In Figure 3 the
aid•s trust dynamics for an arbitrary operator are

shown. For trial 14, for instance, the phase outcomes
are similar as in the scenario shown in Figure 1:
For this trial, the operator predicted 3, the aid
2, the operator relied on himself, and the correct
number was 2 (Phases 1…3, 6). Because the operator
prediction trust is lower than the aid prediction trust
(� prediction

aid (operator ) < � prediction
aid (aid )), the aid

relied on itself (Phase 4), and because the operator
reliance trust was lower than the aid reliance trust
(� reliance

aid (operator ) < � reliance
aid (aid )), the aid also

metarelied on itself (Phase 5).

4 METHOD

4.1 Participants

The experimental data related to the input of
the operator (Phases 1 and 3) were taken from the
experiments described in (van Dongen and van Maa-
nen, 2006). Forty three Dutch university students
(16 female,18…38 yrs, M = 23 yrs) participated in
the experiment. Participants were paide 35for their
participation. To control for learning effects, each
participant performed the same experiment twice.
This means there were a total of 86 experiments,
each containing101 trials. The decision aid was
simulatedof”ine to be aiding these participants as
described in Section 2.

4.2 Design

Performances for three phases were calculated:
the operator•s reliance phase (OperatorRDM), the
aid•s reliance phase (RDMM), and the aid•s meta-
reliance phase (MetaRDMM), i.e., Phases 3…5. Only
those trials were interesting in which either the
operator or (exclusive or) the aid made a correct pre-
diction or reliance decision. This is due to the fact
that, in the case of prediction and reliance consensus
and in the situation where neither operator nor aid
is correct in their prediction or reliance, comparison
of aid and operator performance is uninformative.2

The independent variables for each performance
measure were operator and aid prediction accuracy
(for Phases 1 and 2), which are described below in
more detail.

Operator prediction accuracy was manipulated by
varying the dif“culty of predicting a prede“ned

2Although it appears that in the experiments0.64% of the trials
participants decided not to, or were too late to, rely on prediction
consensus, it had no signi“cant in”uence on the present results.
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sequence of the numbers 1, 2, and 3. The order
of the prede“ned sequence determined the order of
the given feedback in Phase 6, which was the only
source for the participants to learn the sequence. The
prede“ned sequence was a repeated, but random-
ized, pattern of length5. Note here that participants
did not know they were subject to identi“cation of a
(randomized) repeated sequence. Due to the fact that
humans tend to see patterns in noise and because
of a convincing story told in the beginning of the
experiment, they rather thought it was a sequence
dependent on certain complex patterns still to be
discovered by them. This has also been con“rmed
by a post-experimental questionnaire.

Aid prediction accuracy manipulation was based
on randomization of the above mentioned random-

ized prede“ned sequence. The accuracy of the aid
was set on average at70% (SD = 3%), which is
similar to the expected operator prediction accuracy.
This was done to make reliance decision making
nontrivial for the operator.

5 RESULTS

Based on the experiments it is found that on aver-
age, for each participant, in47.64%(SD = 6.23%)
of all trials either the operator (M = 34.19%, SD =
12.44%) or the aid (M = 65.81%, SD = 12.44%)
predicted correctly. These last two averages differ
substantially from 0 (N = 48, p < .001), which
suggests that optimal performance is not reached
simply by relying only on the aid or operator. For
the mentioned trials, the performances (percentages
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correct) of OperatorRDM (M = 58.65%, SD =
9.79%) and RDMM (M = 66.38%, SD = 10.43%)
are shown in Figure 4 (empty bars). The RDMM
results show a signi“cant improvement compared
to OperatorRDM (t = 4.98, p = 0.00).

On average, for each participant, in22.04%
(SD = 9.88%) of all trials either the operator
(M = 40.85%, SD = 18.28%) or the aid (M =
59.15%, SD = 18.28%) relied correctly. These last
two averages differ substantially from 0 (N = 22,
p < .001), which suggests that reliance decision
making completely done by the aid does not result
in an optimal performance. For the mentioned trials,
the performances of OperatorRDM, RDMM, and
MetaRDMM (M = 59.80%, SD = 16.81%) are
shown in Figure 4 (pattern bars). The MetaRDMM
results show a signi“cant improvement compared to
OperatorRDM (t = 7.03, p < .001) and an insignif-
icant improvement compared to RDMM (t = 0.24,
p = .81). There is no signi“cant difference between
the two experiments per participant. Hence, there
are no measurable learning effects.

6 CONCLUSION

The general goal of this work is to develop
concepts that improve performance of human-aid
teams. Improvement is reached by aiding human
reliance decision making through the usage of
computational models of trust. Our results showed
signi“cant results in which decision models RDMM
and MetaRDMM outperform human reliance de-
cision making capabilities. The participants may
have performed worse than (Meta)RDMM because
of limited attentional and memory resources and
biases in weighing successes and failures of both
themselves and the aid.

As was expected, the results still show a substan-
tial amount of occurrences in which humans make
better reliance decisions than aids. MetaRDMM
tries to take advantage of this. Although our results
show that MetaRDMM also outperforms human
participants, a signi“cant improvement compared to
RDMM was not found. The “rst research question
raised in this paper can thus be answered with yes,
but the answer for the second remains a challenge
for further research. Results may differ if the exper-
iment is redone using the extended task described in
this paper. One of the positive effects MetaRDMM

might imply is a lower human performance degra-
dation, and thus a stronger advantage to RDMM.

It is expected that in real world settings both
human reliance decision making and the opportu-
nities for support will be different. Humans, for
instance, use additional cues for calibrating trust.
Also feedback is often not immediately available,
is not always accurate, or complete. The application
of the presented concepts and models in real world
settings must therefore also be subject to further
exploration.
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Abstract„In this paper, the results of a validation
experiment for two existing computational trust models
describing human trust are reported. One model uses
experiences of performance in order to estimate the trust
in different trustees. The second model carries the notion
of relative trust. The idea of relative trust is that trust
in a certain trustee not solely depends on the experiences
with that trustee, but also on trustees that are considered
competitors of that trustee. In order to validate the models,
parameter adaptation has been used to tailor the models
towards human behavior. A comparison between the two
models has also been made to see whether the notion of
relative trust describes human trust behavior in a more
accurate way. The results show that taking trust relativity
into account indeed leads to a higher accuracy of the trust
model. Finally, a number of assumptions underlying the
two models are veri“ed using an automated veri“cation
tool.

Index Terms„Trust, Multi-Agent Systems, Parameter
Adaptation, Validation, Veri“cation.

1 INTRODUCTION

When considering relations and interaction be-
tween agents, the concept of trust is of utmost im-
portance. Within the domain of multi-agent systems,
the concept of trust has been a topic of research
for many years (e.g., Sabater and Sierra, 2005;
Ramchurn et al., 2004). Within this research, the
development of models expressing how agents form
trust based upon direct experiences with a trustee
or information obtained from parties other than the
trustee is one of the central themes. Some of these
models aim at creating trust models that can be
utilized effectively within a software agent environ-

ment (e.g., van Maanen et al., 2007), whereas other
models aim to present an accurate model of human
trust (see e.g., Jonker and Treur, 1998; Falcone
and Castelfranchi, 2004; Hoogendoorn et al., 2008).
The latter type of model can be very useful when
developing a personal assistant agent for a human
with the awareness of the human•s trust in different
other agents (human or computer) and him- or
herself (trustees). This could for example avoid
advising to use particular information sources that
are not trusted by the human or could be used
to enhance the trust relationship with the personal
assistant agent itself.

In order for computational trust models to be
usable in real life settings, the validity of these
models should be proven “rst. However, relatively
few experiments have been performed that validate
the accuracy of computational trust models upon
empirical data. For instance, in (Jonker et al., 2004)
an experiment has been conducted whereby the
trends in human trust behavior have been ana-
lyzed to verify properties underlying trust models
developed in the domain of multi-agent systems.
However, no attempt was made to “t the model to
the trusting behavior of the human.

In this paper, the results of a validation experi-
ment for two computational trust models describing
human trust are reported. An in previously studies
utilized trust model (van Maanen et al., 2007),
which was inspired on the trust model described
in (Jonker and Treur, 1998), has been taken as a
baseline model. This model uses experiences of per-

Chapter 7.Validation and Veri“cation of Agent Models for Trust 85



formance in order to estimate the trust in different
trustees. The second model which is validated in
this study is a model which also carries the notion
of relative trust (Hoogendoorn et al., 2008). The idea
of relative trust is that trust in a certain trustee not
solely depends on the experiences with that trustee,
but also with trustees that are considered competi-
tors of that trustee. A comparison between the two
models is also made to see whether the notion of
relative trust describes human trust behavior in a
more accurate way.

The validation process includes a number of
steps. First, an experiment with participants has
been performed in which trust plays an important
role. As a result, empirical data has been obtained,
that is usable for validating the two models. One
part of the dataset is used to learn the best param-
eters for the two different trust models. Then these
parameters are used to estimate human trust, using
the same input as was used to generate the other
part of the dataset. Finally, a number of assumptions
underlying the two trust models are veri“ed upon
the obtained dataset using an automated veri“cation
tool.

This paper is organized as follows. First, the two
trust models that have been used in this study are
explained in Section 2. The experimental method
is explained in Section 3. Thereafter, the results
of the experiment in terms of model validation
and veri“cation are described in Section 4. Finally,
Section 5 is a discussion.

2 AGENT MODELS FORTRUST

In this section the two types of trust models
which are subject of validation are described. In
Section 2.1 a model is explained that estimates
human trust in one trustee independent of the trust
in other trustees. In contrast, in Section 2.2 a model
is described for which this relative dependency
actually is important.

2.1 Independent Trust Model

This section describes the independent trust
model (van Maanen et al., 2007; Jonker and Treur,
1998). In this model trustees are considered rational
and are therefore though of having no bias to
calculate trust. Trust is based on experiences and
there is a certain decay of trust.

For the present study, it is assumed that a set
of trustees{ S1, S2, . . . , Sn} is available that can be
selected to give particular advice at each time step.
Upon selection of one of the trustees (Si ), an expe-
rience is passed back indicating how well the trustee
performed. This experience (Ei (t)) is a number on
the interval[Š1, 1]. Hereby,Š1 expresses a negative
experience,0 is a neutral experience and1 a positive
experience. There is also a decay parameter� i in the
model, for which holds that0 � � i � 1.

Given the above, trust now can calculated by
means of the following formula:

Ti (t) = Ti (t Š 1) · � i + (1 Š
�

Ei (t) + 1
2

�
) · (1 Š � i )

The independent trust is calculated for each
trustee. Eventual reliance decisions are made by
determining the maximum of the independent trust
over all trustees.

2.2 Relative Trust Model

This section describes the relative trust
model (Hoogendoorn et al., 2008). In this
model trustees are considered competitors, and the
human trust in a trustee depends on the relative
experiences with the trustee to the experiences from
the other trustees. The model de“nes the total trust
of the human as the difference between positive
trust and negative trust (distrust) on the trustee.
The model includes several parameters representing
human characteristics including trust ”exibility
� i (measuring the change in trust on each new
experience), decay	 i (decay in trust when there
is no experience) and autonomy
 i (dependence
of the trust calculation considering other options).
The model parameters� i , 	 i and 
 i have values
from the interval[0, 1].

As mentioned before, the model is composed of
two models: one for positive trust, accumulating
positive experiences, and one for negative trust,
accumulating negative experiences. Both negative
and positive trust are represented by a number
between[0, 1]. The human•s total trustTi (t) in Si

is the difference in positive and negative trust in
Si at time point t, which is a number between
[Š1, 1], whereŠ1 and1 represent the minimum and
maximum values of trust, respectively. The human•s
initial total trust inSi at time point 0 isTi (0), which

86 Chapter 7.Validation and Veri“cation of Agent Models for Trust



is the difference in initial trustT+
i (0) and distrust

TŠ
i (0) in Si at time point 0.
As a differential equation the change in positive

and negative trust over time is described in the
following manner (Hoogendoorn et al., 2009b):

dT+
i (t)
dt

= Ei (t) ·
(Ei (t) + 1)
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· � i ·
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	 i · T+
i (t) · (1 + Ei (t)) · (1 Š Ei (t))
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dt

= Ei (t) ·
(Ei (t) Š 1)
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In these equations,Ei (t) is the experience value
given bySi at time pointt.

Furthermore,� +
i (t) and � Š

i (t) are the human•s
relative positive and negative trust inSi at time
point t, which is the ratio of the human•s positive or
negative trust inSi to the average human•s positive
or negative trust in all trustees at time pointt de“ned
as follows:

� +
i (t) =

T+
i (t)


 � n
j =1 T+

j (t)

n

�

and

� Š
i (t) =

TŠ
i (t)


 � n
j =1 TŠ

j (t)

n

�

Finally, the total change in trust can be calculated
as follows:

dTi (t)
dt

=
dT+

i (t)
dt

Š
dTŠ

i (t)
dt

Similarly as for the independent trust model, the
trustee with the highest trust value is relied upon.

3 METHOD

In this section the experimental methodology is
explained. In Section 3.1 the participants are de-
scribed. In Section 3.2 an overview of the used
experimental environment is given. Thereafter, the
procedure of the experiment is explained in four
stages: In Sections 3.3, 3.4, 3.5 and 3.6, the pro-
cedures of data collection, parameter adaptation,
model validation and veri“cation are explained,
respectively. The results of the experiment are given
in Section 4.

3.1 Participants

18 Participants (eight male and ten female) with
an average age of 23 (SD = 3.8) participated in
the experiment as paid volunteers. Participants were
selected between the age of20 and30 and were not
color blinded. All were experienced computer users,
with an average of16.2 hours of computer usage
each week (SD = 9.32).

3.2 Task

The experimental task was a classi“cation task
in which two participants on two separate per-
sonal computers had to classify geographical areas
according to speci“c criteria as areas that either
needed to be attacked, helped or left alone by
ground troops. The participants needed to base
their classi“cation on real-time computer generated
video images that resembled video footage of real
unmanned aerial vehicles (UAVs). On the camera
images, multiple objects were shown. There were
four kinds of objects: civilians, rebels, tanks and
cars. The identi“cation of the number of each
of these object types was needed to perform the
classi“cation. Each object type had a score (either
Š2, Š1, 0, 1 or 2, respectively) and the total
score within an area had be determined. Based on
this total score the participants could classify a
geographical area (i.e., attack when above2, help
when belowŠ2 or do nothing when in between).
Participants had to classify two areas at the same
time and in total98 areas had to be classi“ed. Both
participants did the same areas with the same UAV
video footage.

During the time a UAV ”ew over an area, three
phases occurred: The “rst phase was the advice
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Figure 1. Interface of the task.

phase. In this phase both participants and a sup-
porting software agent gave an advice about the
proper classi“cation (attack, help, or do nothing).
This means that there were three advices at the
end of this phase. It was also possible for the
participants to refrain from giving an advice, but
this hardly occurred. The second phase was the
reliance phase. In this phase the advices of both
the participants and that of the supporting software
agent were communicated to each participant. Based
on these advices the participants had to indicate
which advice, and therefore which of the three
trustees (self, other or software agent), they trusted
the most. Participants were instructed to maximize
the number of correct classi“cations at both phases
(i.e., advice and reliance phase). The third phase was
the feedback phase, in which the correct answer was
given to both participants. Based on this feedback
the participants could update their internal trust
models for each trustee (self, other, software agent).

In Figure 1 the interface of the task is shown. The
map is divided in10× 10 areas. These boxes are the
areas that were classi“ed. The “rst UAV starts in the
top left corner and the second one left in the middle.
The UAVs ”y a prede“ned route so participants do
not have to pay attention to navigation. The camera
footage of the upper UAV is positioned top right
and the other one bottom right.

The advice of the self, other and the software
agent was communicated via dedicated boxes below
the camera images. The advice to attack, help, or

do nothing was communicated by red, green and
yellow, respectively. On the overview screen on the
left, feedback was communicated by the appearance
of a green tick or a red cross. The reliance decision
of the participant is also shown on the overview
screen behind the feedback (feedback only shown
in the feedback phase). The phase depicted in Fig-
ure 1 was the reliance phase before the participant
indicated his reliance decision.

3.3 Data Collection

During the above described experiment, input
and output were logged using a server-client ap-
plication. The interface of this application is shown
in Figure 2. Two other client machines, that were
responsible for executing the task as described in the
previous subsection, were able to connect via a local
area network to the server, which was responsible
for logging all data and communication between the
clients. The interface shown in Figure 2 could be
used to set the client•s IP-addresses and ports, as
well as several experimental settings, such as how
to log the data.

Experienced performance feedback of each
trustee and reliance decisions of each participant
were logged in temporal order for later analysis.
During the feedback phase the given feedback was
translated to a penalty of either0, .5 or 1, rep-
resenting a good, neutral or poor experience of
performance, respectively. This directly maps to the
value Ei (t )+1

2 in the trust models. During the reliance
phase the reliance decisions were translated to either
0 or 1 for each trusteeSi , which represented that one
relied or did not rely onSi .

3.4 Parameter Adaptation

The data collection described in Section 3.3 was
repeated on each group of two participants twice,
called condition 1 and condition 2, respectively.
The data from one of the conditions was used
for parameter adaptation purposes for both mod-
els, and the data from the other condition for
model validation (see Section 3.5). This process of
parameter adaptation and validation was balanced
over conditions, which means that condition 1 and
condition 2 switch roles (i.e., parameter adaptation
and model validation) for half of the validation
efforts (i.e., cross-validation). Both the parameter
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