Mechanics and dynamics of biopolymer networks
Broedersz, C.P.

2011

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl
Table of contents

1 A material cell living in a material world
1.1 Cytoskeletal biopolymers 5
1.2 Semiflexible polymers 5
1.3 Reconstituted biopolymer networks 6
1.4 Rheology: measuring the macroscopic dynamic mechanical response of biological gels 8
1.5 Outline of this thesis 9
Bibliography ... 13

2 Cross-link governed dynamics 17
2.1 Introduction 18
2.2 Results and discussion 21
2.3 Implications for cross-link dynamics at high stress 26
2.4 Appendix 1: Materials and methods 32
2.5 Appendix 2: Evolution equations of the CGD model 33
2.6 Acknowledgments 35
Bibliography ... 36

3 Flexibly cross-linked networks 39
3.1 Introduction 40
3.2 Effective Medium Approach 43
3.3 The Linear medium model 44
3.3.1 Hookean Finite Extendable cross-linkers 46
3.3.2 Worm Like Chain cross-Linkers 48
3.4 Self-Consistent medium model 49
3.4.1 Continuum elastic limit 50
3.5 3D Network calculation 51
3.5.1 Semiflexible polymer networks with rigid point-like cross-links 53
3.5.2 Stiff polymer networks with highly flexible cross-links 55
3.6 Tension profiles and single cross-linker force estimate 56
3.7 Implications and discussion 61
3.8 Acknowledgments 64
Bibliography ... 65
TABLE OF CONTENTS

4 Filament length tunes elasticity in actin-filamin gels 69

4.1 Introduction ... 70
4.2 Materials and methods 72
 4.2.1 Proteins .. 72
 4.2.2 Network formation 73
 4.2.3 Characterization of f-actin length distribution ... 74
 4.2.4 Imaging .. 75
 4.2.5 Rheology ... 75
4.3 Results and discussion 77
 4.3.1 F-actin length distribution in the presence of gelsolin 77
 4.3.2 Microstructure of filamin-gelsolin-F-actin networks 77
 4.3.3 Linear response 78
 4.3.4 Dependence of the modulus on filament length ... 78
 4.3.5 Nonlinear response 83
 4.3.6 Dependence of maximum stress on filament length 87
4.4 Conclusions ... 94
4.5 Acknowledgements 95
Bibliography ... 96

5 Nonlinear rheology of biopolymer gels 101

5.1 Introduction ... 102
5.2 Materials and methods 104
5.3 Results ... 105
 5.3.1 Linear mechanical response 105
 5.3.2 Nonlinear response - Strain ramp protocol 105
 5.3.3 Nonlinear response - Prestress protocol 107
 5.3.4 Protocol comparison 110
 5.3.5 Simple model 110
5.4 Discussion and implications 115
5.5 Acknowledgements 116
Bibliography ... 118

6 Criticality and isostaticity in fiber networks 121

6.1 Introduction ... 122
6.2 Model .. 125
Table of Contents

6.3 Results ... 128
 6.3.1 Elastic response 128
 6.3.2 Non-affine deformations 135
 6.3.3 Finite size scaling 137
6.4 Discussion and implications 141
6.5 Appendix: Counting argument for rigidity threshold ... 142
6.6 Acknowledgments 143
Bibliography ... 144

7 Motors stiffen non-affine fiber networks 147
 7.1 Introduction 148
 7.2 The model 149
 7.3 Results and discussion 152
 7.3.1 Passive networks 152
 7.3.2 Active networks 155
 7.4 Conclusions 161
 7.5 Acknowledgments 162
Bibliography ... 163

8 Intermediate filament networks 167
 8.1 Introduction 168
 8.2 Materials and methods 169
 8.3 Results and discussion 170
 8.4 Conclusions 178
 8.5 Acknowledgements 180
Bibliography ... 181

Summary ... 185

Samenvatting ... 189

Acknowledgements 193

Curriculum Vitae 195

List of publications 197