Contents

Abbreviations 7

Chapter 1. Philosophical foundations: Systems Biology, emergence and design 9

1.1. Systems Biology through the prism of Emergence. How holism and reductionism meet each other in a computer model 11

1.1.1. What is Systems Biology? Raising the question 11

1.1.2. Concept of Emergence 13

1.1.3. Deeming the emergence to be less strong 20

1.1.4. Empowered by mathematics and computers…the right moment for systems biology to take strong emergence as strong as it is 22

1.2. Reconstruction of Emergence in systems biological models 23

1.3. Three strategies to build a model: top-down, middle-out and bottom-up 26

1.4. Use of systems biological models 30

1.5. Deeper understanding based on Systems Biological Model. Design issue 34

1.6. Aim and outline of this thesis 35

Chapter 2. Methodology: a protocol for design studies 39

Chapter 3. An example of a Design Study: “Hot” and “cool” glycolysis 43

3.1. Sulfolobus sulfactaricus. Introduction 45

3.2. Blueprint model of the relevant part of glycolysis 47

3.3. ‘Paradoxical features’ of Sulfolobus glycolysis 47

3.4. Design study: Does Sulfolobus waste ATP? 49

Chapter 4. Example of a Design Study: Nuclear Receptor Signaling; a triple conveyor belt conveying a message 55

4.1. Nuclear Receptors. Introduction 57

4.2. Blueprint scheme of nuclear receptor signaling 60

4.2.1. Integrating the knowledge into a single scheme 60

4.2.2. Different NR networks as instantiations of the same master scheme 65

4.3. ‘Paradoxical features’ of Nuclear Receptor signaling 69

4.4. Design study of ‘paradoxical’ features 71

4.4.1. Why does Nuclear Receptor shuttle between the nucleus and cytoplasm? (NR-RE complex is neglected) 71

4.4.2. Why does Nuclear Receptor shuttle between the nucleus and cytoplasm? (NR-RE complex is taken into account) 83

4.4.3. Why should there be active export rather than active import of
importins? (NRL-RE degradation being neglected) 87
4.4.4. Why should there be export rather than active import of importins? (taking NRL-RE degradation into account) 91
4.4.5. Why should there be both active export of unliganded and active import of liganded receptors? 94
4.4.6. Why should both n/c transport and binding to DNA be regulated? 100
4.4.7. Why should all pathways run through the same NPC? 103

Chapter 5. The GR-PXR dialogue 109
 5.1. GR-PXR dialogue. Introduction 11
 5.2. Blueprint model of the GR-PXR dialogue 112
 5.3. ‘Paradoxical features’ of the GR-PXR dialogue 114
 5.4. Design study of ‘paradoxical’ features 115
 5.4.1. Why should activated GR inhibit its own transcription? 115
 5.4.2. Why should the affinity of ligand for GR be about 1000 times smaller than that for PXR? 117

Chapter 6. General discussion 121
 6.1. General discussion of results from our examples of design studies 123
 6.2. Emergence and design 131
 6.3. Emergence of design in the Silicon Human 133
 6.4. Physics and stamp collecting 140

Summary 145
Bibliography 149
Acknowledgements 161
Samenvatting 165
Summary in Russian 169
About the author 171
List of publications 173
Appendix 1 177