
https://research.vu.nl/en/publications/f803b4fd-5664-447c-b9c6-39980b9268bb

BUILDING A DEPENDABLE OPERATING SYSTEM:
FAULT TOLERANCE IN MINIX 3

VRIJE UNIVERSITEIT

BUILDING A DEPENDABLE OPERATING SYSTEM:
FAULT TOLERANCE IN MINIX 3

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magni�cus

prof.dr. L.M. Bouter,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de faculteit der Exacte Wetenschappen

op donderdag 9 september 2010 om 13.45 uur
in de aula van de universiteit,

De Boelelaan 1105

door

JORRIT NIEK HERDER

geboren te Alkmaar

promotor: prof.dr. A.S. Tanenbaum
copromotor: dr.ir. H.J. Bos

Advanced School for Computing and Imaging

This work was carried out in the ASCI graduate school.
ASCI dissertation series number 208.

This research was supported by the Netherlands Organisation for Scienti�c
Research (NWO) under project number 612-060-420.

“We're getting bloated and huge. Yes, it's a problem.
. . . I'd like to say we have a plan.”

Linus Torvalds on the Linux kernel, 2009

Copyright © 2010 by Jorrit N. Herder

ISBN 978-94-6108-058-5

Parts of this thesis have been published before:

ACM SIGOPS Operating System Review, 40(1) and 40(3)
USENIX ;login:, 31(2), 32(1), and 35(3)
IEEE Computer, 39(5)
Springer Lecture Notes in Computer Science, 4186
Springer Real-Time Systems, 43(2)

Proc. 6th European Dependable Computing Conf. (EDCC'06)
Proc. 37th IEEE/IFIP Int'l Conf. on Dependable Systems and Networks (DSN'07)
Proc. 14th IEEE Paci�c Rim Int'l Symp. on Dependable Computing (PRDC'08)
Proc. 39th IEEE/IFIP Int'l Conf. on Dependable Systems and Networks (DSN'09)
Proc. 4th Latin-American Symp. on Dependable Computing (LADC'09)

Contents

ACKNOWLEDGEMENTS xiii

SAMENVATTING xv

1 GENERAL INTRODUCTION 1

1.1 The Need for Dependability . 2
1.2 The Problem with Device Drivers 4
1.3 Why do Systems Crash? . 6

1.3.1 Software Complexity . 6
1.3.2 Design Flaws . 8

1.4 Improving OS Dependability . 9
1.4.1 A Modular OS Design . 10
1.4.2 Fault-tolerance Strategies 12
1.4.3 Other Bene�ts of Modularity 13

1.5 Preview of Related Work . 14
1.6 Focus of this Thesis . 16
1.7 Outline of this Thesis . 18

2 ARCHITECTURAL OVERVIEW 19

2.1 The MINIX Operating System . 19
2.1.1 Historical Perspective . 19
2.1.2 Multiserver OS Structure . 21
2.1.3 Interprocess Communication 22

2.2 Driver Management . 24
2.3 Isolating Faulty Drivers . 26

2.3.1 Isolation Architecture . 26
2.3.2 Hardware Considerations 30

2.4 Recovering Failed Drivers . 32
2.4.1 Defect Detection and Repair 32
2.4.2 Assumptions and Limitations 34

2.5 Fault and Failure Model . 35

vii

viii CONTENTS

3 FAULT ISOLATION 37

3.1 Isolation Principles . 37
3.1.1 The Principle of Least Authority 37
3.1.2 Classi�cation of Privileged Operations 38
3.1.3 General Rules for Isolation 41

3.2 User-level Driver Framework . 42
3.2.1 Moving Drivers to User Level 42
3.2.2 Supporting User-level Drivers 43

3.3 Isolation Techniques . 44
3.3.1 Restricting CPU Usage . 44
3.3.2 Restricting Memory Access 45
3.3.3 Restricting Device I/O . 50
3.3.4 Restricting IPC . 51

3.4 Case Study: Living in Isolation . 54

4 FAILURE RESILIENCE 57

4.1 Defect Detection Techniques . 57
4.1.1 Unexpected Process Exits 58
4.1.2 Periodic Status Monitoring 58
4.1.3 Explicit Update Requests 59

4.2 On-the-�y Repair . 60
4.2.1 Recovery Scripts . 60
4.2.2 Restarting Failed Components 61
4.2.3 State Management . 63

4.3 Effectiveness of Recovery . 65
4.3.1 Recovering Device Drivers 66
4.3.2 Recovering System Servers 70

4.4 Case Study: Monitoring Driver Correctness 70
4.5 Case Study: Automating Server Recovery 73

5 EXPERIMENTAL EVALUATION 75

5.1 Software-implemented Fault Injection 75
5.1.1 SWIFI Test Methodology 75
5.1.2 Network-device Driver Results 79
5.1.3 Block-device Driver Results 85
5.1.4 Character-device Driver Results 87

5.2 Performance Measurements . 89
5.2.1 Costs of Fault Isolation . 89
5.2.2 Costs of Failure Resilience 94

5.3 Source-code Analysis . 96
5.3.1 Evolution of MINIX 3 . 96
5.3.2 Evolution of Linux 2.6 . 99

CONTENTS ix

6 RELATED WORK 101
6.1 In-kernel Sandboxing . 101

6.1.1 Hardware-enforced Protection 102
6.1.2 Software-based Isolation . 104

6.2 Virtualization Techniques . 107
6.2.1 Full Virtualization . 107
6.2.2 Paravirtualization . 109

6.3 Formal Methods . 111
6.3.1 Language-based Protection 112
6.3.2 Driver Synthesis . 115

6.4 User-level Frameworks . 117
6.4.1 Process Encapsulation . 117
6.4.2 Split-driver Architectures 120

6.5 Comparison . 123

7 SUMMARY AND CONCLUSION 125
7.1 Summary of this Thesis . 125

7.1.1 Problem Statement and Approach 125
7.1.2 Fault-tolerance Techniques 128

7.2 Lessons Learned . 130
7.2.1 Dependability Challenges 131
7.2.2 Performance Perspective . 132
7.2.3 Engineering Effort . 133

7.3 Epilogue . 135
7.3.1 Contribution of this Thesis 135
7.3.2 Application of this Research 136
7.3.3 Directions for Future Research 137

7.4 Availability of MINIX 3 . 139

REFERENCES 141

ABBREVIATIONS 161

PUBLICATIONS 163

BIOGRAPHY 165

List of Figures

1.1 Fundamental role of the OS in a computer system 3
1.2 Growth of the Linux 2.6 kernel and its major subsystems 7
1.3 Lack of fault isolation in a monolithic design 9
1.4 Independent processes in a multiserver design 11

2.1 Multiserver design of the MINIX 3 operating system 20
2.2 IPC primitives implemented by the MINIX 3 kernel 23
2.3 Format of �xed-length IPC messages in MINIX 3 23
2.4 Parameters supported by the service utility 25
2.5 Starting new drivers is done by the driver manager 25
2.6 Resources that can be con�gured via isolation policies 28
2.7 Hardware protection provided by MMU and IOMMU 30
2.8 Failed drivers can be automatically restarted 33

3.1 Classi�cation of privileged driver operations 38
3.2 Asymmetric trust and vulnerabilities in synchronous IPC 41
3.3 Overview of new kernel calls for device drivers 44
3.4 Structure of memory grants and grant �ags 47
3.5 Hierarchical structure of memory grants 48
3.6 IPC patterns to deal with asymmetric trust 53
3.7 Per-driver policy de�nition is done using simple text �les. 54
3.8 Interactions of an isolated driver and the rest of the OS 55

4.1 Classi�cation of defect detection techniques in MINIX 3 58
4.2 Example of a parameterized, generic recovery script 61
4.3 Procedure for restarting a failed device driver 62
4.4 Summary of the data store API for state management 63
4.5 Driver I/O properties and recovery support 66
4.6 Components that have to be aware of driver recovery 67
4.7 A �lter driver can check for driver protocol violations 71
4.8 On-disk checksumming layout used by the �lter driver 72
4.9 Dedicated recovery script for the network server (INET) 74

xi

xii LIST OF FIGURES

5.1 Fault types and code mutations used for SWIFI testing 77
5.2 Driver con�gurations subjected to SWIFI testing 79
5.3 Network driver failure counts for each fault type 80
5.4 Network driver failure reasons for each fault type 81
5.5 Unauthorized access attempts found in the system logs 82
5.6 Faults needed to disrupt and crash the DP8390 driver 83
5.7 Faults needed to disrupt and crash the RTL8139 driver 83
5.8 Selected bugs found during SWIFI testing 84
5.9 Results of seven SWIFI tests with the ATWINI driver 86
5.10 Audio playback while testing the ES1371 driver 88
5.11 System call times for in-kernel versus user-level drivers 90
5.12 Raw reads for in-kernel versus user-level drivers 91
5.13 File reads for in-kernel versus user-level drivers 91
5.14 Application-level benchmarks using the �lter driver 92
5.15 Cross-platform comparison of disk read performance93
5.16 Network throughput with and without driver recovery 94
5.17 Disk throughput with and without driver recovery 95
5.18 Evolution of the MINIX 3 kernel, drivers, and servers 96
5.19 Line counts for the most important MINIX 3 components 97
5.20 Evolution of the Linux 2.6 kernel and device drivers 99
5.21 Linux 2.6 driver growth in lines of executable code 100

6.1 Hardware-enforced protection domains in Nooks103
6.2 Software-based fault-isolation procedure in BGI 106
6.3 Full virtualization cannot isolate individual drivers 108
6.4 Paravirtualization supports driver reuse in L4Linux 111
6.5 Combined hardware and software isolation in Singularity 114
6.6 Formal method to synthesize drivers in Termite 116
6.7 Granularity of process encapsulation over the years 118
6.8 Split-driver architecture proposed by Microdrivers 122

Acknowledgements

This thesis marks the end of a remarkable period in my life for which Iam indebted
to many people. First and foremost, I would like to thank my mentors, Andy Tanen-
baum and Herbert Bos, who were always there for me and shaped my research in
many ways. Andy's strong focus on elegance and simplicity, critical attitude toward
virtually anything, and persistence and determination have been very inspiring. I am
particularly grateful for all the freedom he gave me and his seemingly never-ending
trust in whatever I came up with. Herbert's ability to balance Andy's outspoken
beliefs, considerate and thoughtful approach to research, and mindfulness for social
needs has helped me to put things in perspective. I have also enjoyed his enthusiasm
for traveling the world and keenly tried to follow his example. Having had two such
wonderful mentors has been an absolute delight and made my Ph.D.experience not
only very rewarding, but also truly enjoyable.

Next, I would like to thank the members of my thesis committee,including
George Candea (Dependable Systems Laboratory, École Polytechnique Fédérale
de Lausanne), Bruno Crispo (Department of Computer Science, VrijeUniversiteit
Amsterdam), Michael Hohmuth (Operating System Research Center,AMD), Galen
Hunt (Operating Systems Group, Microsoft Research), and Michael Swift (Com-
puter Sciences Department, University of Wisconsin-Madison),for reviewing this
thesis. It has been an honor to get direct feedback from some of the leading re-
searchers in the �eld. Their extensive and constructive comments have been helpful
to improve the text and make it what it is now.

I also would like to express my gratitude for the opportunities I have been of-
fered to give seminar presentations and guest lectures at variouslabs all over the
world. In particular, I appreciate the hospitality provided by Bruno Crispo (Univer-
sità degli Studi di Trento), Marko van Eekelen (Radboud Universiteit Nijmegen),
Steven Hand (University of Cambridge), Hermann Härtig (TechnischeUniversität
Dresden), Gernot Heiser (National ICT Australia), Giuseppe Lipari (Scuola Superi-
ore Sant'Anna), and Andrew War�eld (University of British Columbia).Being able
to share my ideas and getting early, critical feedback have helped to advance my
research and shape my view of the �eld.

I was fortunate enough to do various internships during the course of my Ph.D.
Halfway through, I left for a research internship at Microsoft ResearchSilicon Valley

xiii

xiv ACKNOWLEDGEMENTS

under the supervision of Úlfar Erlingsson and Martín Abadi. Being pampered with
corporate housing in San Francisco, an excursion to the Monterey Bay Aquarium,
and a BBQ at Bill Gates' house in Medina, WA was a great diversionfrom university
life. Next year, I did a software engineering internship at Googlein New York and
had the pleasure to work with Michael Harm, Norris Boyd, and Brian Kernighan.
The Google experience and lunches on the roof terrace overlookingthe New York
City skyline again made for a very enjoyable summer. Not much later, I �ew out to
Sydney for a visit to the embedded systems group led by Gernot Heiser at National
ICT Australia. The relaxed atmosphere and top-notch L4 research team made for
another pleasant and inspiring stay. I would like to thank my former colleagues and
all others who contributed to these experiences.

Most of my time was spent at Vrije Universiteit Amsterdam though. Special
mention goes the MINIX team. In the �rst place, credit is due to Ben Gras and Philip
Homburg, who did most of the hard programming while I was plotting crazy little
ideas. I am happy to have them as my paranymphs. Arun Thomas and Thomas
Veerman later joined the team in the same spirit. It also has beena great pleasure to
work with—and be challenged by—my fellow Ph.D. students: Mischa Geldermans,
David van Moolenbroek, Raja Appuswamy, Cristiano Giuffrida, Tomáš Hrubý, and
Erik van der Kouwe. I appreciate the team's proofreading effort and have great mem-
ories of our all-too-frequent coffee breaks, movie nights, and teamdinners. Next,
I would like to thank the rest of the Department of Computer Science. Although
many contributed to the pleasant research environment, I particularly would like to
thank my predecessors and peers outside the MINIX team, including Spyros Voul-
garis, Swaminathan Sivasubramanian, Melanie Rieback, Srijith K. Nair, Willem de
Bruijn, Georgios Portokalidis, Asia Slowinska, Remco de Boer, and Rik Farenhorst,
for showing me the way while I was still growing up and our interesting discussions
about various random topics.

Several `external' contributors to MINIX 3 deserve mention too. To start with, I
would like to thank Antonio Mancina (Scuola Superiore Sant'Anna), who visited the
MINIX group in 2007 and brought real-time support to MINIX 3. Next, I am grateful
to Bingzheng Wu (Chinese Academy of Sciences), who participated in Google Sum-
mer of Code 2008 and 2009 and worked on MINIX 3's storage stack and memory
grants. Parts of this work are described in this thesis. I also wantto acknowledge
the numerous local students who did a term project on MINIX 3 or contributed as
a research assistant, including, among others, Balázs Ger�o�, Luke Huang, Jens de
Smit, Anton Kuijsten, Pieter Hijma, and Niek Linnenbank.

Last but not least, I would like to thank my family and friends who supported
me throughout this endeavor and provided the necessary distraction from work. In
particular, I wish to thank my wife, Eva Marinus, for her love and support, tolerating
my idiosyncrasies, and all the adventures we have had together.

Jorrit N. Herder
Sydney, Australia, July 2010

Samenvatting

Dit hoofdstuk biedt een beknopte Nederlandse samenvatting van dit academisch
proefschrift met als titel“Het bouwen van een betrouwbaar besturingssysteem:
Foutbestendigheid in MINIX 3” . Hoofdstuk 7 bevat een uitgebreidere Engelse samen-
vatting en gaat dieper in op de onderzoeksbijdragen.

Een van de grootste problemen met computers is dat ze niet voldoen aan de
verwachtingen van gebruikers ten aanzien van betrouwbaarheid, beschikbaarheid,
veiligheid, etc. Een onderzoek onder Windows-gebruikers liet bijvoorbeeld zien dat
77% van de klanten 1 tot 5 fatale fouten per maand ondervindt en de overige 23%
van de klanten maandelijks zelfs meer dan 5 fatale fouten ervaart. De oorzaak van
deze problemen ligt in het besturingssysteem (“operating system”) dat een centrale
rol heeft in vrijwel elk computersysteem. De meeste fouten zijn terug te leiden tot
stuurprogramma's voor randapparatuur (“device drivers”) die relatief foutgevoelig
zijn. Dergelijke stuurprogramma's zijn nauw geïntegreerd in hetbesturingssysteem,
waardoor fouten zich gemakkelijk kunnen verspreiden en het helebesturingssysteem
kunnen ontregelen. Dit probleem doet zich niet alleen voor bijstandaard besturings-
systemen voor de PC, zoals Windows, Linux, FreeBSD en MacOS. Besturings-
systemen voor mobiele apparatuur (bijvoorbeeld telefoons, PDAs, fotocamera's,
etc.) en ingebedde computers (bijvoorbeeld in auto's, pinautomaten, medische appa-
ratuur, etc.) zijn veelal gebaseerd op een vergelijkbaar ontwerp waardoor ze soort-
gelijke problemen kennen.

Onbetrouwbare besturingssystemen veroorzaken niet alleen persoonlijke frus-
traties, maar hebben ook grote maatschappelijke consequenties zoals economische
schade en veiligheidsrisico's. Dit onderzoek heeft zich daaromtot doel gesteld
om een uitermate betrouwbaar besturingssysteem te bouwen dat fouten in stuurpro-
gramma's kan weerstaan en herstellen. Deze doelstellingen zijn gerealiseerd door
het besturingssysteem foutbestendig (“fault tolerant”) te maken zodat het normaal
kan blijven functioneren ondanks het optreden van veel voorkomende problemen.
Hierbij hebben we voortgebouwd op recente technologische vooruitgang en inge-
speeld op de veranderende eisen en wensen van gebruikers. Aan de ene kant biedt
moderne computer hardware betere ondersteuning voor het afschermen van fout-
gevoelige stuurprogramma's. Aan de andere kant is de rekenkracht van computers
zodanig toegenomen dat technieken die voorheen te kostbaar waren nu praktisch

xv

xvi SAMENVATTING

toepasbaar zijn. Daarnaast is de snelheid van desktop PCs tegenwoordig ruim vol-
doende en leggen steeds meer gebruikers de nadruk op betrouwbaarheid.

In dit onderzoek promoten we het gebruik van een modulair besturingssysteem
(“multiserver operating system”) dat compatibiliteit met UNIXwaarborgt, maar stu-
urprogramma's en systeemtoepassingen net als gewone gebruikerstoepassingen in
een onafhankelijk proces uitvoert. Dit model combineert hardware-bescherming
met software-technieken om stuurprogramma's te isoleren, zodat getriggerde fouten
minder schade kunnen aanrichten. In ons ontwerp hebben we twee strategieën
toegepast om de foutbestendigheid verder te verhogen: (1) fout isolatie (“fault iso-
lation”) om de tijd tussen fatale fouten te vergroten (“mean time to failure”) en (2)
foutherstellend vermogen (“failure resilience”) om de benodigdetijd voor het re-
pareren van fouten te verkleinen (“mean time to recover”). Beide aspecten zijn
in gelijke mate van belang voor het verhogen van de beschikbaarheid van het be-
sturingssysteem. Naast de hogere foutbestendigheid bieden modulaire besturings-
systemen ook vele andere voordelen: een korte ontwikkelingscyclus, een vertrouwd
programmeermodel en eenvoudig systeembeheer.

Om onze ideeën te kunnen testen, hebben we van het open-source besturings-
systeem MINIX 3 gebruikt. MINIX 3 voert stuurprogramma's, systeemtoepassingen
en gebruikerstoepassingen uit in onafhankelijke processen. Slechts een klein deel
van het besturingssysteem, bestaande uit zo'n 7500 regels programmacode, draait
met alle rechten van de computer en controleert de rest van het systeem. Commu-
nicatie tussen de verschillende onderdelen van het besturingssysteem is alleen mo-
gelijk door berichten van proces naar proces te kopiëren. Wanneer een gebruikers-
toepassing bijvoorbeeld een bestand van de harde schijf wil lezen, moet deze een
bericht sturen naar de systeemtoepassing voor het bestandssysteem, dat vervolgens
een bericht stuurt naar het stuurprogramma voor de harde schijf. Eénvan de uit-
breidingen op MINIX 3 is een systeemtoepassing die alle stuurprogramma's beheert
(“driver manager”). Deze component maakt het mogelijk om systeemtoepassingen
en stuurprogramma's te starten en te stoppen zonder de computer opnieuw te hoeven
starten. Het zorgt er tevens voor dat de stuurprogramma's strikt van elkaar en van de
rest van het besturingssysteem worden afgeschermd en het kan veelvoorkomende
fouten in stuurprogramma's detecteren en automatisch herstellen.

Hoewel veel van de gebruikte ideeën en technieken op zich nietnieuw zijn, was
hun gecombineerde potentieel om de betrouwbaarheid van besturingssystemen te
verbeteren nog niet voldoende onderzocht en overtuigend aangetoond. Door dit te
doen met behulp van MINIX 3 levert dit proefschrift de volgende wetenschappelijke
en praktische bijdragen:

• Het laat zien hoe de betrouwbaarheid van besturingssystemen kan worden ver-
beterd met behoud van het vertrouwde UNIX-programmeermodel. In tegen-
stelling tot aanverwant onderzoek, is alleen het binnenwerk van het bestu-
ringssysteem vernieuwd. Hierdoor kan compatibiliteit met bestaande software
worden behouden en is praktische toepassing stapgewijs mogelijk.

SAMENVATTING xvii

• Het classi�ceert de geprivilegieerde verrichtingen van stuurprogramma's die
ten grondslag liggen aan het verspreiden van fouten en bespreekt voor elke
klasse een reeks fout-isolatie technieken om de schade die fouten kunnen
veroorzaken te beperken. Dit resultaat is van belang voor elke poging om
stuurprogramma's af te zonderen ongeacht het besturingssysteem.

• Het introduceert een ontwerp dat het besturingssysteem in staat stelt om een
breed scala aan fouten in belangrijke componenten automatischte detecteren
en te repareren zonder gebruikerstoepassingen te onderbreken en zonder tussenkomst
van de gebruiker. Veel van deze ideeën zijn van toepassing in een bredere con-
text dan besturingssystemen alleen.

• Het evalueert de effectiviteit van het gepresenteerde ontwerp door middel van
uitgebreide tests met door software nagebootste fouten. In tegenstelling tot
eerdere projecten, zijn letterlijk miljoenen fouten nagebootst, waardoor ook
veel sporadisch voorkomende fouten opgespoord konden worden en verbe-
terde betrouwbaarheid met een hoge mate van zekerheid is aangetoond.

• Het beschrijft hoe recente hardware virtualisatie technieken gebruikt kunnen
worden om beperkingen van bestaande fout-isolatie technieken te overwin-
nen. Tegelijkertijd bespreekt het enkele resterende tekortkomingen in huidige
PC-hardware waardoor zelfs volledig afgezonderde stuurprogramma's het be-
sturingssysteem nog steeds kunnen laten vastlopen.

• Tot slot heeft dit onderzoek niet alleen geleid tot een ontwerp, maar is dit on-
twerp ook geïmplementeerd, met als resultaat het besturingssysteem MINIX 3
dat publiek beschikbaar is via de of�ciële website http://www.minix3.org/. Dit
foutbestendige besturingssysteem maakt duidelijk dat de voorgestelde aanpak
praktisch toepasbaar is.

Samenvattend kunnen we concluderen dat met dit onderzoek naarhet bouwen van
een foutbestendig besturingssysteem, dat bestand is tegen degevaren van de fout-
gevoelige stuurprogramma's, een stap is gezet in de richting vanmeer betrouwbare
besturingssystemen.

http://www.minix3.org/

C
ha

pt
er

1

Chapter 1

General Introduction

In spite of modern society's increasingly widespread dependence on computers, one
of the biggest problems with using computers is that they do notmeet user expec-
tations regarding reliability, availability, safety, security, maintainability, etc. While
these properties are, in fact, different concepts, from the users' point of view they
are closely related and together delineate a system'sdependability[Avi�ienis et al.,
2004]. The users' mental model of how an electronic device should work is based
on their experience with TV sets and video recorders: you buy it, plug it in, and
it works perfectly for the next 10 years. No crashes, no monthly software updates,
no unneeded reboots and downtime, no newspaper stories about the most recent in
an endless string of viruses, and so on. To make computers more like TV sets, the
goal of our research is to build a dependable computing platform,starting with the
operating system (OS) that is at the heart of it.

Our research focuses on the dependability needs of ordinary PCs (including
desktops, notebooks, and server machines), moderately well-equipped mobile de-
vices (such as cell phones, PDAs, and photo cameras), and embedded systems (as
found in cars, ATMs, medical appliances, etc.). Dependabilityproblems with com-
modity PC operating systems (OSes), including Windows, Linux,FreeBSD, and
MacOS, pose a real threat, and hanging or crashing systems are commonplace.
For example, Windows' infamous blue screens are a well-known problem [Boutin,
2004]. However, the same problems are showing up on mobile devices and embed-
ded systems now that they become more powerful and start to run full-�edged OSes,
such as Windows Mobile, Embedded Linux, Symbian, and Palm OS. The design of
these systems is not fundamentally different from PC OSes, which means that the
dependability threats and challenges for mobile devices and embedded systems are
similar to those encountered for ordinary PCs.

Our aim is to improve OS dependability by starting from scratch with a new,
lightweight design, without giving up the UNIX [Ritchie and Thompson, 1974] look
and feel and without sacri�cing backward compatibility with existing applications.
We realize that software is not always perfect and can contain bugs, but want faults

1

2 CHAPTER 1. GENERAL INTRODUCTION

and failures to be masked from the end user, so that the system cancontinue running
all the time. In particular, we address the problem of buggy device drivers, which run
closely integrated with the core OS and responsible for the majority of all crashes.
We are willing to make trade-offs that help to protect the system atthe expense of a
small amount of performance. Our design metric was always: how does this module,
algorithm, data structure, property, or feature affect the system'sdependability?

This thesis describes how we have realized this goal and built adependable OS,
MINIX 3, which is freely available along with all the source code. The remainder
of this chapter is organized as follows. To begin with, Sec. 1.1 further motivates the
need for improved OS dependability. Next, Sec. 1.2 describes the threats posed by
device drivers and Sec. 1.3 investigates the principles underlying OS crashes. Then,
Sec. 1.4 introduces our solution to the problem and Sec. 1.5 brie�y previews related
work. Finally, Sec. 1.6 de�nes the exact research focus and Sec. 1.7 lays out the
organization of the rest of this thesis.

1.1 The Need for Dependability

Perhaps the need for dependability is best illustrated by looking at the potentially far-
reaching consequences of software failures. For example, between 1985 and 1987,
a type of bug known as a race condition led to six accidents withthe Therac-25
radiation-therapy machine involving a radiation overdose that caused serious injury
and three fatalities [Leveson and Turner, 1993]. In 1991, arithmetic errors in the
Patriot missile-defense system used during the Gulf War prevented intercepting an
Iraqi Scud missile killing 28 American soldiers and injuring around 100 other peo-
ple [Blair et al., 1992]. In 1996, an integer over�ow caused the Ariane-5 satellite
to be destroyed shortly after launch by its automated self-destruct system resulting
in loss of reputation and damages of at least US$ 370 million [Dowson, 1997]. In
2003, an in�nite loop prevented alarms from showing on FirstEnergy's control sys-
tem and seriously hampered the ability to respond to a widespreadpower outage
affecting over 50 million people in the U.S. and Canada [Poulsen, 2004]. These
events as well as many others [e.g. Gar�nkel, 2005], illustrate the general need for
dependable computing platforms.

Narrowing our focus, OS dependability is of particular importance because of
the fundamental role the OS plays in almost any computer system. The OS is the
lowest level of system software, commonly referred to as thekernel, that interfaces
between the computer hardware and applications run by the end user. In our view,
the OS has three key responsibilities:

• The OS mediates access to the central processing unit (CPU), memory, and
peripheral devices, so that applications can interoperate withthe computer.

• It acts as a kind of virtual machine by offering a convenient application pro-
gramming interface (API) at a level higher than the raw hardware.

1.1. THE NEED FOR DEPENDABILITY 3

C
ha

pt
er

1

Text
editor player

Media
browser

Web
programs
Application

users
End

Operating
system

Computer
hardwareCPU Memory Devices

Operating system

Figure 1.1: The fundamental role of the OS in a computer system: the OS is the lowest level of
system software that controls the hardware, manages resources, and interfaces with applications.

• Finally, the OS controls and manages the system's software andhardware re-
sources in order to prevent con�icts and enforce security policies.

We do not consider the system utilities and application programs shipped with the
OS to be part of the OS. This design is illustrated in Fig. 1.1. Because of this im-
portant role of the OS at the heart of the system any problem with the OS will have
immediate repercussions on the dependability of the system asa whole.

Despite its important role, OS dependability is still lacking. Studies seem to
indicate that most unplanned downtime can be attributed to faulty system software
rather than hardware failures [Gray, 1990; Lee and Iyer, 1993; Thakuret al., 1995;
Xu et al., 1999], and within this class OS failures deserve special attention because
of their severity. A January-2003 survey among home and small business users
showed that all participants experienced Windows crashes or serious bugs; 77% of
the customers experienced 1–5 crashes per month, whereas 23% of the customers
experienced more than 5 monthly crashes [Orgovan and Dykstra, 2004]. Although
application crashes are more common, OS crashes have a broader scope and more
severe consequences [Ganapathi and Patterson, 2005]. In contrastto crashed appli-
cations that can be restarted immediately, an OS crash takes down all running appli-
cations, closes all network sessions, destroys all unsaved user data, and requires a
full, time-consuming reboot of the machine.

Rebooting after an OS crash is not only frustrating, but also a real problem to
end users. First, computer crashes are unacceptable for ordinary users who may not
be willing or used to deal with failures. Anecdotal evidence is provided by support
calls from friends or family who have some computer problem to be �xed. Next,
OS crashes are a serious issue for data centers and server farms where monthly OS
reboots translate to many daily failures due to the large numberof machines run-
ning. Even if individual OSes have 99.9% uptime, achieving an overall service level
of `three nines' or 99.9% availability is a big challenge. Hence, data centers usually
employ additional measures, such as replication and preventive reboots, to guarantee

4 CHAPTER 1. GENERAL INTRODUCTION

availability. Finally, there is a host of safety-critical systems that are simply too im-
portant to fail. Safety-critical systems are found in, for example,aerospace, aviation,
automotive, military, medical, telecommunications, banking, and public-service ap-
plications. Therefore, OS dependability is crucial.

1.2 The Problem with Device Drivers

In order to improve OS dependability we have primarily focused on OSextensions.
In a typical design, the core OS implements common functionality, such as process
scheduling and programming the memory management unit (MMU), andprovides a
set of kernel interfaces for enhancing or extending this functionality. OS extensions
use these hooks to integrate seamlessly with the core OS and extend its functionality
with a speci�c service, such as a device driver, virus scanner, or protocol stack. In
this way, the OS can support different con�gurations without having to include all
possible anticipated functionality at the time of shipping;new extensions can be
installed after the OS has been deployed.

We are particularly interested in low-level device drivers that control the com-
puter's peripheral devices, such as printers, video adapters, audio cards, network
cards, storage devices, etc. Drivers separate concerns by providing an abstraction
layer between the device hardware and the OS modules that use it. For example,
a network server de�nes a generic, high-level network protocol anduses a network
driver to do the low-level input/output (I/O) from and to a speci�c network card.
Likewise, a �le server implements a �le-system format and relies on a disk driver to
read or write the actual data from or to the controller of the disk drive. In this way,
the core OS can remain hardware-independent and call upon its drivers to perform
the complex, hardware-dependent device interaction.

Drivers are important not only qualitatively, but also quantitatively, and can com-
prise up to two-thirds of the OS code base [Chou et al., 2001]. This is not surprising
since the number of different hardware devices in 2004 is quoted at 800,000 with
1500 new devices per day [Murphy, 2004]. Even though many devices have the
same chipset and some drivers can control multiple devices, literally tens of thou-
sands of drivers exists. In the same year, Windows reportedly had 31,000 unique
drivers and up to 88 drivers were being added every day. A more recent report men-
tions an average of 25 new and 100 revised drivers per day [Glerum et al., 2009].
While not all these drivers are present in any system, each individual driver runs
closely integrated with the core OS and can potentially crash the entire system.

It is now beyond a doubt that OS extensions and drivers in particular are re-
sponsible for the majority of OS crashes. To start with, analysisof failure reports
for the Tandem NonStop-UX OS showed that device drivers contribute the great-
est number of faults [Thakur et al., 1995]. A static compiler analysis of Linux also
found that driver code is most buggy, both in terms of absolute bug counts and in
terms of error rate. Drivers had most bugs for all error classes distinguished and ac-

1.2. THE PROBLEM WITH DEVICE DRIVERS 5

C
ha

pt
er

1counted for 70%–90% of the bugs in most classes. The error rate corrected for code
size in drivers also is 3–7 times higher than for the rest of the kernel [Chou et al.,
2001]. Finally, studies of Windows' automatically generatedcrash dumps again pin-
point drivers as a major problem. For example, crash analysis shows that 70% of all
OS crashes is caused by third-party code, whereas 15% is unknown because of se-
vere memory corruption [Orgovan and Dykstra, 2004]. Another independent study
showed that 65% of all OS crashes are due to device drivers [Ganapathi et al., 2006].

Looking at the driver development cycle we believe that driverquality is not
likely to improve on a large scale any time soon. Although we did not investigate in
detail why drivers are so error-prone, several plausible explanations exist:

• First, driver writing is relatively dif�cult because drivers are complex state
machines that must handle application-level requests, low-level device inter-
action, and system events such as switching to a lower power state.

• Second, drivers are often written by third parties, such as the device manufac-
turer or a volunteer from the open-source community, who may be ignorant of
system rules and accidentally violate interface preconditions.

• Third, OS and hardware documentation is frequently lacking, incomprehen-
sible, or even incorrect, causing programmers to (reverse) engineerthe driver
until it works—without correctness guarantees [Ryzhyk et al., 2009a].

• Fourth, driver writers sometimes incorrectly assume the hardware to work cor-
rectly, as evidenced by, for example, in�nite polling or lack of input validation,
which may hang or crash the OS [Kadav et al., 2009].

• Fifth, relating to the previous points, driver writers often are newto the task
and lack experience. By a huge margin, the average third-party driver writer
is writing his �rst (and only) device driver [Hunt, pers. comm., 2010].

• Finally, in contrast to the core OS that typically remains stable and is more
heavily tested, drivers come and go with new hardware and may havemore
poorly tested code paths due to rare system con�gurations [Merlo etal., 2002].

In addition, we believe that �xing buggy drivers is infeasible because of the
overwhelmingly large number of extensions and continuouslychanging con�gura-
tions. Although Microsoft's error reporting revealed that a small number of organi-
zations are responsible for 75% of all driver crashes, a heavy tailindicates it is ex-
tremely hard to eliminate the remaining 25% of the crashes [Ganapathi et al., 2006].
Moreover, the number of problems that can be resolved using automatic checkers
�uctuates because software and hardware con�gurations are continuously chang-
ing [Murphy, 2004]. This leads to a highly complex, dynamic con�guration space
that is extremely hard, if not impossible, to check for correctness. Finally, even if
bugs can be �xed, bug �xes not infrequently introduce new problems.

6 CHAPTER 1. GENERAL INTRODUCTION

1.3 Why do Systems Crash?

Having established device drivers as a main dependability threat, we now study the
more fundamental principles that lead to OS crashes. Although OScrashes can be
caused by bugs in hardware, �rmware, and software [Glerum et al., 2009], this thesis
primarily focuses on the latter because software bugs are more prevalent and can be
addressed by the OS itself. Buggy driver software is unavoidable due to an excess
of complex system code and hardware with bizarre programming interfaces. The
reason underlying OS crashes, however, are a series of design �awsthat allow the
bugs to spread and cause damage. Below, we investigate these issues in turn.

1.3.1 Software Complexity

Large software systems seem to be buggy by nature. Studies for many programming
languages reveal a similar pattern, leading to the conclusionthat any well-written
code can be expected to have a fault density of at least 0.5–6 faults per 1000 lines of
executable code (LoC) [Hatton, 1997]. For example, the 86,000-LoC IBM DOS/VS
OS displayed 6 faults/KLoC during testing [Endres, 1975]. Next,a 90,000-LoC
satellite planning system contained 6–16 faults/KLoC throughout the software life
cycle [Basili and Perricone, 1984]. Furthermore, a 500,000-LoC AT&Tinventory
tracking system had 2–75 faults/KLoC [Ostrand and Weyuker, 2002]. In line with
these estimates, the multimillion-line FreeBSD OS was found tohave 1.89 `post-
feature test' faults/KLoC [Dinh-Trong and Bieman, 2005], even though this project
has strict testing rules and anyone is able to inspect the sourcecode. The `post-
feature test' fault density includes all faults found in completed features during the
system test stage [Mockus et al., 2002]. However, we believe that this fault density
may even be an underestimate because only bugs that were ultimately found and �led
as a bug report were counted. For example, static analysis of 126well-tested and
widely used Windows drivers revealed signi�cant numbers of latent bugs [Ball et al.,
2006]. A more recent study took 6 popular Windows drivers and found 14 new bugs
with relatively little effort [Kuznetsov et al., 2010].

There are various reasons for all these bugs. Module size and complexity seem
to be poor predictors for the number of faults, but new code was generally found to
contain more bugs. Attempts to relate fault density to module size and complexity
have found different results and thus are inconclusive: studies found a negative cor-
relation [Basili and Perricone, 1984; Ostrand and Weyuker, 2002],a U-shaped cor-
relation [Hatton, 1997], a positive correlation [Chou et al., 2001], or no correlation at
all [Fenton and Ohlsson, 2000]. However, code maturity seems tobe a viable metric
to predict faults. In Linux, 40%–60% of the bugs were introduced in the previous
year [Chou et al., 2001]. In the AT&T inventory tracking system, new �les more fre-
quently contained faults and had higher fault densities [Ostrand and Weyuker, 2002].
Interestingly, however, the overall fault density stabilizedafter many releases and did
not go asymptotically to zero [Ostrand et al., 2005].

1.3. WHY DO SYSTEMS CRASH? 7

C
ha

pt
er

1In addition to bugs in new drivers, maintainability of existingcode is complicated
by software aging due to maintenance and redesign [Gray and Siewiorek, 1991]. In
particular, changes in OS interfaces may trigger changes in dependent drivers. Such
changes are known ascollateral evolutionand can account for up to 35% of the num-
ber of lines modi�ed from one OS version to the next. Many collateral evolutions
are quite pervasive, with one change in a library function affecting around 1000 sites
in Linux 2.6 [Padioleau et al., 2006]. We expect this situationto deteriorate because
dependencies between the core OS and extensions seem to increase with each re-
lease [Schach et al., 2002]. Therefore, even if a driver appears to bebug-free in one
version, changes to the rest of the OS may silently break it in thenext release be-
cause ofregression faults, that is, faults present in the new version of the system that
were not present prior to modi�cation.

In order to assess what these �ndings mean for an actual OS, we analyzed the
Linux 2.6 kernel during a 5-year period since its initial release.Fig. 1.2 shows
the code evolution with 6-month deltas for 11 versions ranging fromLinux 2.6.0
to 2.6.27.11. The �gure is indicative for the evolution of Linux' enormously com-
plex code base, which poses a serious threat to its dependability. The/driverssub-
system is by far the largest subsystem and more than doubled ina period of just
5 years, comprising 51.9% of the kernel or 2.7 MLoC. The entire kernel now sur-
passes 5.3 MLoC. Linux' creator, Linus Torvalds, also acknowledges this fact and
recently called the kernel `bloated and huge' [Modine, 2009]. Using a conservative
estimate of 1.89 faults/KLoC found for FreeBSD [Dinh-Trong and Bieman, 2005],
this means that the 5.3-MLoC Linux kernel may contain over 10,000 bugs, some of
which may eventually be triggered and crash the OS. While we acknowledge that

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

 Linux 2.6.0

18 Dec 2003

 Linux 2.6.7

16 Jun 2004

 Linux 2.6.10

24 Dec 2004

 Linux 2.6.12.3

15 Jul 2005

 Linux 2.6.14.6

08 Jan 2006

 Linux 2.6.17.5

15 Jul 2006

 Linux 2.6.19.2

10 Jan 2007

 Linux 2.6.22.1

10 Jul 2007

 Linux 2.6.23.13

09 Jan 2008

 Linux 2.6.26.0

13 Jul 2008

 Linux 2.6.27.11

14 Jan 2009

Li
ne

s
of

 c
od

e
(L

oC
)

Linux 2.6 version and release date

/arch
/drivers
/fs
/net
other

Figure 1.2: Growth of the Linux 2.6 kernel and its major subsystems in lines of executable code
(excluding comments and white space) for a 5-year period with 6-month deltas.

8 CHAPTER 1. GENERAL INTRODUCTION

only a subset of the code is active on any given system, test coverage for new or
infrequently used drivers may be poor and deteriorate over time.

The obvious conclusion of these studies is: more code means more bugs means
more dependability problems. As software develops, each new release tends to ac-
quire more features and is often less dependable than its predecessor. There seems
to be no end to the increasing size and complexity of software, leading to aperpet-
ual software crisis[Myhrvold, 1997]. Moreover, with multimillion-line systems, no
person will ever read the complete source code and fully understand it. Of course,
different people will understand different parts, but because components interact in
complex ways, with nobody understanding the whole system, itis unlikely that all
the bugs will ever be found. On top of this, bug triage is sometimes postponed for
months or even delayed inde�nitely [Guo and Engler, 2009] andadministrators are
generally slow to apply bug �xes [Rescorla, 2003]. Therefore, this thesis aims to
improve dependability by anticipating buggy code.

1.3.2 Design Flaws

While it may not be possible to prevent bugs, we strongly believe it is the respon-
sibility of the OS to tolerate them to a certain extent. In our view, a bug local to a
device driver or other OS extension should never be able to bring down the OS as
a whole. In the worst case, such an event may lead to a local failure and gracefully
degrade the OS by shutting down only the malfunctioning module. If a bug in, say,
an audio driver is triggered, it is bad enough if the audio card stops working, but
a full OS crash is completely unacceptable. Unfortunately, current OSes do not do
very well according to our metric.

The fact that current OSes are susceptible to bugs can be traced back to two fun-
damental design �aws. The main problem is lack of isolation between the OS mod-
ules due to the use of amonolithic design. Virtually all OSes, including Windows,
Linux, and FreeBSD, consist of many modules linked together to form a single bi-
nary program known as thekernel. Even though there is a clear logical structure with
a basic executive layer (the core OS) and extensions that provide added functional-
ity, all the code runs in a single protection domain. Since kernel code is allowed
to execute privileged CPU instructions, drivers can accidentally change the memory
maps, issue I/O calls for random devices, or halt the CPU. In addition, all the code
runs in a single address space, meaning that an invalid pointeror buffer over�ow in
any module can easily trash critical data structures in another module and spread the
damage. This design is illustrated in Fig. 1.3.

A related problem is violating a design principle known as theprinciple of least
authority(POLA) [Saltzer and Schroeder, 1975] by granting excessive privileges to
untrusted (driver) code. Most sophisticated users normally wouldnever knowingly
allow a third party to insert unknown, foreign code into the heart oftheir OS, yet
when they buy a new peripheral device and install the driver, this is precisely what
they are doing. In addition, many drivers come preinstalled with the OS distribu-

1.4. IMPROVING OS DEPENDABILITY 9

C
ha

pt
er

1

Process
manager

File Network

Application
programs

K
er

ne
l

Operating
system

Independent processes

NetworkAudio Disk
driver

supportsetup
MMUCPU

control
Driver

Web
browser

Media
player

Text
editor

server server

driver driver

Figure 1.3: A monolithic design runs the entire OS in the kernel without protection barriers between
the OS modules. A single driver fault can potentially crash the entire OS.

tion, which results in an unwarranted feeling of trust. However, because drivers are
executed in the kernel they can circumvent all security policies and the slightest mal-
functioning can take down the OS. Effectively, drivers are grantedfull control over
the machine—even though this is not required for drivers to do their job.

The reason for running the entire OS in the kernel with no protectionbetween
the modules seems to be historically motivated. Early OSes wererelatively small
and simple and, therefore, still manageable by a few experts. More importantly,
computers were far less powerful and imposed severe constraints upon the OS with
respect to resource usage. Linking all the modules together didnot waste memory
and resulted in the best performance. The use of a monolithic design thus seemed
logical at that time. Today, however, the landscape has completely changed: current
OSes tend to be much larger and far more complex and (desktop) computing power
is no longer a scarce resource. These software and hardware advancesmean that the
design choices of the past may no longer be appropriate.

1.4 Improving OS Dependability

Because we do not believe that bug-free code is likely to appear soon, we have de-
signed our OS in such a way that certain major faults can be tolerated. The idea
underlying our approach is to exploitmodularity, as is commonly done in other en-
gineering disciplines. For example, the hull of a modern ship is compartmentalized
such that, if one compartment springs a leak, only that compartment is �ooded, but
not the entire hull, and the ship can seek a safe harbor. Likewise, computer hard-
ware is componentized such that, if the DVD-RW drive breaks down,writing DVDs
is temporarily not possible, but the computer works �ne otherwise, and the broken
unit may be replaced with a new one. This kind of modularity is key to dependability
and forms the basis underlying our dependable OS design.

10 CHAPTER 1. GENERAL INTRODUCTION

1.4.1 A Modular OS Design

For decades, the proven technique for handling untrusted code,such as application
programs, has been to run it as an independent process with a private memory ad-
dress space and in an unprivileged CPU mode. Such an unprivileged process is
known as auser process. Hardware protection provided by the CPU and MMU are
used to set up a protection domain in which the process can run safely, isolated from
the kernel and other user processes. If a user process attempts toexecute a priv-
ileged instruction or dereference a pointer outside of its address space, a CPU or
MMU hardware exception is raised and control is transferred back to the OS via a
trap. The user process may be suspended or aborted, but, more importantly, the rest
of the system is unaffected and can continue to operate normally.

We took this idea to the extreme with a modular design that fullycompartmen-
talizes the OS, just like is done for application programs. Moving the entire OS into
a single user process [Härtig et al., 1997] makes rebooting the operating system after
a crash faster, but does not address the degree of driver isolation. What is required
instead is amultiserver designthat splits the OS functionality into multiple inde-
pendent user-level processes, and very tightly controlling what each process can do.
Only the most basic functionality that cannot be realized at the user level, such as
programming the CPU and MMU hardware, is allowed to remain in the kernel. Be-
cause the kernel is reduced to the absolute minimum it is now called amicrokernel.
While servers and drivers require more privileges than applications, each is run as an
ordinary process with the same hardware-enforced protection model. The structure
of a microkernel-based multiserver design is illustrated in Fig.1.4.

We are not arguing that moving most of the OS to user level reduces the total
number of bugs present. However, we are arguing that, by converting a kernel-level
bug into a user-level bug, the effects when a bug is triggered willbe less devastat-
ing. Monolithic designs are like ships before compartmentalization was invented:
every leak can sink the ship. In contrast, multiserver designs arelike modern ships
with isolated compartments that can survive local problems. If abug is triggered,
the problem is isolated in the driver and can no longer bring downthe entire OS.
In addition, the multiserver design changes the manifestationof certain bugs. For
example, a classi�cation of driver failures on Windows XP shows that the use of
user-level drivers would structurally eliminate the top �ve contenders, responsible
for 1690 (67%) of the 2528 OS crashes analyzed [Ganapathi et al., 2006]. The fol-
lowing driver failures from this analysis illustrate this point:

• Just under a quarter of these failures (383) are caused by driver traps or excep-
tions that cannot be handled by the kernel. A trap is usually caused by a CPU
hardware exception such as division by zero, arithmetic over�ow,or invalid
memory access. When a trap occurs the CPU stops execution of the current
process, looks up the corresponding trap handler, and switches context to the
kernel in order to handle the exception. However, upon a trap caused by a
kernel-level driver it may be impossible to switch to another kernel context,

1.4. IMPROVING OS DEPENDABILITY 11

C
ha

pt
er

1

K
er

ne
l

Application

Operating
system

Independent processes

programs

CPU MMU Driver

driver
Disk

driver
Audio

Process
manager

Text
editor

Media
player

Web
browser

server
NetworkFile

server

driver
Network

control setup support

Figure 1.4: A multiserver design runs each server and driver as an independent, hardware-
protected user process. This design prevents propagation of faults between the OS modules.

and the OS crashes. In contrast, traps or exceptions caused by a user-level
driver can be dealt with using the OS' normal exception handling mechanisms
that already are in place for application programs.

• About a �fth of these failures (327) are caused by in�nite loops in drivers, that
is, pieces of code that lack a functional exit and repeat inde�nitely. A driver
may wind up in an in�nite loop, for example, if it repeatedly retries a failed
operation or busy waits for the hardware to become ready, without checking
against a maximum number of retry attempts or scheduling a time-out alarm,
respectively. Because a kernel-level driver runs with full privileges, such a
bug may consume all CPU resources and hang the entire system. In contrast,
a user-level driver runs under the control of the OS scheduler, just like normal
application programs do, and can only waste the CPU resources assigned to it.
The rest of the OS still gets a chance to run, and corrective measures such as
lowering the driver's priority can be taken.

There are two potential downsides to the use of a multiserver OS design. First,
because device drivers often depend on the core OS and need to performsensitive
operations, it is not possible to maintain full backward compatibility and directly run
a kernel driver as a user process. Instead, minor modi�cations tothe driver code are
generally required in order to mediate the use of privileged functionality [Herder,
2005]. Nevertheless, we believe that the level of compatibility provided by multi-
server systems is high enough to be of practical use. For example, it is generally
possible to port existing drivers from other OSes. Second, because user-level drivers
need to call other parts of the OS to perform operations they could formerly do
themselves, a small performance overhead due to context switching and data copy-
ing is expected. In practice, this overhead is limited to 0%–25%, depending on the
system's workload, and should not pose a problem for most use cases.

12 CHAPTER 1. GENERAL INTRODUCTION

1.4.2 Fault-tolerance Strategies

The �ne-grained process-based encapsulation provided by a multiserver design al-
lowed us to explore the idea offault tolerance, that is, the ability to continue to op-
erate normally in the presence of faults and failures [Nelson, 1990]. If a driver fault
affects the rest of the OS at all, the quality of service may be gracefully degraded
proportional to the problem's severity, but the fault may never lead to a system-wide
failure. Our design applies two fault-tolerance strategies, namely,fault isolationand
failure resilience. Our fault-isolation mechanisms prevent local driver faults from
damaging the rest of the system. This cannot prevent a faulty driver from failing,
however. Therefore, our failure-resilience mechanisms attempt to recover from a
broad range of driver failures. We further introduce these notions below:

• Fault isolation means that the damage caused by a bug cannotpropagate and
spread beyond the protection domain of the component in which the bug is
contained. By splitting the OS into small, independent components we can
establish protection barriers across which faults cannot propagate, resulting in
a more robust system. Bugs in user-level drivers have much less opportunity
to trash kernel data structures and cannot touch hardware devices they have
no business touching. While a kernel crash is always fatal, a crash of a user
process rarely is. Although drivers need more privileges than ordinary applica-
tions, we have attempted to minimize the risks by restricting driver privileges
according to the principle of least authority

• Failure resilience literally refers to the ability to recover quickly from a failure
condition. Once driver faults are properly isolated from the core OS, on-the-
�y recovery of certain driver failures may be possible. By giving aspecial
component known as thedriver managerthe power to monitor and control all
drivers at run time, we can detect and repair a wide range of failures, including
unresponsive, misbehaving, and crashing drivers. When a failureis detected,
the driver manager looks up the associated policy, and can automatically re-
place the malfunctioning component with a fresh copy. In some cases, full
recovery is possible, transparent to applications and without user intervention.

These fault-tolerance strategies map onto two important dependability metrics.
First,mean time to failure(MTTF) characterizes a system's uptime, that is, the time
until a failure occurs. Second,mean time to recover(MTTR) characterizes the time
needed to recover from a failure, that is, the time needed for defectdetection and
repair. Together, these metrics de�ne a system'savailability (A):

A =
MT T F

MT T F + MT T R

with an availability of A= 1 (i.e. MTTF >> MTTR) corresponding to the ideal
of zero downtime. This formula shows that availability can be increased either by

1.4. IMPROVING OS DEPENDABILITY 13

C
ha

pt
er

1maximizing MTTF or by minimizing MTTR. Our fault tolerance techniques work
from both sides. Fault isolation increases MTTF by making the system as a whole
more robust against failures. However, since bugs are a fact of life, in�nite uptime
may not be realistic. Therefore, failure resilience reduces MTTR byrestarting failed
drivers on the �y rather than requiring a full reboot. Although we do not attempt
to quantify exactly MTTF and MTTR, the point we want to make is that reducing
MTTR may be as effective as increasing MTTF [Gray and Siewiorek, 1991].

1.4.3 Other Bene�ts of Modularity

In addition to dealing with buggy drivers, the use of modularity helps improving de-
pendability in a broader context. While there are some restrictions, we believe that a
modular OS environment supports both programmers and administrators throughout
the development cycle and may lead to higher productivity, improved code quality,
and better manageability. We discuss some of these bene�ts below.

Short Development Cycle The huge difference between monolithic and multi-
server OSes immediately becomes clear when looking at the development cycle of
OS components. System programming on a monolithic OS generallyinvolves edit-
ing, compiling, rebuilding the kernel, and rebooting to test the new component. A
subsequent crash requires another reboot, and tedious, low-level debugging usually
follows. In contrast, the development cycle on a multiserver OS is much shorter.
Typically, the steps are limited to editing, compiling, testing, and debugging—just
like is done for application programs. Because OS development at the user level is
easier, the programmer can get the job done faster.

Normal Programming Model Since drivers are ordinary user processes, the normal
programming model applies. Drivers can use system libraries and, in some cases,
even make ordinary system calls, just like applications. Thisstrongly contrasts to the
rigid programming environment of monolithic kernels. For example, in Windows,
kernel-level code running at high a priority level must be careful not to access page-
able memory, because page faults may not be handled. Likewise, the normal way
to acquire kernel locks may not be used in the lowest-level drivercode, such as in-
terrupt handlers. All these kernel-level constraints make it easyfor programmers to
make mistakes. In essence, working at the user level makes programming easier and
leads to simpler code and, therefore, reduces the chance of bugs.

Easy Debugging Debugging a device driver in a monolithic kernel is a real chal-
lenge. Often the system just halts and the programmer does not have a clue what
went wrong. Using an emulator usually is of no use because typically the device
being driven is new and not supported by the emulator. On Windows platforms
debugging a kernel-level driver is normally done using two machines: one for the
driver and a remote machine running the debugger. In contrast, if adriver runs as

14 CHAPTER 1. GENERAL INTRODUCTION

a user process, a crash leaves behind a core dump that can be subjected to post-
mortem analysis using all the normal debugging tools. Furthermore, as soon as the
programmer has inspected the core dump and system logs and has updated the code,
it is possible to test the new driver without a full reboot.

Good Accountability When a user-level driver crashes, it is completely obvious
which one it is, because the driver manager can tell which process exited. This
makes it much easier than in monolithic kernels to pin down whose fault a crash
was, and possibly who is legally liable for the damage done. Holding hardware
manufacturers and software vendors liable for their errors, in the same way as the
producers of tires, medicines, and other products are held accountable, may be an
incentive to improve software quality. Although some software providers are willing
to remedy problems brought to their attention, the number of vendors participating
in error reporting programs is still very small [Glerum et al., 2009]. With drivers
running at the user level it will become easier to set up error reporting infrastructure,
which may help to get software providers in the loop.

Simple Maintenance Our modular design makes system administration and main-
tenance easier. Since OS modules are just processes, it is relatively easy to add or
remove servers and drivers. It becomes easier to con�gure the OS by mixing and
matching modules. Furthermore, if a module needs to be patched,this can usually
be done in a process known as adynamic update, that is, component replacement or
patching without loss of service or a time-consuming reboot [Baumann et al., 2007].
This is important since reboots due to maintenance cause a large fraction (24%) of
system downtime [Xu et al., 1999]. In contrast to monolithic kernels, module sub-
stitution is relatively easy in modular systems and often can be done on the �y.

1.5 Preview of Related Work

Recently, several other projects have also acknowledged the problem of buggy de-
vice drivers and attempted to make them more manageable and prevent them from
crashing the entire OS. In our discussion, we are primarily interested in how different
run-time systems deal with untrusted code and what trade-offs theypose. Although
we also cover some ways to improve driver quality, prevention ofbugs is an orthog-
onal problem and outside the scope of this work. For the purpose of this thesis, we
have classi�ed the related work into four categories:

• In-kernel sandboxing.

• Virtualization techniques.

• Formal methods.

• User-level frameworks.

1.5. PREVIEW OF RELATED WORK 15

C
ha

pt
er

1The work described here classi�es as a user-level framework. Interestingly, many of
the ideas used in each of these classes have been around for decades, but have been
revisited recently in order to improve OS dependability.

Without going into all the details or concrete systems, whichwe will do in
Chap. 6, we brie�y preview each approach below and contrast them to our approach.
First, in-kernel sandboxing tries to isolate drivers inside the kernel by providing a
restricted execution environment for the untrusted code. This iscalled a sandbox.
One approach is to wrap each driver in a layer of software that controls the driver's
interaction with the kernel. One particular bene�t of this approach is that it allows to
retro�t dependability into commodity OSes. In addition, interposition allows catch-
ing a wide variety of fault types, since the wrapper code can be aware of driver
protocols. However, in-kernel drivers can sometimes still execute dangerous CPU
instructions and additional protection mechanisms are requiredfor untrusted execu-
tion. Although drivers often do not have to be modi�ed, new support infrastructure
is typically needed in the kernel. This adds additional complexity to the kernel and
introduces new maintenance problems.

Second, virtualization techniques present a virtual, hardware-protected execu-
tion environment that exports only a subset of the computer's resources to the client.
Privileged operations are intercepted and vetted before execution. Virtualization is
generally used to run multiple OSes in isolation, for example, Windows next to
Linux, FreeBSD, or MacOS, but cannot prevent drivers running inside the OS from
crashing their execution environment. Although the crashed OScan be restarted
without affecting other virtual machines, all running applications and unsaved user
data are still lost. Isolation can be achieved by running untrusted drivers in separate
virtual machines, but this requires the OS hosting the driver as well as the virtual
execution environment to be modi�ed in order to let driver communication go in and
out. Such modi�cations break the original intent of virtualization and require protec-
tion measures similar to those found in user-level frameworks in order to guarantee
proper isolation. Furthermore, resource management may not scaleif each and every
OS extension needs to be isolated separately.

Third, formal methods exploit advances in safe languages and veri�cation tech-
niques in order to evaluate novel OS designs. Current OSes are commonly written
in low-level languages like C or C++, which use error-prone memory pointers all the
time. In contrast, safe, high-level languages structurally eliminate many problems,
because the compiler refuses to generate `dangerous' code and therun-time system
automates memory management. In addition, it becomes possible to perform static
analysis on driver code and verify that system invariants are not violated. Driver
synthesis also seems attractive, but writing a formal speci�cation of the device in-
terface requires substantial manual effort. A downside of these approaches is that
it completely overhauls the traditional, well-known development cycle and often is
incompatible with existing code. Furthermore, formal veri�cation of the entire OS is
infeasible, and hardware support is still required to isolate untrusted code and protect
against memory corruption by incorrectly programmed devices.

16 CHAPTER 1. GENERAL INTRODUCTION

Fourth, user-level frameworks run drivers as user processes protectedby the CPU
and MMU hardware. Running the entire OS in a single process is of little help be-
cause drivers still run closely integrated with the core OS. Instead, each individual
driver must be encapsulated in an independent process. This model is a simple,
well-understood and proven technique for handling untrusted code. Although driver
modi�cations are generally required, the changes tend to be limited to the code that
uses privileged functionality. This basic idea has been aroundfor a few decades,
but was never fully explored because it incurs a small performance overhead. Al-
though modular designs have been tested before, many projects focused on perfor-
mance [e.g. Liedtke, 1993; Härtig et al., 1997] and security [e.g. Singaravelu et al.,
2006] rather than dependability. Not until recently were user-level drivers introduced
in commodity OSes, but a fully compartmentalized OS is still a rarity.

From the user's point of view, a multiserver OS is in the middle ofthe spectrum
ranging from legacy to novel isolation techniques. For example, in-kernel sand-
boxing works with commodity OSes and existing drivers, but introduces additional
complexity into the kernel to work around rather than �x a �awed design. Virtu-
alization provides only a partial solution to the problem and cannot elegantly deal
with individual driver failures. Formal methods potentially can provide a very high
degree of isolation, but often throw away all legacy by starting from scratch with a
design that is not backward compatible. In contrast, user-levelframeworks balance
these factors by redesigning the OS internals in order to provide hard safety guaran-
tees, while keeping the UNIX look and feel for both developers andend users, and
maintaining compatibility with existing applications.

An important bene�t of our modular design is that it can be combined with
other isolation techniques in order to achieve the best of allworlds. For example,
language-based protection can be exploited on a small scale, because drivers run-
ning as ordinary user processes can be implemented in a programming language of
choice. Likewise, sandboxing techniques such as wrapping and interposition may
also be applied to monitor the working of selected drivers more closely. Because our
design runs all OS services as independent user processes, the protection model can
be tightened incrementally, starting with the most critical components.

1.6 Focus of this Thesis

Having introduced the general problem area as well as our high-level solution to OS
dependability, the time has come to de�ne the exact focus and highlight the main
contribution of this thesis. We �rst position the research by explicitly stating what
we did and did not do.

• The focus of this thesis is dependability rather thansecurity[Avi�ienis et al.,
2004]. Dependability refers to a system's reliability, availability, safety, in-
tegrity, and maintainability, whereas security deals with availability, integrity,
and con�dentiality. Nevertheless, problems in each of these domains often

1.6. FOCUS OF THIS THESIS 17

C
ha

pt
er

1have the same root cause: bugs in the software. For example, a buffer over-
run in a driver error can cause an OS crash, but it can also allow a cleverly
written virus or worm to take over the computer [Lemos, 2005; Ou, 2006].
Bugs that can be exploited are known asvulnerabilitiesand have a density
several orders of magnitude lower than ordinary bugs [Ozment and Schechter,
2006]. Our design is intended to curtail the consequences of bugs that may
accidentally cause service failures under normal usage, but does not aim to
protect against vulnerabilities that can be actively exploited by a malicious
party to in�ltrate or damage a computer system. Nevertheless, since con�ne-
ment of bugs may prevent them from becoming a vulnerability, our efforts to
improve dependability may also help to improve security [Karp, 2003]. Even
if a driver is compromised, the OS restrictions ensure that the attacker gains
no more privileges than the driver already had.

• Another aspect that we do not address isperformance. While we are the �rst
to admit that some of the techniques presented in this thesis incur a small
performance overhead, performance is an issue orthogonal to dependability.
Measurements on a prototype implementation seem to indicate aperformance
overhead of up to 25%, but we never designed the OS for high performance,
and the performance can no doubt be improved through careful analysis and
removal of bottlenecks. In fact, several independent studies have already ad-
dressed the issue of performance in modular OS designs [Liedtke, 1993, 1995;
Härtig et al., 1997; Gef�aut et al., 2000; Haeberlen et al., 2000; Leslie et al.,
2005a] and have shown that the overhead can be limited to 5%–10%. Fur-
thermore, we build on the premise that computing power is no longer a scarce
resource, which is generally true on desktop PCs nowadays. Hardware per-
formance has increased to the point where software techniques thatpreviously
were infeasible or too costly have become practical. Moreover, the proposed
modular design can potentially exploit the increasing levels of parallelism on
multicore CPUs [Larus, 2009]. Finally, the performance-versus-dependability
trade-off has changed. We believe that most end users are more thanwilling
to sacri�ce some performance for improved dependability.

Now that we have clearly positioned our work, we provide a preliminary view on
the main contribution of this thesis. In particular, this work improves OS dependabil-
ity by tolerating faults and failures caused by buggy device drivers. While many of
the techniques used, such as user-level drivers, fault isolation, and failure resilience,
are not completely new, to the best of our knowledge we are the �rst to put all the
pieces together to build a �exible, fully modular UNIX clone that is speci�cally
designed to be dependable, with only a limited performance penalty. At the same
time we have kept an eye on the system's usability. For instance, the fault-tolerance
mechanisms are fully transparent to end users and the programming interface is easy
to use for system programmers. In order to realize this goal we had to face numerous
challenges, which are the subject of the rest of this thesis.

18 CHAPTER 1. GENERAL INTRODUCTION

1.7 Outline of this Thesis

The rest of this thesis is organized as follows. Chap. 2 starts out by giving an in-
troduction to the MINIX 3 OS. We present the high-level architecture of our fault-
tolerant design and discuss the important role of the driver manager herein. We also
make explicit the assumptions underlying our design and point out the limitations of
fault isolation and failure resilience.

Chap. 3 investigates the privileged operations that low-leveldevice drivers need
to perform and that, unless properly restricted, are root causes of fault propagation.
We show how MINIX 3 systematically restricts drivers according to the principle of
least authority in order to limit the damage that can result from bugs. In particular,
we present fault-isolation techniques for each of the privileged driver operations. We
also illustrate our ideas with a case study.

Chap. 4 explains how MINIX 3 can detect defects and repair them on-the-�y. We
introduce the working of our defect-detection mechanism, the policy-driven recov-
ery procedure, and post-restart reintegration of the components. Next, we discuss
the concrete steps taken to recover from driver failures in the network stack, storage
stack, and character-device stack and describe the consequences for the rest of the
system. We also present two case studies.

Chap. 5 evaluates our design along three different axes. First and foremost, we
present the results of extensive software-implemented fault-injection (SWIFI) exper-
iments that demonstrate the effectiveness of our design. Second, we discuss perfor-
mance measurements to assess the costs of our fault-tolerance mechanisms. Third,
we brie�y describe a source-code analysis of MINIX 3.

Chap. 6 puts this work in context by comparing it to related effortsto improve OS
dependability and highlighting the different trade-offs posed.We survey a range of
concrete systems and present case studies for each of the approaches that we distin-
guished, including in-kernel sandboxing, virtualization techniques, formal methods,
and user-level frameworks.

Finally, Chap. 7 summarizes the main results of this thesis andpoints out the
most important lessons that we learned. We conclude by statingthe main contri-
butions of this thesis, discussing the applicability of our�ndings, and suggesting
possible directions for future work.

C
ha

pt
er

2

Chapter 2

Architectural Overview

This chapter provides a high-level overview of our fault-tolerant OS architecture.
We brie�y introduce the platform that we used for our research, MINIX 3, and de-
scribe the design changes that we made in order make drivers more manageable.
In addition, we summarize the most important fault-isolation and failure-resilience
mechanisms. We also discuss the rationale behind our design.

The remainder of this chapter is organized as follows. To start with, Sec. 2.1
provides the necessary background about the MINIX OS on which this research is
based. Sec. 2.2 presents the new infrastructure for managing drivers. Next, Sec. 2.3
describes how driver faults can be isolated from the core OS and Sec. 2.4 explains
how certain failures can be detected and repaired. Finally, Sec.2.5 describes the
fault and failure model assumed in our research.

2.1 The MINIX Operating System

This section introduces the MINIX OS, which we took as a starting point for our
research. All ideas described in this thesis have been prototyped in MINIX and even-
tually should become part of the mainstream OS. Some symbols were renamed in
this thesis for the purpose of readability, however. Below, we brie�y discuss the
history of MINIX and give a high-level overview of its architecture.

2.1.1 Historical Perspective

The MINIX OS has a long and rich history; some episodes of which are worth men-
tioning. When the UNIX OS was developed by AT&T Bell Laboratories in the
1960s and released in the mid-1970s [Ritchie and Thompson, 1974], universities
worldwide soon adopted UNIX to teach OS classes. Many courses were based on a
commentary on Version 6 UNIX [Lions, 1977]. However, when AT&T realized the
commercial value of UNIX in the late 1970s, the company changedthe Version 7
UNIX license agreement to prohibit classroom use of source code. The lack of a

19

20 CHAPTER 2. ARCHITECTURAL OVERVIEW

driver
File Network Device Device

K
er

ne
l

U
se

r
le

ve
l

Interrupts, exceptions, IPC Clock System

ServiceUserUser
app

Process
manager server

VFS Driver
manager store

Data

Applications

Servers

Drivers
(untrusted)

Kernel
driver task

(untrusted)

(trusted)

(trusted)

utilityapp

driverserverserver

Figure 2.1: Multiserver design of the MINIX 3 OS. Each application, server, and driver runs as an
independent user process. Interprocess communication (IPC) is based on message passing.

small and simple OS suitable for teaching initiated the development of a new UNIX
clone, MINIX , which was released in 1987 [Tanenbaum, 1987]. MINIX was func-
tionally compatible with UNIX, but had a more modular structure and implemented
parts of the OS functionality outside the kernel. In particular, the process manager
and �le server were run as independent user processes, but all drivers remained in
the kernel. With a companion book and all the sources availablefor classroom use
MINIX soon became, and still is, widely used for teaching.

Although the MINIX source code was available, modi�cation and redistribution
were restricted, thereby creating a niche for the Linux OS in 1991 [Torvalds, 1991;
Torvalds and Diamond, 2001]. In strong contrast to the design of MINIX , however,
the Linux kernel reverted to a monolithic structure, which sparkeda famous debate
on the Usenet newsgroupcomp.os.minixin 1992 [DiBona and Ockman, 1999, Ap-
pendix A]. Linux did not change the design and still has a monolithic kernel, and
has grown enormously ever since, as evidenced by Fig. 1.2 in Sec. 1.3.1. MINIX ,
in contrast, stayed small and simple. The most notable releases include MINIX 1.5,
which was ported to several architectures, and MINIX 2, which added POSIX com-
pliance [Institute of Electrical and Electronics Engineers, 1990], but the overall de-
sign stayed mostly the same.

The research reported in this thesis builds on MINIX 3, which was released when
all drivers were removed from the kernel and transformed into independent user pro-
cesses in 2005 [Herder, 2005]. MINIX 3 is the �rst fully modular version of MINIX
that runs each server and driver in a separate process, as sketchedin Fig. 2.1. The
system is still used for teaching [Tanenbaum and Woodhull, 2006], but also provides
new research opportunities. In this thesis, we have taken the process-based encapsu-
lation as a starting point for improving the system's fault tolerance. As discussed in
Sec. 1.4.2, we focus on fault isolation and failure resilience in particular.

2.1. THE MINIX OPERATING SYSTEM 21

C
ha

pt
er

2

2.1.2 Multiserver OS Structure

Before we continue we de�ne some more formal terminology. Like virtually any
modern OS, MINIX 3 runs in the 32-bitprotected modeof the x86 (IA-32) archi-
tecture so that it can use hardware protection features, such as virtual memory and
protection rings. The memory space and privileged CPU mode associated with the
kernel are calledkernel spaceandkernel mode(ring 0), respectively. Likewise, the
memory space and unprivileged CPU mode associated with user processes are called
user spaceanduser mode(ring 3), respectively. A modular user-level OS design is
commonly referred to as amultiserver OS, whereas the kernel-level part is known
as themicrokernel. A pure microkernel design is minimalist and strictly separates
policies and mechanism: the kernel implements only the most basic mechanisms
that need kernel-level privileges, whereas all policies are provided by the user-level
servers and drivers [Liedtke, 1995]. The MINIX 3 OS �ts this de�nition.

We now brie�y introduce the structure of MINIX 3. Although all processes are
treated equally, a logical layering can be distinguished, as shown in Fig. 2.1. At
the lowest level, a small microkernel of about 7500 lines of executable code (LoC)
performs privileged operations. The kernel intercepts hardware interrupts, catches
exceptions in user processes, handles communication between processes, and pro-
grams the CPU and MMU in order to run processes. It also contains twotasks that
are compiled into kernel space, but otherwise scheduled as normal processes. First,
the clock driver handles clock interrupts, keeps track of systemtime, performs pro-
cess scheduling, and manages timers and alarms. While some of these basic func-
tions could be implemented at the user level, it would be very inef�cient to do so.
However, higher-level clock functionality such as real-time scheduling is realized at
the user level [Mancina et al., 2009]. Second, the system task offers a small set of
kernel calls to support authorized user-level servers and drivers indoing their job. In
principle, it provides only privileged functionality that cannot be realized at the user
level. Sec. 3.2 discusses these operations in more detail.

The next level up contains the drivers. There is one device driver(sometimes
referred to as a function driver) for each major device, including drivers for storage,
network, printer, video, audio, and so on. In addition, the driver layer contains
protocol drivers for �le systems and network protocols, such as the�le server and
network server. Each driver is a user process protected by the CPU and MMU the
same way ordinary user processes are protected. They are special only in the sense
that they are allowed to make a small number of kernel calls to perform privileged
operations. Typical examples include setting up interrupt handlers, reading from or
writing to I/O devices, and copying memory between address spaces. This design
introduces a small kernel-call overhead, but also brings more �ne-grained control
because the kernel mediates all accesses. A bitmap in the kernel's process table
controls which calls each driver (and server) can make. Also, the kernel maintains
data structures that de�ne which I/O devices a driver may use and copying is allowed
only with explicit permission from all parties involved.

22 CHAPTER 2. ARCHITECTURAL OVERVIEW

On top of the driver layer is the server layer. Theprocess managerandvirtual
�le systemimplement the POSIX API and provide process and memory management
and virtual-�le-system services, respectively. User processes make POSIX system
calls by sending a message to one of these servers, which then carries out the call. If
the call cannot be handled by the server, it may delegate part ofthe work to a lower
layer. New in MINIX 3 and an important contribution of this thesis is thedriver
manager, which manages all the other servers and drivers. The driver manager can
start new drivers and restart failing or failed ones on-the-�y. Thedata storeprovides
naming services and can be used to backup and restore state. Several other servers
also exists, for example, theinformation server, which provides debug dumps of
system data structures.

Finally, located above the server layer are ordinary, unprivileged application pro-
grams, such as text editors, media players, and web browsers. Whenthe system
comes up,init is the �rst application process to run and forks offgettyprocesses,
which execute theshell on a successful login. The shell allows other applications
to be started, for example, theservice utilitythat allows the administrator to request
services from the driver manager. The only difference between thisand other UNIX
systems is that the library procedures for making system calls workby sending mes-
sages to the server layer. While message passing is used underthe hood, the system
libraries offer the normal POSIX API to the programmer.

2.1.3 Interprocess Communication

Since MINIX 3 runs all servers and drivers as independent processes, they can no
longer directly access each other's functions or data structures. Instead, processes
must make aremote procedure call(RPC) when they want to cooperate. In particu-
lar, the kernel providesinterprocess communication(IPC) services based onmessage
passing. If two processes need to communicate, the sender constructs a message in
its address space and requests an IPC call to send it to the other party. The stub
code linked with the application puts the IPC parameters on the stack or in CPU
registers and executes a trap instruction, causing a software interrupt that puts the
kernel's IPC subsystem in control. The kernel then checks the IPC parameters and
executes the corresponding IPC handler. Messages are never buffered in the kernel,
but always directly copied or mapped from sender to receiver, speeding up IPC and
eliminating the possibility of running out of buffers.

Several different IPC interaction modes can be distinguished. First,synchronous
IPC is a two-way interaction where the initiating process is blockedby the kernel un-
til the other party becomes ready. When both parties are ready, themessage is copied
or mapped from the sender to the receiver and both parties may resume execution.
The termIPC roundtrip is used if the sender synchronously awaits the reply after
sending a request. Second,asynchronous IPCmeans that the caller can continue
immediately without being blocked by the kernel. The IPC subsystem takes care of
buffering the message and delivers it at the �rst opportunity on behalf of the caller.

2.1. THE MINIX OPERATING SYSTEM 23

C
ha

pt
er

2

Primitive Semantics Storage Mode Blocking

SEND Block until message is sent Caller Synchronous Blocking
RECEIVE Block until message arrives - Synchronous Blocking
SENDREC Send request and await reply Caller Synchronous Blocking
NBSEND Send iff peer is receiving Caller Synchronous Nonblocking
ASEND Buffered delivery by kernel Caller Asynchronous Nonblocking
NOTIFY Event signaling mechanism Kernel Asynchronous Nonblocking

Figure 2.2: The synchronous, asynchronous, and nonblocking IPC primitives implemented by the
kernel's IPC subsystem. All nonblocking calls were added to MINIX 3.

Both synchronous and asynchronous IPC may be combined with a time-out to abort
the IPC call if it did not succeed within the speci�ed interval.However, since �nding
sensible time-out values is nontrivial, zero or in�nite time-outs are commonly used.
The former is referred to asnonblocking IPC: delivery is tried once and the status is
immediately returned. The latter is referred to asblocking IPCand corresponds to a
normal synchronous IPC interaction.

The IPC primitives and message format used by the MINIX 3 IPC subsystem
are shown in Figs. 2.2 and 2.3, respectively. The most basic primitives are the syn-
chronous, blocking callsSEND andRECEIVE. Arguments to these calls are the IPC
endpoint of the destination or source process and a pointer to amessage buffer. No
buffering is required because the caller is blocked until the message has been copied
from the sender to the receiver. TheSENDREC primitive combines these primitives
in a single call, doing a synchronousSEND following by an implicitRECEIVE. This
not only saves one (costly) kernel trap, but also has different semantics: it prevents a
race condition if the recipient sends the reply using nonblocking IPC. The remaining
IPC primitives are nonblocking and are new in MINIX 3. NBSEND is a nonblocking
variant of the synchronousSEND primitive that returns an error if the other party is
not ready at the time of the call.ASEND supports asynchronous IPC with buffering
of messages local to the caller. Arguments are a pointer to andsize of a table with
message buffers to be sent. Each slot in the table contains all the information needed
to deliver the message: delivery �ags, the IPC destination, the actual message, and a
status word. The caller is not blocked, but immediately returns, and the kernel scans
the table with messages to be sent, promising to deliver the messages as soon as pos-
sible. Finally, the asynchronousNOTIFY primitive supports servers and drivers in

Source Type Message parameters

Header Fixed-length payload

Figure 2.3: Format of �xed-length IPC messages in M INIX 3: the message header describes the
sender and message type and is followed by a payload that depends on the type.

24 CHAPTER 2. ARCHITECTURAL OVERVIEW

signaling events. The call is nonblocking and if the noti�cation cannot be delivered
directly, the kernel marks it pending in a statically allocatedbitmap in the destina-
tion's process structure. Pending noti�cations of the same type are merged and will
be delivered only once.

For reasons of simplicity, MINIX 3 uses only small,�xed-lengthmessages. A
MINIX 3 message is a structure with a message header containing the message
source and type, followed by a union of different payload formats containing the
message arguments. This structure is shown in Fig. 2.3. The message size depends
on the CPU architecture and is determined at compile time as the largest of all types
in the union. The message type and payload can be freely set by the sender, but
the kernel reliably patches the sender's IPC endpoint into the message's source �eld
upon delivery. In this way, the receiver can always �nd out who called.

2.2 Driver Management

Since all servers and drivers are normal user processes, they can be controlled and
managed like ordinary applications. Although device drivers were initially part of
the MINIX 3 boot image, we added support for starting and stopping drivers on the
�y. In particular, thedriver manageris used to coordinate this procedure; it manages
all servers and drivers in the system. The system administrator can request services
from the driver manager, such as starting a new driver, using theservice utility. For
example, the most basic command to start a new driver is:

$ service up <driver binary> –dev <device node>

Likewise, restarting or stopping a driver can be done with the commandsservice
refresh andservice down, respectively. There is also support to update a driver with
a new version while it is still running. This procedure is called adynamic update
and can be requested via the commandservice update.

In addition to the–dev parameter shown above, the service utility supports sev-
eral more advanced parameters to con�gure the system. For example, the parameters
for starting a new driver withservice up are listed in Fig. 2.4. The �rst few param-
eters control the dynamics of starting a new server or driver. Brie�y, –args allows
passing an argument vector to the component to be started, just like passing com-
mand line parameters to an application. The–dev parameter is used for drivers only
and causes the VFS server to be informed about the associated device node. With
–label a custom name can be speci�ed. Because each process has a unique, kernel-
generated IPC endpoint, system processes cannot easily �nd each other. Therefore,
we introduced stable identi�ers consisting of a human-readablename plus an op-
tional number that are published in the data store.

The other parameters can be used to set a custom policy for the system's fault-
tolerance mechanisms. To start with, drivers are associated withan isolation policy

2.2. DRIVER MANAGEMENT 25

C
ha

pt
er

2

Parameter Default Explanation

–args <argument string> No arguments Arguments passed upon executing the driver
–dev <device node> No device Device node to be associated with the driver
–isolation <�le name> drivers.conf Con�guration �le with isolation policy
–label <identi�er> Binary name Stable name published in the da ta store
–mirror <boolean> False True if binary should be mirrored in memory
–period <time in seconds> 5 seconds Period between driver heartbeat requests
–recovery <�le name> Direct restart Shell script governing the rec overy procedure

Figure 2.4: Parameters supported by the service up call to con�gure a newly s tarted component.

that controls which privileged operations they may perform. By default driver privi-
leges are listed in/etc/drivers.conf, but a different con�guration �le can be speci�ed
using–isolation. An example of a concrete isolation policy is described in Sec.3.4.
In order to check liveness of all drivers, the driver manager can periodically re-
quest a heartbeat message. The–period parameter allows �ne-tuning the frequency
of checking. The driver manager can automatically restart failed components, but if
more �exibility is needed, a shell script with a more advanced recovery policy can be
speci�ed with –recovery. Finally, the–mirror �ag tells the driver manager whether
it should make an in-memory copy of the driver binary. This feature is used, for
example, for recovering failed disk drivers. How these fault-tolerance mechanisms
work is the subject of this thesis.

The procedure to start a driver is a strictly de�ned sequence of events, as illus-
trated in Fig. 2.5. The steps are as follows: (1) the administratordecides on a driver
policy and calls the service utility, which performs some sanitychecks and (2) for-
wards the request to the driver manager. The driver manager veri�es that the caller is

K
er

ne
l

U
se

r
le

ve
l

driver

Driver
policies

store
DataService

New
manager

Driver

Kernel Privileged operations

utility

(6) Execute

Fork new
process

binary (5)

changes
Broadcast (7)

(3)

Request

(4)Set process
privileges

driver (2)

(1)

Figure 2.5: The administrator uses the service utility to request drivers and set isolation and
recovery policies. The driver manager starts the driver and publishes its details in the data store.

26 CHAPTER 2. ARCHITECTURAL OVERVIEW

authorized and stores the policy. Then the driver is started by the driver manager: (3)
it creates a new process for the driver and looks up the IPC endpointthat uniquely
identi�es the process, (4) it informs other parts of the system about the new pro-
cess and the privileges granted by the isolation policy, and (5)it executes the driver
binary once the process has been properly isolated. Finally, (6) the details of the
newly started driver are published in the data store and (7) dependent components
are noti�ed about the new system con�guration.

The data storemakes it possible to con�gure the system dynamically without
hardcoding all dependencies. In its essence, the data store is adatabase server that
allows system components to store and retrieve integer values,character strings,
or even entire memory regions by name. System processes can store data either
privately or publicly. A special feature of the data store is thatit provides publish-
subscribe semantics for any data that is stored publicly. This feature helps to reduce
dependencies by decoupling producers and consumers. Components can subscribe
to selected events by specifying the identi�ers or regular expressions they are inter-
ested in. Whenever a piece of data is published or updated thedata store automati-
cally broadcasts noti�cations to all subscribed components.

These properties make the data store very suitable as a name server. Upon load-
ing a new server or driver, the driver manager publishes the stable name and IPC
endpoint in the data store, so that all dependent components are automatically noti-
�ed. As an example, the network server is subscribed to the key `eth.*' in order to
receive updates about the system's network drivers. Therefore, thenetwork server is
immediately alerted whenever a network driver is started or restarted, and can start
initialization or recovery, respectively.

2.3 Isolating Faulty Drivers

We now present an overview of the MINIX 3 isolation architecture. We use the term
isolation architectureto indicate that the trusted parts of the system enforce certain
restrictions upon the untrusted parts. In particular, as discussed in Sec. 1.4.2, we re-
quire drivers to be constrained according to the principle of leastauthority (POLA).
While we primarily focus on the OS software, it is important to realize that some of
our protection techniques also rely on hardware support. Altogether this is de�ned as
the trusted computing base(TCB): “the totality of protection mechanisms within a
computer system—including hardware, �rmware, and software—the combination of
which is responsible for enforcing a security policy [Department ofDefense, 1985].”
Below, we �rst introduce our isolation architecture and then brie�y discuss how this
interacts with the hardware.

2.3.1 Isolation Architecture

The MINIX 3 isolation architecture is realized by combining several building blocks.
In particular, drivers are isolated in three different ways:

2.3. ISOLATING FAULTY DRIVERS 27

C
ha

pt
er

2

• System-wide structural constraints.

• Static per-driver isolation policies.

• Dynamic access-control mechanisms.

As a baseline, each driver is run as an independent user process.This takes away
all privileges and renders each driver harmless. However, because this protection is
too coarse-grained, we have also provided static mechanisms to grant �ne-grained
access to resources needed by the driver. In addition, we have developed dynamic
mechanisms that support safe run-time data exchange.

System-wide Structural Constraints

The use of a microkernel-based multiserver design that compartmentalizes the OS
brings several dependability bene�ts. To begin with, minimizing the kernel reduces
its complexity, makes it more manageable, and lowers the number of bugs it is likely
to contain. At about 7500 LoC the kernel is suf�ciently small that a single person
can understand all of it, greatly enhancing the chance that in the course of time all the
bugs can be found. The small size of the kernel may even make it practical to verify
the code either manually or using formal veri�cation [Klein, 2009]. This provides a
solid foundation to build an OS upon.

Next, the fact that each application, server, and driver is encapsulated in a sepa-
rate user-mode process with a private address space is crucial to isolate faults. First,
because drivers no longer run with kernel-mode CPU privileges, they cannot di-
rectly execute potentially dangerous instructions and cannotcircumvent the restric-
tion mechanisms implemented by the rest of the OS. Second, because the MMU
hardware enforces strict, process-based,address-space separation, many problems
relating to memory corruption are structurally prevented. OSes are usually written
in C and C++, which tend to suffer from bad pointer errors. If an offending pro-
cess causes a CPU or MMU exception, it will be killed by the process manager and
given a core dump for future debugging, just like any other user process. Third, nor-
mal UNIX protection mechanisms also apply. For example, all drivers run with an
unprivileged user ID in order to restrict POSIX system calls.

At the user level, the OS processes are restricted in what they cando. In order
to support the servers and drivers in doing their job, the kernel exports a number
of kernel calls that allow performing privileged operations in a controlled manner,
as described below. In addition, servers and drivers can request services from each
other. For example, device drivers no longer have privileges toperform I/O directly,
but must request the kernel to do the work on their behalf. Likewise, memory alloca-
tion is done by sending a request to the process manager. While these mechanisms
still allow drivers to use privileged functionality, the use of no-privilege defaults
makes access control more manageable. Effectively, the systemprovides multiple
levels of defense with increasingly �ner granularity.

28 CHAPTER 2. ARCHITECTURAL OVERVIEW

Static Per-driver Isolation Policies

Since each server and driver is likely to have different requirements, we associated
each with an isolation policy. Different per-driver policies that grant �ne-grained
access to the exact resources needed can be de�ned by the administrator. For ex-
ample, access to I/O resources is assigned when drivers are started.In this way, if,
say, the printer driver tries to write to the disk controller's I/O ports, the kernel will
deny the access. Fig. 2.6 lists various other resources, such asIPC and kernel calls,
that can be restricted in MINIX 3. Isolation policies are stored in simple text-based
con�guration �les, such as/etc/drivers.conf. Each driver has a separate entry in the
con�guration �le, listing the exact resources granted. Sec 3.4 gives a case study of a
network driver and provides an example con�guration �le in Fig. 3.7.

Although this research does not pertain to speci�c policies—itfocuses on en-
forcement mechanisms instead—an interesting question is who is responsible for
policy de�nition. Precautions are needed to prevent driver writers from circumvent-
ing the system's protection mechanisms by demanding broader access than required.
In our current implementation, the system administrator is responsible for policy def-
inition or inspection. We feel that the MINIX 3 policies are suf�ciently simple to do
so, but the system can be augmented with other approaches, if need be. Possible
extensions include having a trusted third-party vet and sign policies or automating
policy generation based on source-code annotations.

Policy enforcement is done by the both the driver manager and thetrusted servers
and drivers in the OS. As mentioned in Sec. 2.2, loading a driver and installing its
isolation policy is done in three steps. First, the driver manager forks a new process
for the driver and looks up the child's unique, kernel-generated IPC endpoint. The
endpoint is used as a handle to identify the new process. Second, the driver manager
informs the kernel and selected servers and drivers about the isolation policy so that
it can be enforced at run time. This is done by passing the IPC endpoint and the
resources granted to the components listed in Fig. 2.6. Finally, with the isolation
policy in place, the child process is made runnable and can safely execute the driver

Resource key Policy enforcement Explanation

ipc calls IPC subsystem Restrict IPC primitives that may be used
ipc targets IPC subsystem Restrict IPC destinations that may be called
ipc kernel Kernel task Restrict access to individual kernel calls
driver Driver manager Control if driver can manage other drivers
isa io Kernel task Mediate legacy ISA device input and output
isa irq Kernel task Mediate legacy ISA device interrupt-line control
isa mem Kernel task Map legacy ISA device memory into a driver
pci device PCI-bus driver Restrict access to a single PCI device
pci class PCI-bus driver Restrict access to a class of PCI devices

Figure 2.6: Resources that can be con�gured via per-driver isolation policie s in MINIX 3. By default
all access is denied. Fine-grained access can be granted by adding resources to a driver's policy.

2.3. ISOLATING FAULTY DRIVERS 29

C
ha

pt
er

2

binary. When the driver attempts to make a privileged call, the callee looks up the
policy installed by the driver manager and veri�es that the caller is authorized before
servicing the request.

Dynamic Access-control Mechanisms

Finally, we have added two dynamic access-control mechanismsthat support drivers
in exchanging data. Strict, process-based, address-space separation provided by the
MMU hardware is too restrictive, since applications, servers, drivers, and hardware
devices often need to access parts of each other's memory. For example, the applica-
tion that wants to store a �le on the hard disk must exchange datawith the �le server,
which buffers disk blocks in its cache, and the disk driver, which is responsible for
the actual I/O. However, because memory allocation typicallyinvolves dynamically
allocated memory ranges, these kinds of interactions cannot behandled by structural
constraints and isolation policies. Instead, we developed two run-time mechanisms
that allow for safe, �ne-grained memory access.

First, in order to support safe interprocess memory access, we have developed a
new delegatablememory grantmechanism that enables byte-granular memory shar-
ing without compromising the address-space separation offered bythe MMU. A
process that wants to grant selective access to its memory needsto create a capabil-
ity listing the grantee's IPC endpoint, the precise memory area, and access rights.
The grant is stored in a table known to the kernel and can be made available to an-
other process by sending the grant's index into the table. The grantee then can copy
to or from the granter using a kernel call that takes the address of alocal buffer and
the memory grant. The kernel looks up the memory grant in the grant table in or-
der to verify that access is permitted and makes the actual copy with perfect safety.
Zero-copy protocols are also supported through grant-based memory mappings.

Second, we rely on hardware support to protect against peripheral devices that
usedirect memory access(DMA). DMA is a powerful I/O construct that allows de-
vices to operate directly on main memory, bypassing the protection offered by CPU
and MMU hardware. DMA can be controlled, however, using anI/O memory man-
agement unit(IOMMU) that keeps tables with memory ranges accessible from the
device layer. The IOMMU works similar to the traditional MMU, with the distinc-
tion that the MMU provides memory protection for CPU-visible addresses, whereas
the IOMMU provides memory protection for device-visible addresses. If a driver
wants to use DMA, it must request the trusted IOMMU driver to set upthe access
rights before initiating the DMA transfer. The IOMMU driver validates the request
and, if access is allowed, sets up the IOMMU tables for the driver's device. Only
access into the driver's own address space is allowed. Nevertheless, it is still pos-
sible to perform DMA directly to or from the address space of the end consumer
by setting up a safe, grant-based memory mapping. This design protects both the
OS and user applications against memory corruption. The next section gives further
background on the IOMMU's working.

30 CHAPTER 2. ARCHITECTURAL OVERVIEW

2.3.2 Hardware Considerations

In our research, we explore the limits on software isolation rather than proposing
hardware changes. Unfortunately, older PC hardware has various shortcomings that
make it virtually impossible to build a system where drivers run infull isolation.
However, now that modern hardware with support for isolating drivers is increas-
ingly common—although sometimes not yet perfect—we believe that the time has
come to revisit design choices made in the past.

Support for Isolation

As a �rst example, older PCs have no means to protect against memory corruption
due to unauthorized DMA operations. As mentioned above, our solution is to rely on
IOMMU support [Intel Corp., 2008; Advanced Micro Devices, Inc., 2009]. In par-
ticular, we have implemented support for AMD's Device Exclusion Vector (DEV).
The IOMMU logically sits between the device bus and main memory, as shown in
Fig. 2.7, and works mostly the same as a normal MMU. The IOMMU intercepts
all memory access attempts from devices, looks up the I/O page table associated
with the device, determines whether the access is permitted, and translates the I/O
address requested to the physical memory address to be accessed.The IOMMU pro-
tects main memory against untrusted devices, just like the MMUprotects memory
against untrusted programs. However, in contrast to normal MMUs,which raise an
MMU exception upon an unauthorized access attempt, current-generation IOMMUs
do not provide a direct indication to the I/O device if a translation fails. Instead, re-
jected DMA writes are simply not executed, whereas rejected DMA reads typically
cause the IOMMU to set all bits in the response to 1. Exceptions can be detected
though by reading out the IOMMU's status register. Alternatively, the IOMMU can
be con�gured to write the error to an in-memory event log and signal an interrupt in
order to put the OS in control.

Another example relates to the working of the peripheral bus thatconnects pe-
ripheral devices to the CPU. In particular, we identi�ed a problemrelating to in-

CPU

MMU IOMMU

Device

Physical address

Virtual address I/O address

Physical address

Main memory

Figure 2.7: The MMU hardware provides memory protection for CPU-visible addresses, whereas
the IOMMU hardware provides memory protection for device-visible addresses.

2.3. ISOLATING FAULTY DRIVERS 31

C
ha

pt
er

2

terrupt handling on the Peripheral Component Interconnect (PCI) busthat is in
widespread use. Interrupts support drivers in handling I/O ef�ciently: instead of
repeatedly polling the device, the driver can wait for a hardwareinterrupt request
(IRQ) signaling that the device needs service. Because the number of IRQ lines
on the interrupt controller is limited, devices sometimes haveto share a single IRQ
line, which may cause driver interdependencies. The PCI standard mandates level-
triggered IRQ lines, which means that an interrupt is signaled by asserting the IRQ
line to its active level, and holding it at that level until serviced. Therefore, a driver
that fails to acknowledge an IRQ on a shared IRQ line effectively blocks the IRQ
line for other drivers, since the level-triggered nature makes it impossible to detect
status changes in other devices. The IRQ line is freed only if thedriver takes away
the reason for interrupting, which requires device-speci�c interrupt handling at the
driver level and cannot be solved in a generic way by the OS. The newer PCI Express
(PCI-E) standard that replaces PCI provides a structural solution based on message-
signaled interrupts (MSI). A device that needs service writes a message into a special
memory area and the chipset inspects the message to trigger the corresponding CPU
interrupt. MSI alleviate the problem of shared interrupt lines because the interrupt
consists of a short message rather than a continuous condition: a single driver failure
can no longer block interrupts from devices that share the IRQ line.Still, sharing
is unwanted because an IRQ from a single device triggers the interrupt service rou-
tines of all drivers associated with the IRQ line. Therefore, we avoided the problem
altogether by using a dedicated IRQ line for each device.

Performance Perspective

In addition to improved hardware dependability, computing performance per unit
cost has increased to the point where software techniques that previously were in-
feasible or too costly have become practical. For example, with modular designs the
costs of context switching when control is transferred from one system process to
another is one of the main performance bottlenecks. While the relative costs can still
be signi�cant, the absolute costs of context switching has gone down steadily with
improved CPU speeds. For example, the costs of an IPC roundtrip between two
processes, that is, two IPC messages, was reduced from 800�s for Amoeba run-
ning on a 16-MHz Motorola 68020 processor [Renesse et al., 1988] to only 10 �s
for L3 running on a 50-MHz Intel 486-DX processor [Liedtke, 1993]. Ourown
measurements showed that the costs of an IPC roundtrip for MINIX 3 running on
a 2.2-GHz AMD Athlon 64 3200+ processor is 1�s . A program executing 10,000
system calls/sec thus wastes only 1% of the CPU on context switching. With work-
loads ranging from 290 kernel-driver interactions/sec for low-bandwidth disk I/O up
to 45,000 packet transmissions/sec for high-bandwidth gigabit Ethernet [Swift et al.,
2006], a small overhead is still expected for certain applications. Nevertheless, these
data points show that the increase in computing performance has dramatically re-
duced the user-perceived overhead of modular designs.

32 CHAPTER 2. ARCHITECTURAL OVERVIEW

These results should be attributed to performance improvements made possible
by Moore's law, which postulates that CPU transistor counts double about every
two years [Moore, 1965]. Although MINIX 3 has the lowest absolute IPC roundtrip
overhead, when taking processor speeds into account, the relative performance of
MINIX 3 is the worst of the three examples we studied above. A rough estimate
shows that the MINIX 3 IPC implementation might be 10–100 times slower than the
L4 IPC implementation. However, MINIX 3 has never been optimized for perfor-
mance, and the performance can no doubt be improved through careful analysis and
removal of bottlenecks [e.g. Liedtke, 1995]. Instead, we have built on the premise
that computing power is no longer a scarce resource, which is generally true on desk-
tops nowadays, and tried to address the issue of untrusted driversthat pose a threat
to OS dependability.

2.4 Recovering Failed Drivers

Building on the isolation architecture introduced above, we have attempted to re-
cover failed drivers transparently to applications and withoutuser intervention. In
many other areas, both in hardware and software, such failure-resilient designs are
common. For example, RAIDs are disk arrays that continue functioning even in the
face of drive failures. The TCP protocol provides reliable data transport, even in
the face of lost, misordered, or garbled packets. DNS can transparently deal with
crashed root servers. Finally,init automatically respawns crashed daemons in the
application layer of some UNIX variants. In all these cases, theunderlying failure
is masked, allowing the system to continue as though no errors had occurred. In this
thesis, we have extended this idea to the OS.

2.4.1 Defect Detection and Repair

While a human user detects a driver crash when the system freezes,the OS needs
different techniques. Therefore, the driver manager monitors all drivers at run time
and takes corrective measures if a problem is detected. In many cases, failures can
be handled internal to the OS with no application-visible retries, weird signals, re-
connection requests, chance of data loss, performance hiccups,and so on.

Run-time Defect Detection

The driver manager uses three orthogonal defect detection techniques. First, the
driver manager can detect component crashes because it is the parent process of all
drivers and servers. If a server or driver crashes or otherwise exits, it becomes a
zombie process until the driver manager collects it, the same way all UNIX systems
allow parent processes to collect child processes that have exited. Second, the driver
manager can periodically check the status of selected drivers.Currently, this is done
using heartbeat messages that can be con�gured on a per-driver basis via the service

2.4. RECOVERING FAILED DRIVERS 33

C
ha

pt
er

2

utility. If no reply is received within the time-out interval, further action is taken.
More advanced techniques would be a straightforward extension. Third, the driver
manager can be explicitly instructed to replace a malfunctioning component with a
new one. Explicit updates are done if the administrator requests a dynamic update
or if a trusted OS component �les a complaint about a subordinate process.

Policy-driven Recovery

The basic idea underlying our design is that restarting a failedcomponent may take
away the root cause of the failure and thereby solve the problem [Gray, 1986; Chou,
1997]. As discussed in Sec. 2.5, this hypothesis indeed holdsfor a range of transient
physical faults, interactions faults, and elusive development faults that remain after
testing. The high-level recovery procedure is illustrated in Fig.2.8: (1) an appli-
cation requests the virtual �le system (VFS) to perform an I/O operation, (2) VFS
forwards the request to the corresponding driver, and (3) the driver starts process-
ing the request, but crashes before it can send the reply. Since thedriver manager
monitors all drivers, it detects the failure and initiates the recovery procedure: (4)
the driver manager replaces the failed driver with a new copy and(5) informs VFS
about the new con�guration. Then, VFS scans its tables and notices the pending I/O
operation: (6) the request is resubmitted to the restarted driver and, �nally, (7) the
I/O operation can be successfully completed. While all this is happening, the system
continues to run normally and no processes need to be terminated.

If a problem is detected, the driver manager fetches the recovery policy of the
failed component from its tables in order to determine what to do.By default failed
components are replaced with a fresh copy, but if special recovery steps are needed

K
er

ne
l

U
se

r
le

ve
l

New Failed

VFS

Application

driver

manager server
Driver

doing I/O

Kernel Privileged operations

driver
Driver
crash!(3)

(7)

Signal

driver

update

Restart (4)

 (5)

(6) (2)

device I/O
Request(1)

Figure 2.8: Basic idea underlying our failure-resilient OS. If the driver manager detects a driver
failure, it looks up the driver's recovery policy, and may restart the driver and notify dependent
components so that the system can continue to operate normally.

34 CHAPTER 2. ARCHITECTURAL OVERVIEW

or wanted, the administrator can provide a shell script that governs the recovery pro-
cedure. The recovery script can be speci�ed via the service utility upon loading the
driver. The script may, for example, record the event in a log �le, move the core
dump of the dead process to a special directory for subsequent debugging, send an
email to a remote system administrator, or even notify the driver's manufacturer.
This design brings full �exibility and helps to automate system administration. Con-
crete examples of recovery scripts are given in Secs. 4.2 and 4.5.

2.4.2 Assumptions and Limitations

One of the main challenges with restarting failed components is that it is sometimes
impossible to recoverinternal statelost during a failure. Examples of internal state
include device con�guration parameters, information about pending I/O requests,
and data buffers. Fortunately, state management turns out to be aminor problem
for many drivers. In our experience with the MINIX 3 RAM-disk, �oppy-disk, and
hard-disk drivers as well as a range of network-device drivers, drivers contained no
or very limited internal state, and recovery of state was straightforward. Therefore,
the assumption underlying our failure-resilience mechanisms is that drivers that are
stateless or contain only limited state that is updated infrequently.

Nevertheless, our design also provides limited support for recovering stateful
servers and drivers. In principle, lost state can be retrieved from the data store,
which allows drivers to store privately data that should persist between crashes. For
example, an audio driver could store the sound card's mixer settings in the data
store and the RAM-disk driver could store the base address and sizeof the RAM
disk's memory. However, the data store cannot ensure data integrity and cannot
tell which part an outstanding operation has already completedand which part has
not. In order to do so, operations that update internal state may have to implement
some form of checksumming and should be remodelled as transactions that are either
committed or aborted as one logical unit. We did not investigate this option though,
because relatively heavy driver modi�cations may be required inorder to achieve
optimal results. Sec. 4.2.3 provides more information on MINIX 3's support for
state management as well as its current shortcomings.

In addition, there are certain inherent limitations that prevent recovery transpar-
ent to applications and end users for certain classes of I/O. The two requirements
for effective recovery are: (1) the I/O stack must guarantee data integrity and (2)
I/O operations must be idempotent. The former means that data corruption can be
detected. The latter means that I/O operations can be reissued safely with the same
�nal outcome. For example, transparent recovery is possible for network drivers,
because the TCP protocol can detect garbled and lost packets and safely retransmit
the corrupted data. In contrast, partial recovery is supported for character-device
drivers, because the I/O is not idempotent and an I/O stream interruption is likely to
cause data loss. For example, with streaming audio and video applications the user
may experience hiccups when a driver fails and needs to be recovered.

2.5. FAULT AND FAILURE MODEL 35

C
ha

pt
er

2

2.5 Fault and Failure Model

Although we aim to improve OS dependability by tolerating faults and failures in
device drivers, we are obviously aware that we cannot cure all bugs. Therefore,
this section zooms in on the exact fault and failure types our system is designed for.
We �rst want to clarify the causal relationship between faults and failures using the
fault ! error ! failure model: a fault that is triggered during execution may lead
to an erroneous system state that appears as failure if it propagates to the module's
interface. For example, a memory defect is a fault that leads to an error if program
data is corrupted due to bit �ips. This may go undetected until the erroneous data is
used and triggers an exception that causes a component failure.

Our system is primarily designed to deal with device-driver failures caused by
soft intermittent faults[Avi�ienis et al., 2004]. Such faults were found to be a com-
mon crash cause and represent a main source of downtime [Gray, 1986;Chou, 1997].
Intermittent faults include, for instance, transient physicalfaults, interaction faults,
and elusive development faults or residual faults that remainafter testing because
their activation conditions depend on complex combinations of internal state, ex-
ternal requests, and run-time environment. For example, drivers may crash as a
response to application-level requests, device interactions such as I/O and interrupt
handling, or kernel events such as switching to a lower power state or swapping
out memory pages. Bugs in this category are sometimes referred to asHeisenbugs
(named after the Heisenberg uncertainty principle), since they disappear or manifest
differently when an attempt is made to study them.

The Heisenbug hypothesis may be exploited to improve software fault tolerance,
since retrying a failed operation may take away the root cause of the failure and
thereby solve the problem [Gray, 1986]. As an example, consider resource leaks,
which represent 25.7% of all defects found in a study of over 250 open-source
projects with a combined code base exceeding 55 MLoC [Coverity, Inc., 2008]. A
resource leak, such as not releasing memory buffers or �le handles no longer needed,
may trigger an unexpected failure, but tends to go away after a restart. Other exam-
ples of intermittent problems include:

• CPU and MMU exceptions triggered by unexpected user or deviceinput.
• Failed attempts to exploit a vulnerability, such as a buffer over�ow attack.
• Race conditions due to unexpected software or hardware timing issues.
• In�nite loops caused by unresponsive hardware or an internal inconsistency.
• Aging bugs, such as resource leaks, that cause a driver to fail over time.
• Memory bit �ips that disrupt the execution path and trigger an exception.
• Temporary device failures that require hardware reinitialization.

While hard to track down, these bugs illustrate that many problems can be cured
by replacing a failing or failed component with a fresh instance, even if the exact
underlying causes are unknown. However, this strategy requires that failures are
fail-stop, that is, failures must be detected before they can propagate andcorrupt the

36 CHAPTER 2. ARCHITECTURAL OVERVIEW

rest of the OS [Schlichting and Schneider, 1983]. Hence, drivers must be properly
isolated to con�ne the problem in the �rst place.

Previous projects have also attempted to improve OS dependability by retrying
failed operations in a slightly different execution environment. For example, a case
study on the Tandem NonStop system showed that 131 out of 132 bugs were inter-
mittent and could be solved by reissuing the failed operation [Gray, 1986]. Likewise,
a study of the IBM MVS/XA OS showed that up to 64% of the errors in critical jobs
could be remedied through a retry [Mourad and Andrews, 1987]. Next, the Tandem
GUARDIAN system obtained a level of 75% software fault toleranceby performing
backup execution in a different process [Lee and Iyer, 1995]. Furthermore, Linux
shadow drivers were able to recover automatically 65% of 390 driver failures in-
duced by fault-injection experiments [Swift et al., 2006]. Finally, automatic restarts
in the Choices OS kernel resulted in recovery 78% of the time [Davidand Campbell,
2007]. The working of our design in MINIX 3 is based on the same ideas: malfunc-
tioning drivers are replaced with a fresh copy and failed operationsare retried in the
new execution environment.

In order to give a balanced viewpoint, we also list a number of known limita-
tions. First, our design cannot cure hard permanent faults, suchas algorithmic and
deterministic failures that repeat after a component restart. Bugs in this category are
sometimes referred to asBohrbugs(named after the Bohr atom model), since they
manifest consistently under the same conditions. However, recurring problems can
be tracked down more easily, and once the bug has been found, MINIX 3 supports
a dynamic update with a new or patched version of the component. Next, we can-
not deal with Byzantine failures, including random or malicious behavior where a
driver perfectly adheres to the speci�ed system behavior but fails to do its job. Such
bugs are virtually impossible to catch in any system. Furthermore, we cannot deal
with timing failures, for instance, if a deadline of a real-time schedule is not met,
although the use of heartbeat messages helps to detect unresponsive components.
Finally, our system cannot recover from permanent physical failures, for example,
if the hardware is broken or cannot be reinitialized by a restarted driver. It may be
possible, however, to perform a hardware test and switch to a redundant hardware
interface, if available [Bartlett, 1981]. We did not investigate this option, though.

In the remainder of this thesis, we focus on con�nement and recovery of in-
termittent faults and failures, which, as argued above, represent an important area
where our design helps to improve OS dependability.

C
ha

pt
er

3

Chapter 3

Fault Isolation

Perhaps someday software will be bugfree, but for the moment all software contains
bugs and we had better learn to deal with them. In most OSes, faults and failures
can disrupt normal operation. For example, commodity OSes suchas Windows,
FreeBSD and Linux use a monolithic design where a single driver fault can easily
propagate and potentially lead to a system-wide failure, requiring a reboot of the
machine. We believe that this brittleness is unacceptable toend users and businesses
alike, and have investigated techniques to improve OS robustness.

The remainder of this chapter is organized as follows. Sec. 3.1discusses gen-
eral isolation principles and classi�es privileged driver operations that, unless prop-
erly restricted, are root causes of fault propagation. Next, Sec. 3.2 introduces the
MINIX 3 user-level driver framework and Sec. 3.3 details the techniques used to en-
force least authority. Finally, Sec. 3.4 illustrates driver isolation with a case study of
the MINIX 3 networking stack.

3.1 Isolation Principles

Below, we introduce the design principle underlying our designand show how it can
be applied to drivers. We present a classi�cation of operations that are root causes
of fault propagation as well as a set of general rules for isolating drivers.

3.1.1 The Principle of Least Authority

While there is a broad consensus among researchers that drivers needto be isolated,
the central issue to be addressed always is “Who can do what and how can this
be done safely?” Whether the isolation of untrusted drivers is based on in-kernel
sandboxing, virtualization techniques, formal methods, or user-level frameworks,
the same question arises in each approach.

We strongly believe thatleast authorityor least privilegeshould be the guiding
principle in any dependable design. In short, this design principle states that each

37

38 CHAPTER 3. FAULT ISOLATION

component should be able to access only those resources neededfor its legitimate
purpose. A more complete de�nition reads: “Every program and every user of the
system should operate using the least set of privileges necessary to complete the job.
Primarily, this principle limits the damage that can result from anaccident or error. It
also reduces the number of potential interactions among privileged programs to the
minimum for correct operation, so that unintentional, unwanted, or improper uses of
privilege are less likely to occur [Saltzer and Schroeder, 1975].” This chapter studies
how this idea can be applied to drivers in the OS.

3.1.2 Classi�cation of Privileged Operations

This section classi�es the privileged operations needed by OSextensions and drivers
in particular. We identi�ed four orthogonal classes that map onto the core compo-
nents of any computer systems: CPU, memory, peripheral devices, and system soft-
ware. Fig. 3.1 summarizes the privileged operations. Drivers are special in that they
perform device I/O, but the other classes equally apply to other kinds of OS exten-
sions. We brie�y introduce each class and the threats posed by itbelow. In Sec. 3.3,
we will discuss how our model deals with each one.

Class I: CPU Usage A process that runs in kernel mode has access to the full set
of privileged CPU instructions that can be used to bypass higher-level protection
mechanisms. A kernel-mode driver can, for example, reset the pagetables, perform
I/O, disable interrupts, or halt the processor. These functions are vital to the correct
operation of the OS and cannot be exposed to untrusted code without putting the
system at risk. Nevertheless, because of the low-level nature ofdevice drivers, they
must be able to perform certain privileged operations that are not normally available
to user-level application processes.

Class Privileged operation Explanation

CPU usage CPU instructions Use of kernel-mode CPU instructions
CPU time Scheduling and CPU time consumption

Memory access Memory references Access to process address space
Copying and sharing Data exchange between processes
Direct memory access DMA operation from driver's device

Device I/O Device access Access to peripheral devices
Interrupt handling Access to the device's IRQ line

IPC IPC primitives Safety of low-level IPC subsystem
Process interaction Asymmetric trust relationships
System services Requesting privileged services

Figure 3.1: Classi�cation of privileged driver operations. The classes map onto the core compo-
nents of computer systems: CPU, memory, peripheral devices, and system software.

3.1. ISOLATION PRINCIPLES 39

C
ha

pt
er

3

A related problem is using excessive CPU time or CPU hogging, which may lead
to performance problems or even bring down the system. For example, consider a
device driver that winds up in an in�nite loop and keeps executing the same code
over and over again. Since low-level driver code, such as the device-speci�c interrupt
handler, often does not run under the control of the process scheduler, it may hang
the system if it does not run to completion. An analysis of Windows XP crashes
found that the error conditionTHREAD_STUCK_IN_DEVICE_DRIVER ranked as the
second most-frequent (13%) crash cause [Ganapathi et al., 2006]. Another study of
Linux drivers found 860 cases of in�nite device polling that maycause the OS to
hang due to misplaced trust in the hardware [Kadav et al., 2009].

Class II: Memory Access Since drivers often need to exchange data with system
servers and application programs, a particularly important threat is memory cor-
ruption due to unauthorized memory access. For example, drivers typically per-
form device input and output and need to copy data to and from buffersin differ-
ent address spaces. A pointer provided by the caller cannot be used directly by
the driver and the device, but needs to be translated to a physical address before
it can be used. A recent study found that 9 out of 11 pointer bugs were in device
drivers [Johnson and Wagner, 2004]. Translation errors or copying more data than
the buffer can hold may cause memory corruption. Indeed, a study of�eld fail-
ures in OSes has shown that memory corruption is one of the most important crash
causes [Sullivan and Chillarege, 1991]. In 15% of the Windows crashes, the mem-
ory corruption is so severe that crash dump analysis cannot pinpoint the bug(s) or
even the driver responsible for the crash [Orgovan and Dykstra, 2004].

Direct memory access (DMA) is a special case of device I/O that must be re-
stricted to prevent corruption of arbitrary memory. A device that supports DMA
can directly transfer data to an arbitrary location in physical memory without in-
tervention of the CPU and MMU, bypassing both software and hardware memory
protection mechanisms. Legacy ISA devices typically rely on the on-board DMA
controller, whereas PCI devices may have built-in DMA capabilities. The termbus-
mastering DMAis used if a device can take control of the bus and initiate the DMA
transfer itself. The kernel is not in control during the DMA transfer and cannot verify
whether the operation requested can be executed safely. In addition, the I/O address
used by the device is not checked by the MMU hardware, as shown inFig. 2.7.
Therefore, a buggy or malicious driver whose device is capable ofDMA can poten-
tially overwrite any part of physical memory by using an incorrect I/O address.

Class III: Device I/O It is important to restrict access to I/O ports and registers and
device memory in order to prevent unauthorized access. For example, the network
driver should be able to touch only the network interface card, and may not access,
say, the PCI bus or disk controller. However, with kernel-leveldrivers, nothing
prevents a driver from interfering with other peripheral devices. If multiple drivers
simultaneously operate on the same device, resource con�icts are likely and may

40 CHAPTER 3. FAULT ISOLATION

result in data corruption or even cause the system to stop functioning. Unfortunately,
programming device hardware is error-prone due to its low-level interactions and
lack of documentation [Ryzhyk et al., 2009a].

Furthermore, interrupt handling poses several problems because interrupts are
inherently asynchronous and have to be handled at the lowest level for performance
reasons. When the device needs service, it raises an interrupt request (IRQ) to put the
kernel in control. The kernel, in turn, will look up the associated driver to perform
the device-speci�c interrupt handling. Interrupt handlers often runat a high priority
level and have to meet special (OS-speci�c) constraints, whichmakes interrupt han-
dling error-prone. For example, the error conditionIRQL_NOT_LESS_OR_EQUAL
was found to be responsible for more (26%) Windows XP crashes than any other
single error [Ganapathi et al., 2006].

Class IV: IPC Finally, interprocess communication (IPC) poses various threatsre-
lating to the system software. Although IPC is often associated with multiserver
designs, IPC is also important for other approaches, since a means of communica-
tion between extensions and the core OS is always required. To illustrate the im-
portance of IPC, measurements on MacOS X and OpenDarwin, which use the Mach
IPC mechanism, reported 102,885 and 29,895 messages from system boot until the
shell is available, respectively [Wong, 2003]. We conducted the same measurement
on MINIX 3 and obtained a similar number of 61,331 messages that were exchanged
between 33 independent components: 3 kernel tasks, 5 system servers, 15 potentially
unreliable drivers, init, and 9 daemons.

Because the IPC subsystem is so heavily used by the rest of the OS, it must
be designed for maximum robustness. With untrusted system codemaking many
thousands of IPC calls per second, erroneous invocations or call parameters, such
as invalid IPC endpoints or bad message buffers, cannot be prevented. Furthermore,
because both trusted and untrusted parts of the system rely on IPC,unauthorized
access attempts may occur. For example, untrusted drivers should not be allowed to
use kernel calls for process management. Finally, the use of global resources might
lead to resource exhaustion when one or several clients collectively perform too
many IPC requests. If message buffers are dynamically allocated, the IPC subsystem
may run out of memory and no longer be able to serve new calls.

Even if the IPC subsystem itself works reliably, unexpected interactions between
senders and receivers can potentially disrupt the system. For example, consider a
buggy driver that corrupts the message contents, sends the replyto the wrong party,
causes a deadlock due to a cyclic dependency, or simply does not respond to a re-
quest. In particular,asymmetric trustrelationships between senders and receivers
introduce several problems when synchronous IPC is used. For example, an un-
trusted client may block a server if it does not receive the server's reply [Shapiro,
2003]. We identi�ed two further problems, shown in Fig. 3.2, wherea driver acting
as an untrusted server can block its client(s): the caller is blocked if the driver does
not receive or reply to an incoming IPC call.

3.1. ISOLATION PRINCIPLES 41

C
ha

pt
er

3

Normal
client

send

recv

(a)

IPC not performed

IPC performed Message delivery

IPC pending

Thread alive

Thread blocked

recv

send

server
Normal

client

send

recv send

(b)

server
Victim

Buggy
client
Victim

send

recv

recv

(c)

server

Victim
client

send

(d)

Buggy Buggy
server

Figure 3.2: Asymmetric trust and vulnerabilities in synchronous IPC: (a) normal client-server
roundtrip, (b) untrusted client blocks server, and (c) and (d) untrusted server blocks client.

A related power built on top of the IPC infrastructure, which routes requests
through the system, is requesting privileged operations. If a driver is not allowed
to perform a given operation directly, it should also be prevented from requesting
another (privileged) process to do the work on its behalf. For example, isolating a
driver in a private address space is not worth much if it can still ask the kernel to
access arbitrary memory and the kernel blindly complies. Likewise, even though
user-level drivers may not directly perform I/O, the driver's restrictions may be by-
passed if the kernel exports a call to perform I/O on behalf of the driver.

3.1.3 General Rules for Isolation

We now brie�y discuss in what sense these potentially dangerous privileged opera-
tions should be curtailed, rather than (just) how we have done it. As discussed above,
the guiding principle is always to enforce strictly least authority upon untrusted code.
This principle leads to the following general rules for isolation:

(I) Drivers may not have access to the full CPU. In particular, accessto privileged
CPU instructions must be denied or mediated by the kernel to prevent bypass-
ing other protection mechanisms. Furthermore, drivers may not directly use
CPU time, but must run under the scheduler's control.

(II) Drivers may not access main memory unless needed by the driver todo its
job. Besides access to the memory associated with the driver process, there
must be a mechanism to exchange data safely with the components it needs
to interact with. DMA from the device level must be permitted onlyto the
driver's own memory or a memory region granted to the driver.

42 CHAPTER 3. FAULT ISOLATION

(III) Drivers may not access I/O resources except those belonging to the device con-
trolled by the driver. Any other I/O, including generic ones suchas querying
the PCI bus to look up a device's I/O resources or programming the IOMMU
to allow DMA access, must be mediated by trusted drivers.

(IV) Drivers may not directly perform IPC to access arbitrary services. Instead,
both the IPC subsystem and service provider must provide mechanisms to
restrict communication and grant selective access to privileged services that
are performed on behalf of the driver.

In sum, these rules enforceno-privilege defaults: every driver operation is denied
unless authorization explicitly granted.

Any system that wants to isolate faults in device drivers should implement the
above set of rules. In the following sections, we describe how we have implemented
these rules in MINIX 3.

3.2 User-level Driver Framework

Because the kernel runs with all the privileges of the machine, we started out by
removing all the drivers from the kernel and transforming them into independent
user-level processes [Herder, 2005]. We believe that UNIX processesare attrac-
tive, since they are lightweight, well-understood, and have proven to be an effective
model for encapsulating untrusted code. With the exception ofthe clock task, which
is very simple and remains in the kernel to facilitate process scheduling, all drivers
have been removed from the kernel. This section brie�y discusses how we moved
drivers out of the kernel.

3.2.1 Moving Drivers to User Level

In order to transform kernel-level drivers into user-level drivers we analyzed their
dependencies on the core OS and each other. The analysis showed that dependen-
cies occur because of various reasons, including device I/O andinterrupt handling,
copying data from and to the rest of the OS, access to kernel information, debug
dumps, and assertions and panics. Interestingly, some dependencies were caused by
bad design, for example, when variables that were really local were declared global.
Fortunately, these dependencies were easily resolved.

We were able to group the interdependencies into �ve categories based on who
depends on whom or what. For each category, a different approach in removing the
dependencies was needed:

(A) Driver-kernel Dependencies Many drivers touch kernel symbols (both func-
tions and variables), for example, to copy data to and from user processes. The
solution is to add new kernel calls to support the user-level drivers.

3.2. USER-LEVEL DRIVER FRAMEWORK 43

C
ha

pt
er

3

(B) Driver-driver Dependencies Sometimes one driver needs support from another.
For example, the console driver may be needed to output diagnostics. Like above,
new message types have been de�ned to request services from each other.

(C) Kernel-driver Dependencies The kernel can depend on a driver symbol, for
example, to call a driver's watchdog function when a timer expires. Kernel events
are now communicated to the user level using nonblocking noti�cation messages.

(D) Interrupt-handling Dependencies Some interrupt handlers directly touch data
structures of in-kernel device drivers. The solution is to mask theinterrupt at the
kernel level and notify to the corresponding user-level driver to perform the device-
speci�c interrupt handling.

(E) Device-I/O Dependencies All drivers interact with the I/O hardware, which
they cannot always do directly in a safe way at the user level. Therefore, several new
kernel calls relating to I/O have been provided.

3.2.2 Supporting User-level Drivers

Since user-level drivers cannot perform privileged operations directly, the core OS
provides support functionality to perform I/O, memory copying, and the like. This
functionality is implemented by the kernel as well as various user-level servers and
drivers that are part of the trusted computing base (TCB), such as theprocess man-
ager, IOMMU driver, and PCI-bus driver. If a user-level driver needs to perform a
privileged operation, it can no longer directly execute the operation by itself. Instead,
the driver needs to request a more privileged, trusted party to performthe operation
on its behalf. Because the driver manager informs the system about the permissible
operations upon starting each driver, the TCB can control accessto privileged re-
sources: requests are carefully vetted against the policy installed, and executed only
if the driver is permitted to make the call.

The kernel exports a range of kernel calls for privileged operationsthat may only
be performed by the kernel. Fig. 3.3 summarizes the most important kernel calls
added to support user-level drivers. All calls are handled by the kernel's system
task, which is programmed as a main loop that repeatedly receivesan IPC message,
looks up the kernel call's request type, veri�es that the calleris authorized, calls the
associated handler function, and returns the result. For example, a driver can read
from its device by sending to the kernel a message of typeVDEVIO, including the
I/O port(s) to be read as part of the message payload. The kernel willreceive the
message, verify that the driver is authorized to make the calls and that the I/O ports
belong to the driver's device, perform the device I/O on behalf of the driver, and
return the value(s) read in the reply message. Sec. 3.3 provides moredetails about
the most important kernel calls and the way in which authorization works.

44 CHAPTER 3. FAULT ISOLATION

Kernel call Purpose

SYS_VDEVIO Read or write a given I/O port or vector of I/O ports (programmed I/O)
SYS_MEMMAP Map device memory into caller's address space (memory-mapped I/O)
SYS_MAPDMA Ensure DMA buffer is contiguous and pinned (direct memory access)
SYS_IRQCTL Set or reset a hardware interrupt policy for a given interrupt line
SYS_SETALARM Schedule a watchdog timer that causes a noti�ca tion message
SYS_SETGRANT Inform the kernel about the location and size of the memory grant table
SYS_SAFECOPY Copy a capability-protected memory region between address spaces
SYS_SAFEMAP Map a capability-protected memory region into caller's address space
SYS_GETINFO Retrieve a copy of a kernel data structure or other system information
SYS_SYSCTL Forward diagnostic output to the primary console and system log
SYS_PRIVCTL Report a driver's permissible operations (used by the driver manager)

Figure 3.3: Overview of new kernel calls for device drivers. These kernel calls allow unprivileged
drivers to request privileged operations that can only be done by the kernel.

In addition to kernel-level support, drivers are supported by a number of user-
level servers and drivers. Besides general OS support from the POSIX servers, the
IOMMU driver and PCI-bus driver are of particular importance for restricting un-
trusted drivers. The IOMMU driver and PCI-bus driver are similar to other drivers
in the system, but their respective isolation policies allowthem to access special
hardware. Therefore, these drivers are considered part of the TCB. Privileged opera-
tions can be requested by sending a request message, just as is done for kernel calls.
The IOMMU driver mediates access to the IOMMU hardware: it allows adriver
to set up a memory map for use with DMA. Likewise, the PCI-bus drivermediates
access to the PCI bus: it allows a driver to query the con�guration space of its asso-
ciated PCI device in order to look up the PCI device's I/O resources. The protection
mechanisms used to ensure that untrusted drivers cannot request broader access than
required are further detailed below.

3.3 Isolation Techniques

We now describe in detail how MINIX 3 isolates drivers. In short, each driver is run
in an unprivileged UNIX process, but based on the driver's needs, we can selectively
grant �ne-grained access to each privileged resource. Our discussion follows the
classi�cation of privileged operations given in Sec. 3.1.2; the isolation techniques
for each class are described in a separate subsection.

3.3.1 Restricting CPU Usage

CPU usage is restricted by the structural constraints imposed by amultiserver design.
All drivers (except the clock task) have been removed from the kerneland are now
run as independent user-level processes that are scheduled sequentially. This reduces
both access to privileged instructions as well as CPU time.

3.3. ISOLATION TECHNIQUES 45

C
ha

pt
er

3

Privileged Instructions

Although the x86 (IA-32) architecture begins executing inreal modewhen it is pow-
ered on, MINIX 3 switches toprotected modeearly during boot time so that it can
use hardware protection features, such as virtual memory and protection rings. The
kernel's bootstrap code then sets up a restricted execution environment for the OS.
Only a few tasks that are part of the microkernel of about 7500 linesof code (LoC)
are run withkernel-mode(ring 0) CPU privileges. All drivers are run in an ordinary
UNIX process withuser-mode(ring 3) CPU privileges, just like normal application
programs. This prevents drivers from executing privileged CPU instructions such as
changing memory maps, performing I/O, or halting the CPU.

Attempts by unprivileged code to access privileged instructions are denied or
mediated by the kernel. If a user-mode process attempts to execute directly a priv-
ileged CPU instruction, the CPU raises an exception and puts the kernel in control.
The kernel then checks which process caused the exception and sends it a POSIX
signal, which forces a process exit if no signal handler has beeninstalled. As dis-
cussed in Sec. 3.2.2, a small set of kernel calls is exported so that drivers can request
privileged services in a controlled manner. The kernel checks whether the driver is
authorized and performs the privileged operations on behalf of thedriver.

CPU Time

With drivers running as UNIX processes, normal process scheduling techniques can
be used to prevent CPU hogging. In particular, we have used amultilevel-feedback-
queue(MLFQ) scheduler. Processes with the same priority reside in the same queue
and are scheduled round-robin. When a process is scheduled, its quantum is de-
creased every clock tick until it reaches zero and the scheduler gets to run again.
Starvation of low-priority processes is prevented by degrading a process' priority
after it consumes a full quantum. This prevents drivers that wind up in an in�nite
loop from hogging the CPU. Moreover, since CPU-bound processes arepenalized
more often, interactive applications generally have good response times. Period-
ically, all priorities not at their initial value are increased so that processes with
changing scheduling characteristics are not penalized unnecessarily.

There is an additional protection mechanism to deal with driversthat are `stuck,'
for example, due to an in�nite loop. As discussed in Sec. 2.2, the driver manager
can be con�gured to check periodically the driver's state. If the driver does not
respond to a heartbeat request, the driver manager can replace it with a fresh copy or
take another action depending on the driver's recovery script. This defect-detection
technique is discussed in more detail in Sec. 4.1.

3.3.2 Restricting Memory Access

Memory access is restricted using a combination of software and hardware protec-
tion. Each process has a private address space that is protected by the MMU and

46 CHAPTER 3. FAULT ISOLATION

IOMMU hardware. In order to support data exchange between processes, either
through copying or mapping, we have provided a scheme for safe run-time memory
granting enforced by the kernel.

Memory References

We rely on MMU-hardware protection to enforce strictaddress-space separation.
Each driver has a private, virtual address space depending on thedriver's compile-
time and run-time requirements. The address space contains the driver's program
text, global and static data, heap, and execution stack. Upon starting a process the
boundaries are determined by the process manager, which requeststhe kernel to pro-
gram the MMU accordingly. The MMU translates CPU-visible addresses to physical
addresses using the MMU tables programmed by the kernel. Page faults within the
allowed ranges, for instance due to an unallocated stack page,are caught by the ker-
nel and serviced transparently to the process. However, an unauthorized memory
reference outside of the driver's address space results in an MMU exception that
causes the driver to be killed.

Drivers that want to exchange data with other system processes could potentially
use page sharing as provided by, for example, System V IPC and POSIXShared
Memory, but these models do not provide the �exibility and �ne-grained protec-
tion needed to isolate low-level drivers. We identi�ed several shortcomings. First,
protection is based on group ID and user ID instead of individual drivers. Second,
page sharing uses coarse-grained pages while byte-granular protection is needed for
small data structures. Third, delegation of access rights is notsupported. Fourth,
access rights are not automatically invalidated if a process sharing memory crashes.
Therefore, we developed the �ne-grained authorization mechanismdiscussed next.

Copying and Sharing

We allow safe data exchange by means of �ne-grained, delegatable memory grants.
A memory grant can be seen as acapabilitythat can be transferred to another party
in order to grant �ne-grained access. In contrast, anaccess control list(ACL) does
generally not support delegation and is more coarse-grained. Eachgrant de�nes a
memory region with byte granularity and gives a speci�c other process permission
to read and/or write the speci�ed data. A process that wants to grant another process
access to its address space must create agrant tableto store the memory grants. On
�rst use, the kernel must be informed about the location and size of the grant table
using theSETGRANT kernel call. Memory grants can be made available to another
process by sending the grant's index into the table, known as thegrant ID. The grant
then is uniquely identi�ed by the grantor's IPC endpoint and grant ID, and can be
passed in a kernel call to perform privileged memory operations.

The structure of a memory grant is shown in Fig. 3.4. The grant's �ags indicate
whether the grant is in use, the grant's type, and the kind of access allowed. Adirect

3.3. ISOLATION TECHNIQUES 47

C
ha

pt
er

3

identifier
Grantee

address
Base

identifier
Grantee Memory

size

Former
grantor

Former
grant ID

Base
offset

Memory
size

MG_READ
MG_INDIRECT
MG_DIRECT Grant from process

 R I

Grantee may read
Grant from grant

Grantee may write

 V

MG_VALID Grant slot in use
Grant memory mapped

MG_WRITE

 W

MG_MAPPED

 M
Flags

 D R W V T
Flags

Direct memory grant

Indirect memory grant

Figure 3.4: Structure of direct and indirect memory grants. Overview of memory grant �ags.

grant (MG_DIRECT) means that a process A grants another process B limited access
to a memory region in its own address space. The memory region is speci�ed by a
base address and size. The receiver of a direct grant, say, B, can re�ne and transfer
its access rights to a third process C by means of anindirect grant(MG_INDIRECT).
The memory region covered by an indirect grant is relative to the previous grant, and
is speci�ed by an offset and size. However, the target memory area is always in the
address space of the process at the root of the grant chain. Finally, the R/W �ags
de�ne the access type that is granted: read, write, or both.

Delegation of memory grants is supported via indirect grants and results in a hi-
erarchical structure as shown in Fig. 3.5. This structure resemblesrecursive address
spaces [Liedtke, 1995], but memory grants are different in their purpose, granular-
ity, and usage—since grants protect data structures rather than build process address
spaces. In the �gure, the grantor creates a direct grant with read-write access to a
512-byte memory region starting at virtual address 0x400 and extending up to but
not including address 0x600. The grant is stored in the grantor's grant table and has
grant ID 2. The memory grant then is passed to the grantee by sendingthe grantor's
IPC endpoint and grant ID using the system's normal IPC mechanisms. The �gure
also shows how the grantee creates two indirect grants. For example, the indirect
grant with grant ID 4 allows read-only access to 256 bytes starting at an offset of
64 bytes relative to the original grant. Note that the target memory for an indirect
grant always belongs to theroot grantor process. The indirect grant contains the
previous grantor's IPC endpoint, so that it is possible to follow to chain to the root
and determine the precise access rights. In this case, the indirect grant gives access
to the memory range starting at virtual address 0x440 and ending at0x540.

When a process wants to access a memory area it has been granted, itneeds
to call the kernel, which veri�es the grant's validity and performsthe operation re-
quested. TheSAFECOPY kernel call is provided to copy between a driver's local
address space and a memory area granted by another process. Upon receiving the

48 CHAPTER 3. FAULT ISOLATION

1

5

0

3

2

4

1

5

0

3

2

4

R+W

...

...

...

...

...

...

...

...

...

R

W

256 B

192 B

G
ra

nt
or

G
ra

nt
ee

0x400 0x500 0x600

Grantor
process

Grantee
process

ID = 2

IDs = 1,4

Indirect

Direct
grant,

grants,
gr

an
t t

ab
le

gr
an

t t
ab

le

Direct grant

Indirect grant

Indirect grant

0x440 0x540

0x600

512 B

Grantor's address space

0x540

Figure 3.5: Hierarchical structure of memory grants. A direct grant gives access to part of the
grantor's memory. An indirect grant gives access to a subpart of the root grantor's memory.

request message, the kernel extracts the IPC endpoint and grant ID,looks up the cor-
responding memory grant, and veri�es that the caller is indeed listed as the grantee.
Indirect grants are processed using a recursive lookup of the original, direct grant.
The overhead of these steps is small, since the kernel can directly access all physical
memory and read from the grant tables; no context switching is needed to follow
the chain. The copy request is checked against the minimal access rights found in
the path to the direct grant. Finally, if access is granted, the kernel calculates the
physical source and destination addresses and copies the requested amount of data.
This design allows granting a speci�c driver access to apreciselyde�ned memory
region with perfect safety.

Grants can also be used to set up memory mappings. TheSAFEMAP kernel
call allows a process to map the memory indicated by a memory grantinto its own
address space. In order to prevent unintended memory disclosure, only grants that
are page-aligned and span entire pages can be memory mapped. The granularity of
the protection thus depends on the hardware. The kernel also veri�es that the grant's
access modi�ers match the page protection requested. If the request is allowed, the
kernel forwards the request to the virtual memory (VM) subsystem, which sets up
the mapping and updates its administration for future clean-up. Finally, the kernel
sets the memory grant �agMG_MAPPED in the memory grant(s) used in order to
indicate that additional work is needed during grant revocation.

The memory grant model supports immediate revocation of all access rights at
the grantor's discretion. If the grant is not used in a memory mapping, revocation
is simply done by unsetting the �agMG_VALID in the memory grant. If the grant
is mapped, an additional kernel call,SAFEREVOKE, is needed in order to undo the
memory mapping: the pages involved need to be marked `copy-on-write' by the
VM subsystem. The details of checking theMG_MAPPED �ag and making the ker-
nel call are conveniently hidden in a system library. Implicit revocation due to an
exiting grantor process is automatically detected by the clean-up routines in the VM

3.3. ISOLATION TECHNIQUES 49

C
ha

pt
er

3

subsystem. In all cases, revocation is permanent and cannot be circumvented by
other processes, since the kernel always validates all grants in the chain leading to
the root grantor before executing new grant operations.

Direct Memory Access

DMA from I/O devices can be restricted in various ways. One way to prevent invalid
DMA is to restrict a driver's I/O capabilities to deny access to thedevice's DMA
controller and have a trusted DMA driver mediate all access attempts. Although this
would be a one-time effort for ISA devices that use the motherboard'scentral DMA
controller, the approach is impractical for bus-mastering PCI devices that come with
their own DMA controller: each PCI device needs to be checked forDMA capabili-
ties and a specialized helper driver must be written for each different DMA engine.
Therefore, we rely on modern hardware where the peripheral bus is equipped with
an IOMMU that controls all DMA attempts. As discussed in Sec. 2.3.2, the IOMMU
intercepts DMA operations from peripheral devices and validates the memory access
using the information stored in the IOMMU tables. In particular, weimplemented
support for AMD's Device Exclusion Vector (DEV).

Access to the IOMMU is mediated by a trusted IOMMU driver, consisting of
under 500 LoC in the case of AMD's DEV. A driver that wants to useDMA �rst
needs to allocate a range of contiguous physical memory using theMAPDMA kernel
call. Then it requests the IOMMU driver to program the IOMMU. The protection
enforced is based on a very simple rule: only DMA into the driver's own virtual
address space is allowed. Before setting up the IOMMU tables the IOMMU driver
veri�es this requirement through theMEMMAP kernel call, which also returns the
physical address. It also veri�es that the page protection matches the DMA opera-
tion requested and that all memory pages involved are pinned. Because each DMA
protection domain is associated with a speci�c hardware devicerather than a soft-
ware driver, the IOMMU driver must verify that the driver has permission to access
the device, which is identi�ed by the combination of peripheral bus, device num-
ber, and device function. This check can be done by sending a request to the driver
manager or PCI-bus driver. Finally, the IOMMU driver programs the IOMMU in
order to allow access. Where possible the driver uses the same DMA buffer during
its lifetime in order to increase performance [Willmann et al., 2008].

Because the actual DMA operation is done asynchronously (at thedevice's dis-
cretion), revocation of access rights due to unexpected process exits must be handled
with care: if the physical memory associated with a driver that used DMA would
be reallocated, a DMA operation done after the driver exit could cause unexpected
memory corruption. Therefore, the IOMMU driver reports to the process manager
all memory ranges programmed into the IOMMU. If a driver involved in DMA ex-
its, the process manager sends an exit noti�cation to the IOMMUdriver in order to
clean up. Only once the memory of the exiting process is removed from the IOMMU
tables, can it be safely returned to the free list.

50 CHAPTER 3. FAULT ISOLATION

3.3.3 Restricting Device I/O

Device access and interrupt handling is restricted using per-driver isolation policies.
As discussed in Sec. 2.2, policies are stored in simple text �les de�ned by the ad-
ministrator. Upon loading a driver the driver manager informs thekernel and trusted
OS servers, so that the restrictions can be enforced at run time.

Device Access

The driver manager uses isolation policies in order to ensure that each driver can
only access its own device. Upon loading a new driver the drivermanager �rst
compares the isolation policy against the policies of runningdrivers. If the new
driver's device is already in use, the launch process is aborted. The policies are
suitable for both statically and dynamically con�gured I/O devices on the ISA bus
and PCI bus, respectively. For ISA devices, the keysisa io and isa irq statically
con�gure the device's I/O resources by explicitly listing the I/Oports and IRQ lines
in the policy, respectively. ISA plug-and-play (PnP) devices are not supported by
MINIX 3. For PCI devices, the keyspci device and pci class grant access to one
speci�c PCI device or a class of PCI devices, respectively. The driver manager
reports the device or device class to the trusted PCI-bus driver, which dynamically
determines the permissible I/O resources by querying the PCI device's con�guration
space initialized by the computer's basic input/output system (BIOS). In both cases,
the kernel is informed about the I/O resources using thePRIVCTL kernel call and
stores the privileges in the process table before the driver gets torun.

When a driver requests I/O, the kernel always veri�es that the operation is per-
mitted by checking the request against the I/O resources reported throughPRIVCTL.
For devices with memory-mapped I/O, the driver can request to map device-speci�c
memory persistently into its address space using theMEMMAP kernel call. For de-
vices with programmed I/O, �ne-grained access control for device ports and registers
is implemented in theVDEVIO kernel call. If the call is permitted, the kernel per-
forms the actual I/O instruction(s) and returns the result(s) in the reply message.
While this introduces some kernel-call overhead, the I/O permission bitmap on x86
(IA-32) architectures was not considered a viable alternative, because the 8-KB per-
driver bitmaps would impose a higher demand on kernel memory andmake context
switching more expensive. In addition, I/O permission bitmaps do not exist on other
architectures, which would complicate porting.

Interrupt Handling

When a device needs service, it asserts its interrupt line in orderto raise an interrupt
request (IRQ) and put the kernel in control. Although the lowest-level interrupt
handling must be done by the kernel, all device-speci�c processing is done local to
each user-level driver. The kernel implements support for the Intel-8259-compatible
programmable interrupt controller(PIC). A generic kernel-level interrupt handler

3.3. ISOLATION TECHNIQUES 51

C
ha

pt
er

3

catches all IRQs (except clock IRQs) and forwards them to the associated user-level
driver using a nonblocking noti�cation message. The code to do so consists of only
a few lines and is the same for all drivers. In contrast, the device-speci�c interrupt-
handling code in the driver is generally much more complex. In this way, bugs
triggered during interrupt handling are isolated in the user-leveldriver process.

A user-space driver can register for interrupt noti�cations for a speci�c IRQ line
through theIRQCTL kernel call. Before setting up the association, however, the
kernel checks the driver's policy installed by the driver manager or PCI-bus driver.
If an interrupt occurs, the generic kernel-level handler disables interrupts, masks
the IRQ line that interrupted, asynchronously noti�es the registered driver(s), and,
�nally, reenables the interrupt controller. This process takes about a microsecond
and the complexity of reentrant interrupts is avoided. Interrupt noti�cations use the
IPC noti�cation mechanism, which allows the handler to set a bit in the driver's
`pending events' bitmap and then continue without blocking.When the driver is
ready to receive the interrupt, the kernel turns it into a normal IPC message of type
HWINT. Once the device-speci�c processing is done, the driver(s) can acknowledge
the interrupt usingIRQCTL in order to unmask the IRQ line.

3.3.4 Restricting IPC

IPC is restricted through careful design of the IPC subsystem as wellas per-driver
isolation policies. The IPC subsystem provides a set of reliable communication
primitives, introduced in Sec. 2.1.3, as well as mechanisms torestrict their use. In
addition, trusted system servers use well-de�ned IPC protocols tosafeguard com-
munication with untrusted drivers.

Low-level Primitives

Dependability of the IPC subsystem is realized because the kernel fully controls
what happens during an IPC call. The following IPC properties can besafely as-
sumed: atomicity of IPC calls, reliable message delivery, and isolation between IPC
calls. First, atomicity is trivially met since the kernel simply does not return control
to the caller until it is done. Second, reliable delivery is achieved because the ker-
nel copies or maps the entire message to the destination process. Message integrity
is automatically preserved. Resource exhaustion is structurally prevented since the
IPC subsystem uses only statically allocated resources and message buffers local
to the caller. Third, isolation is guaranteed because multiple IPC calls are handled
independently and snooping on other processes' IPC traf�c is not possible. These
well-de�ned semantics allow servers and drivers to set up reliablecommunication
channels and do their work without external interference.

The IPC subsystem also provides mechanisms to control the use ofIPC and force
IPC patterns onto untrusted processes. First, we restrict the set ofIPC primitives
(SEND, ASEND, etc.) available to each process. Second, we restrict which services a

52 CHAPTER 3. FAULT ISOLATION

process can send to usingsend masks. In principle, send masks can be used to restrict
the possible destinations for each individual IPC primitive, but policy de�nition in
the face of multiple, per-primitive IPC send masks proved impractical. Therefore,
send masks restrict the allowed IPC destinations regardless of the primitive that is
used. Furthermore, send masks are de�ned as a symmetric relation: if A is allowed
to send a request to B, B's send mask is automatically updated such that B is allowed
to send the response to A. Receiving is not protected, since it is meaningful only if
an authorized process sends a message.

A �nal protection mechanism is the use of unique IPC endpoints.In order to
disambiguate between processes that may (over time) occupy the same slot in the
kernel's process table, IPC endpoints contain a 16-bit generation number that is in-
cremented every time a process reuses a process table slot. Slot allocation is done
round robin in order to maximize the time before endpoint reuse. This design en-
sures that IPC directed to an exited process cannot end up at a process that reuses
a slot. (Note that we solely focus on buggy drivers and do not protect against mali-
cious drivers attempting to overtake an IPC endpoint using a brute-force attack that
quickly cycles through the generation number space.) Moreover, in the event that a
system server exits, the data store's publish-subscribe mechanism immediately noti-
�es all dependent processes about the invalidated endpoint.

Interaction Patterns

By default, drivers are not allowed to use IPC, but selective access can be granted on
a per-driver basis using isolation policies. The keysipc calls andipc targets determine
the permissible IPC primitives and IPC destinations, respectively. Upon loading a
driver the driver manager informs the kernel about the IPC privileges granted using
PRIVCTL, just as is done for I/O resources. The kernel stores the driver's IPC priv-
ileges in the process table and the IPC subsystem enforces them atrun time using
simple bitmap operations. In this way, driver communication can be restricted to
only those system processes drivers need to talk to.

Protection against caller blockage due to deadlocks and asymmetric trust rela-
tionships can be implemented in various ways, each of which comes with a certain
complexity. First, time-outs help to detect failing IPC calls,but are hard to get
correct for programmers—arbitrary or overly conservative time-out values are not
uncommon—and may lead to periods of blockage. Second, multithreading allows
spawning a separate thread for handling untrusted IPC interactions, but requires a
more complex thread-aware IPC subsystem. Third, asynchronous and nonblocking
IPC prevents blocking on untrusted IPC targets, but comes with a state-machine-
driven programming model. The last option seemed most suitablein the context
of MINIX 3, for two reasons. First, it required relatively little programming effort
because it affected only two trusted system servers: the virtual �le system (VFS)
and the network server (INET). Second, a state-machine-based approach also facil-
itates recovery after a driver crash, because pending requests canbe replayed from

3.3. ISOLATION TECHNIQUES 53

C
ha

pt
er

3

NBSEND

SENDASEND

SENDREC

process
Trusted

 Driver

 Server
 level

 level
 Kernel

 levelprocess
Untrusted

process
Trusted

Figure 3.6: IPC patterns to deal with asymmetric trust. Trusted processes use asynchronous or
nonblocking IPC (dashed lines) for sending to untrusted processes, which use synchronous IPC
(solid lines) to prevent race conditions that may cause messages to be dropped.

the work queue. Therefore, the IPC subsystem provides both synchronous, asyn-
chronous, and nonblocking IPC primitives.

In MINIX 3, asynchronous and nonblocking IPC is used only at a few well-
de�ned decoupling points where (trusted) system servers have to communicate with
(untrusted) device drivers. The IPC patterns that we use in these cases are summa-
rized in Fig. 3.6. First, in order to deal with untrusted clients (also see Fig. 3.2(b)),
trusted servers use the nonblockingNBSEND to send driver replies. Second, in or-
der to deal with drivers acting as an untrusted server (also see Fig. 3.2(c,d)), trusted
clients use the asynchronousASEND to send driver requests and do not block waiting
for the reply. These two simple rules ensure that the core system servers can never
be blocked by a driver that does not do the correspondingRECEIVE. The design
consequently forces drivers to use synchronous IPC in order to prevent race condi-
tions that may cause messages to be dropped. In particular, requests sent using an
asynchronousASEND must be matched by a synchronousSEND, because the driver
cannot know if the caller is ready to receive the reply. In a similar vein, drivers must
use a synchronousSENDREC to request kernel services, because the kernel runs at
a higher priority and simply drops the reply if the driver is not ready to receive it.
While this design isolates trusted processes from faults in untrusted drivers, addi-
tional mechanisms, such as the driver heartbeat requests described in Chap. 4, are
still required in order to detect failures and ensure progress.

System Services

Because the kernel is concerned with only passing messages from one process to
another and does not inspect the message contents, restrictions on the exact request
types allowed must be enforced by the IPC targets themselves. This problem is most
critical at the system task in the kernel, which provides a plethora of sensitive oper-
ations, such as creating processes, setting up memory maps, andcon�guring driver
privileges. Therefore, the keyipc kernel in the per-driver isolation policies is used

54 CHAPTER 3. FAULT ISOLATION

to restrict access to individual kernel calls. In line with leastauthority, each driver
is granted access to only those services needed to do its job, such as safe memory
operations and device I/O. Again, the driver manager fetches thecalls granted upon
loading a driver and reports them to the kernel usingPRIVCTL. The kernel task in-
spects the table with authorized calls each time a driver requests service. It should
be noted that multiple levels of defense are used for certain kernel calls. Even if a
driver is authorized to use, say,SAFECOPY or VDEVIO, the protection mechanisms
described in Secs. 3.3.2 and 3.3.3 are enforced. For example, memory copies re-
quire a valid memory grant and device I/O is allowed only for the driver's device,
respectively. This ensures the correct granularity of isolation.

Finally, the use of services from the user-level OS servers is restricted using or-
dinary POSIX mechanisms. Incoming calls are vetted based on the caller's user ID
and the request parameters. For example, administrator-level requests to the driver
manager are denied because all drivers run with an unprivileged user ID. Further-
more, since the OS servers perform sanity checks on all input, requests may also be
rejected due to invalid or unexpected parameters. This is similar to the sanity checks
done for ordinary POSIX system calls from the application layer.

3.4 Case Study: Living in Isolation

As a case study, we now discuss the working of an isolated Realtek RTL8139 net-
work driver. The driver's life cycle starts when the administrator requests the driver
to be loaded using the isolation policy shown in Fig. 3.7. Thedriver is granted ac-
cess to a single PCI device, de�ned by the combination of the vendor ID (10ec)
and the device ID (8139). The policy enables IPC to the kernel, process manager,
data store, driver manager, PCI-bus driver, IOMMU driver, and network server, re-
spectively. The kernel calls granted allow the driver to perform device I/O, manage
interrupt lines, request DMA services, make safe memory copies, output diagnostics,
set timers, and retrieve system information, respectively.

1 driver rtl8139 # ISOLATION POLICY
2 {
3 pci device 10ec/8139
4 ;
5 ipc targets KERNEL PM DS RS PCI IOMMU INET
6 ;
7 ipc kernel VDEVIO IRQCTL MAPDMA SETGRANT SAFECOPY
8 SYSCTL TIMES SETALARM GETINFO
9 ;

10 };

Figure 3.7: Per-driver policy de�nition is done using simple text �les. Th is is the complete isolation
policy for the RTL8139 driver as found in /etc/drivers.conf.

3.4. CASE STUDY: LIVING IN ISOLATION 55

C
ha

pt
er

3

Register
for IRQs and await IRQ

Program device

resources
Get I/O

Program

Safe copies via
memory grants

Device-specific
IRQ handling

U
se

r
le

ve
l

K
er

ne
l

Privileged operationsKernel

IOMMU

DMA

Interrupt handler

Network
driver

server
PCI-bus

driver

IOMMU
driver

Network

(4)

 (1)

(3)

 (2)

(6)

(5)

Figure 3.8: Interactions between an isolated network-device driver and the rest of the OS. Access
to privileged resources is mediated by the PCI-bus driver, IOMMU driver, and the kernel.

After verifying that the caller is authorized to start new drivers, the driver man-
ager stores the policy and creates a new process. The new process is uniquely iden-
ti�ed by its IPC endpoint. The driver manager queries the data store for the IPC
endpoints of the allowed IPC targets and maps the allowed kernel calls onto their
call numbers in order to create the actual permission bitmaps. Then it informs the
kernel about the IPC targets and kernel calls allowed using thePRIVCTL call. The
PCI device ID is sent to the PCI-bus driver, which retrieves the I/O resources belong-
ing to the RTL8139 device from the device's PCI con�guration space and, in turn,
informs the kernel. Finally, only after the execution environment has been properly
isolated, the driver manager executes the driver binary.

The working of the RTL8139 driver in its isolated execution environment is
sketched in Fig. 3.8. When the driver gets to run it �rst executesits initialization
routines. In step (1), the RTL8139 driver contacts the PCI-bus driverto retrieve the
I/O resources associated with the RTL8139 PCI device. Since theRTL8139 device
uses bus-mastering DMA, (2) the driver allocates a local buffer foruse with DMA
and requests the IOMMU driver to program the IOMMU accordingly. Thisallows
the device to perform DMA into only the driver's address space and protects the
system against arbitrary memory corruption by invalid DMA requests. Finally, (3)
the RTL8139 driver registers for interrupt noti�cations using theIRQCTL kernel call.
Only IRQ lines reported by the PCI-bus driver are made accessible though.

During normal operation, the driver executes a main loop that repeatedly re-
ceives a message and processes it. Requests from the network server, INET, contain
a memory grant that allows the driver to access only the message buffers and nothing
else. We now consider a request to read from the network. In step (4), the RTL8139
driver programs the network card using theVDEVIO kernel call. The completion
interrupt of the DMA transfer is caught by the kernel's generic handler and (5) for-
warded to the RTL8139 driver where the device-speci�c interrupt handling is done.
The interrupt is handled at the user level and acknowledged using theIRQCTL kernel

56 CHAPTER 3. FAULT ISOLATION

call. In step (6), the driver makes aSAFECOPY kernel call to transfer the data read
to INET. Although we did not implement this, a zero-copy protocolcan be realized
for performance-critical applications by mapping the memory granted by INET into
the driver's address space using theSAFEMAP kernel call. Writing garbage into
INET's buffers results in messages with an invalid checksum, which will simply be
discarded. In order to prevent race conditions when both INET and the driver try
to access the packet data, INET revokes the memory access rights once the driver
signals that a packet has arrived. In this way, the driver can safely perform its task
without being able to disrupt any other services.

If the driver process crashes or otherwise exits unexpectedly, all the privileges
that were granted to the driver are revoked by the OS. The process manager will
be the �rst to notice the driver exit, and noti�es all processes involved in the exit
procedure, such as the kernel's system task and IOMMU driver. The driver's CPU
and memory privileges are automatically revoked because the driver process is no
longer scheduled by the kernel. Likewise, the driver's I/O and IPCprivileges that
were stored at the kernel are reset when the driver's process-table entry is cleaned
up. Memory grants that INET or other processes created for the driverare no longer
usable because the grants contain the driver's unique IPC endpoint, which is inval-
idated by the kernel. Memory grants created by the driver itself areautomatically
cleaned up when the driver's address space is recollected by the OS. Before this can
be done, however, the IOMMU driver resets the DMA protection domain that was
set up for the driver's device.

Finally, when all privileges have been revoked, the driver manager is noti�ed
that one of its children has exited, so that it can perform its local clean-up. The
driver manager �rst updates its local administration and—depending on the policy
provided by the administrator—then may attempt to recover the failed driver. Such
driver recovery is the subject of the next chapter.

C
ha

pt
er

4

Chapter 4

Failure Resilience

With driver faults properly isolated, we now focus on another technique that is used
by MINIX 3 to improve dependability. In particular, we do not claim that our drivers
are free of bugs, but we have designed our system such that it can recover from driver
failures. After loading a driver, it is constantly guarded in order to ensure continuous
operation. If the driver unexpectedly crashes, exits, or misbehaves otherwise, it is
automatically restarted. How the driver manager can detect defects and how the
recovery procedure works is described in detail below.

The remainder of this chapter is organized as follows. First, Sec. 4.1 explains the
defect detection techniques used by the driver manager. Next,Sec. 4.2 discusses the
role of recovery scripts and shows how components can be restarted.Then, Sec. 4.3
discusses the effectiveness of server and driver recovery. Finally, Secs. 4.4 and 4.5
present two case studies that further illustrate the working of our design.

4.1 Defect Detection Techniques

While a human user observes driver defects when the system crashes, becomes un-
responsive, or behaves in strange ways, the OS needs other waysto detect failures.
Therefore, the driver manager monitors the system at run time to �nddefects. Note
that the driver manager can only observe component failures, that is, deviations from
the speci�ed service, such as a driver crash or failure to respond to a request. We do
not attempt to detect erroneous system states or the exact underlying faults that led
to the failure. However, as discussed in Sec. 2.5, this is not aproblem in practice
since many problems are intermittent and tend to go away after restarting a failing
or failed component.

The defect detection techniques used by the driver manager are based on unex-
pected process exits, explicit update requests, and periodic monitoring of extensions.
A classi�cation of the various conditions that can cause the recovery procedure to
be initiated is given in Fig. 4.1 and discussed below.

57

58 CHAPTER 4. FAILURE RESILIENCE

Technique Defect trigger In use Example scenario

Process exit CPU or MMU exception Yes Driver dereferences invalid pointer
Killed by signal Yes User kills driver that misbehaves
Internal panic Yes Driver detects internal inconsistency

Periodic check Request heartbeat Yes Driver winds up in in�nite loop
Correctness proof No See examples in Sec. 4.1.2

Explicit request Dynamic update Yes User starts new or patched driver
Component complaint Yes Server detects protocol violation

Figure 4.1: Classi�cation of defect detection techniques and their impl ementation status in MINIX 3.

4.1.1 Unexpected Process Exits

The most important technique that initiates the recovery procedure is immediate
detection of unexpected process exits. As explained in Sec. 2.2, the driver manager
starts new drivers by forking a process, setting the child process' privileges, and
executing the driver binary. This means that the driver manageris the parent of
all system processes, and according to the POSIX speci�cation,it will immediately
receive aSIGCHLD signal if a driver crashes, panics or exits for another reason.
The crashed process becomes a zombie process until the driver manager collects the
pieces using await call, which returns the exit status of the exitee and allows the
driver manager to �gure out what happened.

This mechanism ensures, for example, that a driver killed by theprocess manager
because it dereferenced a bad pointer and caused an MMU exception is replaced
instantaneously. Likewise, CPU exceptions such as a division by zero may also cause
the driver to be signaled. Since all drivers run as ordinary user processes, they also
can be killed by user signals. This allows the administrator to restart malfunctioning
components, although the preferred method is sending an update request to the driver
manager. Finally, if a system process detects an internal inconsistency, it can simply
log the error and exit in order to be automatically replaced with afresh copy. Our
experiments indicate that both exceptions and internal panics are responsible for a
large fraction of all restarts.

4.1.2 Periodic Status Monitoring

Next, the driver manager also proactively checks the system'sstate in order to detect
malfunctioning system services. We have implemented periodicheartbeat requests
that require an extension to respond within the next period. Failing to respond N
consecutive times causes recovery to be initiated. Heartbeatsdo not protect against
malicious code, but help to detect processes that are `stuck,' for example, because
they are deadlocked in a blocking IPC call or wound up in an in�nite loop. On a
monolithic system this is effectively a denial of service attack, but since all MINIX 3
drivers run as independent processes, the scheduler notices this behavior and grad-

4.1. DEFECT DETECTION TECHNIQUES 59

C
ha

pt
er

4

ually lowers the offending process' priority, so that other processes can continue
to run normally. Because the MINIX 3 drivers are single-threaded processes with an
event loop, we used a conservative heartbeat period of 1–5 second in order to prevent
false negatives during heavy workloads. Nevertheless, this setup proved effective in
catching unresponsive drivers in our fault-injection experiments.

Although we did not implement it, more elaborate run-time monitoring is also
supported by our design. First, while we currently use �xed heartbeat periods, it may
be possible to maintain a failure history and dynamically adapt the heartbeat period
to the driver's workload. Furthermore, the driver manager could request some kind
of proof that the driver still functions correctly. For example, the driver manager
could verify that the driver's code segment is unaltered in order toprotect against
driver exploits [Xu et al., 2004] and bit �ips caused by radiation, electromagnetic
interference, or electrical noise [Heijmen, 2002]. As another example, higher-level
heartbeats could potentially verify end-to-end correctness by performing an I/O re-
quest and comparing the result with the expected response [Hunt,pers. comm.,
2010]. Finally, it may be possible to restart active OS modules periodically in or-
der to rejuvenate the OS and proactively recover aging bugs, such as memory leaks,
before they can cause failures [Huang et al., 1995; Ishikawa et al., 2005].

4.1.3 Explicit Update Requests

Finally, another class of defect detection techniques are explicit update requests.
Sometimes faulty behavior can be noticed by the user, for example, if the audio
sounds weird or if the network performs badly. In such a case, the system administra-
tor can explicitly instruct the driver manager to restart a driver. Our design also sup-
ports replacing the binary of the extension with a new one, so that patches for latent
bugs or vulnerabilities can be applied as soon as they are available. In this scenario
we speak of adynamic update[Baumann et al., 2007]. Since reboots due to main-
tenance are responsible for a large fraction (24%) of system downtime [Xu et al.,
1999], dynamic updates that allow run-time patching of system components can sig-
ni�cantly improve system availability.

The driver manager can also be used as an arbiter in case of `con�icts,' allow-
ing authorized components to �le a complaint about malfunctioning components.
For example, a server could request a driver that sends unexpected request or reply
messages to be restarted. This is useful because the driver manager is not aware of
server-to-driver protocols and cannot inspect messages exchanged. If a complaint is
�led, the driver manager kills the bad component and starts a fresh copy. In order to
prevent abuse, the isolation-policy �elddriver informs the driver manager whether
a component is allowed to use this functionality and, if so, forwhich parties. As
described in Sec. 4.4, we have experimented with explicit update requests in the
storage stack. However, most of the MINIX 3 servers simply return a normal POSIX
error code to signal errors. The error is logged, however, so that theadministrator
can check the system's state.

60 CHAPTER 4. FAILURE RESILIENCE

4.2 On-the-�y Repair

If a defect is detected, the driver manager starts its recovery procedure to repair the
system on the �y. The basic idea is to perform amicrorebootof the failed compo-
nent [Candea et al., 2004]. Below, we �rst discuss the use of recovery scripts and
then focus on the actual driver restart. While the primary focus is recovering stateless
drivers, we also discuss the MINIX 3 mechanisms for state management.

4.2.1 Recovery Scripts

By default, the driver manager directly restarts malfunctioningcomponents, but if
more �exibility is wanted, the administrator can set up arecovery scriptthat governs
the steps to be taken after a failure. This is done using the service utility parameter
–recovery, which accepts the path to shell script and an argument list that is passed
to the script upon execution. In principle, each server and drivercan be con�gured
with its own recovery script, but scripts can also be written in a generic way and
shared among extensions. In the event of a failure, the driver manager looks up the
associated script and executes it with the following arguments: (1) the component
that failed, (2) the event causing the failure, (3) the current failure count for the failed
component, and (4) the argument list passed by the administrator. Recovery scripts
must be careful not to depend on functionality that is (temporarily) not available, or
request a restart of the failed component before attempting to useit.

Using shell scripts provides great �exibility and power for expressing policies.
Even if a generic recovery script is used, the precise steps taken may differ per
invocation, depending on the information passed by the driver manager. As an ex-
ample, consider the generic recovery script in Fig. 4.2. Line 1 gives the path to
shell executable and lines 2–5 process the driver manager arguments. Then, lines 7–
12 implement a binary exponential backoff strategy in restarting repeatedly failing
components. The actual restart command is done after an increasingly large delay
in order to prevent bogging down the system in the event of repeated failures. The
backoff protocol is not used for dynamic updates that are requested explicitly. Fi-
nally, lines 14–24 send a failure alert to a remote administratorif the parameter–a
and an email address are passed.

The use of policy-driven recovery provides several bene�ts. Even though full
recovery is not always possible, recovery scripts can assist the administrator in han-
dling from failures. For example, crashes of the network server, INET, not only
requires restarting INET, but also affect applications that depend on its functionality,
such as the DHCP client and X Window System. A dedicated recovery script that
was speci�cally designed to recover from such failures is discussed in Sec. 4.5. As
another example, if a critical component cannot be recovered orfails too often, the
recovery script may reboot the entire system, which clearly is better than leaving the
system in an unusable state. At the very least, the recovery script can log details
about the failing component and its execution environment.

4.2. ON-THE-FLY REPAIR 61

C
ha

pt
er

4

1 #!/bin/sh # GENERIC RECOVERY SCRIPT
2 component=$1 # failed component binary
3 reason=$2 # failure reason
4 repetition=$3 # current failure count
5 shift 3 # get to script parameters
6

7 # RESTART BINARY EXPONENTIAL BACKOFF
8 if [! $reason -eq UPDATE]; then
9 sleep $((1 << ($repetition - 1)))

10 �
11 service refresh $component # request restart
12 status=$? # get restart status
13

14 # E-MAIL OPTIONAL FAILURE ALERT
15 while getopts a: option; do
16 case $option in # check optional parameters
17 a)
18 cat << END | mail -s "Failure Alert" "$OPTARG"
19 failure details: $component, $reason, $repetition
20 restart status: $status
21 END
22 ;;
23 esac
24 done

Figure 4.2: Example of a parameterized, generic recovery script. Binary exponential backoff is
used before restarting, except for dynamic updates. If the optional parameter –a is present, a
failure alert is emailed to the given address.

4.2.2 Restarting Failed Components

The actual procedure for restarting a failed driver and reintegrating it into the system
consists of three phases. First, when the recovery script requeststhe driver manager
to restart the component, its privileges and the privileges of dependent components
need to be (re)set. Second, changes in the OS con�guration need tobe communi-
cated to dependent components in order to initiate further recovery and mask the
problem to higher levels. Third, the restarted component may need to do local re-
covery. This procedure is illustrated in Fig. 4.3 and discussed below.

Restarting Failed Components

The �rst two steps in Fig. 4.3 correspond to restarting a failed driver. If no recovery
script is used, the driver manager automatically attempts to restart the driver, oth-
erwise it will wait for the recovery script's signal. In step (1), the driver manager
performs the necessary clean-up, creates a new process, installs its isolation pol-
icy, and executes the binary. Changes in the system con�guration are disseminated
through the data store. In step (2), the driver manager publishes the stable name and

62 CHAPTER 4. FAILURE RESILIENCE

DependentRestarted

Retry I/O
operations

subscribers(3) Notify

Clean up
and restart(1)

state
Get/set(5)

(6) (Re)set
device

update
Publish(2)

Driver Data

Kernel Privileged operations

K
er

ne
l

U
se

r
le

ve
l

manager store

driver server

(4)

Figure 4.3: Procedure for restarting a failed device driver and reintegrating it into the system. The
sequence of steps taken is shown in (roughly) clockwise order.

IPC endpoint of the restarted component in the data store. In this respect, a restart
is mostly similar to the steps taken when a component is started through the service
utility, as discussed in Sec. 2.2. There are minor differences between starting a new
component and restarting a failed component, however.

The driver manager relies on the fact that our design uses temporally unique
IPC endpoints in order to identify uniquely a component and grantit the privileges
listed in the isolation policy. However, because the IPC endpoint is automatically
reset during a restart, requests by the restarted component will be denied. Therefore,
dependent components need to be informed about the update, so that they can discard
old information and store the component's new IPC endpoint and privileges. All
these updates have to be completed before the new component gets to run.

Informing Dependent Components

Next, the dependent components are informed and can start their local recovery pro-
cedure. The data store implements a publish-subscribe mechanism, so that sub-
scribed components automatically receive updates about changes in the system con-
�guration. If a driver fails, (3) dependent servers subscribed to the driver's stable
name are automatically noti�ed and, if need be, (4) can attemptlocal recovery, such
as retrying failed or pending I/O requests. This design decouples producers and con-
sumers and prevents intricate interaction patterns of components that need to inform
each other when the system con�guration changes.

In general, we were able to implement recovery at the server level. Application-
level recovery is needed only for speci�c failures that cause data loss or destroy too
much internal state. In this case, the normal POSIX error handling mechanisms are
used: the application's system call is aborted and an error codeis returned. For
historical reasons most applications assume that an I/O failureis fatal and give up,
but by changing user-space applications we may improve dependability even further.
Sec. 4.3 illustrates this point with concrete recovery schemes.

4.2. ON-THE-FLY REPAIR 63

C
ha

pt
er

4

Local Recovery

Finally, the restarted component may need to perform local reinitialization and re-
covery, such as (5) retrieving internal state that it lost when it crashed and (6) reini-
tializing its device. The exact steps taken depend on the component. As discussed
below, stateful services can retrieve lost state from the data storeso that they can
properly reinitialize when they are brought up again. Device reinitialization typi-
cally is done using the normal device initialization procedures.

4.2.3 State Management

Although this thesis does not focus on stateful recovery, the data store provides a
number of mechanisms that support components in storing and retrieving internal
state. Below we introduce the working of the data store and highlight several prob-
lems relating to state management.

Working of the Data Store

The data store allows components to backup state and restore it after a restart.
Fig. 4.4 brie�y summarizes (part of) the data store API. First, it is possible to store
primitive data types and arrays thereof, such as integer values (DSF_TYPE_U32) or
character strings (DSF_TYPE_STR), under a component-speci�ed identi�er, known
as ahandle. This mechanism creates a copy of the data to be stored. Retrieval is done
by presenting the handle to the data store. A special data type exists for naming in-
formation (DSF_TYPE_LABEL), where the handle is a component label and the data

Function Explanation

ds_publish Store a piece of typed data (see types below) under the given handle
ds_retrieve Retrieve a piece of typed data with the given handle or snapshot index
ds_delete Delete a piece of typed data or a snapshot from the data store
ds_snapshot Make a copy of a memory-mapped region and get the snapshot index
ds_subscribe Subscribe to data store entries matching the given regular expression
ds_check Check which data store entry changed and get its type and handle

Flag Explanation

DSF_PRIVATE Flag used to store data privately; used when publishing data
DSF_OVERWRITE Flag used to overwrite the data if an entry with same handle exists
DSF_TYPE_U32 Data type for storing unsigned 32-bit integers (�ts i n IPC message)
DSF_TYPE_STR Data type for storing strings up to 16 characters (� ts in IPC message)
DSF_TYPE_MEM Data type for copying grant-based memory regions using SAFECOPY
DSF_TYPE_MAP Data type for mapping grant-based memory regions using SAFEMAP
DSF_TYPE_LABEL Data type for publishing labels (identi�ers) of system components

Figure 4.4: Summary of the data store API for state management as provided by the system
libraries. System-library functions are shown at the top. Flags are shown at the bottom.

64 CHAPTER 4. FAILURE RESILIENCE

stored gives the corresponding IPC endpoint. Only the driver manager is allowed to
store naming information. These primitive data types �t in an IPC message and do
not require additional copying. Second, it is possible to storeentire memory regions
speci�ed by memory grants. As discussed in Sec. 3.3.2, memory grants can be used
for both copying the data or setting up a memory mapping; a �ag tells the data store
which mode should be used. With copying (DSF_TYPE_MEM), the data store copies
the data once upon request and allows retrieving the same data later on. With map-
ping (DSF_TYPE_MAP), the data store gets a real-time view of the memory region
to be stored, so that the latest (but possibly corrupted) state can always be recovered.
The data store's snapshot functionality can be used to checkpoint memory-mapped
regions from time to time.

A �ag (DSF_PRIVATE) tells the data store to store the data either publicly or pri-
vately. The data store's publish-subscribe mechanism allows process to subscribe to
public data, such as naming information. In contrast, private data can be retrieved
only by the component that stored it. This is enforced by authenticating compo-
nents with help of the naming information that is also kept in the data store: when
data is stored, a reference to the stable name is included in the record, so that the
owner can be authenticated through a reverse lookup of the IPC endpoint. This al-
lows servers and drivers to store data privately using simple handles consisting of a
logical name rather than a large cryptographic hash. Another bene�t of this design is
that authentication works between restarts. Although the component's IPC endpoint
changes during the restart, the stable name remains the same and the driver manager
updates the IPC endpoint associated with the component's stable name as part of the
recovery procedure.

These basic mechanisms enable components to backup privately their state and
retrieve it after a restart. With memory mapping, the data store getsa real-time view
of a memory region in a given process. The data store also can be requested to
make a snapshot of the mapped memory region, such that different versions can be
maintained. In both cases, if the process crashes, the data storestill holds a copy
of the data or a reference to the memory region, and allows the restarted process to
recover its state by presenting the handle for it. Data is currently not persisted across
reboots, but the data store could potentially be extended to doso.

Gaps in State Management

Although these basic mechanisms provide an elegant way to store and retrieve in-
ternal state, there are several problems relating to state management that we did not
look into. The most important ones are:

• State integrity.

• Transaction support.

• Performance trade-offs.

4.3. EFFECTIVENESS OF RECOVERY 65

C
ha

pt
er

4

To start with, while the data store is able to maintain a process'internal state, it
cannot prevent a buggy process from corrupting its own state. If a process is allowed
to communicate with the data store, a bug may cause it to store accidentally bogus
information. A potential solution would be to checksum internal state, so that the
restarted process can at least �nd out about the corruption. Next,it is sometimes
impossible to tell which part of an operation was already completed and which part
was not. This can be addressed by implementing some form of transaction support
and commit only completed transactions to the data store. Finally, there is a trade-
off between performance and dependability, because continuous checksumming and
checkpointing may be prohibitive for state that changes all the time and is on the
performance-critical path. Finding a good balance is a hard problemand may have
to be done on a per-component basis.

There are several other, less fundamental issues that may have tobe addressed
as well. First, quota enforcement may be needed in order to preventone compo-
nent from using all the data store's memory. Second, more elaborateaccess-control
mechanisms could support access on a per-process basis rather than storing data ei-
ther public or private. Third, there should be a policy for garbagecollecting data that
is no longer needed when a driver exits normally. This kind of functionality should
be provided when the data store is more heavily used.

Because of these issues, the data store is primarily used to support dynamic up-
dates where the component writes its state to the data store and exits in a controlled
way. For example, an audio driver could use the data store to backup control opera-
tions and reinitialize the mixer settings of the sound card after a restart. As another
example, a RAM disk driver can store the base address and size of the RAM disk's
memory so that it can be restarted on the �y. Upon starting, the drivers can query
the data store for previously stored state to determine which initialization method
should be followed. If the data store does not know about the requested handle,
default initialization is done; if the handle is found, the previous state is restored.
Because we did not use checksumming and transactions, we cannot (currently) give
hard guarantees about state corruption during an unexpected crash. Instead, we as-
sumefail-stop behavior where erroneous state transformations due to a failure do
not occur [Schlichting and Schneider, 1983].

In our prototype, state management turns out to be a minor problemfor the
MINIX 3 device drivers, which are mostly stateless. The effectiveness of driver re-
covery is presented in detail in Sec. 4.3.1. Recovery of statefulcomponents, such as
the �le server and network server, is partially supported, as discussed in Sec. 4.3.2.

4.3 Effectiveness of Recovery

In this section, we present MINIX 3's recovery procedure for low-level device drivers
and system servers and discuss its effectiveness. Effectiveness can be measured
along two axes. First, we say that recovery istransparentif it is done without re-

66 CHAPTER 4. FAILURE RESILIENCE

turning an error to application programs and without user intervention. This requires
recovery to be done within the realms of the OS. Second, we say that recovery is
losslessor full if no user data is lost or corrupted. This requires that we guarantee
`exactly once' behavior for the outcome of requests. In many cases, our design en-
ables full transparent recovery. However, even if this goal cannot be achieved, the
system's failure-resilience mechanisms still help to improve availability by speeding
up recovery, as discussed below.

As an aside, the recovery schemes discussed here pertain not onlyto failures, but
as discussed in Sec. 4.1, our design also allows the administrator to update servers
and drivers dynamically—even if I/O is in progress. In this case, the driver manager
�rst requests the extension to exit cleanly by sending aSIGTERM signal, giving it a
chance to backup its state in the data store. If the extension does not comply within
the time-out interval, it will be killed using aSIGKILL signal. The steps that are taken
after the extension exits are similar to those for a failure. Mostother OSes currently
cannot dynamically replace active OS services on the �y as MINIX 3 does.

4.3.1 Recovering Device Drivers

We now focus on low-level device drivers that directly interact with the hardware.
For our purposes we distinguish three device-driver classes, namely, the network-
device, block-device, and character-device drivers. Each device class has different
I/O properties and, therefore, different driver recovery characteristics. In addition,
as will become clear from Fig. 4.5, the protocols used by the layers above the driver
level also affect the effectiveness of recovery.

The effectiveness of recovery depends on whether I/O requests areidempotent
and the data stream providesdata integrity. A request is idempotent if reissuing
it does not affect the �nal outcome. For example, writing a datablock to a given
disk address is idempotent, but replaying an audio frame is not. Inaddition, a
means to verify data integrity is needed in order to detect data corruption. Typ-
ically this is realized by checksumming the data. Because device drivers are not
concerned with these properties—they simply accept a request and program the
hardware accordingly—the protocols implemented by the higher-level servers and
applications determine the effectiveness of recovery [Saltzer et al., 1984].

The different I/O properties for each driver type leads to different recovery paths,
as illustrated in Fig. 4.6. As a general rule, recovery is always attempted at the low-

Device Class I/O properties Recovery support
Idempotent Data integrity Transparent Data loss

Network No Protocol-dependent Yes Protocol-dependent
Block Yes FS-dependent Yes FS-dependent
Character No No Optional Likely

Figure 4.5: I/O properties of different driver stacks and the extent to which recovery is supported.

4.3. EFFECTIVENESS OF RECOVERY 67

C
ha

pt
er

4

VFS

wget

VFS

wgetwget mplayer

DP8390 RTL8139

INET TCP packet
retransmit

ntpd

recovery
UDP

MFS

FloppyATWINI

VFS

block
Redo

lpd

Audio
hiccups

ES1371 Printer

Device
reopen

job
Redo

(c)(a) (b)

Figure 4.6: Components that have to be aware of driver recovery for different kinds of drivers:
(a) network-device driver recovery, (b) block-device driver recovery, and (c) character-device driver
recovery. A gray color indicates that a component or the end user is aware of the recovery.

est possible layer so that the rest of the system does not need to be aware of the
failure. However, an integrated approach whereby drivers, servers,and applications
are involved may be required for optimal results. Ideally, the server level simply
reissues failed driver requests and responds normally to the application level, as if
nothing special happened. Applications may be blocked during the recovery pro-
cedure, but this is not different from a normal POSIX system call thatblocks the
application until the call has �nished. However, if a driver failure cannot be handled
at the server level, it has to be reported to the application thatissued the I/O request.
The application, in turn, may attempt to recover from the I/O failure, but in some
cases application-level recovery is not possible, and the end user has to be noti�ed
of the problem. The precise recovery procedure for each device classis discussed in
more detail in the following subsections.

Recovering Network-device Drivers

If a network-device driver, such as an Ethernet driver, fails full recovery transparent
to the application and end user is supported. We have implemented Ethernet driver
recovery in MINIX 3's network server, INET. If the application uses a reliable trans-
port protocol, such as TCP, the protocol handles part of the recovery by preventing
data corruption and data loss through checksums, sequence numbering, and retrans-
mission timers. From the network server's perspective, an unreliable driver is no
different than an unreliable network. Missing or garbled network packets will be de-
tected by the network server (or its peer at the other end of the connection) and can be
retransmitted safely. Although network I/O is not idempotent, the higher-level pro-
tocol ensures that duplicate packets are �ltered out automatically. If an unreliable

68 CHAPTER 4. FAILURE RESILIENCE

transport protocol, such as UDP, is used, loss of data may lead toa degraded quality
of service, but is tolerated by the protocol. However, application-level recovery is
possible, if need be.

The recovery procedure starts when the process manager informs the driver man-
ager about the exit of one of its children, as discussed in Sec.4.1. The driver manager
looks up the details about the failed driver in its internal tables and runs the asso-
ciated recovery script to restart it. Because the network server, INET, subscribes to
updates about Ethernet drivers by registering the expression `eth.� ', it is automati-
cally noti�ed by the data store if the driver manager publishesthe stable name, say,
eth1, and IPC endpoint of the restarted network driver. If INET tries to send data
in the short period between the driver crash and the consequent restart, the request
fails—because the IPC endpoint is invalidated—and is postponed until the driver is
back. Upon noti�cation by the data store, the network server scans its internal tables
to �nd out if the driver update concerns a new driver or a recovered one. In the latter
case, INET starts its internal recovery procedure, which closely mimics the steps
taken when a driver is �rst started. The Ethernet driver is reinitialized and pending
I/O operations are resumed. The MINIX 3 Ethernet drivers are stateless and do not
need to retrieve lost state from the data store.

Recovering Block-device Drivers

If a block-device driver, such as the RAM-disk, hard-disk, CD-ROM, or �oppy
driver, crashes, full recovery transparent to the application and end user is often pos-
sible. We have implemented block-device driver recovery supportin the MINIX 3
�le server, MFS. Failed I/O operations can be retried safely after the driver has been
restarted because block I/O is idempotent. However, since MFS has currently no
means to ensure data integrity, there is no way to detect speci�cfailure conditions in
which the driver inadvertently acknowledges a failed I/O request or silently corrupts
the data. In order to address this situation, we have implemented a �lter driver that
transparently operates between the �le server and block-device driver and provides
end-to-end integrity in the storage stack. Without the �lter driver incidental data loss
can occur; with the �lter driver we can provide hard guarantees for both single-driver
and single-disk failures. Sec. 4.4 further details the �lter driver.

Because a disk-driver failure makes the �le system unavailable, the driver man-
ager directly restarts failed disk drivers from a copy in RAM using a modi�ed exec
call. In order to do so, disk drivers are started with the service utility �ag –mirror set
to true, so that the driver manager makes a backup copy of the driver binary in its
memory. This approach ensures that driver failures can be handledwithout relying
on �le-system access or disk access. We did not provide a similar facility for recov-
ery scripts though. If policy-driven recovery is needed, the systemcan be con�gured
with a RAM disk to provide trusted storage for crucial data such as the driver bina-
ries, the shell, and recovery scripts. After restarting the driver, the driver manager
publishes the new IPC endpoint in the data store, which causes the �le server to be

4.3. EFFECTIVENESS OF RECOVERY 69

C
ha

pt
er

4

noti�ed. If I/O was in progress at the time of the failure, the IPC rendezvous will
be aborted by the kernel, and the �le server marks the request as pending. Once the
driver is back, the �le server updates its device-to-driver mappings, and reinitializes
the disk driver by reopening minor devices, if need be. Finally, the �le server checks
whether there are pending I/O requests, and if so, reissues the failed operations. Like
the other drivers in our system, disk drivers are stateless and do not need to retrieve
lost state from the data store.

Recovering Character-device Drivers

Recovery of character-device drivers is usually not transparent, since character-
device I/O is not idempotent and data may be lost if the I/O streamis interrupted. It
is impossible to determine which part of the data stream was successfully processed
and which data is missing. If an input stream is interrupted due toa driver crash,
input might be lost because it can be read from the controller onlyonce. Likewise,
if an output stream is interrupted, there is no way to tell how muchdata has already
been written to the controller, and full recovery may not be possible. Recovery
of character-device drivers thus poses an undecidable problem. Therefore, the vir-
tual �le system (VFS) generally invalidates all open �le descriptors and reports the
failure to the application on the next system call. In some cases, application-level
recovery is possible, and applications can request VFS to reopenthe device associ-
ated with the failed driver transparently on their behalf. Nevertheless, the end user
may still notice the failure if the I/O stream interruption causesdata to be lost.

For historical reasons, most applications assume that a driverfailure is fatal
and immediately give up, but our design supports continuous operation if appli-
cations are made recovery-aware. For this purpose, VFS de�nes a newerror code,
ERESTARTED, for signaling an application that the driver temporarily failed but
has been successfully recovered. The device's �le descriptor isinvalidated though.
Applications that understand this error code may reopen the device and retry the
I/O operation. For example, the MINIX 3 line-printer spooler daemon,lpd, works
such that it automatically reissues failed print requests without bothering the user.
While truly transparent recovery is not possible—partial or duplicate printouts may
occur—the user clearly bene�ts from this approach. Only if the application layer
cannot handle the failure, the user needs to be informed. For example, continuing a
CD or DVD burn process if the SCSI driver fails will corrupt the disk, so the error
must be reported to the user.

In some cases, our design can do even better by handling the character-device
driver recovery internal to VFS, transparent to the application. This is supported by
introducing a new �le descriptor �ag,O_REOPEN, which can be set upon opening a
device with the POSIXopen call. In case of a failure, the �ag tells VFS to reassociate
transparently open �le descriptors with the restarted driver. If I/O was in progress at
the time of the failure, the error statusEREOPENED is returned to the application in
order to signal that data may have been lost, but the application can immediately retry

70 CHAPTER 4. FAILURE RESILIENCE

without the need for reopening the device. If there was no I/O request outstanding,
the recovery is fully transparent to the application. We applied this technique to, for
example, themplayermedia player so that it can continue playing in case of driver
failures at the risk of small hiccups.

4.3.2 Recovering System Servers

Our system can not only cope with driver failures, but also recover from failures in
certain OS servers. Crashes of the core OS servers, such as the processmanager,
virtual �le system and driver manager, cannot be recovered, since they form an in-
tegral part of our failure-resilient design. However, many otherservers that extend
the base system with optional functionality can potentiallybe recovered if disaster
strikes. The extent to which recovery is supported mainly depends on the amount
of state that is lost during a crash. For stateless servers full recovery is generally
possible by making minor changes to the dependent components—just like we did
for device drivers. However, as described in Sec. 4.2.3, statefulservers are much
harder to recover. We illustrate this point with a case study in Sec. 4.5.

As a simple example of stateless server recovery, consider how having a separate
information serverto handle all debug dumps is bene�cial to the system's depend-
ability. The information server is responsible for handling all user interaction and the
formatting of the debug output. When the user presses a function key, the informa-
tion server requests a copy of the associated data structures anddisplays a formatted
dump on the console. For example, pressing the F1-key dumps theprocess table
copied from the kernel's system task. Because the information server itself remains
stateless and other services do not depend on its functionality, exceptions triggered
by the formatting can be transparently recovered via an automated restart or dynamic
update. The only thing that needs to be done after a restart is resetting the function
key mappings at the keyboard driver, but all other system services are unaffected.

4.4 Case Study: Monitoring Driver Correctness

As discussed in Sec. 4.3.1, MINIX 3 can restart crashed block-device drivers trans-
parently to the �le server, but the driver manager lacks the necessary information
to detect protocol failures. First, even though block I/O is idempotent and can be
retried, the lack of end-to-end integrity means that the �le servercannot detect silent
corruption of user data. Second, since the MINIX 3 driver manager does not have
semantic information about the driver's correct operation and cannot monitor in-
dividual driver requests, it cannot detect, for example, a buggy driver that causes
legitimate I/O requests to fail. Therefore, we have created a framework that allows
installing a�lter driver between the �le server and block-device driver. In this way,
the �lter driver can transparently implement different protection strategies for safe-
guarding the user's data. This idea is similar to I/O shepherding[Gunawi et al.,

4.4. CASE STUDY: MONITORING DRIVER CORRECTNESS 71

C
ha

pt
er

4

2007], but the �lter driver implements the same interface as theblock-device driver
so that it can be inserted between the �le server and block-device driver without
having to modify either of them, or even having them to be aware of the �lter. In
addition, the �lter driver can leverage some of MINIX 3's unique features. For ex-
ample, if a problem is detected, the �lter driver can �le a complaint with the driver
manager in order to restart the block-device driver.

The �lter driver monitors the block-device driver's operation andprotects the
user's �le-system data in two ways. First, it introduces end-to-end integrity by trans-
parently checksumming and optionally mirroring �le-system data[Sivathanu et al.,
2005; Krioukov et al., 2008]. If both checksumming and mirroring areenabled, �le-
server read requests are still served from the primary partition, but write requests
are transparently duplicated to the backup partition. Writes are read back in order
to verify that the data actually made it to the disk. In this way, the �lter driver can
detect the otherwise silent data corruption, and recover the data from the backup
partition, if need be. Second, the �lter driver veri�es correct driver semantics by
monitoring requests and replies for deviations from the driver's speci�ed behavior,
for example, if the driver sends an unexpected reply or fails to handle a legitimate
request. Such semantics are device-speci�c. For block devices, we assume that
sector-aligned requests that span a sector-multiple and do notexceed the partition's
size must succeed, that is, the driver must returnOK in the reply.

The working of the �lter driver is illustrated in Fig. 4.7. The sequence of actions
is as follows: (1) �le server requests are transparently interceptedby the �lter driver,
which (2) copies or maps the data into its address space, computes the checksum
for all data blocks, and writes out the checksummed data to disk. Next, the �lter
driver awaits the reply from the block-device driver and (3) veri�es that the result
of the I/O operation is as expected. If an anomaly is detected, the �lter driver starts

U
se

r
le

ve
l

Disk

File

Filter

Bogus
driver driver

Driver

server

driver

Primary Backup

manager

about driver
Complain (1)

(2)

Interpose upon
driver requests

Checksum data
and mirror I/O

Verify
result(3)

Restart
driver (5)

 (4)

Figure 4.7: A �lter driver between the �le server and block-device driver can check for driver proto-
col violations. Different protection strategies based on checksumming and mirroring are supported.
If an error is detected, a complaint is �led with the driver manag er.

72 CHAPTER 4. FAILURE RESILIENCE

its recovery procedure and (4) �les a complaint with the driver manager. Since the
�lter driver's isolation policy grants the privilege to control block-device drivers, the
driver manager acknowledges the complaint and (5) replaces theblock-device driver
with a fresh copy. All this is done transparently to the rest of the storage stack.

One problem with this approach is that it is impossible to distinguish between
controller or drive failures that are faithfully reported by the driver and internal driver
failures. While a failed operation may be successfully retried fortemporary driver
failures, the problem is likely to persist for hardware problems. The recovery strat-
egy acknowledges this fact by checking for similar failure characteristics and giving
up after a prede�ned number of retries.

In order to reserve space for the checksums, the �lter driver presents to the �le
server a virtual disk image smaller than the physical disk. Since the �lter driver is
not aware of important �le-system data structures nor the �le-system layout on disk,
we checksummed each 512-B data sector independently. We decided to store the
checksums close to the data sectors in order to eliminate the overhead of extra disk
seeks. In addition, gaps in the on-disk layout of data and checksums should be pre-
vent to maximize the disk's bandwidth and throughput. Therefore, we interspersed
data sectors and checksums sectors, as shown in Fig. 4.8. In principle, each check-
sum sector can containSECTOR_SIZE =CHECKSUM_SIZE checksums. However, if
the checksums for write requests do not cover a whole checksum sector, the check-
sum sector needs to be read before it can be written—or the checksums of the other
data will be lost. Because the optimal layout depends on the �le-system block size,
we made the number of checksums per checksum sector a �lter parameter.

With a single-driver and single-disk con�guration, we can give hard guarantees
for only detection of data corruption—because a driver can simply wipe the entire
disk with no backup to recover from. Nevertheless, two best-effort recovery strate-
gies are possible. First, the �lter driver can reissue the failedoperation to the block-
device driver up to N times. Second, the �lter driver can complain about the driver's
behavior to have it replaced up to M times. After a total of M restarts � N retries,
the �lter has to give up and return an error to the client �le server.This strategy can
be attempted for either individual operations or the driver's entire life span.

1 checksum sector
after N data sectors

File-system view

On-disk layout

Filter driver

data datadata

data datadata

Figure 4.8: The �lter driver intersperses 1 checksum sector for every N dat a sectors. This �gure
shows the �le-system view and on-disk layout for N = 4 checksums per checksum sector.

4.5. CASE STUDY: AUTOMATING SERVER RECOVERY 73

C
ha

pt
er

4

With a mirrored setup we can give hard guarantees for recovering from single-
disk or single-driver failures. Different approaches need to be distinguished for read-
ing and writing. Recovery in case of read failures can be attempted by reading data
from the backup partition and bringing the primary into a consistent state. The �l-
ter driver can either attempt the above best-effort recovery strategy for the primary
partition or directly switch to the backup. Recovery of write failures poses a differ-
ent problem because mirroring requires all data to be written to bothdisks. Upon a
block-device driver failure, the �lter driver can �rst attempt best-effort recovery and,
if the failure persists, gracefully degrade the level of service byshutting down the
bad partition and continuing with the remaining one.

4.5 Case Study: Automating Server Recovery

As a second case study we now show how recovery of a stateful servercan be auto-
mated using recovery scripts. Even though full transparent recoveryis not possible,
we have implemented support for recovering from failures in the network server,
INET. A failure of INET closes all open network connections, including the sockets
used by the X Window System. Among other things, recovery requires restarting
the DHCP client and rerunning the DHCP exchange. Such a failure generally affects
the end user on a desktop machine, but we support the user by automating the recov-
ery process using a shell script that automatically recon�gures the system. This is
especially helpful to improve availability of (remotely managed) server machines.

In principle, INET could use the data store to backup its state andrestore it after
a restart, but we did not investigate this option since INET's state changes on every
network operation and hard guarantees cannot be given. As soon asINET acknowl-
edges that it successfully received a TCP packet, it is responsible for preventing data
loss. This implies that all network data should be copied to the data store before
sending the TCP ACK. In addition, there is a race condition in passing on the data
to its clients and updating the internal state such that the data is marked `success-
fully processed.' More advanced methods for restarting stateful servers are left as a
possible direction for future research.

In order to support the administrator in handling INET failures, wehave created
a dedicated recovery script that automatically recon�gures the networking daemons,
as illustrated in Fig. 4.9. Lines 3–11 and lines 13–23 respectively show the functions
abort anddaemonize that are used for stopping and starting daemons speci�ed by
their binary name. Stopping is done by looking up the daemon'sprocess ID in the
process table and killing it. Starting is done by executing thedaemon's binary in the
background. Lines 25–32 show the actual recovery procedure: the daemonsdhcpd,
nonamedandsyslogdare stopped and INET is restarted along with the daemons.
A variant of this script is run on the web server that produces weekly snapshots of
MINIX 3. Since this server does not serve any X sessions, INET failures may cause
the server to be temporarily unavailable, but generally can be fully recovered.

74 CHAPTER 4. FAILURE RESILIENCE

1 #!/bin/sh # INET RECOVERY SCRIPT
2

3 # FUNCTION TO STOP A DAEMON
4 abort() {
5 pid=`ps ax | grep "$1" | grep -v grep | sed 's,[]*([0-9]*).*,1,`
6 if [X"$pid" = X] # check for daemon pid
7 then
8 return 1 # no such process
9 �

10 kill -9 $pid # con�gure daemon down
11 }
12

13 # FUNCTION TO START A DAEMON
14 daemonize() {
15 for dir in $PATH # search entire path
16 do
17 if [-f "$dir/$1"] # check for executable
18 then
19 "$@" & # execute daemon
20 return
21 �
22 done
23 }
24

25 # START OF ACTUAL RECOVERY SCRIPT
26 abort dhcpd # kill networking daemons
27 abort nonamed
28 abort syslogd
29 service restart "$1" # restart network server (INET)
30 daemonize dhcpd # restart networking daemons
31 daemonize nonamed -L
32 daemonize syslogd

Figure 4.9: Dedicated recovery script for the network server (INET). Networking daemons are
stopped and restarted only after INET has been recovered by the driver manager.

C
ha

pt
er

5

Chapter 5

Experimental Evaluation

Having presented in detail our design, we now discuss how we have evaluated its
implementation in MINIX 3. Rather than formally proving our system correct, we
have iteratively re�ned our design using a pragmatic, empiricalapproach based on
extensivesoftware-implemented fault injection(SWIFI). Although not the focus of
this thesis, we also assess the system's performance and analyze the engineering
effort. This chapter presents the raw results of our experiments; we will summarize
the lessons learned and draw conclusions in Chap. 7.

The remainder of this chapter is organized as follows. To beginwith, Sec. 5.1
describes our SWIFI methodology and presents the test results, including the ef-
fectiveness of our fault-isolation and failure-resilience mechanisms. Next, Sec. 5.2
gives insight into the performance of MINIX 3 and compares its performance to
FreeBSD and Linux. Finally, Sec. 5.3 quanti�es the engineering effort by analyzing
the MINIX 3 code base and comparing it to the Linux code base.

5.1 Software-implemented Fault Injection

We have used software-implemented fault injection (SWIFI) to assess two aspects of
MINIX 3's design. First, we want to show that common errors in a properly isolated
device driver cannot propagate and damage the system. Second,we want to test the
effectiveness of our defect detection and recovery mechanisms.

5.1.1 SWIFI Test Methodology

The SWIFI tests emulated a variety of problems underlying OS crashes by inject-
ing selected machine-code mutations representative for both (i)low-level hardware
faults and (ii) a range of common programming errors. The fault injection is done
at run time and does not require driver modi�cation before the fact.Below, we fur-
ther introduce the fault-injection procedure, fault types and test coverage, and driver
con�gurations tested.

75

76 CHAPTER 5. EXPERIMENTAL EVALUATION

Fault-injection Procedure

An important goal of fault injection is to mimic real software bugs. Previous OS-
level robustness tests have injected faults at different locations in the system, includ-
ing (1) the application programming interface (API) [Koopman and DeVale, 1999;
Kalakech et al., 2004], (2) selected kernel subsystems [Arlat et al., 2002; Gu et al.,
2003], (3) the driver programming interface (DPI) [Albinet et al., 2004], and (4) the
actual driver code [Durães and Madeira, 2002]. Although these studies evaluated
different OS characteristics, a common pattern is the use ofexternal faultsinjected
at the interfaces andinternal faultsinjected into the test target. Interestingly, a com-
parison of internal faults and external faults found that they induce different kinds of
errors [Jarboui et al., 2002; Moraes et al., 2006]. In particular, external faults were
not able to produce errors matching the error patterns provoked by realfaults in
drivers. In other words, external faults are not representative for residual software
faults. Therefore, our approach is to inject mutations representative for common
hardware faults and programming errors directly into the driver.

Each SWIFI test run is de�ned by the following parameters: fault type to be used,
number of SWIFI trials, number of faults injected per trial, anddriver targeted. After
starting the driver, the test suite repeatedly injects the speci�ed number of faults into
the driver's text segment, sleeping 1 second between each SWIFItrial so that the
targeted driver can service the workload given. The workload used is designed to
exercise the driver's functionality, that is, reading from and writing to the device. If
the injected fault is on the driver's execution path it will be activated. A driver crash
triggers the test suite to sleep for 10 seconds, allowing the driver manager to refresh
the driver—transparently to application programs and without user intervention as
described in Sec. 4.2. When the test suite awakens, it looks upthe process ID (PID)
of the (restarted) driver, and continues injecting faults untilthe experiment �nishes.

The test suite injects faults without requiring changes to thetargeted driver or
the rest of the OS. In particular, we use a variant of UNIX process tracing (ptrace) to
control execution of the driver and corrupt its code segment at runtime. We do not
alter the data segment to simulate wrong initialization of global or static variables,
since we believe it to be more likely that programming errors occur in the actual
program code. For each fault injection, the code to be mutated is found by calcu-
lating a random offset into the driver's text segment and �nding the closest suitable
address for the desired fault type. This is done by reading the binary code and pass-
ing it through a disassembler to break down and inspect the instructions' properties.
Finally, the test suite injects the selected fault by writingthe corresponding code
modi�cation into the driver's text segment using theptrace system call. Finally, the
driver is allowed to run again and may activate the fault injected.

During the SWIFI tests we veri�ed that the driver could successfully execute its
workload and inspected the system logs for anomalies afterward. Inorder to col-
lect data we instrumented the test environment to produce debugoutput for speci�c
interesting actions. The test target itself, however, was run unmodi�ed in order not

5.1. SOFTWARE-IMPLEMENTED FAULT INJECTION 77

C
ha

pt
er

5

to in�uence the experiment. The results presented below are based on the follow-
ing data. For each SWIFI trial the test suite outputs the fault type, number of faults
injected, and whether the test target has been restarted sincethe previous trial. The
kernel and trusted servers and drivers that interact with the driver log violations of
the driver's isolation policy. Finally, if a process crashes, the driver manager logs the
component name, crash reason, and whether it could be restarted.

Fault Types and Test Coverage

Our test suite injected a meaningful subset of all fault typessupported by the fault
injector [Ng and Chen, 1999; Swift et al., 2005]. For example, faults targeting dy-
namic memory allocation (malloc) were left out because this is not used by our
drivers. This selection process led to 8 suitable fault types, which are summarized
in Fig. 5.1. First, binary faults �ip a bit in the program text to emulate hardware
faults [Kanawati et al., 1995]. This can cause a wide variety of crashes, but is dif-
�cult to relate to software bugs. It does, however, give some indication of how
resilient the system is to certain kinds of hardware errors, such as bit �ips caused
by cosmic rays or bad memory banks. The other fault types approximate a range of
C-level programming errors commonly found in system code. For example, pointer
faults corrupt address calculation and source and destination faults respectively cor-
rupt the right-hand and left-hand assignment operand in order to emulate pointer
management errors, which were found to be a major cause (27%) of system out-
ages [Sullivan and Chillarege, 1991]. Similarly, control faultschange loop or branch
conditions to mimic off-by-one and other checking errors; parameter faults omit
operands loaded from the stack to change function invocations; and omission faults
can lead to a variety of errors due to missing statements [Chillarege et al., 1992].
Finally, random faults are randomly selected from the other faulttypes.

Our SWIFI methodology is aligned with the fault and failure model described
in Sec. 2.5. We limited ourselves to simulating soft intermittent faults, which were
found to be a common crash cause [Gray, 1986; Chou, 1997]. If a fault is triggered
and causes a driver failure, we refresh the driver and start over witha clean state. We

Fault type Text affected Code mutation performed

Binary Random address Flip one random bit in the selected instruction
Pointer In-memory operand Corrupt address calculation (ModR/R byte or SIB byte)
Source Assignment Corrupt the right-hand operand's address calculation
Destination Assignment Corrupt the left-hand operand's address calculation
Control Loop or branch Swap `rep' and 'repe' or invert the branch condition
Parameter Function invocation Delete operand loaded from stack, e.g. movl 4(ebp))
Omission Random address Replace the selected instruction with NOP instructions
Random One of the above Corresponding code mutation from above mutations

Figure 5.1: Fault types and code mutations used for SWIFI testing. Our test suite can either inject
faults of a prede�ned fault type or randomly pick one from the se ven unique fault types.

78 CHAPTER 5. EXPERIMENTAL EVALUATION

did not inject other faults types, such as hard permanent faults or Byzantine failures,
since they are outside the scope of MINIX 3's protection mechanisms.

We have iteratively re�ned our design by injecting increasingly larger numbers of
faults using several different system con�gurations. We have not attempted to em-
ulate all possible (internal) error conditions [Christmansson and Chillarege, 1996;
Durães and Madeira, 2006] because we believe that the real issueis exercising the
(external) techniques used to con�ne the test target. To illustrate this point, for ex-
ample, algorithmic errors would primarily test the driver's functionality rather than
MINIX 3's fault-tolerance mechanisms. For this reason, we also did notattempt to
analyze the fraction of driver code executed during testing. Instead, we focused on
the behavior of the (rest of the) system in the presence of a faulty component, and
injected increasingly larger number of faults to increase thelikelihood of �nding
shortcomings in MINIX 3's defense mechanisms. While complete coverage cannot
be guaranteed without more formal approaches, our extensive SWIFItests proved
to be very effective and pinpointed various design problems. Analysis of the sys-
tem logs also showed that we obtained a good test coverage, since the SWIFI tests
stressed each of the isolation techniques presented in Sec. 3.3.

A �nal point worth mentioning is that we performed far more rigorous SWIFI
tests than related work that attempts to isolate drivers. Previous efforts often limited
their tests to a few thousand faults, which may not be enough totrigger rare faults
and �nd all the bugs in the rest of the system. For example, Nooks [Swift et al.,
2005], Safedrive [Zhou et al., 2006], and BGI [Castro et al., 2009] reported results
on the basis of only 2000, 44, and 3375 fault injections, respectively. However, in
our experiments, we found that this is not nearly enough. Instead, millions of faults
were injected before we found no more bugs in the fault-tolerance mechanisms,
because some bugs have a low probability of being triggered. To make the software
very reliable, even these bugs must be found and removed. MINIX 3 can now survive
several millions of fault injections, which strengthens our trust in its design.

Driver Con�gurations Tested

In order to ensure that our tests are representative we have experimented with each
of the device classes discussed in Sec. 4.3. We selected network-device drivers as
our primary test target after we found that networking forms by far the largest and
fastest-growing driver category in Linux 2.6. Nevertheless, we also experimented
with block-device drivers and characters-device drivers. Fig. 5.2 summarizes the
drivers and devices tested; the exact hardware con�gurations andworkloads used are
described along with the results of each experiment in Secs. 5.1.2–5.1.4. Because
the �rst three con�gurations use the same MINIX 3 driver binary, we use the device
identi�ers to distinguish the experiments in the text below.

We believe that the selected test targets cover a representative set of complex
interactions. Although each of the drivers represents at most thousands of lines of
code, complexity should not be assessed on the basis of linesof code. Instead, com-

5.1. SOFTWARE-IMPLEMENTED FAULT INJECTION 79

C
ha

pt
er

5

Class Driver Device Bus I/O method Results

Network DP8390 Emulated NE2000 ISA Programmed Sec. 5.1.2
DP8390 NS DP8390 card ISA Programmed Sec. 5.1.2
DP8390 Realtek RTL8029 card PCI Programmed Sec. 5.1.2
RTL8139 Realtek RTL8139 card PCI DMA Sec. 5.1.2
FXP Intel PRO/100 card PCI DMA Sec. 5.1.2

Block ATWINI Sitecom CN-033 card SATA Mixed Sec. 5.1.3

Character ES1371 Ensoniq ES1371 card PCI DMA Sec. 5.1.4

Figure 5.2: Overview of the MINIX 3 driver con�gurations that were subjected to fault injectio n.

plexity should be measured by a driver's interactions with the surrounding software
and hardware, which determine the possible failure modes. We tested drivers for
several different hardware con�gurations, including network, block, and character
devices, because, as explained in Sec. 4.3, each driver stackhas different recov-
ery properties. In addition, we ensured that our tests covered the full spectrum
of isolation mechanisms devised. For example, we have tested drivers using both
programmed I/O and DMA. Moreover, all drivers heavily interact withthe kernel,
system servers and support drivers such as the PCI-bus driver and IOMMUdriver.
Our test setup also heavily relied on MINIX 3's ability to restart failed drivers on the
�y, but we did not stress the state-management facilities offered by the data store,
because all of the drivers tested are stateless.

5.1.2 Network-device Driver Results

First of foremost, we tested MINIX 3's ability to withstand failures in the network
stack. Because network-device drivers can be recovered transparently, as described
in Sec. 4.3.1, we were able to automate the test procedure and inject literally millions
of faults in order to stress test the system's fault-tolerance techniques. For these
experiments we used the following hardware con�gurations:

1. Emulated NE2000 ISA on Bochs v2.2.6.
2. NS DP8390 ISA card on Pentium III 700 MHz.
3. Realtek RTL8029 PCI card on Pentium III 700 MHz.
4. Realtek RTL8139 PCI card on AMD Athlon64 X2 3800+.
5. Intel PRO/100 PCI card on AMD Athlon64 X2 3800+.

The workload used in all SWIFI tests caused a continuous stream of network I/O
requests in order to exercise the drivers' functionality and increase the probability
that the injected faults are triggered. In particular, we sent TCPrequests to a remote
daytimeserver. The workload is transparent to the working of the drivers, however,
since they simply put INET's message buffers on the wire (and vice versa) without
inspecting the actual data transferred.

80 CHAPTER 5. EXPERIMENTAL EVALUATION

Robustness against Failures

The �rst experiment was designed to stress test our fault-tolerance techniques by in-
ducing driver failures with a high probability. We conducted 32series of 1000 SWIFI
trials injecting 100 faults each—adding up to a total of 3,200,000 faults—targeting
4 driver con�gurations for each of the 8 fault types used. As expected, the drivers
repeatedly crashed and had to be restarted by the driver manager.

The test results are shown in Fig 5.3, which gives the total number of failures,
and Fig. 5.4, which gives a stacked histogram highlighting the failure reasons for
each fault type and each driver. For example, for random faults injected into the
NE2000, DP8390, RTL8139, and PRO/100 drivers we found a total number of 826,
552, 819, and 931 failures, respectively. These failures are subdivided based on
the failure reasons logged by the driver manager. For example, for random faults
injected into the NE2000 driver the driver manager reported 349 (42.3%) failures
where the driver was signaled due to a CPU or MMU exception, 454 (54.9%) internal
panics, and 23 (2.8%) missing heartbeats. Although the fault injection induced a
total of 24,883 driver failures, never did the damage (noticeably) spread beyond the
driver's protection domain and affect the rest of the OS. Moreover,in all these cases,
the system was able to recover the driver transparently and without data loss.

The �gures also show that different fault types affected the drivers in different
ways. For example, source and destination faults more consistently caused fail-
ures than pointer and omission faults. In addition, we also observed some differ-
ences between the drivers themselves, which is clearly visiblefor pointer and con-
trol faults. For example, for pointer faults the NE2000, DP8390, RTL8139, and
PRO/100 drivers failed 293, 108, 849, and 757 times, respectively. Since one driver
may be programmed to panic and exit upon the �rst failure, whereas the other may
repeatedly retry failed operations until the driver manager kills it due to a missing
heartbeat, the differences seem logical for the con�gurations with different drivers.
However, the effect is also present for the NE2000 and DP8390 con�gurations that

Driver NE2000 DP8390 RTL8139 PRO/100

Source faults 947 907 877 960
Destination faults 954 915 883 970
Pointer faults 293 108 849 757
Parameter faults 555 921 890 986
Control faults 798 980 279 884
Binary faults 933 708 899 932
Omission faults 705 729 711 425
Random faults 826 552 819 931

Total failures 6011 5820 6207 6845

Figure 5.3: Total number of failures induced for 4 network-device drivers and 8 fault types. For
each driver and fault type we conducted 1000 SWIFI trials injecting 100 faults each.

5.1. SOFTWARE-IMPLEMENTED FAULT INJECTION 81

C
ha

pt
er

5

 0

 200

 400

 600

 800

 1000

NE2000

DP8390

RTL8139

PRO/100

NE2000

DP8390

RTL8139

PRO/100

NE2000

DP8390

RTL8139

PRO/100

NE2000

DP8390

RTL8139

PRO/100

NE2000

DP8390

RTL8139

PRO/100

NE2000

DP8390

RTL8139

PRO/100

NE2000

DP8390

RTL8139

PRO/100

NE2000

DP8390

RTL8139

PRO/100

D
riv

er
 fa

ilu
re

 c
ou

nt

Fault type injected (1000 x 100 each)

No heartbeat Internal panic Signaled

RandomOmissionBinaryControlParameterPointerDestinationSource

Figure 5.4: Number of driver failures and failure reasons for 4 network-device drivers and 8 fault
types. For each driver and fault type we conducted 1000 SWIFI trials injecting 100 faults each.

use the same driver binary. We were unable to trace the exact reasons from the logs,
but speculate that this can be attributed to the different driver-execution paths as well
as the exact timings of the fault injections.

Unauthorized Access Attempts

Next, we analyzed the nature and frequency of unauthorized access attempts and
correlated the results to the classi�cation of privileged driveroperations in Fig. 3.1.
In order to do so we instrumented the system with additional debugging output and
conducted 100,000 SWIFI trials that each injected 1 random fault into the RTL8139
driver. The results reported in Fig. 5.5 should be taken as approximate because
the abundance of measurement data from various components cluttered the system
logs and sometimes caused unintelligible entries when multiple messages that logi-
cally belonged together were written in an interleaved fashion. Furthermore, while
MINIX 3 has many sanity checks in the system libraries linked into the driver, we
have focused on only the logs from the kernel and the trusted systemservers, since
their checks cannot be circumvented.

The test results provide various insights into the working of ourdefenses. The
driver manager detected 5887 failures that caused the RTL8139driver to be replaced:
3738 (63.5%) exits due to internal panics, 1870 (31.8%) crashes due to CPU or
MMU exceptions, and 279 (4.7%) kills due to missing heartbeats. However, as
shown in Fig. 5.5, the number of unauthorized access attemptsfound in the system
logs was up to three orders of magnitude higher, totaling 2,162,054. This could
happen because not all error conditions are immediately fatal and certain failed op-
erations were repeatedly retried. For example, the logs revealed 1,754,886 (81.1%)
device I/O attempts that were denied because the registers requested did not belong
to the RTL8139 card. Likewise, we found 390,741 (18.5%) IPC callsthat were re-

82 CHAPTER 5. EXPERIMENTAL EVALUATION

Unauthorized access # Violations Percentage

Total violations detected 2,162,054 100.00%

Unauthorized CPU access 1851 0.09%

General protection fault (interrupt vector 13) 1593 0.07%
Stack exception (interrupt vector 12) 133 0.01%
Invalid opcode (interrupt vector 6) 103 0.00%
Divide error (interrupt vector 0) 11 0.00%
Breakpoint (interrupt vector 3) 7 0.00%
Debug exception (interrupt vector 1) 4 0.00%

Unauthorized memory access 16,964 0.78 %

Grant ID is out of range of grantor's grant table 14,830 0.69%
Invalid grantor endpoint or invalid grant ID 1332 0.06%
Memory region requested exceeds memory granted 448 0.02%
Access type requested violates grant modi�ers 326 0.02%
Grant ID refers to unused or invalid memory grant 28 0.00%

Unauthorized device I/O 1,754,886 81.08%

Device port or register not allowed by policy 1,754,886 81.08%

Unauthorized IPC 390,741 18.05%

Kernel call not allowed by driver policy 198,487 9.17%
Kernel call rejected due to invalid call number 123,518 5.71%
IPC trap with invalid destination IPC endpoint 51,041 2.36%
IPC attempted to unauthorized destination 15,214 0.70%
Unauthorized request rejected by IPC target 2361 0.11%
IPC trap with invalid IPC primitive number 20 0.00%

Figure 5.5: Unauthorized access attempts found in the system logs for an experiment with the
RTL8139 driver that consisted of 100,000 SWIFI trials injecting 1 random fault each.

jected because the kernel call or system service requested was not allowed by the
driver's isolation policy. Code inspection con�rmed that the RTL8139 driver repeat-
edly retried failed operations before exiting due to an internal panic, being killed
by the driver manager due to a missing heartbeat, or causing an exception due to
subsequent fault injections. Despite all these failures, weagain found that the base
system was never (noticeably) affected by the driver's misconduct.

Availability under Faults

We also tested the driver's sensitivity to faults. In order to do so we have conducted
100,000 SWIFI trials that each injected 1 random fault into the DP8390 driver, and
measured how many faults it takes to disrupt the driver and how many more are
needed for a crash. Disruption means that the driver can no longersuccessfully
service its workload, but has not yet failed in a way detectableby the driver manager.
After injecting a fault several things can happen. If the fault injected is not on the

5.1. SOFTWARE-IMPLEMENTED FAULT INJECTION 83

C
ha

pt
er

5

path executed, the driver continues normal execution as if nothing happened. If the
fault injected is triggered, the fault activation can change the driver's execution in
various ways, including no (immediately) noticeable effect, anonfatal error where
the driver deviates from its speci�ed behavior but does not crash, or a fatal error
that causes the driver to be replaced. We were able to distinguish these effects by
maintaining a connection to a remote server and checking for availability after each
SWIFI trial. If the connection works �ne, the fault is either not triggered or has no
noticeable effect. If the connection does not work, the driver iseither disrupted or
has crashed, which can be told apart based on the driver manager logs.

Figs. 5.6 and 5.7 show the distribution of the number of faultsneeded to dis-
rupt and crash the DP8390 driver and RTL8139 driver, respectively. Although the
RTL8139 driver seems slightly more sensitive to faults than the DP8390 driver, a
similar pattern is visible for both drivers. On the one hand, we found that disruption
usually happens after only a few faults. For example, we observed 664 disruptions
and 136 crashes for the DP8390 driver and 1245 disruptions and 815crashes for

 0

 200

 400

 600

 800

0 5 10 15 20 25 30 35 40 45 50
0%

25%

50%

75%

100%

D
is

tr
ib

ut
io

n

C
um

ul
at

iv
e

Random faults injected

Driver disrupted
Driver crashed

% Driver disrupted
% Driver crashed

Figure 5.6: Number of faults needed to disrupt and crash the DP8390 driver during 100,000 ran-
dom SWIFI trials. Crashes show a long tail to the right and surpass 99% only after 263 faults.

 0

 375

 750

 1125

 1500

0 5 10 15 20 25 30 35 40 45 50
0%

25%

50%

75%

100%

D
is

tr
ib

ut
io

n

C
um

ul
at

iv
e

Random faults injected

Driver disrupted
Driver crashed

% Driver disrupted
% Driver crashed

Figure 5.7: Number of faults needed to disrupt and crash the RTL8139 driver during 100,000 ran-
dom SWIFI trials. Crashes show a long tail to the right and surpass 99% only after 282 faults.

84 CHAPTER 5. EXPERIMENTAL EVALUATION

the RTL8139 driver after just 1 fault injection. On the other hand, we found that
the number of faults needed to induce a crash can be high and shows a long tail to
the right. For example, the cumulative distribution of the number of faults needed
to crash the DP8390 driver surpasses 99% only after 263 fault injections. One run
even required 2484 fault injections before the driver crashed. Themedian num-
bers of fault injections needed to disrupt and crash the DP8390 driver were 8 faults
and 10 faults, respectively. The medians for the RTL8139 driverwere 5 faults and
9 faults, respectively. Experiments with other drivers gave similar results. On the
basis of these �ndings we picked a fault load of 100 faults perSWIFI trial for the
stress tests used to assess MINIX 3's robustness.

Software and Hardware Problems Encountered

As mentioned above, we have taken a pragmatic approach toward dependability and
went through several design iterations before we arrived at the �nalsystem. In or-
der to underscore this point, Fig. 5.8 brie�y summarizes some of the problems that
we encountered (and subsequently �xed) during the SWIFI tests. Interestingly, we
found many obscure bugs even though MINIX 3 was already designed with depend-
ability in mind, which illustrates the usefulness of fault injection.

A �nal but important result is that we experienced several insurmountable hard-
ware problems that put an upper limit on the amount of fault isolation and failure
resilience that can achieved. While the hardware is, in principle, not directly af-
fected by the faults injected into the driver software, in some cases the fault injection
caused the driver to program its device in such way that hardware problems became
apparent. Such hardware problems are virtually impossible to dealwith in software,
and are not speci�c to our design. Unfortunately, these kind of problems can only
be solved with help from PC hardware manufacturers.

• Kernel stuck in in�nite loop during load update due to incon sistent scheduling queues.

• Process manager using synchronous IPC blocked by a driver not willing to receive it.

• Driver request to perform SENDREC with nonblocking �ag goes undete cted and fails.

• IPC call to SENDREC with invalid target ANY not detected and kept pending forever.

• IPC call to NOTIFY with invalid target ANY caused a panic rather than erroneous return.

• Kernel panic due to dereferencing an uninitialized privilege structure pointer.

• Network driver went into silent mode due to bad parameters upon driver manager restart.

• Driver manager's priority was too low to request heartbeats from a looping driver.

• System-wide starvation occurred due to excessive debug messages during kernel calls.

• Isolation policy allowed driver to make arbitrary memory copies, corrupting the INET server.

• Driver reprogrammed RTL8139 hardware's PCI device ID (unexpected code in the driver).

• Wrong IOMMU setting caused legitimate DMA operation to fail and corrupt the �le system.

• Interrupt line table �lled up because clean-up after driver e xit was not correctly done.

Figure 5.8: Selected bugs that were encountered (and subsequently �xed) du ring SWIFI testing.

5.1. SOFTWARE-IMPLEMENTED FAULT INJECTION 85

C
ha

pt
er

5

The hardware failures manifested in two different ways. First, for one network
card, hardware shortcomings thwarted MINIX 3's fault isolation. SWIFI tests with
the Realtek RTL8029 PCI card repeatedly caused the entire system to freeze within
just a few SWIFI trials. We narrowed down the problem to writing a speci�c (unex-
pected) value to an (allowed) control register of the PCI device—presumably causing
the PCI bus to hang. We believe this to be a peculiarity of the speci�c device and
a weakness in the PCI-bus architecture rather than a shortcoming ofMINIX 3. A
possible workaround would be to inspect all of the driver's I/O requests at the kernel
level—something we were not willing to do.

Second, for two other network cards, the effectiveness of recoverywas limited
by the hardware. Fortunately, such cases occurred very infrequently; less than 0.1%
in these series of tests. In particular, the emulated NE2000 ISA card was put in an
unrecoverable state in fewer than 10 cases, whereas the PRO/100 PCI card showed
a similar problem in under 25 cases. The DP8390 ISA and RTL8139 PCI cards did
not have this problem. Although the device driver could be successfully restarted,
the cards could not be reinitialized by the restarted driver. The rest of the OS was
not affected by this problem, but a low-level BIOS reset was neededto get the card
to work again. If the card had had a `master-reset' command, the driver could have
solved the problem, but our card did not have this.

5.1.3 Block-device Driver Results

We also tested MINIX 3's ability to deal with failures in the storage stack. Because
the MINIX �le system does not provide end-to-end integrity, we augmented the stor-
age stack with the �lter driver presented in Sec. 4.4. We used anAMD Athlon64 X2
3200+ machine with a Sitecom CN-033 Serial ATA PCI RAID controller and two
hard disk drives, each of which was controlled by an independentATWINI driver.
The faults were injected into one of the two ATWINI drivers. The workload con-
sisted of writing and reading back 5-MB randomly generated data using dd. We
checked the I/O stream's data integrity by comparing the SHA-1 hashes afterward.

Manual and Automated Fault Injection

We started out by testing the principle working of the �lter driver's protection tech-
niques using a small number of carefully selected, manually injected faults. First, we
manipulated the code of one of the ATWINI drivers in order to mimicdata-integrity
violations. For example, we let the driver respondOK while not doing any work,
changed the disk address to be read, and so on. Second, we provoked driver crashes
and other erroneous behavior in order to emulate driver-protocol failures. Third, we
caused (permanent) failures on one partition in order to test recovery with help of
the backup partition. These tests con�rmed the �lter driver's correct working with
respect to detection of data corruption and protocol violations, retrying of failed
operations, recovery of corrupted data, and graceful degradation.

86 CHAPTER 5. EXPERIMENTAL EVALUATION

Next, we conducted a series of automated fault-injection experiments. For each
test run we attempted 40 SWIFI trials that each injected 25 faults into the running
ATWINI driver. This fault load ensures that each SWIFI trial has a high probability
to induce a driver failure. The �lter driver was con�gured to use checksumming
but no mirroring, so that the targeted partition would not be shutdown due to re-
peated driver failures. The �lter driver's recovery strategy was set to a maximum
of M = 3 driver restarts and N= 3 retries per request. Experiments with different
parameters showed that further recovery attempts are usually pointless. The results
of 7 representative test runs are shown in Fig. 5.9.

The results show a mixed picture. The successful test runs, T.1–T.3, indicate
that the �lter driver is indeed effective in dealing with misbehaving and crashing
block-device drivers. Here, the system logs revealed a total of 94driver restarts
due to 17 (18.1%) internal panics, 22 (23.4%) CPU or MMU exceptions, 6 (6.4%)
missing heartbeats, and 49 (52.1%) �lter-driver complaints. The breakdown of prob-
lems shows that the �lter driver can detect both data-integrityproblems and driver-
protocol violations, such as time-outs and unexpected replies. If retrying did not
help, the �lter driver asked the driver manager to replace the ATWINI driver—except
when a request was undeliverable due to a missing driver, in which case the driver

SWIFI test run T.1 T.2 T.3 T.4 T.5 T.6 T.7

SWIFI trials � 25 faults 40 40 40 12 9 18 13
Total driver requests 1648 1724 1796 566 249 745 504
Driver requests failed 0 0 0 0 2 11 12
SWIFI test result OK OK OK Hang Hang Hang Hang

Driver-manager restarts 33 31 30 11 18 63 59

Driver exit due to panic 5 7 5 0 0 3 3
Crashed due to exception 9 5 8 4 3 3 2
Missing driver heartbeat 1 4 1 2 10 38 38
Filter-driver complaint 18 15 16 5 5 19 16

Filter-driver output 92 88 95 26 18 64 49

Driver dead when sending 0 1 1 1 5 24 25
Driver receive time-out 18 14 17 5 4 7 10
Unexpected IPC reply 24 33 33 9 3 15 6
Legitimate request failed 35 40 38 11 3 18 8
Bad checksum detected 15 0 6 0 3 0 0
Read-after-write failed 0 0 0 0 0 0 0

ATWINI-driver output 1 4 2 5 17 84 95

Controller not ready 1 4 2 5 15 73 77
Reset failed, drive busy 0 0 0 0 2 11 13
Timeout on command 0 0 0 0 0 0 5

Figure 5.9: Results of seven SWIFI tests with 40 SWIFI trials that each injected 25 faults of a
random type into the ATWINI driver. Results are ordered by the number of requests that failed.

5.1. SOFTWARE-IMPLEMENTED FAULT INJECTION 87

C
ha

pt
er

5

manager automatically restarted the crashed driver. In all thesecases, the driver
manager replaced the crashed or misbehaving driver with a fresh copy. Even though
a 100% success rate cannot be guaranteed without a backup to recover from, we
found that the �lter driver's best-effort recovery was generally effective, especially
after a requesting a dynamic update of a bad driver.

More Hardware Limitations

The remaining test runs, T.4–T.7, did not run to completion because the system hung
before completing the 40 SWIFI trials. While the �lter driver behaved as intended,
the Sitecom CN-033 PCI card did not, and limited the number of faults we could
inject. Compared to the network-device driver tests we experienced a relative large
number of cases where (1) the CN-033 controller was confused and required a BIOS
reset and (2) the test PC completely froze, presumably due to a PCI bus hang. We
also encountered a small number of �lter-to-driver requests withunrecoverable fail-
ures, but the mere fact that we can detect these failures and warn the user is an
improvement over silent data corruption. Interestingly, test runT.4 hung the system
without failed driver requests, although there might have beena race condition in
logging the �lter driver's messages. For test runs T.5–T.7 ATWINI's diagnostic out-
put clearly showed that the controller had dif�culties with the driver's deviation from
normal behavior: we observed frequent warnings that the controllerwas not ready,
controller resets failed, or commands timed out. These are hardware problems and
there is nothing the OS can do when a buggy driver issues an I/O command that
causes the device to fail in a way that cannot be recovered in software.

5.1.4 Character-device Driver Results

Finally, we have experimented with character-device driver recovery where the I/O
stream is interrupted and data may be lost. In particular, we injected faults into a
driver for the Ensoniq ES1371 PCI audio card. The experiments wererun on an
AMD Athlon64 X2 3200+. The workload consisted of playing a song with the
mplayermedia player. TheO_REOPEN �ag was added to mplayer'sopen call in
order to tell the virtual �le system (VFS) to recover automatically and reassociate the
�le descriptor with the restarted driver;EREOPENED errors for failures occurring
during an I/O operation were ignored by the mplayer application.

Effectiveness of Isolation and Recovery

To start with, we conducted 1000 SWIFI trials of 100 random faultseach in order to
stress test the character-device driver defenses. This showed that the ES1371 driver
could be successfully recovered, although hiccups in the audioplayback generally
occurred, as discussed below. In total, this experiment injected 100,000 faults and
induced 484 detectable failures: 347 (71.7%) CPU or MMU exceptions, 8 (1.7%) in-
ternal panics, and 129 (26.6%) missing heartbeat messages. Interestingly, the audio

88 CHAPTER 5. EXPERIMENTAL EVALUATION

driver showed a much higher number of failures due to missing heartbeat messages
than the network-device and block-device drivers. We were unable to �nd the un-
derlying reasons from the logs, but suspect that this is due to differences in how the
driver is programmed.

In order to analyze how the audio playback is affected by the ES1371 driver fail-
ures, we connected the audio card'sline out to theline in on a second PC. Fig. 5.10
shows the uninterrupted playback of a regularly shaped audio sample and the inter-
rupted playback during 10 SWIFI trials of 100 random faults each. Three different
effects are visible. First, if the driver fails to program the device in time, sample
repetition occurs because the card's output buffer is no longer refreshed; the card
simply continues playing whichever sample it �nds in the buffer. Next, the fault
injection may corrupt the audio sample, causing the card to output noise. This can
happen because the driver uses double buffering of audio data, that is, it prepares a
copy of the audio data in its address space, which may be garbledby the fault in-
jection before the data is actually read by the device. Alternatively, the driver may
program the audio card with a wrong I/O address pointing to arbitrary text or data
in the driver's address space. Finally, DMA read operations that are rejected by the
IOMMU cause the card's output buffer to be �lled with ones, whichtranslates to si-
lence in the playback. This can happen if the driver crashes andits DMA protection
domain is invalidated by the IOMMU driver or if the driver provides an unauthorized
I/O address due to the fault injection.

The results show that, in general, normal operation continued after recovering
the driver. In contrast, drivers failures in OSes with a monolithickernel may bring
down the entire system. If we translate this outcome to a normal usage scenario with
infrequent intermittent driver failures, recovery at the price of a small hiccup in the
audio playback brings a huge dependability improvement for theend user.

0.0
0.5
1.0

-0.5
-1.0

0:00 0:15 0:30 1:000:45 1:15 1:30

0.0
0.5
1.0

-0.5
-1.0

V
ol

um
e

(%
)

Time (min:sec)

Repetition NoiseSilence

Figure 5.10: Normal playback of a regular audio sample (top) and playback with 10 SWIFI trials
injecting 100 random faults each into the Ensoniq ES1371 PCI audio driver (bottom). Recovery is
transparent to the application, but the I/O is repeatedly interrupted.

5.2. PERFORMANCE MEASUREMENTS 89

C
ha

pt
er

5

Application-level Transparency

In a few cases, the fault injection not only affected the ES1371 driver, but also in-
duced a failure of the mplayer application due to unexpected driver replies. Since
the code to handle I/O control operations (IOCTLs) is driver-speci�c and may, in
principle, return any status code, the VFS cannot detect invalid return values and
simply forwards the result to the application. A �lter driver wrapping the ES1371
driver might be effective, but we did not investigate this option. Instead, we feel that
this problem should have been handled by a more defensive programming style in
the mplayer application. Applications making system callsshould be prepared to
handle unexpected return values in a sensible way and should not just crash.

A related problem is that, in some cases, the fault injection caused the driver to
execute an unwanted but otherwise legitimate IOCTL without crashing the driver.
For example, in one case, the mixer settings were changed to a different playback
frequency. In such an event, recovery of state with help of the datastore is not pos-
sible, since the data store cannot distinguish good requests from bad ones, and also
would be updated with the wrong value. Although these kind of failures cannot be
prevented, they rarely occurred and were easily dealt with by restarting the mplayer
application, which causes the mixer settings to be reset.

5.2 Performance Measurements

Although the focus of this work is dependability rather than performance, we realize
that performance is important for the system's usability. This section presents se-
lected experiments assessing MINIX 3's performance. The results show that (1) the
user-perceived overhead depends on the workload and (2) the inherent overhead due
to a modular design seems to be less of an issue than careful optimization.

5.2.1 Costs of Fault Isolation

One objection that is often raised about modular designs is that they require ad-
ditional context switches and data copies when user-level modules interact with
one another. To �nd out how much overhead our design incurred, weconducted a
number of benchmarks that trigger IPC between the MINIX 3 applications, servers,
drivers, and kernel. Below, we present the results of a series of MINIX -speci�c tests
as well as a cross-platform comparison with Linux and FreeBSD.

MINIX-speci�c Tests

As a �rst data point, MINIX 3 feels fast and responsive for research and develop-
ment usage, such editing �les and (re)compiling system components. To illustrate
this point, we conducted the following measurements on an AMD AthlonXP X2
4400+ with 1-GB RAM. The time interval between leaving the multiboot monitor

90 CHAPTER 5. EXPERIMENTAL EVALUATION

and getting the login prompt is about 6 sec. At that time a POSIX-conformant OS
is ready to use. Furthermore, the OS can do a full build of itself in about 19 sec.
This includes 256 calls to the MINIX 3 ANSI C compiler and 33 calls to the linker in
order to build the kernel and all the standard servers and drivers. Asan aside, other
measurements showed that the MINIX 3 C compiler (cc) is faster than the GNU C
compiler (gcc), while the performance of the produced executables is only slightly
worse at the default optimization level [Ahmad, 2008]. Finally, when presented with
a new machine, MINIX 3 will install itself from the live CD in about 10 minutes.

Benchmarks comparing MINIX 2.0.4 to MINIX 3.0.0 showed that the transi-
tion from in-kernel to user-level drivers incurred a performance penaltyof 5%–
10% [Herder et al., 2006]. These experiments were conducted on an AMD Athlon64
3200+ with 1-GB RAM. The results are shown in Fig. 5.11. First, system call times
for in-kernel versus user-level drivers showed an average overhead of12%. For ex-
ample, creating and removing a directory had 7% overhead, openingand closing a
�le had 9% overhead, and renaming a �le had 16% overhead. With such simple
calls, the extra context switching required by user-level driversslows the call down
measureably. Nevertheless, even though the percent difference for renaming a �le is
16%, the delta in time is only 960 nsec per call, so even with 10,000 calls/sec the loss
is only 9.6 msec/sec, under 1%. This makes clear that the workload determines the
user-perceived overhead. Therefore, we also measured the performanceof actual ap-
plications rather than pure system call times. The run times for various applications
showed an average overhead of 6%. For example, building a boot image had 7%
overhead, whereas grepping a 64-MB �le was only 1% slower. These differences
show that I/O-bound programs have more overhead than CPU-bound programs that
do not depend on user-level drivers.

Next, we measured the performance of the MINIX 3 storage stack. We �rst
compared the disk read throughput of MINIX 2.0.4and MINIX 3.0.0 for both the
raw-device and �le-system interface using various I/O unit sizes.This experiment is

System call M INIX 2.0.4 MINIX 3.0.0 Delta Ratio

getpid 0.831 � s 1.011 � s 0.180 � s 1.22
lseek 0.721 � s 0.797 � s 0.076 � s 1.11
open+close 3.048 � s 3.315 � s 0.267 � s 1.09
read 64k+lseek 81.207 � s 87.999 � s 6.792 � s 1.08
write 64k+lseek 80.165 � s 86.832 � s 6.667 � s 1.08
creat+wr+del 12.465 � s 13.465 � s 1.000 � s 1.08
fork 10.499 � s 12.399 � s 1.900 � s 1.18
fork+exec 38.832 � s 43.365 � s 4.533 � s 1.12
mkdir+rmdir 13.357 � s 14.265 � s 0.908 � s 1.07
rename 5.852 � s 6.812 � s 0.960 � s 1.16

Figure 5.11: System call times for in-kernel drivers (MINIX 2.0.4) versus user-level drivers
(MINIX 3.0.0). All times are wall-clock times in microseconds.

5.2. PERFORMANCE MEASUREMENTS 91

C
ha

pt
er

5

Raw reads M INIX 2.0.4 MINIX 3.0.0 Delta Ratio

1 KB 2.602 � s 2.965 � s 0.363 � s 1.14
16 KB 17.907 � s 19.968 � s 2.061 � s 1.12
256 KB 303.749 � s 332.246 � s 28.497 � s 1.09
4 MB 6184.568 � s 6625.107 � s 440.539 � s 1.07
64 MB 16.729 s 17.599 s 0.870 s 1.05

Figure 5.12: Raw reads for in-kernel drivers (MINIX 2.0.4) versus user-level drivers (MINIX 3.0.0).
All times are in microseconds, except for the 64-MB operations, where they are in seconds.

File reads M INIX 2.0.4 MINIX 3.0.0 Delta Ratio

1 KB 2.619 � s 2.904 � s 0.285 � s 1.11
16 KB 18.891 � s 20.728 � s 1.837 � s 1.10
256 KB 325.507 � s 351.636 � s 26.129 � s 1.08
4 MB 6962.240 � s 7363.498 � s 401.258 � s 1.06
64 MB 16.907 s 17.749 s 0.841 s 1.05

Figure 5.13: File reads for in-kernel drivers (MINIX 2.0.4) versus user-level drivers (MINIX 3.0.0).
All times are in microseconds, except for the 64-MB operations, where they are in seconds.

representative for MINIX 3's modularity, since the I/O triggered IPC between the test
program, �le server, ATWINI driver, and kernel. The results are shownin Figs. 5.12
and 5.13. The overhead ranged from 14% and 11% for 1-KB units to 7% and6%
for 4-MB units, respectively. The (relative) overhead thus decreases for larger I/O
units. Therefore, we changed the �le-system block size from 1 KB to 8KB, and
again measured the �le-system throughput. Interestingly, we found that MINIX 3
now outperformed MINIX 2 despite the use of user-level drivers. The point we want
to make is that an 8% performance hit due to user-level drivers is on the same order
of magnitude as the gains or losses from con�guring system parameters.

We also ran several application-level benchmarks with the �lterdriver on an
AMD Athlon64 X2 Dual Core 4400+ with 1-GB RAM and two identical 500-GB
Western Digital Caviar SE16 SATA hard-disk drives (WD5000AAKS). We used a
standard MINIX 3 �le system with a 4-KB block size and a 32-MB buffer cache.
The test script created a new �le system on the test partition, mounted it on/mnt,
copied the MINIX 3 installation, and executed the actual benchmark in achroot
jail. After each benchmark we synchronized the cache to disk, which is included
in the reported run times. The average results out of three test runs are shown in
Fig. 5.14. These results again show that the workload dominates the user-perceived
overhead. First, workloads where writes dominate reads show higher overheads.
Second, while the �lter driver's overhead is visible for I/O-boundjobs, it is negligi-
ble for CPU-intensive jobs, even with the best protection strategy. For example, with
both checksumming and mirroring, the overhead compared to runningwithout �lter
is 28% for copying the source tree, 13% for doing a �le system check, only 4% for
building the MINIX 3 OS, and 0% for building the system libraries.

92 CHAPTER 5. EXPERIMENTAL EVALUATION

Benchmark No Filter Mirror Checksum Both

Copy root FS 14.89 (1.00) 15.44 (1.04) 17.11 (1.15) 18.34 (1.23)
Find and touch 2.75 (1.00) 2.83 (1.03) 2.94 (1.07) 2.91 (1.06)
Build libraries 28.84 (1.00) 29.10 (1.01) 28.82 (1.00) 28.72 (1.00)
Build MINIX 3 14.26 (1.00) 14.69 (1.03) 14.79 (1.04) 14.86 (1.04)
Copy source tree 2.54 (1.00) 2.73 (1.07) 3.06 (1.20) 3.26 (1.28)
Find and grep 5.16 (1.00) 5.23 (1.01) 5.65 (1.10) 5.67 (1.10)
File system check 3.46 (1.00) 3.55 (1.03) 3.91 (1.13) 3.91 (1.13)
Delete root FS 10.72 (1.00) 11.20 (1.05) 12.30 (1.15) 13.07 (1.22)

Figure 5.14: Application-level benchmarks for various �lter driver con� gurations. Shown are the
average run times in seconds and performance relative to 'No Filter' (in parentheses).

Finally, we tested the performance of the network stack. Becausewe initially did
not have drivers for gigabit Ethernet cards, we measured the performance of a Fast
Ethernet card. In particular, we used an Intel PRO/100 card, which is capable of car-
rying network traf�c at a rate of 100 Mbit/s. This experiment triggered IPC between
the test program, virtual �le system (VFS), network server (INET), PRO/100 driver,
and kernel. We �rst transferred a 512-MB �le from the local network, and were
able to drive the Ethernet at full speed. We also ran a loopback test and observed a
throughput of 1.7 Gbit/s, which is roughly equivalent to both sending at 1.7 Gbit/s
and receiving at 1.7 Gbit/s at the same time. A later port of the Intel PRO/1000
driver con�rmed that MINIX 3 can indeed saturate gigabit Ethernet. However, the
high number of messages associated with gigabit Ethernet incurred a high CPU load,
and showed a need for further optimization [Linnenbank, 2009].

Cross-platform Comparison

In order to see where MINIX 3 stands compared to other OSes we have brie�y con-
trasted MINIX 3 to Linux and FreeBSD. In particular, we compared the throughput
and CPU utilization of sequential access to the raw-device interface of MINIX 3.1.2
to that of Linux 2.6.18 and FreeBSD 6.1. For each OS we used the out-of-the-box
con�guration with the default parameters. This represents a worstcase for MINIX 3,
since the overhead incurred by the user-level driver cannot be amortized over the
costs associated with disk seeks and �le-system logic. The experiment was done
on an AMD AthlonXP 2200+ con�gured with 512-MB RAM and a 40-GB Maxtor
6E040L0 hard disk drive. Because the on-disk location in�uences the performance,
we ensured that all disk I/O was done from the same test partition. We focused
on the read performance in order to prevent possible caching effectsfrom the disk
controller. The comparison exempli�es the overhead of MINIX 3's modular de-
sign, since it involves IPC between the application, VFS server, �le server, ATWINI
driver, and kernel. In contrast, both Linux 2.6 and FreeBSD 6.1 have a monolithic
kernel and require only a single system call to do I/O.

5.2. PERFORMANCE MEASUREMENTS 93

C
ha

pt
er

5

The test script measured the performance of sequential access to the raw-device
interface by reading 2 GB worth of data using I/O unit sizes rangingfrom 1 KB to
256 KB. The throughput was calculated by putting the I/O operations between two
gettimeofday calls and dividing the amount of data read by the test's duration. In or-
der eliminate semantic differences between the CPU loads reported by each OS, the
CPU utilization was measured by running thedhrystoneCPU benchmark [Weicker,
1984] in parallel with the test. First, a base run without I/O was done in order to
determine how many dhrystone iterations/sec could be done on anidle system. For
each test run we measured the number of dhrystone iterations performed in parallel
(D real) and extrapolated the base rate to the expected number of dhrystone iterations
for an idle system (D idle). Since the difference between the two is attributable to the
test run, the CPU utilization then was calculated as(D idle � D real) = Didle .

The results are plotted in Fig. 5.15. The results show that the disk through-
put increases and CPU utilization decreases for larger I/O unit sizes. Compared to
Linux 2.6, MINIX 3 shows a throughput degradation of 45.6% for 1-KB units, 31.2%
for 4-KB units, 7.0% for 16-KB units, but no overhead for larger unitsizes. How-
ever, MINIX 3 also has a lower CPU utilization—possibly because the MINIX 3 code
base is simpler and contains fewer optimization strategies—which might mean that
there is room for improvement. The maximum throughput of 57.8 MB/sis reached
at 64-KB units, but the CPU utilization still slowly decreasesfor larger unit sizes.
The differences in performance are caused, in part, by additional context switches
and data copies. However, FreeBSD 6.1 also has a lower throughput than Linux 2.6,
with a degradation of 16.9% for 1-KB units and 12.9% for 4-KB units.In other
words, the gap between MINIX 3 and FreeBSD is roughly equivalent to the gap be-
tween FreeBSD 6.1 and Linux 2.6. This shows that the impact of user-level drivers
is comparable to other trade-offs in system design.

 0

 10

 20

 30

 40

 50

 60

 70

1 KB 4 KB 16 KB 64 KB 256 KB
0%

10%

20%

30%

40%

50%

60%

70%

D
is

k
th

ro
ug

hp
ut

 (
M

B
/s

)

C
P

U
 u

til
iz

at
io

n
(%

)

I/O unit size

MINIX 3.1.2 (MB/s)
FreeBSD 6.1 (MB/s)

Linux 2.6 (MB/s)

MINIX 3.1.2 (%)
FreeBSD 6.1 (%)

Linux 2.6 (%)

Figure 5.15: Cross-platform comparison of disk throughput and CPU utilization for a 2-GB read
with varying I/O units from the raw block device with a sequential access pattern.

94 CHAPTER 5. EXPERIMENTAL EVALUATION

We want to emphasize that this test setup represents a worst-casescenario for
MINIX 3. As we have seen above, the actual user-perceived overhead depends on the
workload and can be signi�cantly lower. Moreover, it has to be noted that the com-
parison not only highlights the costs of a modular design, butalso is in�uenced by
many other factors, including differences in storage-stack strategies, amount of op-
timization, compiler quality, memory management algorithms, and so on. Linux 2.6
and FreeBSD 6.1 are far more mature than MINIX 3, and the test results have to be
interpreted with this difference in mind. We have not attempted to analyze and re-
move bottlenecks, since our research focuses on dependability. Nevertheless, several
possible performance optimizations are mentioned in Sec. 6.4.

5.2.2 Costs of Failure Resilience

In order to determine the overhead introduced by our failure-resilience mechanisms
we simulated driver crashes while I/O was in progress, and comparedthe perfor-
mance to an uninterrupted I/O transfer. The test script �rst initiates the I/O transfer,
and then repeatedly looks up the driver's process ID and crashes thedriver using
a SIGKILL signal. The test was run with varying intervals between the simulated
crashes. The recovery policy directly restarted the driver withoutintroducing delays.
After the I/O completed we veri�ed that no data corruption took place by compar-
ing the checksums of the data transferred. In all cases, we observedfull transparent
recovery. The results are shown in Figs. 5.16 and 5.17 and discussed below,

Network-stack Performance

We �rst measured the overhead for the recovery of network-device drivers using the
Realtek RTL8139 PCI Ethernet driver. Each test initiated a TCPtransfer using the
wgetutility to retrieve a 512-MB �le from the local network. We ran multiple tests
with the period between the simulated crashes ranging from 1 to 15 seconds. In

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14 16

T
ra

ns
fe

r
ra

te
 (

M
B

/s
)

Network driver kill interval (s)

Uninterrupted transfer
With driver recovery

Figure 5.16: Throughput when using wget to retrieve a 512-MB �le from the local network with
and without repeatedly killing the Realtek RTL8139 driver with various time intervals.

5.2. PERFORMANCE MEASUREMENTS 95

C
ha

pt
er

5

all cases,wgetsuccessfully completed, with the only noticeable difference being a
small performance degradation as shown in Fig. 5.16. In order to verify that data
integrity was preserved we compared the MD5 checksums of the received data and
the original �le. No data corruption was found. The uninterrupted transfer time was
47.4 sec with a throughput of 10.8 MB/s. The interrupted transfer times ranged from
47.9 sec to 63.0 sec, with a throughput of 10.7 MB/s and 8.1 MB/s, for simulated
crashes every 1 sec and 12 sec respectively. The mean recovery timefor the network
driver failures was 0.5 sec. The loss in throughput due to networkdriver failures and
the subsequent recovery ranged from 25.0% to just 0.9% in the best case.

Storage-stack Performance

We also measured the overhead of block-device driver recovery by repeatedly send-
ing aSIGKILL signal to the ATWINI hard disk driver while reading a 1-GB �le �lled
with random data usingdd. The input was immediately redirected tosha1sumin
order to calculate the SHA-1 checksum. Again, we killed the driver with varying
intervals between the simulated crashes. Since the MINIX 3 �le system does not
guarantee end-to-end integrity and we did not yet have the �lter driver discussed in
Sec. 4.4, this experiment potentially could have caused datacorruption. Neverthe-
less, we found that the data transfer successfully completed with the same SHA-1
checksum in all cases. The transfer rates are shown in Fig. 5.17. The uninterrupted
disk transfer completed in 31.3 sec with a throughput of 32.7 MB/s. The interrupted
transfer times ranged from 83.1 sec to 34.7 sec, with a throughput of12.3 MB/s and
30.5 MB/s, for simulated crashes every 1 sec and 15 sec, respectively. The perfor-
mance overhead of disk driver recovery ranged from 62.4% to about 6.7% in this
test. Because the amount of work to be done to clean up the killed driver and start a
new one, and thus the recovery time needed, is roughly the same foreach driver, the
higher recovery overhead compared to the previous experiment is due to the higher
steady-state I/O transfer rate.

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 2 4 6 8 10 12 14 16

T
ra

ns
fe

r
ra

te
 (

M
B

/s
)

SATA driver kill interval (s)

Uninterrupted transfer
With driver recovery

Figure 5.17: Throughput when using dd to read a 1-GB �le from the hard disk with and without
killing the ATWINI driver with various time intervals.

96 CHAPTER 5. EXPERIMENTAL EVALUATION

5.3 Source-code Analysis

Finally, we performed a source-code analysis in order to measure thesystem's evo-
lution over time and estimate the amount of engineering effort that went into it. As
a metric we counted the number of lines of code (LoC) using the source-code line
countersclc.pl [Appleton, 2003]. The size of the code base was measured in lines
of assembly instructions and C code, excluding comments, andblank lines. Sys-
tem library code was excluded from the line counts because it is not speci�c to the
driver and (hopefully) better tested. Headers �les were also excluded based on the
premise that constant and function de�nitions do not add to thecode complexity. For
comparison purposes we performed the analysis for both MINIX 3 and Linux 2.6.

5.3.1 Evolution of M INIX 3

Our analysis of the MINIX 3 code base spans a 4-year period since the of�cial re-
lease with 6-month deltas, and includes 9 SVN revisions rangingfrom r1171 to
r5545. We have focused on the core OS consisting of the kernel and the user-level
drivers and servers. The sources were obtained from the MINIX 3source-code repos-
itory [Vrije Universiteit Amsterdam, 2009]. Although a small community of MINIX
enthusiasts has made valuable contributions, the majority ofchanges to the core
system is attributable to the in-house research and developmentteam. An interest-
ing data point in this respect is that during the time frame analyzed the full-time
MINIX 3 team has grown from 1 graduate student and 1 scienti�c programmer to5
graduate students and 3 scienti�c programmers. In addition, therehave been various
contributions from students doing term projects. The results of our MINIX 3 analysis
are shown in Figs. 5.18 and 5.19 and discussed below.

Since the of�cial release in October 2005 the kernel has grown by101.6% from
3413 LoC to 6881 LoC. We observed a steady increase in the kernel-call handler
code, which indicates continuous addition of new features. Two notable events

MINIX 3 Kernel Drivers Servers
Version Release date LoC Growth LoC Growth LoC Growth

r1171 18 Oct 2005 3413 0.0% 22,777 0.0% 27,134 0.0%
r2145 18 Apr 2006 4014 17.6% 26,441 16.1% 28,921 6.6%
r2623 16 Oct 2006 4457 30.6% 28,148 23.6% 31,724 16.9%
r2864 19 Apr 2007 4759 39.4% 28,436 24.8% 36,055 32.9%
r3044 17 Oct 2007 5231 53.3% 30,574 34.2% 37,642 38.7%
r3152 14 Apr 2008 5439 59.4% 34,988 53.6% 38,698 42.6%
r3187 3 Oct 2008 5439 59.4% 34,988 53.6% 38,886 43.3%
r4226 17 Apr 2009 6284 84.1% 34,888 53.2% 41,708 53.7%
r5545 19 Oct 2009 6881 101.6% 35,092 54.1% 45,817 68.9%

Figure 5.18: Source-code analysis of the MINIX 3 kernel and the user-level drivers and servers for
a 4-year period since its of�cial release with 6-month deltas.

5.3. SOURCE-CODE ANALYSIS 97

C
ha

pt
er

5

are a restructuring of the architecture-dependent and the architecture-independent
code (r2864) and the introduction of a new virtual memory (VM) subsystem (r4226
and r5545). The latter caused numerous kernel changes and explains the 1442-LoC
increase in just 12 months. (As an aside, the memory-management subsystem in
the Linux kernel is 34,702 LoC. Although it is obviously more feature-rich than
MINIX 3's memory-management subsystem, it also measures more than 5 times the
size of the entire MINIX 3 kernel.) A similar picture exists for the user-level drivers
and servers. The drivers have grown by 54.1% from 22,777 LoC to 35,092LoC.
While the amount of code per driver sometimes increased, most of the growth is
because the number of drivers has grown from 15 to 21 drivers. The average size of
a MINIX 3 driver is still only 1671 LoC. The servers have equally grown by 68.9%
from 27,134 LoC to 45,817 LoC. Notable changes include the addition of the vir-
tual �le system (VFS) (r2864), virtual memory (VM) (r4226), and System VIPC
(r5545). These results show that MINIX 3 has grown signi�cantly due to the ad-
dition of new features and functionality. Still, as discussed below, the 6881-LoC
MINIX 3 kernel seems hardly bloated compared to the 5,319,731-LoC Linux2.6
kernel. Of course, the MINIX 3 trusted computing base (TCB) also includes several
components running at the user level, but even if these are counted, the difference in
size is still two orders of magnitude.

Directory LoC TCB Explanation

src/kernel 2095 yes MINIX 3 kernel
src/kernel/arch 2730 yes Architecture-dependent code
src/kernel/system 2056 yes Kernel-call handlers

src/drivers/pci 2905 yes Generic PCI-bus driver
src/drivers/iommu/amddev 431 yes AMD-DEV IOMMU driver
src/drivers/libdriver 466 no Device-independent driver interface
src/drivers/libdriver-asyn 594 no Asynchronous driver interface
src/drivers/net/dp8390 3176 no NE2000/ DP8390/ RTL8029 driver
src/drivers/net/fxp 2530 no Intel PRO/100 driver
src/drivers/net/rtl8139 2469 no Realtek RTL8139 driver
src/drivers/block/atwini 2100 no Generic SATA driver
src/drivers/audio/es1371 1295 no Ensoniq ES1731 audio driver
src/drivers/audio/framework 728 no Audio-driver framework

src/servers/pm 2605 yes Process manager
src/servers/rs 2477 yes Driver manager
src/servers/ds 390 yes Data store
src/servers/inet 20,133 no Network server
src/servers/vfs 7109 yes Virtual �le system
src/servers/mfs 4878 no MINIX �le server
src/servers/vm 4635 yes Virtual memory server

Figure 5.19: Lines of executable code (LoC) for the most important MINIX 3 components. The
�gure also shows whether the component is part of the trusted com puting base (TCB).

98 CHAPTER 5. EXPERIMENTAL EVALUATION

Zooming in on the changes required to isolate and recover drivers,we �nd that
most engineering effort went into preparing the core OS to deal withuntrusted
drivers. Although the driver manager measures only 2477 LoC, it heavily relies on
the rest of the TCB to isolate drivers. For example, the PCI-bus driver and IOMMU
driver measure another 2905 LoC and 431 LoC, respectively. In addition, the run-
time checks performed by the TCB usually required new code to look up the isolation
policy and check the driver's authorization. Furthermore, severalnew kernel calls
had to be added to control access to privileged resources, such asperipheral devices
and memory. Another important change to the TCB concerns the handling of IPC.
In order to protect against blockage due to untrusted drivers, synchronous IPC has
been replaced by asynchronous and nonblocking IPC. This is evidenced, for exam-
ple, by the new 594-LoClibdriver-asynlibrary. The recovery support also affected
various parts of the TCB. Most of the driver manager's logic to start dynamically
servers and drivers could be reused, but new code was needed for defect detection
and execution of recovery scripts. Likewise, the system servers needed little change
to support restarting drivers, but gained new code to retry failed I/Ooperations. Most
of this error-handling logic could be centralized in the device I/O routines. Finally,
the kernel is not aware of defect detection and recovery.

Most importantly, the fault-tolerance mechanisms required onlylimited modi�-
cations to the drivers themselves. The majority of the changes concerned removing
drivers from the kernel. This involved mostly replacing direct function calls with
kernel calls, but did not demand structural changes to the way drivers work. The
fault isolation is mostly transparent to the working of the driver: unauthorized ac-
cess attempts will be denied, but the driver is unaware of the underlying mecha-
nisms that constrain it. Several small modi�cations were required for the run-time
memory-protection mechanisms, however. For example, the use of safe copies and
IOMMU protection generally affected a few lines of code at all sites relating to mem-
ory access. In addition, the changes needed to implement failure resilience were also
limited. In general, drivers are only required to reply to heartbeat and shutdown re-
quests from the driver manager. For most drivers this change comprised only 5 LoC
in the shared driver library to handle the new request types. Device-speci�c driver
code almost never had to be changed. For a few drivers, however, the code to initial-
ize the hardware had to be modi�ed in order to support reinitialization after a restart.
Overall, the changes required are negligible compared to the amount of driver code
that potentially can be guarded by our fault-tolerant design.

A �nal point worth mentioning is that porting device drivers from other OSes to
MINIX 3 can be done with relatively little effort. Because MINIX 3 mostly looks and
feels like a normal UNIX OS, the hardest part is understanding how the hardware
works and separating the driver code from the foreign OS. Once that has been done,
it is relatively straightforward to get it to work under MINIX 3, where it can imme-
diately bene�t from MINIX 3's protection mechanisms. As a case in point, the Intel
PRO/1000 gigabit Ethernet driver was ported from DragonFly BSD to MINIX 3 by
a single student in the course of two weeks [Linnenbank, 2009].

5.3. SOURCE-CODE ANALYSIS 99

C
ha

pt
er

5

5.3.2 Evolution of Linux 2.6

We have also analyzed the Linux 2.6 code base. This analysis spans a 5-year pe-
riod since its of�cial release with 6-month deltas, and includes 11 versions ranging
from 2.6.0 to 2.6.27.11. The kernel images were obtained from the Linux kernel
archives [Linux Kernel Organization, Inc., 2009]. Linux 2.6 kernel development is
done by a large, distributed community of about 5000 developers representing over
500 corporations [Kroah-Hartman et al., 2009]. Still, a small number of develop-
ers and corporations is responsible for the majority of the kernel changes. Looking
at individual contributors, the top 10 developers contributed 11.9% of the changes.
Looking at corporate support, the developers employed by the top10 companies,
including Red Hat, IBM, and Novell, contributed 43.5% of the changes. The results
of our Linux 2.6 analysis are shown in Figs. 5.20 and 5.21 and discussed below.

The Linux kernel shows a sustained linear growth in LoC of about5.5% ev-
ery 6 months. In 5 years, the kernel has grown by 65.4% from 3.2 MLoC to over
5.3 MLoC. The/drivers subsystem is by far the largest subsystem and comprises
about half the kernel code base. In 5 years, the/drivers subsystem has grown by
76.4% and now surpasses 2.7 MLoC. The second largest subsystem is /arch and
comprises 1.1 MLoC. Next, the/fs, /net, and/soundsubsystems—which can be re-
garded as special kinds of OS extensions—together comprise another 1.2 MLoC.
The core/kernelsubsystem is relatively small and comprises 70,756 LoC or 1.3%
of the entire kernel. Within the/drivers subsystem, network drivers are by far the
largest and fastest-growing driver category. In the past 5 years, network drivers have
grown by 77% and now comprise 683,375 LoC. This means that network drivers
alone are responsible for 12.9% of the entire kernel code base. Interestingly, these
�ndings match the trends found during an earlier study of Linux 1.0 to Linux 2.3
over 6-year lifespan (96 versions) [Godfrey and Tu, 2000].

Linux 2.6 Entire kernel Drivers subsystem
Version Release date LoC Growth LoC Growth Ratio

2.6.0 18 Dec 2003 3,216,751 0.0% 1,564,699 0.0% 0.486
2.6.7 16 Jun 2004 3,427,140 6.5% 1,713,226 9.5% 0.500
2.6.10 24 Dec 2004 3,594,857 11.8% 1,806,297 15.4% 0.502
2.6.12.3 15 Jul 2005 3,757,899 16.8% 1,903,616 21.7% 0.507
2.6.14.6 08 Jan 2006 3,947,373 22.7% 2,001,213 27.9% 0.507
2.6.17.5 15 Jul 2006 4,203,430 30.7% 2,093,988 33.8% 0.498
2.6.19.2 10 Jan 2007 4,403,895 36.9% 2,197,216 40.4% 0.499
2.6.22.1 10 Jul 2007 4,680,941 45.5% 2,341,407 49.6% 0.500
2.6.23.13 09 Jan 2008 4,729,971 47.0% 2,388,677 52.7% 0.505
2.6.26.0 13 Jul 2008 5,177,093 60.9% 2,639,686 68.7% 0.510
2.6.27.11 14 Jan 2009 5,319,731 65.4% 2,760,476 76.4% 0.519

Figure 5.20: Source code analysis of the Linux 2.6 kernel and the device-driver subsystem for a
5-year period since its of�cial release in October 2005 with 6-mo nth deltas.

100 CHAPTER 5. EXPERIMENTAL EVALUATION

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

Jan
2004

Jan
2005

Jan
2006

Jan
2007

Jan
2008

Jan
2009

Li
ne

s
of

 c
od

e
(L

oC
)

Release date (6 month deltas)

Network drivers

 /acpi
 /block
 /bus
 /char
 /isdn
 /media
 /net
 /s390
 /scsi
 /sound
 /usb
 /video

Figure 5.21: Linux 2.6 driver growth in lines of executable code (excluding comments and white
space). Network-device drivers are both the largest and fastest-growing driver category.

These results show that both MINIX 3 and Linux 2.6 have experienced a sub-
stantial growth of the code base due to the addition of new features and functionality.
However, there are several important differences as well. To start with, Linux 2.6 has
a larger and more complex code-base in all respects. Looking at just the kernel, we
found that the Linux 2.6 kernel is three orders of magnitudes larger than the MINIX 3
kernel. While this is partly because Linux 2.6 is more mature thanMINIX 3, the real
reason is that Linux 2.6 implements the entire OS in the kernel. This means that all
the code runs in a single protection domain with no fault isolation between the com-
ponents. In contrast, MINIX 3 completely compartmentalizes the OS, implementing
only the most crucial mechanisms at the kernel level and all policies in independent
user processes. While it is hard to quantify this difference in structure, we strongly
believe that it makes the MINIX 3 code base much more manageable.

C
ha

pt
er

6

Chapter 6

Related Work

This chapter surveys related work and compares it to our research. As discussed
in Sec. 1.5, we primarily focus on run-time systems for improving OS dependabil-
ity and distinguish four different approaches. First, in-kernel sandboxing isolates
drivers inside the kernel. Second, virtualization techniques can safely run multiple
services on a single computer platform. Third, formal methods build on advances in
safe languages and veri�cation tools. Fourth, user-level frameworks remove drivers
from the kernel and run them in independent user processes. Approaches aimed at
prevention of bugs, such as static driver analysis, are outsidethe scope of this work,
since they cannot protect the OS against bugs that are not found.

Below, we assess the working of each class and discuss several representative
concrete systems. In particular, Sec. 6.1 introduces in-kernel sandboxing, Sec. 6.2
covers virtualization techniques, Sec. 6.3 presents formal methods, and Sec. 6.4 de-
scribes user-level frameworks. For each class we �rst provide a high-level discus-
sion of the techniques used and then study a concrete system inmore detail. Finally,
Sec. 6.5 brie�y compares MINIX 3 to the other approaches.

6.1 In-kernel Sandboxing

In-kernel sandboxing restricts the driver's execution environmentwithout removing
the driver from the kernel by setting up separate protection domains and intercepting
unsafe calls from the driver to the core kernel. As discussed below,this can be done
using eitherhardware-enforced protectionor software-based isolation. One partic-
ular bene�t of in-kernel sandboxing is that it requires only minor modi�cations to
existing drivers and commodity OSes. Furthermore, the use of wrapping and inter-
position allows catching different kinds of faults than just hardware protection can.
For example, BGI provides dynamic type safety for kernel objects[Castro et al.,
2009]. On the downside, the approach typically requires substantial run-time sup-
port, which adds kernel complexity and increases the burden of maintenance. For

101

102 CHAPTER 6. RELATED WORK

example, Nooks added 22,266 lines of code (LoC) to the Linux kernel [Swift et al.,
2005]. In addition, the level of indirection introduced by wrapping and interposition
can result in signi�cant performance overheads. Nevertheless, in-kernel sandboxing
is an important technique for retro�tting dependability in legacy OSes.

6.1.1 Hardware-enforced Protection

A �rst approach to in-kernel sandboxing is to run drivers in separate hardware-
enforced protection domains. The basic idea is to use the MMU hardware to set up
intra-address-space protection for untrusted extensions [Chase etal., 1994]. Such
protection can be realized by loading each extension in a separate, less-privileged
memory segment that falls in the kernel address space. In this way, the MMU en-
sures that extensions cannot directly access unauthorized memory regions or corrupt
kernel memory other than their own. Since extensions and the core kernel run in dif-
ferent protection domains, direct cross-domain communication isno longer possible.
Instead, control and data transfer between protection domains isdone using wrap-
pers or capabilities that interpose all communication using avariant of a lightweight
remote procedure call (LRPC) [Bershad et al., 1990]. If the access is authorized,
the stub routine changes the protection domain, and executes the requested function
using the caller's thread.

Intra-address-space protection has been used by a range ofsingle-address-space
operating system(SASOS) implementations, including Opal [Chase et al., 1994],
Nemesis [Leslie et al., 1996], and Mungi [Heiser et al., 1998]. A SASOS runs all
OS services in a globally shared virtual address space, which reduces the com-
plexity of pointer management and facilitates data sharing.Although virtual ad-
dresses are context independent, the access rights depend on the protection domain
in which a thread executes, limiting its access to a speci�c set of pages at a spe-
ci�c instant. Capabilities are commonly used to enforce the useof well-de�ned
interfaces and protect system objects [Vochteloo et al., 1993].For example, Mungi
isolates drivers using capabilities that enforce �ne-grained protection for devices and
OS services [Leslie et al., 2004].

In-kernel sandboxing has also been used to retro�t dependabilityin legacy OSes.
For example, Palladium [Chiueh et al., 1999], Kernel Plugins [Ganev et al., 2004],
Nooks [Swift et al., 2005], and CuriOS [David et al., 2008] use thistechnique to
isolate untrusted extensions inside the kernel. By changing the module loader, ex-
tensions can be loaded in their own protection domain. In addition, all kernel API
calls are dynamically linked with wrappers that transparently interpose all outside
communication. In this way, access to privileged kernel functionality can be me-
diated and integrity constraints enforced. For example, Nooks created extensive
wrappers for each class of device drivers in order to track the use of kernel resources
and perform consistency checks [Swift et al., 2005].

The trust in this approach lies with the correctness of the wrapper-code or ca-
pabilities that are responsible for cross-domain transfers. It is crucial that mem-

6.1. IN-KERNEL SANDBOXING 103

C
ha

pt
er

6

ory protection is set up before control is transferred to the extension. In addition,
the consistency checks should be implemented correctly. If in-kernel extensions
can use privileged CPU instructions, complete isolation is sacri�ced. For example,
Mungi runs extensions with user-mode CPU privileges [Leslie et al., 2004], whereas
Nooks' extensions still have kernel-mode CPU privileges [Swift et al., 2005]. There-
fore, a buggy or malicious driver can still change the page tables, perform unautho-
rized I/O, disable interrupts, or halt the CPU. This strategy represents a trade-off
between hard isolation guarantees and practicality of the approach.

Case Study: Nooks

Nooks is a reliability subsystem for the Linux kernel that aims to address a large
fraction of driver problems with only minor changes to legacy code [Swift et al.,
2005]. The design of Nooks is shown in Fig. 6.1. Kernel extensions are isolated
using both hardware-enforced protection domains and software-basedinterposition.
Upon loading the Linux module loader gives the extension read-only access to ker-
nel memory other than its own and binds kernel calls to wrappers that interpose on
all communication. Cross-domain communication is done usingan extension pro-
cedure call (XPC) that changes the page table, copies data structures to and from the
extension, if need be, and calls the requested function. In thisway, the Nooks isola-
tion manager can track the use of kernel resources and perform consistency checks.
If the extension causes an MMU hardware exception or invokes a kernel service
improperly, Nooks releases all resources used by the extension, unloads the exten-
sion, and signals a user-level recovery agent. The recovery agentcan run a script to
restart and recon�gure the driver after a failure. However, becauseextensions still
run with kernel-mode CPU privileges, nothing can prevent them from reloading the
page table and corrupting the rest of the kernel. This is unlikelyto happen acciden-
tally though. In addition, Nooks does not provide IOMMU support to protect against
invalid direct memory access (DMA).

K
er

ne
l

Application
program

 Wrapped

Recovery

Nooks isolation manager

agent

 Kernel
 service driver(s)

isolated drivers
is read-only to
Kernel memory

communication
all cross-domain
Wrapper checks

Figure 6.1: Hardware-enforced protection in Nooks. Nooks sets up protection domains for kernel
memory and wraps drivers in a layer of protective software. If a failure is detected, the isolation
manager calls a user-level recovery agent that can restart the driver.

104 CHAPTER 6. RELATED WORK

In a successor project, Nooks' failure detection mechanisms were augmented
with shadow driversto make recovery more transparent to applications [Swift et al.,
2006]. A shadow driver is not a replica of the real driver, but implements only the
services needed for recovery. In passive mode, a shadow driver monitors all com-
munication between the driver and the kernel, and logs con�guration messages that
change the driver's state. When a driver failure is reported by Nooks, the shadow
driver impersonates the failed driver and governs the recovery procedure. It accepts
requests until a new driver has been started and, depending on the state collected,
immediately replies, drops the request, or queues it for later processing. In addition,
the shadow driver restarts the failed driver, restores its state byreplaying logged
con�guration messages, and resubmits pendings requests from thequeue. This ap-
proach thus supports recovery of stateful drivers. However, shadowdrivers cannot
guarantee exactly-once behavior for driver requests and must relyon higher-level
protocols to maintain data integrity, just like is done in MINIX 3.

The Nooks code base consist of 22,266 LoC, including 14,396 LoC of wrapper
code, all of which runs in the kernel domain and thus must be trusted. About two
thirds of the 248 wrappers were used to isolate drivers; the rest were meant for a �le
system (VFAT) and an in-kernel web server (kHTTPd). Out of eight drivers tested,
seven drivers required no code changes and only 13 lines had to be changed in the
eighth driver. Support for shadow drivers added about 3300 LoC to Nooks and about
2150 LoC for other support infrastructure. Individual shadow driverswere much
smaller, for example, 198 LoC for the class of network-device drivers. A software-
implemented fault-injection (SWIFI) test injecting 2000 faults showed that Nooks
could prevent 99% of 365 Linux crashes, but only half of the nonfatal extension fail-
ures, rendering the service unavailable to applications in 210 cases. Another SWIFI
test with 2400 fault injections showed that shadow drivers could automatically re-
cover 65% of 390 applications failures. The effectiveness waslimited by Nooks'
failure detection mechanism, which did not detect, for example, I/O requests that
were never completed and errors in the driver's device interaction.Finally, perfor-
mance measurements showed that the overhead incurred by Nooks ranged from no
overhead to 56% in the worst case. Shadow drivers imposed a negligible additional
overhead of 1% on average for nine applications tested.

6.1.2 Software-based Isolation

A completely different technique for in-kernel sandboxing issoftware-based fault
isolation(SFI) [Wahbe et al., 1993]. SFI modi�es the object code of drivers insuch
a way that it cannot execute unsafe instructions. In particular,the compiler or bi-
nary rewriter inserts run-timesoftware guardsbefore every instruction that jumps or
writes to an address that cannot be statically veri�ed to fall within the driver's (logi-
cal) protection domain. The software guard veri�es that the driverhas authorization
for the computed address before writing to it. Optionally, load instructions can also
be guarded in order to prevent malicious code from reading unauthorized memory.

6.1. IN-KERNEL SANDBOXING 105

C
ha

pt
er

6

In addition, cross-domain calls are mediated by arbitration code in order to verify
that the call performed by the other domain is safe. This provides protection against
memory corruption by buggy code.

Traditionally, SFI was used to enforce memory protection, but several advances
made it possible to specify richer protection policies. For example, control �ow
integrity (CFI) instruments binaries in order to ensure that the code path executed
adheres to a static policy that comprises a control-�ow graph [Abadi et al., 2005].
CFI is enforced by inserting known labels at each branch destination and preceding
branches with run-time guards that verify that the destination contains the expected
label. These checks ensure that calls enter functions only at the beginning and returns
transfer control to a point after a valid call site, and thereby prevent code-injection
and return-to-libc attacks. Next, XFI builds on CFI to provide a generalized form
of SFI that can enforce memory access constraints, restrict the useof interfaces,
prevent execution of privileged instructions, and provide system state integrity guar-
antees [Erlingsson et al., 2006]. Finally, BGI extends these checks with dynamic
type safety for kernel objects [Castro et al., 2009].

The use of software rather than hardware protection represents a trade-off with
respect to execution time overhead. Although software protection provides faster
cross-domain communication than hardware protection, the binaryinstrumentation
incurs an overhead proportional to the code size. Because SFI requires every un-
safe instruction to be preceded by a run-time guard, the execution-time overhead
of memory-intensive applications can be nearly 200% [Seltzer etal., 1996]. XFI re-
duces this performance penalty by checking memory ranges with a fast path for com-
mon accesses and hoisting software guards out of frequently executed code paths
such as loops. Benchmarks show that XFI incurs an overhead ranging from 1% to
94% [Erlingsson et al., 2006]. Recently, Native Client (NaCl) implemented SFI-like
protection for browser plug-ins using hardware segments, such that load and store
instructions do not have to be preceded by a software guard [Yee et al., 2009]. Nor-
mal hardware page protection is still required between processes.This model allows
for less �ne-grained policies, but the performance overhead was limited to 12% in
the worst case and less than 5% on average.

The protection provided by SFI depends either on the correctnessof the com-
piler or binary patching tool or on an independent veri�er. Theabsence of hardware
protection domains, means that all trust lies with the software guards. The sim-
plest approach is to assume that the tools used generate suf�cient software guards
for all unsafe instructions, just like ordinary compilers are trusted to work cor-
rectly [Thompson, 1984]. Alternatively, an independent veri�cation tool can be
used to check all code paths for unprotected unsafe accesses. Because of all the
low-level complexity involved certain corner cases may be missed though. For ex-
ample, Native Client's validator logic was shown to contain�aws that can lead to
memory corruption in the run-time system [Hawkes, 2009]. In addition, the support
infrastructure, such as the interposition libraries that enforce integrity constraints,
introduces additional kernel-level complexity that must be trusted.

106 CHAPTER 6. RELATED WORK

Case Study: BGI

BGI provides fast byte-granular protection for existing Windowsdrivers with low
overhead and no modi�cations to the source code [Castro et al., 2009]. The working
of BGI is depicted in Fig. 6.2. A BGI compiler takes an unmodi�ed Windows driver
and replaces all direct kernel API calls with calls to a trusted interposition library.
In addition, unsafe accesses, such as direct memory writes and indirect jumps, are
instrumented with software guards. In-line assembly is disallowed by the compiler
to prevent the extension from executing privileged CPU instructions. The software
guards and wrapper functions enforce a �ne-grained access control model through
run-time checking, granting, and revoking of memory write and ownership rights,
kernel call rights, and type rights. In particular, for each byte ofvirtual memory BGI
maintains a list of access rights per untrusted domain. Memory write and ownership
rights prevent corruption of kernel memory, kernel call rights are used to enforce
control �ow integrity, and type rights are used to enforcedynamic type safetyfor
kernel objects. The latter dynamically changes the set of operations allowed on ker-
nel objects in order to catch (temporal) errors when using complex kernel interfaces.
Memory reads by the driver and direct memory access (DMA) from the device layer
are unprotected in order to limit BGI's overhead.

BGI also provides limited recovery support. If the interposition library detects an
extension failure, BGI unloads all extensions in the domain,releases all the resources
held, and restarts the extensions. Because BGI relies on the Windows plug-and-play
(PnP) manager, only PnP drivers can currently be recovered. Moreover, recovery
transparent to applications is not supported. When an extension call is attempted
during the recovery procedure, the interposition library returns an error code. Re-

compiler
BGI

Unmodified
driver code

Instrumented
driver

BGI
driver

LinkerInterposition
library

_BGI_KeInitializeDpc(PRKDPC d,

}

 CheckRight(d, sizeof(KPDC), write);
 CheckFunc(r, icall16);
 KeInitializeDpc(d, r, a);
 SetType(d, sizeof(KDPC), dpc);

 PKDEFERRED_ROUTINE r, PVOID a) {

Replace API calls and
add software guards
for unsafe accesses

Link trusted wrappers
that check, grant, and
revoke access rights

Wrapper code for KeInitializeDpc API call:

Figure 6.2: Software-based fault isolation in BGI. A BGI compiler replaces direct kernel API calls
with wrapper calls and adds software guards before direct memory accesses and indirect calls.

6.2. VIRTUALIZATION TECHNIQUES 107

C
ha

pt
er

6

quests from the PnP manager to remove the device are automatically acknowledged,
however. The last unload call causes all resources associatedwith the domain to be
released. There is no need for a separate object tracker as in Nooksbecause BGI
already keeps track of all ownership rights for each domain.

BGI was applied to 16 Windows drivers that comprise over 400,000LoC and use
350 different API functions from WDM, IFS, NDIS, and KMDF [Microsoft Corp.,
2009]. BGI required wrappers for 262 kernel API calls and 88 extension callbacks,
some of which could be automatically generated from source annotations. The size
of the resulting interposition library is 16,700 LoC. In order to test BGI's effective-
ness two drivers were subjected to fault-injection experiments.Buggy BGI drivers
were produced by injecting 5 random bugs into the driver source before calling the
BGI compiler. In total, 675 buggy driver versions were tested by running them in an
isolated BGI domain. BGI was able to prevent 47%–60% of all Windows hangs and
98%–100% of all Windows crashes. Driver hangs were caused by in�nite loops and
resource leaks, which are not checked for by the BGI wrappers. Because BGI can
only recover PnP drivers, the recovery could only be tested with one driver. During
50 test runs the recovery was successful in 19 out of 21 failures detected by BGI.
Finally, performance measurements showed that the overhead incurred by BGI is
limited: for TCP and UDP network benchmarks the average CPU overhead was 8%
with an average throughput degradation of 2%.

6.2 Virtualization Techniques

Virtualization is used to run multiple services on a single system [Smith and Nair,
2005; Rosenblum and Gar�nkel, 2005]. The basic idea is to createa virtual execu-
tion environment, known as avirtual machine(VM), by replicating the computer
hardware, or a variant thereof, in software. Below we discuss both �avors: full
virtualization and paravirtualization. The VM runs under the control of a small
privileged kernel, commonly referred to as ahypervisoror virtual machine moni-
tor (VMM). Hypervisors share architectural commonalities with microkernels, but
export richer primitives and more closely resemble the hardware [Hand et al., 2005;
Heiser et al., 2006]. Virtualization provides strong guaranteesby running untrusted
code in user-mode in a private address space monitored by the VMM.Unmodi�ed
driver reuse is possible by running the driver in its original OS ina VM. How-
ever, running multiple OSes in different VMs complicates resource and con�gura-
tion management [Ganev et al., 2004, LeVasseur, pers. comm., 2006].

6.2.1 Full Virtualization

Full virtualization provides a faithful software replica of the underlying hardware
and allows the guest OS to execute unmodi�ed. Although the guest OS runs in a VM,
it appears to the OS as though it runs on its own dedicated hardware. This technique

108 CHAPTER 6. RELATED WORK

was originally developed by IBM in the 1960s to provide concurrentaccess to main-
frame computers, with VM/370 as a notable example [Seawright and MacKinnon,
1979; Creasy, 1981]. Today, virtualization is widely used for consolidating servers,
improving manageability, sandboxing untrusted code, and running different OSes on
a single computer. Two common VM designs include running the virtual machine
monitor (VMM) directly on the hardware, as in VMware ESX [Waldspurger, 2002]
and Hyper-V [Kelbley et al., 2009], or using ahosted architecturewhere the VMM
co-exists with a preinstalled OS, as in VMware Workstation [Sugerman et al., 2001],
QEMU [Bellard, 2005], KVM [Kivity et al., 2007], and VirtualBox [Möller, 2008].

Unfortunately, full virtualization can incur a signi�cant performance and re-
source penalty. On the one hand, the VMM must provide each VM with virtual priv-
ileged CPU instructions, memory spaces, and device I/O. This introduces overhead
since the associated data structures must be updated for each access and more state
has to be stored and loaded on each context switch. On the otherhand, not all in-
structions of the x86 (IA-32) architecture areclassically virtualizable, meaning that
it is not possible to run the VM on the real hardware and apply atrap-and-emulate
approach for privileged instructions [Popek and Goldberg, 1974].This problem can
be addressed either by running the guest OS in an emulator that dynamically trans-
lates nonvirtualizable instructions or by relying on x86-architecture virtualization
extensions provided by AMD-V and Intel VT-x, but both strategies come at a price.
For example, a web server benchmark showed a slowdown of 33%–62% compared
to native execution [Adams and Agesen, 2006]. If backward compatibility is not an
issue, modifying the guest OS to let it work together with the VMM is an ef�cient
alternative, as discussed below.

Although virtualization provides strong inter-VM isolation guarantees, the pro-
tection is too coarse-grained to deal with intra-VM failures due tobuggy drivers.
If the guest OS has a monolithic structure, faults can still propagate and crash the

 App App App App App App

Server Server ServerServer

Driver Driver Driver Driver

Emulated hardware

V
irt

ua
l m

ac
hi

ne

OS kernel OS kernel

Physical hardware

Virtual machine monitor

Emulated hardware

the guest OS
can still crash

VMM controls
VM resources

Driver faults

Figure 6.3: Full virtualization cannot isolate individual drivers. Although each virtual machine runs
in isolation, a single driver fault in a guest OS can still take down an entire virtual machine.

6.2. VIRTUALIZATION TECHNIQUES 109

C
ha

pt
er

6

entire VM, as illustrated in Fig. 6.3. Because a VM failure does not require a full
machine reboot, a faster OS restart may result, but all running application programs
and unsaved user data on that VM are still lost. If the virtualization platform sup-
ports snapshots, the state and data of the VM can be saved periodically and restored
at a later point [Ta-Shma et al., 2008]. Such checkpointing speeds up recovery after
a VM failure, since it is often possible to revert to a point in timejust before the
failure occurred. However, the effectiveness of recovery is inherently limited be-
cause all information between the last checkpoint and the failure is lost. Moreover,
checkpoints may still contain the corruption that eventuallyleads to failure.

What is needed instead is running the core OS and untrusted extensions in dif-
ferent protection domains. Because full virtualization does notsupport such �ne-
grained isolation, we do not further discuss this approach.

6.2.2 Paravirtualization

Paravirtualization exposes an interface that is similar to theunderlying hardware, but
includes strategic modi�cations in order to increase performanceor provide a richer
programming interface. For example, Denali uses paravirtualization to prevent wast-
ing CPU resources and provide a simpli�ed view of I/O devices [Whitaker et al.,
2002]. The guest OS can request VMM services via ahypercallthat loads the pa-
rameters in registers and traps to the VMM. By adapting the guest OSto the un-
derlying VMM all the code can be executed without run-time translation and near-
native performance can be achieved. The only overhead is the use of hypercalls
instead of direct hardware access. For example, a web server benchmark on a para-
virtualized Linux OS running on the Xen VMM performed within 1% of native
Linux [Barham et al., 2003].

An important extension that can be provided by paravirtualization is controlled
VM-to-VM communication [Hohmuth et al., 2004]. This overcomes limitations of
full virtualization because driver faults can be isolated from the core OS by running
each untrusted driver in its original OS in a dedicated VM. External clients can in-
terface with the driver via a translation module that runs in the driver OS and maps
requests onto normal driver calls. Although the lowest parts of the driver OS need
to be paravirtualized, device drivers can still use the normal kernel APIs and often
do not have to be modi�ed. In addition to driver isolation, simple recovery support
may be provided by restarting the VM of a failed driver. This approach was recently
demonstrated by various systems. For example, L4Linux provides driver reuse via
a paravirtualized Linux OS running on top of the L4 microkernel [LeVasseur et al.,
2004]. Next, reuse of Linux drivers via a uni�ed device API is donewith the Xen
VMM [Fraser et al., 2004]. Finally, VEXE'DD sets up virtual execution environ-
ments providing binary compatibility for Windows drivers using amodi�ed version
of Microsoft Virtual PC [Erlingsson et al., 2005].

There are several downsides to paravirtualization as well. To start with, the
source code has to be available in order to paravirtualize the guest OS, which makes

110 CHAPTER 6. RELATED WORK

the approach impractical for proprietary, closed-source OSes. Furthermore, the ap-
proach is relatively complex and requires an intimate understanding of the guest OS,
which can make all kinds of assumptions about its execution environment. A re-
lated issue is the programming effort needed, although techniques to automate part
of the work exist [LeVasseur et al., 2008]. Next, the approach does not work for
drivers that cannot be replaced dynamically, including the interrupt controller, real-
time clock, keyboard, and mouse in Linux. In these cases, the VMM must provide
full hardware emulation. Finally, in order to achieve the same �ne-grained compart-
mentalization as in multiserver OSes like MINIX 3, each server and driver should
run in a dedicated VM. Such a design would have to face the same challenges as a
multiserver OS, but the problems of resource management and con�guration man-
agement become more pronounced when using VMs and legacy OSes rather than
processes [LeVasseur, pers. comm., 2006].

The trust in this approach lies with the implementation of the hypervisor or
VMM that sets up the hardware-enforced protection domains, translates or emu-
lates privileged instructions, and manages the resources of each VM. Virtualization
platforms have traditionally demonstrated to be capable of providing proper inter-
VM protection. However, paravirtualization-based driver isolation gives up strict
VM separation by allowing VM-to-VM communication and is complicated because
VMMs typically do not support IPC, data copying, and the like [Hohmuth et al.,
2004]. However, the case study below demonstrates that safe inter-VM communica-
tion can realized by building on microkernel technologies.

Case Study: L 4Linux

L4Linux is a paravirtualized version of Linux running on top of the L4 micro-
kernel [Härtig et al., 1997]. In order to keep the porting effort low only minimal
changes were made to the architecture-dependent parts. Physicalmemory is mapped
one-to-one into the L4Linux server, which acts as a pager for applications running
on Linux. All communication to L4Linux induced by system calls, page faults, and
interrupts is done using the native L4 IPC primitives. Application-to-L4Linux sys-
tem calls are mapped onto IPC using a modi�ed version of the standard C library
or atrampolineif binary compatibility is needed. This setup allows (re)using Linux
functionality next to real-time components, as in DROPS [Härtig et al., 1998], or
security extensions, as in PERSEUS [P�tzmann and Stüble, 2001].

L4Linux supports unmodi�ed reuse of device drivers [LeVasseur et al., 2004].
Drivers are isolated by running them in a VM with their original OS to preserve
semantics and prevent incompatibilities. A client OS communicates with reused
drivers via a kernel module that implements avirtual deviceabstraction for each
device class. Client-server communication with the device-driver OS (DD/OS) is
implemented using L4 IPC and memory sharing. A translation module in the DD/OS
catches the IPC and forwards the request to the actual driver. For example, client-
side disk operations are converted into server-side block requestto the Linux block

6.3. FORMAL METHODS 111

C
ha

pt
er

6

Stub code Stub codeStub code

Virtual disk

L4Linux
client OS

L4LinuxL4Linux
DD/OS DD/OS

VMM task

U
se

r-
le

ve
l L

4
ta

sk

Disk device PCI bus

Shared PCIDisk driver
Driver faults
can crash

DD/OS onlyL4 IPC L4 IPC

VMM grants
direct access

Figure 6.4: Paravirtualization supports safe and unmodi�ed driver reus e by running them in their
original, paravirtualized OS inside a VM. The client OS and device-driver OS (DD/OS) communi-
cate via VM-to-VM communication primitives provided by the L4 microkernel.

layer. A pass-through mechanism controlled by the VMM—which isimplemented
as a separate user-level L4 task—grants drivers direct access to only the device(s)
they control. Driver reuse can be recursively applied to hardware that is inherently
shared and cannot be partitioned. For example, stub code in each DD/OS forwards
PCI-related requests to a PCI DD/OS that centrally controls PCI-bus access. This
setup is illustrated in Fig. 6.4. The granularity of isolation depends on the number of
drivers colocated per DD/OS. Failed drivers potentially can be recovered via a VM
reboot, but this was not implemented.

The original paravirtualization effort required about 6500 LoC to adapt Linux'
architecture-dependent code. The additional effort required for driver reuse was
about the same, with 1024 LoC for common functionality used by both the client
and server, 2184 LoC for virtual device drivers added to the client, and 3304 LoC
for translation modules added to the server. Application-levelbenchmarks showed
that L4Linux performs within 5%–10% of vanilla Linux—up to 7 times faster than
MkLinux running on top of Mach [Barbou des Places et al., 1996]. Performance
measurements showed that the cost of driver reuse is also reasonable. For example,
running 3 DD/OS instances has a 6-MB memory footprint and consumesjust 0.36%
of the CPU in a steady state. Furthermore, an encapsulated network driver displayed
a throughput degradation of just 3%–8%, although the CPU utilization was relatively
large at 1.6×–2.2× higher than normal. We are not aware of fault-injection testing or
another form of empirical dependability assessment in the context of L4Linux.

6.3 Formal Methods

Formal methods isolate extensions by exploiting advances inprogramming lan-
guages and veri�cation tools. Many of the ideas have been around for decades,
but were recently revisited to address dependability problems. Below we focus on
language-based protectionand driver synthesis. The use of safe, high-level lan-
guages prevents many driver problems caused by the inherent complexity of low-
level languages, such as C and C++. A problem with this approachis that it often

	ACKNOWLEDGEMENTS

