Contents

Acknowledgements vii

Contents ix

1 Introduction 1
 1.1 Motivation ... 1
 1.2 A General Setup for Financial Data Modeling 3
 1.3 Methods .. 5
 1.3.1 Non-parametric volatility measurement 5
 1.3.2 Parametric models for volatility 6
 1.3.3 Semi-parametric models for volatility 7
 1.4 Overview of the Thesis 8

2 Spot variance path estimation and its application to high-frequency jump testing 11
 2.1 Introduction .. 11
 2.2 Integrated and Spot Variance 14
 2.2.1 General framework 14
 2.2.2 Integrated variance 15
 2.2.3 Spot variance 17
 2.3 Intraday Periodicity 18
 2.3.1 Preliminaries 18
 2.3.2 Model with periodicity and noise 18
 2.3.3 Periodicity extraction 19
 2.3.4 Robust estimation of intraday periodicity 20
 2.4 Intraday Jump Testing 21
 2.4.1 Lee and Mykland test 21
 2.4.2 A jump test correction for periodicity and microstructure noise .. 22
 2.5 Monte Carlo Studies 23
 2.5.1 Design of Monte Carlo study 23
2.5.2 Periodic patterns in spot variance 24
2.5.3 Spot volatility estimation ... 26
2.5.4 Intraday jump testing .. 28
2.6 Testing for Jumps Empirically .. 34
 2.6.1 EUR/USD exchange rate data 34
 2.6.2 Estimation of diurnal volatility patterns 34
 2.6.3 Spot measures .. 36
 2.6.4 Aggregate evidence of jumps 38
 2.6.5 Jumps at specific days ... 39

2.7 Summary and Conclusions .. 41

3 Quantile-based realized measure of variation: A new test for outlying observations in financial data 45
 3.1 Introduction ... 45
 3.2 The Quantile-based Measurement of Variation 48
 3.2.1 Moment-based measurement of variation 48
 3.2.2 Quantiles and order statistics 49
 3.2.3 Quantile-based measurement of variation and its properties 51
 3.2.4 Improving efficiency by combining sub-estimators 53
 3.2.5 Finite sample corrections ... 55
 3.3 Derivation of the Outlier Test ... 57
 3.3.1 Joint asymptotics of the two measurements of variation 57
 3.3.2 Test statistics ... 58
 3.4 Simulation Results .. 59
 3.4.1 Simulation design .. 60
 3.4.2 Bias of the estimator ... 61
 3.4.3 Size of the test: Distribution under the null 61
 3.4.4 Power of the test: Detection of jumps 64
 3.5 Empirical Applications ... 67
 3.5.1 Dataset .. 67
 3.5.2 Empirical results .. 69
 3.6 Summary and Conclusions .. 75

3.A Appendix .. 76
 3.A.1 Proofs .. 76
 3.A.2 Alternative jump test statistics 78

4 Heavy-tailed density models with long memory dynamics for volatility and dependence 81
 4.1 Introduction .. 81
4.2 Conditional Volatility and Dependence .. 84
 4.2.1 Modeling of returns and volatility 84
 4.2.2 Dynamic conditional modeling of volatility 86
 4.2.3 Modeling of dependence .. 89
 4.2.4 Dynamic conditional modeling of dependence 91
 4.2.5 Estimation of models ... 92
4.3 Monte Carlo Study .. 94
 4.3.1 Simulation design .. 94
 4.3.2 Simulation results ... 95
4.4 Empirical Illustrations ... 97
 4.4.1 Data and proxies for latent processes 97
 4.4.2 Conditional volatility of returns on equity 99
 4.4.3 Conditional dependence between returns on equities 102
4.5 Summary and Conclusions ... 105
4.A Appendix ... 106
 4.A.1 Autocorrelation function .. 106
 4.A.2 t density ... 107
4.B Maximum likelihood estimation results 108

5 Modeling daily covariance: A joint framework for low and high-frequency
 based measures ... 115
 5.1 Introduction ... 115
 5.2 Measuring Covariation ... 118
 5.2.1 Covariance estimation in a frictionless market 119
 5.2.2 Covariance estimation robust to microstructure noise 119
 5.3 Score-based Modeling .. 121
 5.3.1 Matrix notation and definitions .. 121
 5.3.2 Modeling assumptions ... 122
 5.3.3 Modeling strategy .. 124
 5.3.4 The main result ... 125
 5.4 Simulation study ... 127
 5.4.1 Estimation .. 127
 5.4.2 Simulation results ... 129
 5.5 Empirical Illustrations ... 130
 5.5.1 Dataset ... 130
 5.5.2 Capturing overnight variation .. 131
 5.5.3 Benchmarking against common alternatives 133
 5.5.4 Parameter stability .. 137
 5.6 Summary and Conclusions ... 139
5.A Appendix ... 140
5.A.1 Proofs ... 140

Bibliography ... 143

Samenvatting (Summary in Dutch) 155