Supplementary information Chapter 6

Coexisting molecular determinants of acquired oxaliplatin resistance in human colorectal and ovarian cancer cell lines

P.Noordhuis, AC Laan, N Losekoot, K van d Born, PP Eijk, B Ylstra, YG Assaraf, GJ Peters
## Supplemental Table 1

Gene expression of altered genes in the most relevant pathways as determined with Ingenuity Pathway Analysis.

<table>
<thead>
<tr>
<th>Genes in Pathway</th>
<th>LoVo-92 4OHP</th>
<th>LoVo-92 cOHP</th>
<th>LoVo-Li 4OHP</th>
<th>LoVo-Li cOHP</th>
<th>A2780 4OHP</th>
<th>A2780 cOHP</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>AHR Signaling</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AHR</td>
<td>0.61</td>
<td>0.33</td>
<td>-0.57</td>
<td>0.19</td>
<td>-0.14</td>
<td>0.33</td>
</tr>
<tr>
<td>ALDH1A1</td>
<td>1.51</td>
<td>1.53</td>
<td>0.82</td>
<td>-0.99</td>
<td>2.37</td>
<td>4.64</td>
</tr>
<tr>
<td>ALDH1A3</td>
<td>-0.02</td>
<td>-0.33</td>
<td>-0.66</td>
<td>-0.03</td>
<td>0.03</td>
<td>-0.26</td>
</tr>
<tr>
<td>ALDH1L2</td>
<td>-2.54</td>
<td>-3.33</td>
<td>-3.45</td>
<td>-2.83</td>
<td>-2.24</td>
<td>-3.67</td>
</tr>
<tr>
<td>ALDH3A2</td>
<td>-0.40</td>
<td>-0.30</td>
<td>0.31</td>
<td>1.20</td>
<td>0.14</td>
<td>0.24</td>
</tr>
<tr>
<td>ALDH6A1</td>
<td>0.15</td>
<td>0.52</td>
<td>-1.89</td>
<td>-1.25</td>
<td>-1.36</td>
<td>-1.90</td>
</tr>
<tr>
<td>Apa1</td>
<td>-0.16</td>
<td>0.01</td>
<td>0.54</td>
<td>1.27</td>
<td>-1.09</td>
<td>-1.16</td>
</tr>
<tr>
<td>ATR</td>
<td>0.49</td>
<td>0.34</td>
<td>0.40</td>
<td>-0.16</td>
<td>1.20</td>
<td>0.79</td>
</tr>
<tr>
<td>BAX</td>
<td>-0.91</td>
<td>-1.20</td>
<td>0.84</td>
<td>-0.38</td>
<td>-1.60</td>
<td>-1.12</td>
</tr>
<tr>
<td>CCNA2</td>
<td>0.46</td>
<td>0.88</td>
<td>1.70</td>
<td>0.09</td>
<td>0.87</td>
<td>1.07</td>
</tr>
<tr>
<td>CCND1</td>
<td>-1.06</td>
<td>-0.49</td>
<td>1.24</td>
<td>1.10</td>
<td>-0.17</td>
<td>0.00</td>
</tr>
<tr>
<td>CCND2</td>
<td>-0.08</td>
<td>-0.15</td>
<td>-0.20</td>
<td>-0.29</td>
<td>-0.18</td>
<td>-0.10</td>
</tr>
<tr>
<td>CCND3</td>
<td>-0.14</td>
<td>0.09</td>
<td>1.50</td>
<td>0.42</td>
<td>1.14</td>
<td>0.76</td>
</tr>
<tr>
<td>CCNE2</td>
<td>0.72</td>
<td>0.63</td>
<td>0.84</td>
<td>-0.20</td>
<td>0.52</td>
<td>0.06</td>
</tr>
<tr>
<td>CDK6</td>
<td>0.57</td>
<td>0.33</td>
<td>0.52</td>
<td>0.61</td>
<td>2.02</td>
<td>3.75</td>
</tr>
<tr>
<td>CDK11A/p21</td>
<td>-0.31</td>
<td>-0.77</td>
<td>-0.88</td>
<td>-0.45</td>
<td>-0.43</td>
<td>-0.78</td>
</tr>
<tr>
<td>CDK11A/p16</td>
<td>-0.59</td>
<td>-1.19</td>
<td>0.34</td>
<td>0.59</td>
<td>0.78</td>
<td>0.67</td>
</tr>
<tr>
<td>CHEK1</td>
<td>0.68</td>
<td>1.05</td>
<td>0.59</td>
<td>-0.41</td>
<td>0.59</td>
<td>0.66</td>
</tr>
<tr>
<td>CHEK2</td>
<td>0.04</td>
<td>0.32</td>
<td>0.52</td>
<td>0.02</td>
<td>0.46</td>
<td>0.26</td>
</tr>
<tr>
<td>CYP1B1</td>
<td>0.60</td>
<td>1.26</td>
<td>0.29</td>
<td>0.26</td>
<td>1.73</td>
<td>1.03</td>
</tr>
<tr>
<td>E2F1</td>
<td>0.99</td>
<td>1.12</td>
<td>2.40</td>
<td>0.49</td>
<td>0.48</td>
<td>0.71</td>
</tr>
<tr>
<td>FAS</td>
<td>0.78</td>
<td>0.25</td>
<td>0.11</td>
<td>-0.87</td>
<td>-0.24</td>
<td>-2.71</td>
</tr>
<tr>
<td>FOS</td>
<td>0.08</td>
<td>-0.60</td>
<td>0.54</td>
<td>0.50</td>
<td>0.42</td>
<td>-1.24</td>
</tr>
<tr>
<td>GSTA2</td>
<td>-0.09</td>
<td>0.17</td>
<td>0.24</td>
<td>0.26</td>
<td>-1.54</td>
<td>-0.60</td>
</tr>
<tr>
<td>GSTA4</td>
<td>0.59</td>
<td>0.08</td>
<td>-0.85</td>
<td>-1.63</td>
<td>-0.12</td>
<td>-1.13</td>
</tr>
<tr>
<td>GSTA5</td>
<td>0.13</td>
<td>0.10</td>
<td>0.23</td>
<td>0.18</td>
<td>-1.98</td>
<td>-0.82</td>
</tr>
<tr>
<td>GSTM1</td>
<td>-0.34</td>
<td>-0.23</td>
<td>0.36</td>
<td>0.38</td>
<td>0.11</td>
<td>-0.97</td>
</tr>
<tr>
<td>GSTM2</td>
<td>-0.13</td>
<td>-0.24</td>
<td>-0.09</td>
<td>0.24</td>
<td>0.62</td>
<td>0.41</td>
</tr>
<tr>
<td>GSTM3</td>
<td>0.14</td>
<td>0.21</td>
<td>0.54</td>
<td>-0.10</td>
<td>-0.18</td>
<td>-3.32</td>
</tr>
<tr>
<td>GSTT2</td>
<td>-0.30</td>
<td>-0.03</td>
<td>0.34</td>
<td>-0.04</td>
<td>0.15</td>
<td>0.71</td>
</tr>
<tr>
<td>HSP90AA1</td>
<td>0.48</td>
<td>-0.79</td>
<td>1.96</td>
<td>-0.08</td>
<td>0.36</td>
<td>0.03</td>
</tr>
<tr>
<td>HSPB1</td>
<td>-0.13</td>
<td>-0.21</td>
<td>0.91</td>
<td>0.69</td>
<td>2.17</td>
<td>-2.64</td>
</tr>
<tr>
<td>HSPB3</td>
<td>-0.24</td>
<td>-1.25</td>
<td>-0.18</td>
<td>-0.40</td>
<td>0.00</td>
<td>2.09</td>
</tr>
<tr>
<td>IL1A</td>
<td>0.02</td>
<td>0.11</td>
<td>0.15</td>
<td>1.28</td>
<td>0.06</td>
<td>-0.05</td>
</tr>
<tr>
<td>IL1B</td>
<td>0.79</td>
<td>2.76</td>
<td>0.20</td>
<td>3.04</td>
<td>-0.07</td>
<td>0.01</td>
</tr>
<tr>
<td>IL6</td>
<td>0.09</td>
<td>-0.08</td>
<td>0.11</td>
<td>0.04</td>
<td>0.40</td>
<td>-2.49</td>
</tr>
<tr>
<td>JUN</td>
<td>0.09</td>
<td>1.09</td>
<td>-1.00</td>
<td>0.88</td>
<td>0.64</td>
<td>3.19</td>
</tr>
<tr>
<td>Genes in Pathway</td>
<td>LoVo-92 4OHP</td>
<td>cOHP</td>
<td>LoVo-Li 4OHP</td>
<td>cOHP</td>
<td>A2780 4OHP</td>
<td>cOHP</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>------</td>
<td>-------------</td>
<td>------</td>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>MAPK3</td>
<td>-1.03</td>
<td>-0.84</td>
<td>0.90</td>
<td>1.19</td>
<td>-1.33</td>
<td>-0.87</td>
</tr>
<tr>
<td>MGST1</td>
<td>0.67</td>
<td>0.75</td>
<td>0.70</td>
<td>0.35</td>
<td>1.13</td>
<td>1.77</td>
</tr>
<tr>
<td>MGST2</td>
<td>0.38</td>
<td>0.11</td>
<td>-0.14</td>
<td>-0.47</td>
<td>0.03</td>
<td>1.63</td>
</tr>
<tr>
<td>NCOA7</td>
<td>0.53</td>
<td>0.47</td>
<td>-0.60</td>
<td>0.11</td>
<td>-0.51</td>
<td>0.18</td>
</tr>
<tr>
<td>NCOB2</td>
<td>-0.60</td>
<td>-0.75</td>
<td>0.35</td>
<td>1.41</td>
<td>-0.44</td>
<td>0.29</td>
</tr>
<tr>
<td>NFI A</td>
<td>0.40</td>
<td>0.55</td>
<td>-0.09</td>
<td>-0.40</td>
<td>4.23</td>
<td>0.50</td>
</tr>
<tr>
<td>NFB1</td>
<td>0.15</td>
<td>0.05</td>
<td>0.20</td>
<td>0.37</td>
<td>3.33</td>
<td>3.74</td>
</tr>
<tr>
<td>NKB2</td>
<td>-0.48</td>
<td>-0.30</td>
<td>-0.27</td>
<td>0.25</td>
<td>-1.42</td>
<td>-0.97</td>
</tr>
<tr>
<td>40OHP</td>
<td>-1.03</td>
<td>-0.70</td>
<td>0.27</td>
<td>-0.25</td>
<td>-0.15</td>
<td>-0.16</td>
</tr>
<tr>
<td>40OHP</td>
<td>-0.09</td>
<td>-0.20</td>
<td>0.08</td>
<td>0.21</td>
<td>1.79</td>
<td>0.16</td>
</tr>
<tr>
<td>40OHP</td>
<td>-0.16</td>
<td>0.01</td>
<td>0.54</td>
<td>1.27</td>
<td>-1.09</td>
<td>-1.16</td>
</tr>
<tr>
<td>40OHP</td>
<td>-0.04</td>
<td>-0.08</td>
<td>-0.04</td>
<td>0.66</td>
<td>-0.04</td>
<td>-0.27</td>
</tr>
<tr>
<td>40OHP</td>
<td>0.49</td>
<td>0.34</td>
<td>0.40</td>
<td>-0.16</td>
<td>1.20</td>
<td>0.79</td>
</tr>
<tr>
<td>40OHP</td>
<td>-0.45</td>
<td>-0.36</td>
<td>-0.63</td>
<td>-0.51</td>
<td>2.55</td>
<td>-1.06</td>
</tr>
<tr>
<td>40OHP</td>
<td>-0.91</td>
<td>-1.20</td>
<td>0.84</td>
<td>-0.38</td>
<td>-1.60</td>
<td>-1.12</td>
</tr>
<tr>
<td>40OHP</td>
<td>-0.79</td>
<td>-0.70</td>
<td>-1.07</td>
<td>-0.14</td>
<td>-1.11</td>
<td>-1.41</td>
</tr>
<tr>
<td>40OHP</td>
<td>0.02</td>
<td>-0.34</td>
<td>0.78</td>
<td>0.68</td>
<td>-1.71</td>
<td>-1.13</td>
</tr>
<tr>
<td>40OHP</td>
<td>-0.16</td>
<td>-0.14</td>
<td>-1.17</td>
<td>-0.92</td>
<td>-0.28</td>
<td>-0.19</td>
</tr>
<tr>
<td>40OHP</td>
<td>-0.08</td>
<td>-0.18</td>
<td>-0.08</td>
<td>0.06</td>
<td>-0.27</td>
<td>-0.13</td>
</tr>
<tr>
<td>40OHP</td>
<td>0.51</td>
<td>0.54</td>
<td>-1.13</td>
<td>-0.39</td>
<td>0.58</td>
<td>0.00</td>
</tr>
<tr>
<td>40OHP</td>
<td>0.02</td>
<td>0.07</td>
<td>1.36</td>
<td>0.29</td>
<td>0.19</td>
<td>0.93</td>
</tr>
<tr>
<td>40OHP</td>
<td>0.44</td>
<td>0.15</td>
<td>1.03</td>
<td>-0.24</td>
<td>-0.18</td>
<td>-0.014</td>
</tr>
<tr>
<td>40OHP</td>
<td>0.00</td>
<td>0.52</td>
<td>0.83</td>
<td>0.11</td>
<td>0.19</td>
<td>1.06</td>
</tr>
<tr>
<td>40OHP</td>
<td>0.11</td>
<td>0.29</td>
<td>0.54</td>
<td>0.42</td>
<td>1.16</td>
<td>1.84</td>
</tr>
<tr>
<td>40OHP</td>
<td>-0.06</td>
<td>-0.26</td>
<td>0.53</td>
<td>0.15</td>
<td>-2.80</td>
<td>-1.72</td>
</tr>
<tr>
<td>40OHP</td>
<td>-1.06</td>
<td>-0.49</td>
<td>1.24</td>
<td>1.10</td>
<td>-0.17</td>
<td>0.00</td>
</tr>
</tbody>
</table>

**p53 Signaling**

<table>
<thead>
<tr>
<th>Genes in Pathway</th>
<th>LoVo-92 4OHP</th>
<th>cOHP</th>
<th>LoVo-Li 4OHP</th>
<th>cOHP</th>
<th>A2780 4OHP</th>
<th>cOHP</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKT1</td>
<td>-0.64</td>
<td>-0.70</td>
<td>0.27</td>
<td>-0.25</td>
<td>-0.15</td>
<td>-0.16</td>
</tr>
<tr>
<td>AKT3</td>
<td>-0.09</td>
<td>-0.20</td>
<td>0.08</td>
<td>0.21</td>
<td>1.79</td>
<td>0.16</td>
</tr>
<tr>
<td>Apaf1</td>
<td>-0.16</td>
<td>0.01</td>
<td>0.54</td>
<td>1.27</td>
<td>-1.09</td>
<td>-1.16</td>
</tr>
<tr>
<td>ATM</td>
<td>-0.04</td>
<td>-0.08</td>
<td>-0.04</td>
<td>0.66</td>
<td>-0.04</td>
<td>-0.27</td>
</tr>
<tr>
<td>ATR</td>
<td>0.49</td>
<td>0.34</td>
<td>0.40</td>
<td>-0.16</td>
<td>1.20</td>
<td>0.79</td>
</tr>
<tr>
<td>BAI1</td>
<td>-0.45</td>
<td>-0.36</td>
<td>-0.63</td>
<td>-0.51</td>
<td>2.55</td>
<td>-1.06</td>
</tr>
<tr>
<td>BAX</td>
<td>-0.91</td>
<td>-1.20</td>
<td>0.84</td>
<td>-0.38</td>
<td>-1.60</td>
<td>-1.12</td>
</tr>
<tr>
<td>BBC3/PUMA</td>
<td>-0.79</td>
<td>-0.70</td>
<td>-1.07</td>
<td>-0.14</td>
<td>-1.11</td>
<td>-1.41</td>
</tr>
<tr>
<td>Bcl2</td>
<td>0.02</td>
<td>-0.34</td>
<td>0.78</td>
<td>0.68</td>
<td>-1.71</td>
<td>-1.13</td>
</tr>
<tr>
<td>BCL2L1</td>
<td>-0.06</td>
<td>-0.14</td>
<td>-1.17</td>
<td>-0.92</td>
<td>-0.28</td>
<td>-0.19</td>
</tr>
<tr>
<td>BIRC1/NIAP</td>
<td>-0.08</td>
<td>-0.18</td>
<td>-0.08</td>
<td>0.06</td>
<td>-0.27</td>
<td>-0.13</td>
</tr>
<tr>
<td>BIRC4/XIAP</td>
<td>0.51</td>
<td>0.54</td>
<td>-1.13</td>
<td>-0.39</td>
<td>0.58</td>
<td>0.00</td>
</tr>
<tr>
<td>BIRC5/Survivin</td>
<td>0.02</td>
<td>0.07</td>
<td>1.36</td>
<td>0.29</td>
<td>0.19</td>
<td>0.93</td>
</tr>
<tr>
<td>C12orf5</td>
<td>0.44</td>
<td>0.15</td>
<td>1.03</td>
<td>-0.24</td>
<td>-0.18</td>
<td>-0.014</td>
</tr>
<tr>
<td>CASP6</td>
<td>0.00</td>
<td>0.52</td>
<td>0.83</td>
<td>0.11</td>
<td>0.19</td>
<td>1.06</td>
</tr>
<tr>
<td>CASP7</td>
<td>0.11</td>
<td>0.29</td>
<td>0.54</td>
<td>0.42</td>
<td>1.16</td>
<td>1.84</td>
</tr>
<tr>
<td>CASP10</td>
<td>-0.06</td>
<td>-0.26</td>
<td>0.53</td>
<td>0.15</td>
<td>-2.80</td>
<td>-1.72</td>
</tr>
<tr>
<td>CCND1</td>
<td>-1.06</td>
<td>-0.49</td>
<td>1.24</td>
<td>1.10</td>
<td>-0.17</td>
<td>0.00</td>
</tr>
</tbody>
</table>
### Appendix A

<table>
<thead>
<tr>
<th>Genes in Pathway</th>
<th>LoVo-92 4OHP</th>
<th>cOHP</th>
<th>LoVo-Li 4OHP</th>
<th>cOHP</th>
<th>A2780 4OHP</th>
<th>cOHP</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCND2</td>
<td>0.01</td>
<td>0.00</td>
<td>0.16</td>
<td>0.00</td>
<td>-0.42</td>
<td>-0.08</td>
</tr>
<tr>
<td>CCNG1</td>
<td>0.12</td>
<td>-0.42</td>
<td>-1.00</td>
<td>-0.96</td>
<td>-0.40</td>
<td>-0.38</td>
</tr>
<tr>
<td>CDK2</td>
<td>-0.02</td>
<td>0.05</td>
<td>0.33</td>
<td>0.06</td>
<td>-0.20</td>
<td>0.17</td>
</tr>
<tr>
<td>CDK4</td>
<td>-0.48</td>
<td>-0.18</td>
<td>1.02</td>
<td>-0.07</td>
<td>0.13</td>
<td>0.15</td>
</tr>
<tr>
<td>CDKN1A/p21</td>
<td>-0.31</td>
<td>-0.77</td>
<td>-0.88</td>
<td>-0.45</td>
<td>-0.43</td>
<td>-0.78</td>
</tr>
<tr>
<td>CDKN2A/p16</td>
<td>-0.59</td>
<td>-1.19</td>
<td>0.34</td>
<td>0.59</td>
<td>0.78</td>
<td>0.67</td>
</tr>
<tr>
<td>CHEK1</td>
<td>0.68</td>
<td>1.05</td>
<td>0.59</td>
<td>-0.41</td>
<td>0.59</td>
<td>0.66</td>
</tr>
<tr>
<td>CHEK2</td>
<td>0.04</td>
<td>0.32</td>
<td>0.52</td>
<td>0.02</td>
<td>0.46</td>
<td>0.26</td>
</tr>
<tr>
<td>E2F1</td>
<td>0.99</td>
<td>1.12</td>
<td>2.40</td>
<td>0.49</td>
<td>0.48</td>
<td>0.71</td>
</tr>
<tr>
<td>FAS</td>
<td>0.78</td>
<td>0.25</td>
<td>0.11</td>
<td>-0.87</td>
<td>-0.24</td>
<td>-2.71</td>
</tr>
<tr>
<td>GADD45A</td>
<td>-0.28</td>
<td>0.55</td>
<td>-0.72</td>
<td>0.74</td>
<td>-1.91</td>
<td>-1.78</td>
</tr>
<tr>
<td>GADD45B</td>
<td>-0.53</td>
<td>-0.58</td>
<td>-0.66</td>
<td>1.08</td>
<td>-1.10</td>
<td>-0.52</td>
</tr>
<tr>
<td>HDAC1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIPK2</td>
<td>0.30</td>
<td>-0.16</td>
<td>-0.36</td>
<td>-0.11</td>
<td>2.60</td>
<td>2.14</td>
</tr>
<tr>
<td>JMY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRDD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIK3C2G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIK3CA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIK3R1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLAGL1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMAIP1/NOXA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SERPINE2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SERPINB5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SFN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNAI2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNFRSF10A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNFRSF10B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP53I3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP53INP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>BRCA1 in DNA damage response</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>BARD1</strong></td>
<td>0.13</td>
<td>0.89</td>
<td>1.18</td>
<td>0.74</td>
<td>0.28</td>
<td>0.38</td>
</tr>
</tbody>
</table>

126
## Supplemental Table

<table>
<thead>
<tr>
<th>Genes in Pathway</th>
<th>LoVo-92 4OHP</th>
<th>LoVo-92 cOHP</th>
<th>LoVo-Li 4OHP</th>
<th>LoVo-Li cOHP</th>
<th>A2780 4OHP</th>
<th>A2780 cOHP</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLM Bloom syndrome</td>
<td>0.58</td>
<td>1.15</td>
<td>1.06</td>
<td>0.19</td>
<td>0.41</td>
<td>0.61</td>
</tr>
<tr>
<td>BRCA1 breast cancer 1</td>
<td>0.30</td>
<td>0.90</td>
<td>0.75</td>
<td>-0.06</td>
<td>-0.17</td>
<td>-0.21</td>
</tr>
<tr>
<td>BRCA2 breast cancer 2</td>
<td>0.34</td>
<td>0.77</td>
<td>0.64</td>
<td>-0.09</td>
<td>0.29</td>
<td>0.41</td>
</tr>
<tr>
<td>CHEK1 CHK1 checkpoint homolog</td>
<td>0.68</td>
<td>1.05</td>
<td>0.59</td>
<td>-0.41</td>
<td>0.59</td>
<td>0.66</td>
</tr>
<tr>
<td>E2F1 E2F transcription factor 1</td>
<td>0.99</td>
<td>1.12</td>
<td>2.40</td>
<td>0.49</td>
<td>0.48</td>
<td>0.71</td>
</tr>
<tr>
<td>E2F3 E2F transcription factor 3</td>
<td>0.15</td>
<td>0.16</td>
<td>1.04</td>
<td>0.23</td>
<td>1.03</td>
<td>0.96</td>
</tr>
<tr>
<td>E2F4 E2F transcription factor 4</td>
<td>-0.75</td>
<td>-0.39</td>
<td>1.29</td>
<td>0.96</td>
<td>0.00</td>
<td>0.12</td>
</tr>
<tr>
<td>E2F5 E2F transcription factor 5</td>
<td>-0.06</td>
<td>-0.85</td>
<td>-1.37</td>
<td>0.04</td>
<td>-0.43</td>
<td>-0.39</td>
</tr>
<tr>
<td>FANCA Fanconi anemia complementation group A</td>
<td>0.26</td>
<td>0.71</td>
<td>1.80</td>
<td>0.35</td>
<td>1.50</td>
<td>1.78</td>
</tr>
<tr>
<td>FANCG Fanconi anemia complementation group G</td>
<td>-0.37</td>
<td>0.34</td>
<td>1.43</td>
<td>0.74</td>
<td>-0.06</td>
<td>-0.05</td>
</tr>
<tr>
<td>FANCM Fanconi anemia complementation group M</td>
<td>0.60</td>
<td>0.51</td>
<td>1.01</td>
<td>0.10</td>
<td>0.07</td>
<td>0.24</td>
</tr>
<tr>
<td>PLK1 polo-like kinase 1 (Drosophila)</td>
<td>-0.24</td>
<td>-0.04</td>
<td>1.81</td>
<td>0.78</td>
<td>-0.44</td>
<td>-0.24</td>
</tr>
<tr>
<td>RAD18 RAD18 homolog</td>
<td>0.82</td>
<td>1.02</td>
<td>1.15</td>
<td>0.29</td>
<td>0.54</td>
<td>0.24</td>
</tr>
<tr>
<td>RAD51 RAD51 homolog</td>
<td>0.39</td>
<td>1.12</td>
<td>1.58</td>
<td>0.32</td>
<td>0.42</td>
<td>0.50</td>
</tr>
<tr>
<td>RFC2 replication factor C 2</td>
<td>0.23</td>
<td>1.26</td>
<td>1.44</td>
<td>0.25</td>
<td>0.77</td>
<td>0.71</td>
</tr>
<tr>
<td>RBL1 retinoblastoma-like 1 (p107)</td>
<td>0.32</td>
<td>0.62</td>
<td>1.39</td>
<td>0.12</td>
<td>0.63</td>
<td>0.55</td>
</tr>
<tr>
<td>RFC5 replication factor C 5</td>
<td>0.08</td>
<td>0.62</td>
<td>1.53</td>
<td>0.14</td>
<td>0.62</td>
<td>0.93</td>
</tr>
<tr>
<td>SLC19A1 solute carrier family 19 (folate transporter), member 1</td>
<td>0.32</td>
<td>0.45</td>
<td>1.38</td>
<td>0.66</td>
<td>0.37</td>
<td>0.79</td>
</tr>
<tr>
<td>SMARCA4 SWI/SNF related matrix associated, actin dependent regulator of chromatin, α 4</td>
<td>-0.57</td>
<td>-0.49</td>
<td>1.18</td>
<td>1.11</td>
<td>0.30</td>
<td>0.56</td>
</tr>
<tr>
<td>SMARCD2 SWI/SNF related matrix associated, actin dependent regulator of chromatin, α 4</td>
<td>-1.90</td>
<td>-1.53</td>
<td>1.62</td>
<td>1.47</td>
<td>-0.61</td>
<td>0.44</td>
</tr>
</tbody>
</table>

### Xenobiotic Metabolism Signaling

<table>
<thead>
<tr>
<th>Genes in Pathway</th>
<th>LoVo-92 4OHP</th>
<th>LoVo-92 cOHP</th>
<th>LoVo-Li 4OHP</th>
<th>LoVo-Li cOHP</th>
<th>A2780 4OHP</th>
<th>A2780 cOHP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCB1 ATP-binding cassette, sub-family B (MDR/TAP), member 1</td>
<td>0.47</td>
<td>0.95</td>
<td>1.68</td>
<td>2.12</td>
<td>0.02</td>
<td>0.08</td>
</tr>
<tr>
<td>ABCC2 ATP-binding cassette, sub-family C (MDR/TAP), member 2</td>
<td>0.13</td>
<td>0.40</td>
<td>-1.73</td>
<td>-2.92</td>
<td>1.94</td>
<td>1.76</td>
</tr>
<tr>
<td>ALDH1A1 aldehyde dehydrogenase 1 ,A1</td>
<td>1.51</td>
<td>1.53</td>
<td>0.82</td>
<td>-0.99</td>
<td>2.37</td>
<td>4.64</td>
</tr>
<tr>
<td>ALDH3A2 aldehyde dehydrogenase 3, A2</td>
<td>-0.40</td>
<td>-0.30</td>
<td>0.31</td>
<td>1.20</td>
<td>0.14</td>
<td>0.24</td>
</tr>
<tr>
<td>ALDH6A1 aldehyde dehydrogenase 6, A1</td>
<td>0.15</td>
<td>0.52</td>
<td>-1.89</td>
<td>-1.25</td>
<td>-1.36</td>
<td>-1.90</td>
</tr>
<tr>
<td>CYP3A7 cytochrome P450, family 3, subfamily A, polypeptide 7</td>
<td>0.67</td>
<td>0.41</td>
<td>-0.56</td>
<td>-1.59</td>
<td>0.07</td>
<td>0.41</td>
</tr>
<tr>
<td>GSTA4 glutathion-s-transferase A4</td>
<td>0.59</td>
<td>0.08</td>
<td>-0.85</td>
<td>-1.63</td>
<td>-0.12</td>
<td>-1.13</td>
</tr>
<tr>
<td>HMOX1 heine oxygenase (decycling) 1</td>
<td>-0.93</td>
<td>-0.14</td>
<td>0.93</td>
<td>1.20</td>
<td>1.72</td>
<td>0.96</td>
</tr>
<tr>
<td>HRAS v-Ha-ras Harvey rat sarcoma viral oncogene homolog</td>
<td>-0.59</td>
<td>-0.31</td>
<td>1.88</td>
<td>1.07</td>
<td>0.11</td>
<td>0.47</td>
</tr>
<tr>
<td>IL1A interleukin 1, alpha</td>
<td>0.02</td>
<td>0.11</td>
<td>0.15</td>
<td>1.28</td>
<td>0.06</td>
<td>-0.05</td>
</tr>
<tr>
<td>IL1B interleukin 1, beta</td>
<td>0.79</td>
<td>2.76</td>
<td>0.20</td>
<td>3.04</td>
<td>-0.07</td>
<td>0.01</td>
</tr>
<tr>
<td>MAOB monoamine oxidase B</td>
<td>-1.32</td>
<td>-2.09</td>
<td>-0.23</td>
<td>-1.55</td>
<td>0.13</td>
<td>0.32</td>
</tr>
<tr>
<td>MAPK3 mitogen-activated protein kinase 3</td>
<td>-1.03</td>
<td>-0.84</td>
<td>0.90</td>
<td>1.19</td>
<td>-1.33</td>
<td>-0.87</td>
</tr>
<tr>
<td>NCO2 nuclear receptor co-repressor 2</td>
<td>-0.60</td>
<td>-0.75</td>
<td>0.35</td>
<td>1.41</td>
<td>-0.44</td>
<td>0.29</td>
</tr>
<tr>
<td>PRKCD protein kinase C, delta</td>
<td>-0.70</td>
<td>-0.35</td>
<td>1.00</td>
<td>1.18</td>
<td>-0.09</td>
<td>-0.11</td>
</tr>
</tbody>
</table>
### Genes in Pathway

<table>
<thead>
<tr>
<th>Gene/Protein</th>
<th>LoVo-92 4OHP</th>
<th>LoVo-92 cOHP</th>
<th>LoVo-Li 4OHP</th>
<th>LoVo-Li cOHP</th>
<th>A2780 4OHP</th>
<th>A2780 cOHP</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLC01B1/ OATP2</td>
<td>0.52</td>
<td>-0.33</td>
<td>-1.09</td>
<td>-1.11</td>
<td>0.07</td>
<td>-0.28</td>
</tr>
<tr>
<td>UGT2B7</td>
<td>0.35</td>
<td>0.35</td>
<td>-1.81</td>
<td>-1.42</td>
<td>0.05</td>
<td>-0.10</td>
</tr>
<tr>
<td>UGT2B10</td>
<td>0.08</td>
<td>0.19</td>
<td>-1.52</td>
<td>-1.17</td>
<td>-0.27</td>
<td>-0.02</td>
</tr>
<tr>
<td>UGT2B11</td>
<td>0.32</td>
<td>0.10</td>
<td>-1.83</td>
<td>-1.65</td>
<td>0.10</td>
<td>-0.02</td>
</tr>
<tr>
<td>UGT2B15</td>
<td>0.39</td>
<td>0.04</td>
<td>-1.80</td>
<td>-1.75</td>
<td>0.09</td>
<td>0.12</td>
</tr>
<tr>
<td>UGT2B28</td>
<td>0.06</td>
<td>-0.20</td>
<td>-1.48</td>
<td>-1.24</td>
<td>0.01</td>
<td>-0.34</td>
</tr>
<tr>
<td>UST</td>
<td>0.50</td>
<td>-0.28</td>
<td>-1.62</td>
<td>-1.38</td>
<td>1.63</td>
<td>1.50</td>
</tr>
</tbody>
</table>

### Metabolism of Xenobiotics by p450

<table>
<thead>
<tr>
<th>Gene/Protein</th>
<th>LoVo-92 4OHP</th>
<th>LoVo-92 cOHP</th>
<th>LoVo-Li 4OHP</th>
<th>LoVo-Li cOHP</th>
<th>A2780 4OHP</th>
<th>A2780 cOHP</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKR1C1</td>
<td>2.59</td>
<td>2.72</td>
<td>0.37</td>
<td>1.48</td>
<td>-1.72</td>
<td>-0.19</td>
</tr>
<tr>
<td>AKR1C3</td>
<td>2.11</td>
<td>1.91</td>
<td>1.38</td>
<td>2.29</td>
<td>0.87</td>
<td>0.80</td>
</tr>
<tr>
<td>CSGALNACT1</td>
<td>-0.84</td>
<td>-1.26</td>
<td>0.53</td>
<td>0.58</td>
<td>0.64</td>
<td>0.41</td>
</tr>
<tr>
<td>CYP2J2</td>
<td>-0.03</td>
<td>0.37</td>
<td>0.39</td>
<td>1.05</td>
<td>0.53</td>
<td>0.17</td>
</tr>
<tr>
<td>CYP2S1</td>
<td>-0.03</td>
<td>0.37</td>
<td>-0.30</td>
<td>1.16</td>
<td>-0.16</td>
<td>0.06</td>
</tr>
<tr>
<td>CYP3A7</td>
<td>0.67</td>
<td>0.41</td>
<td>-0.56</td>
<td>-1.59</td>
<td>0.07</td>
<td>0.41</td>
</tr>
<tr>
<td>CYP51A1</td>
<td>1.00</td>
<td>-0.44</td>
<td>-0.56</td>
<td>1.24</td>
<td>-0.66</td>
<td>-1.22</td>
</tr>
<tr>
<td>DHDH</td>
<td>-0.21</td>
<td>0.29</td>
<td>-0.84</td>
<td>-1.08</td>
<td>1.67</td>
<td>-0.19</td>
</tr>
<tr>
<td>DHR59S</td>
<td>0.30</td>
<td>0.40</td>
<td>0.64</td>
<td>1.27</td>
<td>0.15</td>
<td>0.29</td>
</tr>
<tr>
<td>DHR52S</td>
<td>-0.58</td>
<td>-0.48</td>
<td>0.90</td>
<td>1.04</td>
<td>-2.61</td>
<td>1.17</td>
</tr>
<tr>
<td>GSTA4</td>
<td>0.59</td>
<td>0.08</td>
<td>-0.85</td>
<td>-1.63</td>
<td>-0.12</td>
<td>-1.13</td>
</tr>
<tr>
<td>LTC4S</td>
<td>-1.46</td>
<td>-1.86</td>
<td>-2.33</td>
<td>-1.19</td>
<td>0.25</td>
<td>-0.37</td>
</tr>
<tr>
<td>UGT2B7</td>
<td>0.35</td>
<td>0.35</td>
<td>-1.81</td>
<td>-1.42</td>
<td>0.05</td>
<td>-0.10</td>
</tr>
<tr>
<td>UGT2B10</td>
<td>0.08</td>
<td>0.19</td>
<td>-1.52</td>
<td>-1.17</td>
<td>-0.27</td>
<td>-0.02</td>
</tr>
<tr>
<td>UGT2B11</td>
<td>0.32</td>
<td>0.10</td>
<td>-1.83</td>
<td>-1.65</td>
<td>0.10</td>
<td>-0.02</td>
</tr>
<tr>
<td>UGT2B15</td>
<td>0.39</td>
<td>0.04</td>
<td>-1.80</td>
<td>-1.75</td>
<td>0.09</td>
<td>0.12</td>
</tr>
<tr>
<td>UGT2B28</td>
<td>0.06</td>
<td>-0.20</td>
<td>-1.48</td>
<td>-1.24</td>
<td>0.01</td>
<td>-0.34</td>
</tr>
</tbody>
</table>

### Cell cycle G1/S Checkpoint Regulation

<table>
<thead>
<tr>
<th>Gene/Protein</th>
<th>LoVo-92 4OHP</th>
<th>LoVo-92 cOHP</th>
<th>LoVo-Li 4OHP</th>
<th>LoVo-Li cOHP</th>
<th>A2780 4OHP</th>
<th>A2780 cOHP</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCND1</td>
<td>-1.06</td>
<td>-0.49</td>
<td>1.24</td>
<td>1.10</td>
<td>-0.17</td>
<td>0.00</td>
</tr>
<tr>
<td>CCND3</td>
<td>-0.14</td>
<td>0.09</td>
<td>1.50</td>
<td>0.42</td>
<td>1.14</td>
<td>0.76</td>
</tr>
<tr>
<td>CDC25A</td>
<td>0.24</td>
<td>0.49</td>
<td>1.85</td>
<td>0.79</td>
<td>0.65</td>
<td>0.57</td>
</tr>
<tr>
<td>CDK2</td>
<td>0.20</td>
<td>0.40</td>
<td>1.47</td>
<td>0.32</td>
<td>-0.19</td>
<td>0.72</td>
</tr>
<tr>
<td>Genes in Pathway</td>
<td>LoVo-92 4OHP</td>
<td>cOHP</td>
<td>LoVo-Li 4OHP</td>
<td>cOHP</td>
<td>A2780 4OHP</td>
<td>cOHP</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
<td>------</td>
<td>--------------</td>
<td>------</td>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>CDK4</td>
<td>-0.48</td>
<td>-0.18</td>
<td>1.02</td>
<td>-0.07</td>
<td>0.13</td>
<td>0.15</td>
</tr>
<tr>
<td>CDKN1B</td>
<td>0.10</td>
<td>0.26</td>
<td>-1.06</td>
<td>0.27</td>
<td>0.76</td>
<td>0.00</td>
</tr>
<tr>
<td>Cyclin-dependent kinase inhibitor 1B (p27, Kip1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E2F1</td>
<td>0.99</td>
<td>1.12</td>
<td>2.40</td>
<td>0.49</td>
<td>0.48</td>
<td>0.71</td>
</tr>
<tr>
<td>Cyclin-dependent kinase inhibitor 1B (p27, Kip1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E2F3</td>
<td>0.15</td>
<td>0.16</td>
<td>1.04</td>
<td>0.23</td>
<td>1.03</td>
<td>0.96</td>
</tr>
<tr>
<td>E2F4</td>
<td>-0.75</td>
<td>-0.39</td>
<td>1.29</td>
<td>0.96</td>
<td>0.00</td>
<td>0.12</td>
</tr>
<tr>
<td>E2F5</td>
<td>-0.06</td>
<td>-0.85</td>
<td>-1.37</td>
<td>0.04</td>
<td>-0.43</td>
<td>-0.39</td>
</tr>
<tr>
<td>E2F transcription factor 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDAC5</td>
<td>-0.63</td>
<td>-0.86</td>
<td>-1.10</td>
<td>-0.23</td>
<td>-1.02</td>
<td>-0.06</td>
</tr>
<tr>
<td>Histone deacetylase 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RBL1</td>
<td>0.32</td>
<td>0.62</td>
<td>1.39</td>
<td>0.12</td>
<td>0.63</td>
<td>0.55</td>
</tr>
<tr>
<td>Retinoblastoma-like 1 (p107)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUV39H1</td>
<td>-0.08</td>
<td>0.18</td>
<td>1.19</td>
<td>0.19</td>
<td>0.27</td>
<td>0.36</td>
</tr>
<tr>
<td>Suppressor of variegation 3-9 homolog 1 (Drosophila)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFDP1</td>
<td>-0.58</td>
<td>-0.41</td>
<td>1.45</td>
<td>0.94</td>
<td>0.26</td>
<td>0.33</td>
</tr>
<tr>
<td>Transcription factor Dp-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGFB2</td>
<td>0.23</td>
<td>0.62</td>
<td>0.41</td>
<td>0.43</td>
<td>-0.78</td>
<td>0.47</td>
</tr>
<tr>
<td>Transforming growth factor, beta 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values are depicted as log2 ratios of the resistant cell line relative to the parental cell line.
**Supplemental Figure 1**

Chromosomal profiles (normalised log2 Ratio) of oxaliplatin resistant and parental cell lines. Profiles were established by CGHcall and depict log2 ratios and aberation calls of resistant versus parental cell lines and parental cell lines versus reference DNA.

![Supplemental Figure 1](image-url)
Appendix A

LoVoLi.4OHP.vs.LoVoLi

![Graph showing log2 ratio vs probability for LoVoLi.4OHP vs LoVoLi](image)
Supplemental Figure

A2780.cOHP.vs.A2780

The graph shows a scatter plot with probability on the y-axis and log2 ratio on the x-axis. The data points are color-coded, with green and red representing different conditions or categories.