CHAPTER 5

When Sad Groups Expect to Meet Again: Negative Affective Sharing and Future Interaction Expectation as Determinants of Work Groups’ Analytical and Creative Task Performance
Abstract

When Sad Groups Expect to Meet Again: Negative Affective Sharing and Future Interaction Expectation as Determinants of Work Groups’ Analytical and Creative Task Performance*

The present study examines the moderating role of future interaction expectations in the relationship between the sharing of negative affect and work groups’ task performance. We reason that anticipation of future interaction may strengthen the effects of group defining characteristics on group member behavior, and that therefore shared negative affect (as compared to non-shared negative affect) is more likely to influence work group outcomes when group members expect to meet again. Results from a laboratory experiment with 66 three-person work groups indeed show that shared (as compared to non-shared) negative affect facilitated work groups’ analytical task performance, whereas it inhibited performance on a creative fluency task, and that these effects were stronger for groups who have expectations of future interaction than for groups who do not have expectations of future interaction. The discussion focuses on how these results add to theory on group affect and contribute to insight in the effects of future interaction expectation.

The increasing interest in the affective side of organizational behavior (Ashforth & Humphrey, 1995; Brief & Weiss, 2002; Lord, Klimoski, & Kanfer, 2002), referred to as the affective revolution (Barsade, Brief, & Spataro, 2003), has led to the publication of numerous studies that concentrated on intrapersonal affective processes relevant to social and organizational functioning (how do a person’s affective states influence his or her own behaviors, attitudes, etc.). Research that takes on a group perspective on affect has been relatively scarce in the past, but is flourishing at present. Although the sharing of affect between group members may substantially influence group processes and outcomes (e.g., Barsade, 2002; George, 1990, 1995; Mason & Griffin, 2003; Totterdell, 2000), surprisingly little is known about the conditions under which affective sharing is more likely to influence work group outcomes. Moreover, the greater part of this research focuses on the effects of sharing positive feelings, whereas the effects of negative feelings on work group functioning are less clear.

The aim of the current study is three-fold. First, we aim to come to a deeper understanding of when the relationship between affective sharing and work group performance may particularly manifest itself. As the sharing of affect may be deemed particularly influential when group members expect prolonged group longevity, we explore the role of future interaction expectations in explaining the affective sharing-performance link. Second, we aim to draw more attention to the role of negative affect in work groups, which, until now, has been underexposed in empirical studies on group affect. Third, our study investigates how the interplay between sharing of affect and future interaction expectation may affect both analytical and creative task performance in work groups. Thereby, we aim to highlight the often neglected role of task characteristics in group affect research.

Affective Sharing

Because organizations rely more and more on the functioning of work groups and teams instead of on individuals (Fisher & Ashkanasy, 2000), researchers have begun to examine the role of affect in groups. Notably, group members often share their affect with fellow group members. This sharing of affect may occur through several affective sharing mechanisms. First, affect may be shared as a result of affective contagion, or the process in which moods or emotions of other people around us influence our own affective state, for instance through the automatic mimicking and synchronizing of affective expressions of others (e.g., Barsade, 2002; Hatfield, Cacioppo, & Rapson, 1994; Kelly, 2004; Totterdell, Kellett, Teuchmann, & Briner, 1998). Second, affect may be shared via affective comparison processes in which people compare their experienced feelings with those of others.
Chapter 5

(cf., Festinger, 1954). Third, people share their affect through the process of conscious social sharing of affect, which is defined as the open communication between people about emotional circumstances and their related feelings and reactions (Rimé, 1995; Zech & Rimé, 2005). Importantly, affective sharing processes among group members may lead to affective convergence and consequently to the development of a group affective state (e.g., Barsade 2002; Bartel & Saavedra, 2000; George, 1990, 2002; Sy, Côté, & Saavedra, 2005). However, group affect may also occur as a result of for instance similarity in personality or similar affective reactions to shared events (e.g., George, 1996).

Especially relevant to the present discussion is the notion that the process of sharing may have substantial impact in the extent to which group members’ affective states feed into subsequent behavior. Indeed, Klep, Wisse, and Van der Flier (2009, in press) found that shared affect in work groups had stronger effects on work groups’ task performance than affect that is congruent between group members but not explicitly shared. Other research has also pointed to the power of sharing of affect, beliefs, and attitudes. For instance, sharing of emotions leads to a stronger association between the particular emotion and the appropriate behavior (Peters & Kashima, 2007). Likewise, the sharing of thoughts and beliefs with group members strengthens the link between beliefs and attitudes, and the link between attitudes and behavior (Briñol & Petty, 2003; Petty, Briñol, & Tormala, 2002; Sechrist & Stangor, 2001). Also, shared information has a stronger impact on group decisions than unshared information (Mojzisch, Schulz-Hardt, Kerschreiter, Brodbeck, & Frey, 2008; Postmes, Haslam, & Swaab, 2005). So, there is some evidence for the general idea that affect that is shared has stronger effects on behavior than affect that is not shared. However, empirical studies that have identified specific conditions under which the relationship between affective sharing and work group performance is most likely to emerge have been lacking. Yet, this information may be crucial in gaining a more comprehensive understanding of the role of group affect in work group functioning.

Group affect has been described as a collective property of the group or as a group level phenomenon (George, 1990). As a consequence, group affect may be regarded a group defining characteristic, or as a feature of the group’s identity. We reason that group characteristics may feed into behavior more strongly when the group becomes more important to its members, because individuals may then feel more inclined to behave in accordance with that which is indicative of the group’s identity. One clear demonstration of the value of this line of reasoning was found in a study by Tanghe, Wisse and Van der Flier (in press-a). They showed that positive group affect was more strongly positively related to helpful behavior towards other group members and perceived team performance when levels of group identification were high rather than low. Thus, the affective characteristics of
the group more strongly affected subsequent behavior to the extent that group members’ sense of self was more strongly tied to their group membership. These results suggest that people are willing to conform to what is indicative of the group’s identity (i.e., the group defining affective characteristics) when the group is more salient. Similarly, we argue that group members who expect to meet their fellow members again are more likely to be influenced by the group’s characteristics than group members who do not expect future interaction with their group members. As such, future interaction expectations may strengthen the effects of group defining characteristics on work groups’ outcomes.

The Role of Future Interaction Expectation

Research on future interaction expectations shows that when people expect to meet their current interaction partner again, they will be more willing to create (and maintain) a smooth and harmonious relationship with this other person by adjusting their own behavior according to existing social norms (Pruitt & Rubin, 1986). For instance, when people expected future interaction with a person who holds an opinion different than their own, they shifted their own opinion to a position more similar to that maintained by the other person (Cialdini, Levy, Herman, & Evenbeck, 1973). Likewise, participants expecting future interaction with a group conformed to incorrect group judgments when they had not received prior support of the group, suggesting people to conform to obtain future group acceptance (Hancock & Sorrentino, 1980).

Other ways in which people may show their willingness to adjust to social norms and maintain congenial interactions is by exhibiting friendly and cooperative behavior. For instance, people anticipating continued interaction offered others help more quickly (Gottlieb & Carver, 1980), diminished their use of (hard) influence tactics (Van Knippenberg & Steensma, 2003), and distributed rewards given to themselves and others more according to the equality rule (e.g., Mannix, 1994; Shapiro, 1975) than when they did not expect future interaction. Similarly, the negotiation literature shows that the anticipation of future interaction fosters conciliatory and cooperative behaviors, whereas it suppresses exploitative and competitive behaviors of bargainers towards the other party (Arnold & Carnevale, 1997; Ben-Yoav & Pruitt, 1984; Dittloff & Harris, 1996).

So, it seems that the anticipation to meet again may render social norms more salient (Gottlieb & Carver, 1980), and as a consequence, enhances the likelihood that people will turn towards the groups’ characteristics in order to understand which behaviors are expected of them. In other words, future interaction expectation may lead group members to behave more in accordance with the groups’ norms and characteristics, and therefore, is considered to strengthen the effects of group defining characteristics. As the affective state...
of the group may be regarded as a group characteristic, we expect affective sharing to influence work group outcomes more strongly when groups expect future interaction than when they do not.

In the below, we explain how this general proposition will translate to a prediction about the influence of negative affective sharing and future interaction expectation on two types of tasks that work groups may encounter, namely analytical decision making tasks and creative idea-generating tasks. Unfortunately, earlier research on the effects of negative group affect hardly focused on group level performance. Therefore, we use individual level research on the effects of negative mood on task performance to develop hypotheses on the effects of negative group affect on group level task performance, in so far as it taps into the basic psychological processes that are also important for explaining mood effects at the group level (cf., Grawitch, Munz, & Kramer, 2003).

Negative Affect and Task Performance

According to the mood-as-information hypothesis (Schwarz & Bless, 1991) our affective states may inform us about the benign or problematic nature of the current situation. Negative mood suggests a problematic task environment, which engenders more systematic (or less loose) processing styles, and more cautious (or less spontaneous) behavior than positive affective states (Bless, 2000, 2001; Forgas, 1995; Schwarz, 2001; Schwarz & Clore, 1988). As such, negative mood may create a relative advantage on analytical tasks that call for accuracy and carefulness, and a relative disadvantage on tasks that call for creative ideas and unconventional behavior (Fiedler, 2001). Several empirical studies provide evidence for the notion that negative mood facilitates a systematic processing strategy and benefits analytical task performance. For instance, research has shown that people with negative moods (as compared to positive moods) make the fundamental attribution error to a lesser extent (Forgas, 1998a), are more sensitive to the strength of arguments in persuasive messages (Bless, Bohner, Schwarz, & Strack, 1990), and show increased judgmental accuracy on numerical analytical tasks (Sinclair & Mark, 1995).

However, research on the effects of negative moods on creative task performance is less conclusive (for reviews see, Amabile, Barsade, Mueller, & Staw, 2005; Baas, De Dreu, & Nijstad, 2008; Davis, 2009; James, Brodersen, & Eisenberg, 2004). On the one hand, negative affect has been found to narrow thought-action repertoires (Fredrickson & Branigan, 2005), lower the ability to shift attention (Derryberry & Reed, 1998), reduce cognitive flexibility (Carnevale & Probst, 1998), and narrow cognitive categories (Mikulincer, Paz, & Kedem, 1990), which may inhibit creative performance. On the other hand, negative affect may facilitate creativity because of enhanced persistence, greater effort, and more time spent on
creative activities (De Dreu, Baas, & Nijstad, 2008; Gasper & Clore, 2002; George & Zhou, 2002). However, most studies showing a beneficial effect of negative affect on creative task performance focus particularly on high activating negative affect (e.g., George & Zhou, 2002, 2007). Some authors even suggest that it may be the high activation aspect of the affective state that drives the effect (De Dreu et al., 2008). Moreover, others have argued that whether negative moods are detrimental or beneficial for creative task performance is contingent on the specific characteristics of the creative task (e.g., Davis, 2009). For instance, Vosburg (1998a) found that negative affect inhibited performance on an ideational fluency task, suggesting that negative mood creates a concern for optimal ideas, which hampers performance on a creativity task in which people should be more concerned with the quantity of ideas, instead of the quality. However, a concern for optimal ideas may, in contrast, benefit performance on an insight task (Kaufmann & Vosburg, 1997).

So it seems that negative affect may indeed engender a more effortful, systematic processing style that may promote an optimising problem-solving strategy (Vosburg, 1998a), which facilitates performance on an analytical task, however, inhibits performance on a creative fluency task. Based on the above evidence regarding negative mood effects on task performance and our proposition that affective sharing (as compared to non-shared affect) in groups is more likely to influence work group functioning when group members have future interaction expectations than when they have not, we hypothesize the following:

Hypothesis 1: Work groups will have a higher performance on an analytical (decision making) task when negative affect is shared with fellow group members as compared to non-shared, and these effects will be stronger for groups who have expectations of future interaction than for groups who do not have expectations of future interaction.

Hypothesis 2: Work groups will have a lower performance on a creative (ideation fluency) task when negative affect is shared with fellow group members as compared to non-shared, and these effects will be stronger for groups who have expectations of future interaction than for groups who do not have expectations of future interaction.

Method

Participants and design. One hundred and ninety-eight Dutch university students ($M_{age} = 20.0$, $SD = 2.5$, 24.2% male) were paid 10 Euros for their voluntary participation. Participants were randomly divided in sixty-six 3-person work groups. Each work group was randomly assigned to the conditions of a 2 (affective sharing: yes vs. no) by 2 (future interaction expectation: yes vs. no) between-subjects design.
Procedure. Participants were invited in groups of three to take part in this study. Upon arrival in the group laboratory, participants were seated together at a table and told that during the experiment the three of them were a work group. The first part of the study was introduced to participants as a study on the evaluation of film clips. In reality, however, the film clips were used to induce negative mood. Research has shown that this is a highly effective procedure to manipulate participants’ mood (for a review see, Gerrards-Hesse, Spies, & Hesse, 1994). All participants watched two 5-minute long film fragments containing tragic war scenes from respectively *The sky is falling* and *Sophie’s choice*.

Participants in the *affective sharing* condition were seated in a semi-circle behind a television screen to watch the film clips together. In this way participants were able to see and hear their group members. After watching the clips participants took 5 minutes to come up with a collective description of experienced feelings. Therefore, group members were required to share their feelings with one another, facilitating affective sharing processes, such as affective contagion, affective comparison, and conscious social sharing of affect. In contrast, members of work groups in the *affective non-sharing* condition were allocated one of three computers, which were separated by screens and supplied with headphones. Thus, we made certain that participants could neither see nor hear their group members (or their computers). After watching the film clips participants took 5 minutes to come up with a description of their own experienced feelings. Thus, participants were given no opportunity to share their affect with group members, thereby impeding affective sharing processes.

Before participants were introduced the second and allegedly unrelated study in which they had to perform two tasks as a team, they were informed about the task that was to follow afterwards. This task would be a different kind of task than the two tasks they were going to work on, and would be performed in an adjoining experimental room. In the condition in which participants expected *future interaction* they were told that this task would have to be performed together with the same team members that they were currently working with. This meant, as was explained, that their team members would also be present in the other experimental room, and that they had to interact with these team members again. Also, participants were informed that they and their team members would have to return to the laboratory for a follow-up study, in which they would be interacting with their team members again. In contrast, participants who expected *no future interaction* were told that this following task would be an individual task. They were informed that their team members would not be present in the other experimental room, and that they would not have anything to do with the other team members in the next task. Furthermore, they were told that they would participate in a follow-up study individually, and that they would not have to interact with these team members again.
Next, all work groups were asked to perform one analytical task and one creative task with an 8-minute time slot per task. The *analytical task* consisted of a decision making task resembling the NASA Moon Survival Exercise, yet this task contained a ‘Winter Survival Problem’ (Johnson & Johnson, 2000). Group members read a scenario describing a plane crash in a very cold and desolated area, in which both the pilot and co-pilot died while the passengers survived. They read that the passengers managed to salvage 12 items from the plane, and that it was their task to rank the 12 items according to their importance to survive in the described situation. The *creative task* was a drawing task. This task required groups to change empty rectangles into objects by drawing in such way that the rectangle would become an indispensable part of the object. Groups were instructed to generate as many objects as possible. Participants were instructed to work together as a team and were equally responsible for their group’s task performance. Thus, they were not allowed to have individual members working alone at the task. After finishing the last task, groups were carefully debriefed, thanked, and paid.

Dependent Measures

Analytical task performance: decision making. A measure of analytical task performance was obtained by assessing work groups’ decision making qualities regarding the Winter Survival Problem. For each of the 12 items we calculated the absolute difference between groups’ ranking numbers and the expert’s ranking number as described by Johnson and Johnson (2000). We obtained a sum score of differences for work groups by adding up the absolute differences in ranking numbers for each of the 12 items. Last, we calculated the difference between the maximum sum score of differences (72) and the obtained work groups’ sum scores of differences for the convenience that higher scores represented a higher level of analytical task performance ($M = 19.26$, $SD = 6.40$).

Creative task performance: fluency. The number of ideas for each rectangle (drawn objects) work groups generated was used as our measure of creative performance ($M = 16.12$, $SD = 3.96$). Note that idea-generation tasks are frequently used in creativity research targeted at groups (e.g., Grawitch, Munz, Elliott, & Mathis, 2003; Paulus & Yang, 2000). In particular, the number of generated ideas is considered to tap into the fluency aspect of creativity (De Dreu et al., 2008; Paulus, 2000), and it is found to correlate quite highly with the originality aspect of creativity (Diehl & Stroebe, 1991).
Manipulation checks. All responses to the manipulation checks were assessed on 7-point scales (1 = completely disagree, 7 = completely agree).

To check the successfulness of the affective sharing manipulation we measured affective sharing with 15 items (Cronbach’s α = .87, M = 3.09, SD = 1.03). We used items of the affective sharing scale of Klep et al. (in press) which reflects affective contagion, affective comparison, and social sharing of affect. Items included: ‘I share my feelings with these group members’ and ‘My experienced affect is highly similar to the experienced affect of my group members’. As a check on our future interaction expectation manipulation we assessed participants’ expectations of future interaction with four items (Cronbach’s α = .96, M = 3.81, SD = 2.55) based on Van Knippenberg and Steensma (2003). Example items are: ‘I will perform the following task together with these group members, it is a collaborative task’, and ‘In the future I no longer have anything to do with the members of this work group’ (reverse coding).

Results

Preliminary analyses. To verify whether our film clips indeed induced negative affect we administered to participants a questionnaire containing propositions of negative feeling states before and after the mood induction. The negative affect scale consisted of nine items (e.g., ‘I feel sad’, and ‘I feel miserable’; Cronbach’s α = .95; 1 = completely disagree to 7 = completely agree). An ANOVA was conducted in which self reported negative affect before (time 1) and after (time 2) the mood induction was included as within-subject factor (Time). A time main effect, F(1, 62) = 18.54, p < .0001, η² = .23, showed that groups experienced less negative affect at time 1 (M = 1.97, SD = 0.63) than at time 2 (M = 2.25, SD = 0.50). No other effects were found. These findings show that our film clips were successful in inducing negative affect.

Principal-components analyses (PCA) with OBLIMIN rotation on the items of the manipulation checks were performed. This analysis yielded the expected two-factor solution, accounting for 59.9% of the variance. All items loaded between |.48| and |.96| on the intended factor, and all cross-loadings were below |.13|.

Manipulation checks were measured at the individual level of analysis. However, because individual observations within one group were interdependent we used the group as the unit of analysis. To assess whether the aggregation of the manipulation checks was

1 Manipulation checks were also analyzed at the individual level of analysis, to explicitly test if manipulations had their intended effects on every single individual within the work group. These results were similar to the reported manipulation checks at the group level of analysis.
justified we calculated two kinds of intra-class correlation coefficients; ICC(1) and ICC(2) (see Shrout & Fleiss, 1979). ICC(1) coefficients are estimates of the extent to which members of the same work group respond similarly. The ICC(1) values for affective sharing and future interaction expectation were .73, and .89, respectively. These values are well above the median value of .12 reported in the organizational literature (James, 1982). In addition, we computed ICC(2) values, which are indexes of interrater agreement and reflect the reliability of the average rating. ICC(2) values for affective sharing and future interaction expectation were .89 and .96 respectively. Moreover, the one-way analyses revealed significant effects for the random between-subjects factor Work Group for affective sharing, $F(1, 65) = 8.98$, $p < .0001$, $\eta^2 = .82$, and future interaction expectation, $F(1, 65) = 24.20$, $p < .0001$, $\eta^2 = .92$. We also calculated r_{wg} values to assess the level of agreement within work groups on the manipulation checks (James, Demaree, & Wolf, 1984). R_{wg} measures were .93 for affective sharing, and .81 for future interaction expectation. These values are all well above the suggested .70 cut-off value for aggregating ratings from the individual level to the group level (James et al., 1984), and therefore indicate satisfactory agreement. Clearly, we believe that by taking all these values (ICC[1], ICC[2], and r_{wg}) into consideration, aggregation to the group level is justified.

Manipulation checks. In all analyses of variance (ANOVAs), affective sharing and future interaction expectation were factors in the design.

An ANOVA on the scale of affective sharing revealed that work groups in the affective sharing condition reported to have shared their feelings with fellow group members to a greater extent ($M = 3.91$, $SD = 0.32$) than groups in the affective non-sharing condition ($M = 2.16$, $SD = 0.29$), $F(1, 62) = 543.28$, $p < .0001$, $\eta^2 = .90$. Furthermore, an ANOVA on the future interaction expectation score showed that groups in the future interaction condition expected to interact with their fellow group members again to a greater extent ($M = 6.27$, $SD = .0.51$) than groups in the no future interaction expectation condition ($M = 1.49$, $SD = 0.52$), $F(1, 62) = 1465.16$, $p < .0001$, $\eta^2 = .96$. No other effects were found. Overall, these findings show that our manipulations were successful.

Work Group Performance: Analytical Task Performance

A 2 (affective sharing) by 2 (future interaction expectation) ANOVA was performed on work groups’ analytical task performance score. We did not find any main effects, however, we did find the expected Affective Sharing × Future Interaction Expectation interaction, $F(1, 62) = 4.12$, $p < .05$, $\eta^2 = .06$. Consistent with our first hypothesis, work
groups expecting future interaction with their fellow group members had a higher analytical task performance when in the sharing of negative affect condition \((M = 22.12, SD = 6.84)\) than when in the non-sharing of negative affect condition, \((M = 17.07, SD = 7.31)\), \(F(1, 64) = 5.43, p < .05, \eta^2 = .08\), whereas for work groups expecting no future interaction with their fellow group members no difference in analytical task performance between the sharing of negative affect condition \((M = 18.22, SD = 4.39)\) and the non-sharing of negative affect condition \((M = 19.44, SD = 6.35)\) was found, \(F(1, 64) = .33, ns\) (see Figure 5.1).

![Figure 5.1: Two-way interaction of negative affective sharing by future interaction expectation on analytical task performance (decision making).](image)

Work Group Performance: Creative Task Performance

A 2 (affective sharing) by 2 (future interaction expectation) ANOVA was performed on work groups’ number of drawn objects. Again, we did not find any main effects, however, we did find the expected Affective Sharing \(\times\) Future Interaction Expectation interaction, \(F(1, 62) = 4.85, p < .05, \eta^2 = .07\). Consistent with our second hypothesis, work groups expecting future interaction with their fellow group members had a lower creative task performance when in the sharing of negative affect condition \((M = 15.00, SD = 2.29)\) than when in the non-sharing of negative affect condition, \((M = 17.80, SD = 4.14)\), \(F(1, 64) = 4.10, p < .05, \eta^2 = .06\), whereas for work groups expecting no future interaction with their fellow group members no difference in creative task performance between the sharing of negative affect condition \((M = 16.61, SD = 4.77)\) and the non-sharing of negative affect condition \((M = 15.19, SD = 3.89)\) was found, \(F(1, 64) = 1.06, ns\) (see Figure 5.2).
When Sad Groups Expect to Meet Again

Discussion

The sharing of affect in work groups may have a pervasive influence on work group functioning and it is therefore of crucial importance to examine more closely under which specific conditions the relationship between affective sharing and work group outcomes may manifest itself. However, group affect literature has hardly identified moderators of the affective sharing-performance link so far. Moreover, previous research attention mainly focused on the sharing of positive affective states, thereby overshadowing the role negative group affect may play in work group functioning. In the current study we aim to shed more light on these important issues by examining the effects of shared versus non-shared negative affect on work groups’ task performance and when these effects are most likely to occur.

We proposed future interaction expectation to moderate the relationship between affective sharing and work groups’ performance because the anticipation of continued interaction may lead group members to behave more in accordance with the groups’ defining characteristics and therefore may strengthen the effect of shared (as compared to non-shared) negative affect on work group outcomes. Our findings indeed show that the effects of shared negative affect as compared to non-shared negative affect on both analytical and creative task performance were stronger for groups who had expectations of future interactions than for groups who did not have future interaction expectations. The finding that future interaction moderated the effect of negative affective sharing on work groups’

Figure 5.2: Two-way interaction of negative affective sharing by future interaction expectation on creative task performance (fluency).
performance thus is a step forward in uncovering the conditions under which group affect influences group outcomes.

Unfortunately, and in contrast to ample studies on beneficial effects of shared positive affect (e.g., Barsade, 2002; George, 1995; Mason & Griffin, 2003; Pugh, 2001; Walter & Bruch, 2008), research on the effects of negative affective sharing is scarce and mainly focuses on work group processes. For instance, negative group affective tone has been found to be positively related to effort expended by the group (Sy et al., 2005) and negatively related to helpful behavior towards customers (George, 1990). Yet, work group functioning not only pertains to group processes or dynamics, but also to group outcomes. The current study aims to fill this void by focusing on the effects of shared negative affect on work groups’ task performance.

Our findings also contribute to the literature by acknowledging the often neglected role of task characteristics in group affect research. Researchers in several domains argued for the need to consider task type in promoting more systematic research on (work group) functioning and behavior (James et al., 2004; Kaufmann & Vosburg, 1997). By admitting different task types in our study we answer to the call to consider task type and show that it may also be important for research on group affect. For instance, based on the existing evidence flowing from studies on group affect, one might suspect that positive group affect, and not negative group affect, is positively related to higher performance (Barsade, 2002; Cole, Walter, & Bruch, 2008; Totterdell, 2000). However, these earlier studies did not differentiate between task types, thereby neglecting the potential role of task characteristics. Our study testifies to the importance of differentiating between task types when the effects of group affect are being studied by showing that negative affective sharing increases performance on an analytical decision making task, whereas it decreases performance on a creative ideation task, when groups expect future interaction.

These mood effects on task performance align well with earlier individual level research indicating that negative affect fosters analytical task performance (e.g., Fiedler, 2001; Sinclair & Mark, 1995), and collaborate with some previous studies showing it inhibits creative task performance (Hirt, Levine, McDonald, Melton, & Martin, 1997; Vosburg, 1998a). However, our results also contradict other studies showing that negative affect enhances creativity. For instance, De Dreu et al. (2008) found that negative activating moods increased creative performance in individuals. At the group level, negative mood was also found to enhance work groups’ creativity of generated slogans (Jones & Kelly, 2009). Yet, these facilitating effects of negative moods were found to occur through the mediating processes of increased persistence and longer time-on-task. Moreover, studies that report enhanced creativity due to negative affect have mainly used creative insight problems
When Sad Groups Expect to Meet Again

(Gasper, 2003; Kaufmann & Vosburg, 1997) and have operationalized creativity as originality (George & Zhou, 2002; Jones & Kelly, 2009). The detrimental instead of beneficial effects of negative affect on creativity as found in the current study, may be explained by the fact that we focused on the fluency aspect of creativity and used a short-on-time idea-generating creativity task, thereby minimizing the role of perseverance and persistence. Also, in the present study, we did not necessarily focus on high activating negative moods. Indeed, our choice of film clips may have led participants to experience particularly low activating moods.

The present study also adds to the literature on future interaction expectation by illustrating the potentially important role of future interaction expectations for work groups’ task performance. Our results testify to the notion that work groups’ anticipation of future interaction with fellow group members strengthens the effects that group characteristics (such as group norms, values, and affective tone) may have on subsequent group level behavior, such as group level task performance. Remarkably, research on future interaction expectation so far, mainly centered around the specific domains of negotiation, social dilemma’s, and allocation of resources (e.g., Arnold & Carnevale, 1997; Axelrod, 1984; Ben-Yoav & Pruitt, 1984; McClinton, Kramer, & Keil, 1984), and therefore focused on interpersonal cooperative versus competitive behaviors. Our findings suggest that expectations of future interactions may also influence other types of intragroup behaviors, such as a work groups’ analytical and creative task performance.

Strengths, Limitations, and Future Research

As every study, the present study has its strengths and limitations. An important strength of this study pertains to our dependent variables which were objective task performance measures, making the results of our study less dependent on subjective perception measures. Moreover, the experimental design enabled us to determine the direction of causality and increased the confidence in the internal validity of our study. However, experimental designs might pose restrictions to the external validity. Although our set-up could potentially be criticized for its artificial nature, we would like to point out that findings from laboratory experiments that rely on student samples are usually similar to findings from surveys of organizational members (Dipboye, 1990; Wofford, 1999). Still, confidence in the conclusions of this study would be bolstered by replication in the field, and we would welcome any such attempt.

Although there is previous theoretical and empirical work that strongly supports the rationale for our findings, the exact processes that are responsible for the combined effects of future interaction expectations and negative affective sharing on work groups’ task performance were not tapped in the present research. Our explanation for the found results
is that the anticipation of continued interaction with fellow group members may render group members more susceptible for group defining characteristics such as a group affective tone. However, alternative explanations for the found effects should also be taken into consideration.

For instance, literature on mood regulation processes suggests that people are motivated to regulate their affective states in such way that they adjust their mood to the mood of their anticipated interaction partners to enhance smoothness or efficiency of the anticipated interaction (Erber, 1996; Erber, Wegner, & Therriault, 1996). Building on this research, one may reason the effects of negative shared versus non-shared affect within the future interaction expectation condition to be brought about by mood regulation versus mood maintenance processes. Following this reasoning, group members in the negative affective sharing condition who expect future interaction will maintain their negative mood, as their mood is congruent with the mood of their fellow group members, and thus appropriate in the anticipated interaction. In contrast, group members in the negative affective non-sharing condition who expect future interaction will regulate their negative mood, as they do not know whether their mood is appropriate in the anticipated interaction (they do not know how their fellow team members feel), and therefore will try to neutralize their experienced negative affect. Although our results on the negative affect score before and after the manipulations did not show differences in negative affect between the shared and non-shared condition, a more frequent and less obtrusive measurement of negative affect throughout the study may reveal that mood regulation and/or maintenance processes maybe operating and might explain (part of) the found effects. Hence, more insight into the mechanisms explaining the interactive effects of negative affective sharing and future interaction expectations on work group outcomes would be valuable. We think that the proposed mechanisms may be promising and fruitful starting points for future research.

All in all, the current study suggests that whether sad work groups do or do not expect to meet their fellow group members again has considerable consequences for work groups’ task performance. The anticipation of future interaction with fellow group members seems to have a pervasive influence on the effects of group affect in work groups, and as such, has particular value in understanding and explaining mood effects on behavior in work groups and teams.
CHAPTER 6

Sharing of Affect: General Discussion