Prenatal screening in twin pregnancies
Linskens, I. H.

2011

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 11. May. 2022
Table 1 Median MoM free β-hCG and PAPP-A in uncomplicated MC twin pregnancies and MC twin pregnancies complicated by TTTS

<table>
<thead>
<tr>
<th></th>
<th>MC uncomplicated (n=39)</th>
<th>MCTTTS (n=112)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median MoM free β-hCG</td>
<td>1.53</td>
<td>1.99</td>
<td>0.32</td>
</tr>
<tr>
<td>Median MoM PAPP-A</td>
<td>1.69</td>
<td>1.94</td>
<td>0.51</td>
</tr>
</tbody>
</table>

MC – monochorionic; MoM – Multiple of the Median; TTTS – Twin-to-Twin Transfusion syndrome; hCG – human Chorionic Gonadotrophin; PAPP-A – pregnancy associated plasma protein-A

References

Expectant management in multiple pregnancies with discordant structural fetal anomalies

Submitted
Abstract

Objective
Routine obstetric ultrasound increasingly leads to the detection of structural fetal anomalies. In multiple pregnancies with one anomalous twin, counselling on management strategies is complicated.

Patients and methods
Twin pregnancies (n=239) referred to a tertiary center between January 2007 and July 2009. In a retrospective analysis, twins discordant for a structural fetal anomaly were compared with twins without anomalies on prenatal ultrasound. Outcome parameters were survival and gestational age at birth.

Results
Anomalies were seen in at least one fetus of 34 twin pairs (8.5%), predominantly central nervous system (n=5), skeletal (n=7), urinary tract (n=6) and cord anomalies (n=5). Multiple anomalies were present in 4 fetuses of which 3 had trisomy 13. Selective fetocide using potassium chloride was performed in 3 cases of major but non-lethal anomalies in dichorionic twins. The remaining 29 cases were managed expectantly. In 3 of these cases, spontaneous fetal loss was observed. In 5 cases with major (lethal) anomalies pregnant women and their partners opted for non-intervention comfort care for the affected fetus. Median gestational age at delivery for twins without structural anomalies (255 days) and twins with one anomalous fetus (256 days fetus (n=26), this was not significantly different (Mann-Whitney U, p=0.65).

Conclusion
In this cohort we experienced the request for expectant management by pregnant women and their partners of those twins discordant for major (lethal) anomalies. Fetocide was only opted in a small number of cases with severe but non-lethal anomalies in dichorionic twins.

Introduction
Obstetric ultrasound is becoming routine in pregnancy care, with increasing frequencies in all trimesters of pregnancy with various indications. In the Netherlands, two scans are standard in each pregnancy. A viability and dating scan is conducted in the first trimester, at which multiple pregnancies and its chorionicity should also be detected. Secondly, a Standard Anomaly Scan (SAS) at 18-22 weeks’ gestational age is offered to all women since January 2007 with primary aim to detect neural tube defects. Additionally, all pregnant women are offered Down syndrome screening, with first trimester combined screening as policy of choice.

Twin pregnancies are at increased risk for adverse pregnancy outcome compared with singletons for both fetal and maternal conditions. In particular monozygotic twins are at increased risk for structural fetal anomalies compared with singleton pregnancies, in which predominantly congenital heart defects, neural tube defects and skeletal malformations are more frequently seen. In both dizygotic and monozygotic pregnancies, discordance (only one fetus affected) for structural anomalies occurs. In case of discordance for fetal anomalies in multiple pregnancies, counselling on management options is complex. Selective fetocide involves an invasive procedure with inherent risk of complications and loss of the unaffected co-twin. In addition, the presence of a dead co-twin may increase the risk for preterm birth. Complete termination of a multiple pregnancy is generally only opted for in case of discordant anomalies. Finally, expectant management of the pregnancy is an uncertain choice and still bears the usual risks of multiple pregnancies like preterm birth and increased incidence of preeclampsia. Our aim was to analyze the outcome of multiple pregnancies with discordant structural anomalies in a consecutive cohort of twins referred for ultrasound examination following the implementation of the SAS in the Netherlands.

Patients and Methods

The ultrasound database of our tertiary referral center was searched for multiple pregnancies between January 1st 2007 and July 1st 2009. The database consisted of standard anomaly scans from patients booked for routine antenatal care in our center and patients who were referred for diagnostic targeted ultrasound because of suspected fetal anomalies. All pregnancies were dated on last menstrual period, confirmed or adjusted by first trimester crown-rump length measurement. In cases of assisted reproduction, ovum-pick-up date or insemination date determined the gestational age. Chorionicity was always classified at first-trimester ultrasound by absence or presence of a λ-sign at the inter-twin membrane-placental junction. All ultrasound data were analyzed for the presence or absence of fetal anomalies and classified to anomalies of the central nervous system, cardiovascular system, thorax, abdomen (wall), urinary tract, face, skeleton and placenta/cord/membranes. Major
anomalies were considered those unusual anatomic features that are of serious medical or cosmetic consequence to the patient, i.e. anomalies that require intervention or surgery or had significant impact on neonatal morbidity and mortality. All scans were performed by experienced staff using a Voluson E8 with a 4-8 MHz abdominal transducer or a 6-12 MHz transvaginal transducer (GE Medical Systems, Kretz, Austria). If fetal anomalies were suspected, patients were counseled concerning associated risk for chromosomal anomalies, where appropriate in case of a structural anomaly and informed about the iatrogenic risks of invasive testing. After counseling they opted for, or refrained from invasive testing. Pregnancy outcome was obtained from our electronic medical records. For analysis twins were subdivided for choriocity and classified as normal if both fetuses demonstrated no anomalies at ultrasound and no history of Twin to-Twin Transfusion syndrome or severe growth restriction that required intervention or vanishing twin was present. In the discordant cases only one fetus demonstrated fetal anomalies at ultrasound. If both fetuses were affected those pregnancies were classified as concordant and excluded from further analysis. Primary outcome measurements were survival percentage of the healthy twin and gestational age at delivery.

... Statistical analysis
In this observational retrospective cohort study patient characteristics of all pregnancies are presented as mean (SD), median (range) values and percentages as appropriate. Differences between the groups (normal vs. fetal anomaly) were tested for significance with non-parametric tests. Statistical analyses were performed using SPSS version 15.0 (Chicago, IL, USA). Values less than 0.05 were considered to be significant.

Results
In total 231 multiple pregnancies comprising 470 fetuses, were scanned during the study period, with follow-up data in 94% of the cases. Table 1 shows an overview of the classification of choriocity of the 231 multiple pregnancies. Table 2 describes maternal and pregnancy characteristics of the group for maternal age, gestational age at the time of the ultrasound examination, parity and mode of conception. Table 3 gives an overview of the anomalies subdivided for choriocity for the twin pregnancies and classification as major or minor anomaly. Mean gestational age at detection of the anomalies was 19-20 weeks of gestation. In 38 twin fetuses (34 twin pregnancies), structural anomalies were detected. Of these structural anomalies, 18 were classified as single major anomalies. In four fetuses, multiple anomalies were seen (see Table 3 and 4). Anomalies were most common of the skeleton (n=7), urinary tract (n=6), central nervous system (n=5) and umbilical cord (n=5). Of the 4 fetuses with multiple congenital anomalies, 3 had trigony 13. In 9/34 (26%) twin cases, pregnant women and their partners opted for invasive testing after the ultrasound diagnosis of a major fetal anomaly. In none of the cases with a minor fetal anomaly pregnant women and their partners opted for invasive testing. In 4 of the cases with a major fetal anomaly karyotyping was performed within the same session as the fetocide. In a congenital cystic adenomatoid malformation (CCAM) case with hydrops, karyotyping was performed during thoraco-amniotic shunting. In total 8/231 multiple pregnancies were triplets. In a monochorionic triamniotic triplet, two individual fetuses had ventriculomegaly. One of these fetuses had an increased nuchal translucency with a normal male karyotype. This pregnancy ended in spontaneous birth at 24+0 weeks of gestation, with neonatal demise of both twins. In the 7 other triplet pregnancies, no fetal anomalies were detected. Triplets were excluded from further analysis. All suspected fetal anomalies were confirmed after birth. In one case, a complete situs inversus with a small ventricular septum defect was not detected prenatally in a monoamniotic twin. Furthermore in a case of a dilated bowel, a tetralogy of Fallot was missed in a MC twin.

<table>
<thead>
<tr>
<th>Choriocity</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twins (223)</td>
<td></td>
</tr>
<tr>
<td>- MCMA</td>
<td>6</td>
</tr>
<tr>
<td>- MCDA</td>
<td>62</td>
</tr>
<tr>
<td>- DC</td>
<td>155</td>
</tr>
<tr>
<td>Triplets (8)</td>
<td></td>
</tr>
<tr>
<td>- MCTA</td>
<td>2</td>
</tr>
<tr>
<td>- DCTA</td>
<td>3</td>
</tr>
<tr>
<td>- TCTA</td>
<td>3</td>
</tr>
</tbody>
</table>

MCMA – monochorionic monoamniotic; MCDA – monochorionic diamniotic; DC – dichorionic; MCTA – monochorionic triamniotic; DCTA – dichorionic triamniotic; TCTA – trichorionic triamniotic
Table 4 Twins with multiple congenital anomalies and outcome

<table>
<thead>
<tr>
<th>Case</th>
<th>Anomalies</th>
<th>Karyotype</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>AVSD, exomphalos, polydactyly, polycystic kidneys</td>
<td>T13 disc</td>
<td>Spontaneous demise at 21 weeks</td>
</tr>
<tr>
<td>II-III</td>
<td>Holoprosencephaly, facial clefting, polycystic kidneys, polydactyly</td>
<td>T13 cond</td>
<td>Induced labour at 22 weeks</td>
</tr>
<tr>
<td>IV</td>
<td>Ventriculomegaly, obstructive uropathy, talipes, SUA</td>
<td>Normal male Karyotype</td>
<td>CD at 34+2</td>
</tr>
</tbody>
</table>

AVSD - atrioventricular septal defect; Cond - concordant; DC - dichorionic; disc - discordant; MC - monochorionic; SUA - single umbilical artery; CD - caesarean delivery.

Selective fetocide / pregnancy termination in discordant twins

Selective fetocide with intracardiac potassium chloride was performed on request of the pregnant women and their partners in 3 cases of severe but non-lethal anomalies in DC twins (2 spina bifida / bladder extrophy). No pregnancy loss was observed after the procedure and all 3 pregnancies delivered at term. In two MC pregnancies (concordant trisomy 13 and conjoint twin), the complete pregnancy was terminated on request of the parents. No requests for complete pregnancy termination were seen in case of discordant anomalies.

Conservative management in discordant twins

The remaining 29 pregnancies were managed conservatively after parental counselling. In 3 cases (discordant trisomy 13 and 2 cases of exomphalos without fetal karyotype), spontaneous fetal demise of the affected twin occurred at 22+0, 14+1 and 17+1 weeks’ gestation, respectively.

In 5 cases with likely lethal anomalies, pregnant women and their partners opted for neonatal non-intervention comfort care for their infant. These neonates died shortly after birth, four cases within 24 hours. Their co-twin, without anomalies, had good outcome in all cases (see Table 5).

Median gestational age at delivery were not significantly different for twins without structural anomalies (255 days) and twins with one anomalous fetus without fetal loss (256 days) (n=26; Mann-Whitney U, p=0.69). Subdivided for classification of the anomaly: 258 days for a minor anomaly (n=14); median 254 days for major anomaly (n=12) (Table 6). Excluded from this analysis in the normal group were 10 MC twin’s cases complicated by Twin-to-Twin Transfusion syndrome or severe growth restriction that required laser therapy or umbilical cord coagulation and two cases of late vanishing twins.
In this multiple pregnancies cohort, 38 anomalies were found in 446 twin fetuses (8.5%), of whom 18 were classified as major and in four cases had multiple anomalies. This retrospective cohort study confirms the known increased risk on fetal anomalies in multiple pregnancies. In multiple pregnancies with severe or lethal anomalies, the pregnant women and their partners are faced with more difficult considerations than in singleton pregnancies. Management options in twin pregnancies with anomalies are either selective fetocide of the anomalous twin, complete termination of the pregnancy or expectant management. All these options affect the live born changes for the unaffected fetus and are discussed in the following paragraph.

Selective fetocide

Selective fetocide is associated with the unwanted risk of pregnancy loss of the unaffected ‘normal’ co-twin. The technique of selective fetocide is dependent on the chorionicity of the multiple pregnancies. In dichorionic twin’s, intracardiac or intraumbilical injection of potassium chloride (KCl) is currently the best option to initiate fetal asystole. Evans et al. (1999) studied multiple pregnancies in which selective termination by KCl was performed in case of chromosomal/structural or mendelian disorders with an overall complete pregnancy loss before <24 weeks of 7.5% in all procedures. Loss rates of this procedure for gestational age were in week 9-12: 5.4%; week 13-18: 8.7%; week 19-24: 6.8% and > 25 weeks: 9.1%. Analyzing only twin pregnancies with 2 to 1 selective reduction, the overall loss rate before 24 weeks was 7.0%, and after 24 weeks, 0.9%. Besides the loss rate, 2 to 1 selective reduction is also associated with a 4.6% premature delivery rate between 25-28 weeks of gestation. Combined data lead to a complication risk in a 2:1 procedure before 28 weeks of almost 12%, and before 32 weeks of almost 20%. In other studies, overall direct loss rates are reported of less than 5%, however, no loss reports are given in selective termination before and after 20 weeks of gestation. Due to the presence of vascular anastomoses in the placenta of monochorionic twins, KCl is no option for selective termination. A technique in which the placenta is ligated with a vascular loop to produce an ischemic kill is possible. An alternative technique is the use of laser and photocoagulation of the umbilical cord. Both techniques are associated with a high complication rate.

Conservative management

In case of lethal or severe malformations, the risk of selective termination to the normal co-twin should be weighted against the risk of the continuing development of the affected twin. The possibility of expectant management can be addressed in counselling patients in case of lethal malformations. However, expectant management is being criticized because of a possible association with premature birth.

Table 5: Outcome of expectant management in 5 cases with severe or lethal discordant anomalies

<table>
<thead>
<tr>
<th>GA at delivery</th>
<th>Delivery</th>
<th>Sex</th>
<th>Birth weight (gram) and percentile</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>I DC</td>
<td>CD, breech</td>
<td>♂</td>
<td>2926 (p20-50)</td>
<td>Uneventful</td>
</tr>
<tr>
<td>II DC</td>
<td>CD, breech</td>
<td>♂</td>
<td>2108 (p<2.3)</td>
<td>ND, bilateral multicystic kidney disease</td>
</tr>
<tr>
<td>III MC</td>
<td>CD, CP</td>
<td>♂</td>
<td>2095 (p20-50)</td>
<td>Uneventful</td>
</tr>
<tr>
<td>IV DC</td>
<td>Vag, CP</td>
<td>♂</td>
<td>2426 (p20-50)</td>
<td>Uneventful</td>
</tr>
<tr>
<td>V DC</td>
<td>CD, CP</td>
<td>♂</td>
<td>2450 (p2.3-5)</td>
<td>Uneventful</td>
</tr>
</tbody>
</table>

Table 6: Gestational age distributions at delivery subdivided for twins without anomalies and minor/major anomalies

<table>
<thead>
<tr>
<th>GA at delivery (days)</th>
<th>No structural anomalies n 777</th>
<th>Minor anomalies n 14</th>
<th>Major anomalies n 12</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>255 (154-280)</td>
<td>258 (162-273)</td>
<td>254 (224-273)</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>- Before 24 weeks (%)</td>
<td>7 (3.9 %)</td>
<td>1 (7.1%)</td>
<td>0 (0%)</td>
<td>0.57</td>
</tr>
<tr>
<td>- Before 28 weeks (%)</td>
<td>11 (6.2 %)</td>
<td>1 (7.1%)</td>
<td>0 (0%)</td>
<td>0.62</td>
</tr>
<tr>
<td>- Before 32 weeks (%)</td>
<td>25 (14.1 %)</td>
<td>3 (21.4 %)</td>
<td>0 (0%)</td>
<td>0.35</td>
</tr>
<tr>
<td>- Before 36 weeks (%)</td>
<td>75 (42.4 %)</td>
<td>5 (35.7 %)</td>
<td>5 (41.6 %)</td>
<td>0.62</td>
</tr>
</tbody>
</table>
In the study of Malone et al. (1996), the mean GA at delivery of twins with one anomalous fetus (n=14) was 33+6 weeks compared to 34+4 weeks for the control group of twins. A larger case-series report on 18 twin pregnancies found that one anomalous fetus with a twin pregnancy significantly increased the risk of preterm delivery at 33-34 weeks gestation. Nassar et al. (2000) found that one anomalous fetus in a twin pregnancy significantly increased the risk of preterm delivery at 32 weeks gestation compared to 35 weeks gestation. Therefore, it is crucial to monitor the development of polyhydramnios as an additional risk factor for preterm delivery in cases of discordant anomalies.

Nassar et al. (2000) found that one anomalous fetus in a twin pregnancy significantly increases the risk of preterm delivery at 32 weeks gestation compared to 35 weeks gestation. Therefore, it is crucial to monitor the development of polyhydramnios as an additional risk factor for preterm delivery in cases of discordant anomalies.

In our study, median gestational age at delivery was not significantly different for both normal twins with a single anomalous fetus and twins with a single normal fetus. Therefore, it is not associated with gestational age. Overall, birth weight and neonatal outcome in expectant management of MC twins were not different in the uncomplicated group compared to the group with a single anomalous fetus. However, selection bias may be the key factor in these results.

In 5 twin cases with a single anomalous fetus, the mean GA at delivery was 33+6 weeks compared to 34+4 weeks for the control group of twins. A larger case-series report on 18 twin pregnancies found that one anomalous fetus with a twin pregnancy significantly increased the risk of preterm delivery at 33-34 weeks gestation. Nassar et al. (2000) found that one anomalous fetus in a twin pregnancy significantly increases the risk of preterm delivery at 32 weeks gestation compared to 35 weeks gestation. Therefore, it is crucial to monitor the development of polyhydramnios as an additional risk factor for preterm delivery in cases of discordant anomalies.

In our study, median gestational age at delivery was not significantly different for both normal twins with a single anomalous fetus and twins with a single normal fetus. Therefore, it is not associated with gestational age. Overall, birth weight and neonatal outcome in expectant management of MC twins were not different in the uncomplicated group compared to the group with a single anomalous fetus. However, selection bias may be the key factor in these results.

In 5 cases with major or severe anomalies, patients opted for non intervention, whereas in all cases, the outcome of the unaffected co-twin was good. The outcome of the unaffected co-twin was good in 3 cases, whereas all affected twins died shortly after birth. For future studies, structured follow up of the unaffected twin is desirable, also including long term follow up. In 3 conservatively managed cases, spontaneous fetal loss was observed. For fetal demise was only opted for a small number of cases with severe but non-fatal anomalies. In DC twins, the risk of premature delivery increased significantly. The risk of delivery before 32 weeks of gestation was 78.6% for single anomalous twins vs. 59% for the control group. A significant lower overall gestational age at delivery was found for single anomalous twins vs. controls. Survival of the normal co-twin was not different in the selective termination group and expectant management group. Survival of the normal co-twin was not different in the selective termination group and expectant management group. Survival of the normal co-twin was not different in the selective termination group and expectant management group.

In our study, median gestational age at delivery was not significantly different for both normal twins with a single anomalous fetus and twins with a single normal fetus. Therefore, it is not associated with gestational age. Overall, birth weight and neonatal outcome in expectant management of MC twins were not different in the uncomplicated group compared to the group with a single anomalous fetus. However, selection bias may be the key factor in these results.

In 5 cases with major or severe anomalies, patients opted for non intervention, whereas in all cases, the outcome of the unaffected co-twin was good. The outcome of the unaffected co-twin was good in 3 cases, whereas all affected twins died shortly after birth. For future studies, structured follow up of the unaffected twin is desirable, also including long term follow up. In 3 conservatively managed cases, spontaneous fetal loss was observed. For fetal demise was only opted for a small number of cases with severe but non-fatal anomalies. In DC twins, the risk of premature delivery increased significantly. The risk of delivery before 32 weeks of gestation was 78.6% for single anomalous twins vs. 59% for the control group. A significant lower overall gestational age at delivery was found for single anomalous twins vs. controls. Survival of the normal co-twin was not different in the selective termination group and expectant management group. Survival of the normal co-twin was not different in the selective termination group and expectant management group. Survival of the normal co-twin was not different in the selective termination group and expectant management group.

In our study, median gestational age at delivery was not significantly different for both normal twins with a single anomalous fetus and twins with a single normal fetus. Therefore, it is not associated with gestational age. Overall, birth weight and neonatal outcome in expectant management of MC twins were not different in the uncomplicated group compared to the group with a single anomalous fetus. However, selection bias may be the key factor in these results.
References