Alzheimer’s disease is characterized by two types of abnormalities in the brain: the accumulation of amyloid in senile plaques, and of tau in neurofibrillary tangles. Until recently, in vivo studies were scarce since these pathologies were difficult to study. However, with new techniques it has become possible to measure amyloid and tau in cerebrospinal fluid, which is in direct contact with the brain and can provide a reflection of the pathological processes of the brain. This makes it possible to advance the understanding of Alzheimer’s disease. This thesis evaluates cerebrospinal fluid measures for monitoring, predicting and understanding the disease better during life.