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Introduction
Improving neovascularization (the formation of new blood vessels during adult life) 
is an important topic both in the field of tissue engineering as well as in the develop-
ment of new cardiovascular disease therapies. A better understanding of the con-
tribution of endothelial progenitor cells (EPC) and the specific adaptations of endo-
thelial cells (EC) during chronic hypoxia to neovascularization is urgently required to 
initiate more successful (pre)clinical studies on restoring efficient perfusion. Because 
of the evolving insight in the nature and origin of EPC during the course of these 
studies, we studied both the ‘classical’ EPC as well as the later identified endothe-
lial colony-forming cells (ECFC). These ECFC are identical to the blood-outgrowth 
endothelial cells (BOEC), as described in Chapter 51. Initially we thought these cells 
might serve as an enforcement of the endothelial lining, either as cell replacement 
because of endothelial injury or apoptosis, or to keep up with the demand for endo-
thelial cells, which are recruited by the angiogenic process. During the course of the 
studies it appeared that two subtypes of progenitor cells were present in the ‘clas-
sical’ EPC population, the early or myeloid EPC and the endothelial colony-forming 
cells (ECFC/BOEC). In addition, we examined the genomic response of endothelial 
cells exposed to a prolonged period of hypoxia. Mostly due to technical limitations, 
hypoxia is mainly studied in the acute phase of tissue repair and neovascularization. 
However, studying the prolonged effect of hypoxia on endothelial cells may give a 
better approximation of pathological conditions, such as seen in peripheral artery 
disease or chronic heart failure. 

Various types of circulating angiogenesis-stimulating progenitor cells 
When we initiated our first studies on the potential beneficial contribution of EPC to 
angiogenesis, crude cell populations such as unselected peripheral blood and bone 
marrow-derived mononuclear cells were generally used. To enhance neovascular-
ization by postnatal vasculogenesis, we decided to study the effect of the hemato-
poietic stem-cell containing CD34+ cell population on various components of neo-
vascularization (Chapter 4). At that time it was hypothesized that certain cells in this 
CD34+ cell fraction functioned as angioblasts, giving rise to endothelial progenitor 
cells and endothelial cells2-4. The CD34+ population was also chosen to avoid later 
risk of unwanted side-effects such as stimulation of atherosclerosis5, 6. 

Recruitment and retention of CD34+ progenitor cells to sites of tube formation were 
the two initial components of EPC biology we studied (Chapter 3). Whereas the 
CD34+ cells manifested an at random movement over the growth factor- and cy-
tokine-stimulated endothelial monolayer, the progenitor cells remained associated 
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with a developing tube once they reached them. Related to inflammation, adhesion 
receptors might be responsible for the specific recruitment and retention. Further-
more, in agreement with other parallel studies7-11 we documented a very low num-
ber of CD34+ cells that actually incorporated in the endothelial lining of developing 
tubes and induced a modest stimulation of tube formation. In contrast, addition of 
cultured EPC (in Chapter 4 also indicated as circulating angiogenic cells) or CD34+ 

co-cultured with CD34- cells dramatically enhanced tube formation. Despite the posi-
tive expression of a number of endothelial markers on these cultured EPC, such as 
endothelial nitric oxide synthase (eNOS), VE-cadherin (CD144), VEGF receptor 2 
(VEGFR2, or kinase insert domain receptor (KDR)), CD146 and  CD31, it is highly 
likely that the cells used in these experiments resemble the so-called early EPC or 
CFU-EC12-16. In contrast to the believe at that time, these colonies were later shown 
not to be composed of endothelial cells, but to consist of a core of round hema-
topoietic cells, including myeloid progenitor cells, monocytes and T lymphocytes, 
and spindle-shaped monocytes/macrophages at the periphery. Although these cells 
manifest very limited or no incorporation in the endothelial lining at all, it does not ex-
clude a role for these cells in angiogenesis and arteriogenesis, as was also evident 
from our experiments. Their effect on angiogenesis resembles the potent stimulatory 
role of monocytes and macrophages, which has been described by many investiga-
tors17-29. 

The peritubular positioning of the CD34+ progenitor cells in our studies has many si-
milarities to that of myeloid progenitor cells, which undergo extravasation to become 
positioned around developing vessels in tumors where they stimulate tumor angio-
genesis30, 31. Interestingly, when CD34+ and CD34- cells were co-cultured the largest 
number of EPC colonies were formed, which were more successful in stimulating 
in vitro tubular sprouting than a pure population of CD34+ cells (Chapter 4). Virtu-
ally no cell clusters were formed when CD34+ and CD34- cells were separated by a 
0.4 µm pore trans-well system allowing diffusion of soluble factors without physical 
contact. These experiments suggested that direct cell-cell contact between CD34+- 
and CD34--cells was necessary for endothelial differentiation of CD34+-cells, but the 
involvement of platelet microparticles, which also cannot pass the filter and may 
contribute to the acquisition of endothelial marker proteins32, cannot be excluded. 
Later on Van Beem et al. demonstrated that also the interaction between T lympho-
cytes and monocytes was essential for the extent of colony formation15. These re-
sults were in support of a myeloid nature of the CD34+ cell that we used in our initial 
studies. Furthermore, the modest purity of CD34+ cell preparations (90%) we used 
in these experiments may accommodate ‘contaminating’ cells with pro-angiogenic 
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potential or the capacity to differentiate into true endothelial cells. In support of this 
suggestion, we documented the appearance of clusters and confluent monolayers of 
cobblestone-shaped cells in long-term cultures of EPC (6 weeks), which phenotypi-
cally resembled mature endothelial cells. Also their in vitro growth kinetics showed 
a high similarity to the later characterized endothelial colony forming cells (ECFC). 

As mentioned before, during the course of our studies, a novel type of EPC was 
identified and characterized. These so-called late-outgrowth endothelial cells, or en-
dothelial colony-forming cells (ECFC, indicated as blood-outgrowth endothelial cell 
(BOEC) in Chapter 5), have the typical endothelial cobblestone morphology and 
display a wide range of endothelial markers, without the expression of hematopoietic 
or monocytic lineage markers CD45, CD14, CD11b or CD16333-35. Apart from the 
endothelial differentiation and high proliferative potential, these cells possess the ca-
pacity to form capillary-like tubes in vivo which connect to the resident vasculature, 
thereby becoming part of the systemic circulation7, 8, 12, 36-40. Both ECFC/BOEC and 
early EPC have been suggested as being suitable for therapeutic applications, to re-
place or support the host vasculature (Fig. 1)12, 38, 41. It is known for several years that 
cardiovascular risk factors and diseases, like hypertension and diabetes, negatively 
influence the number and functionality of the ‘classical’ EPC42-48. To circumvent this 
complication, genetic modification or incubation with pharmaceutical compounds 
have shown promising results in enhancing the potential of EPC in a preclinical 
setting33, 49-52. For ECFC, the number of reports on ECFC dysfunction is scarce53, 54, 
but they also suggest a reduced presence in blood in diabetes and cardiovascular 
disease. Similar to the modification of ‘classical’ EPC, ex vivo modulation (e.g. pri-
ming) of ECFC is a valid option, for example by SDF-1, which enhanced binding to 
activated endothelium and stimulated FGF-2 and MMP-2 production by ECFC55.

Choice of progenitor cells in tissue repair
In support of the preferred use of ECFC/BOEC over the early EPC for vascular re-
generating cell therapies, the biological activities of the ECFC/BOEC more closely 
resemble those of mature differentiated endothelial cells, as we and others have 
clearly demonstrated56 (Chapter 5). As both EPC types are present in only very low 
numbers in the circulation (0.1-0.01% of the mononuclear cells), the superior ex vivo 
expansion is a useful characteristic of ECFC/BOEC to obtain sufficient cell numbers 
for therapy. Furthermore, ECFC/BOEC are able to incorporate into an existing en-
dothelial monolayer, thereby forming VE-cadherin positive cell-cell junctions56. The 
formation of tubular structures in vitro, as well as their integration into a function-
ally perfused capillary plexus in vivo are reasons for further preclinical testing38, 57, 
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Fig 1. Contribution of endothelial progenitor cells to adult neovascularization 
Hypoxia in a tissue induces HIF expression which controls the production of pro-angiogenic growth fac-
tors and cytokines in stromal cells (I). Proteins like VEGF and SDF-1 enter the circulation (II) and stimu-
late proteases (e.g. MMP-9) in the bone marrow (III), whereby resident progenitor cells are released in 
the systemic circulation. The progenitor cells of both CFU-EC and ECFC migrate towards areas of neo-
vascularization (IV), where they position themselves either in the endothelial lining of developing blood 
vessels (V) or peri-vascular (VI). The ECFC support neovascularization by the supply of true endothelial 
cells which proliferate, migrate and form new blood vessels (VIII). Peri-vascular CFU-EC contribute to this 
process by the hypoxia-driven secretion of pro-angiogenic growth factors (VII).

58. Since ECFC/BOEC can be derived from different sources, like peripheral blood, 
cord blood and bone marrow, we made an analysis of potential differences in the 
pro-angiogenic properties of peripheral and cord blood. Although a slightly more 
angiogenic phenotype favors cord blood-derived ECFC/BOEC, the difference could 
be matched by administering VEGF to peripheral blood ECFC/BOEC. Because au-
tologous cord blood so far is usually not available for the often aged cardiovascular 
patients, this latter fact is of great value. Until banking of autologous cord blood has 
come into effect, our results suggest that PB-BOEC might be equally eligible as CB-
BOEC, since equal proliferation and tube formation could be reached by the addition 
of VEGF.
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Cellular cooperation in generating stable vessels
Despite the promise of EPC delivery in treating diseases associated with blood ves-
sel disorders, (pre)clinical results on single EPC cell type infusions have been disap-
pointing59-61. Given the different origins and functions of early EPC and ECFC/BOEC 
to neovascularization, Yoon et al. was among the first to investigate the possible 
synergism between these different cell types40. Injection of a mixture of the two types 
of cells resulted in superior neovascularization in vivo to any single-cell type trans-
plantation. These results were supported by a more recent publication of Chade et 
al. who studied the effect of simultaneous delivery of early EPC and late-outgrowth 
EPC62. The pro-angiogenic role of growth factors secreted by the early EPC which 
coincided with the delivery of endothelial cells by the late-outgrowth EPC for neo-
vascularization was suggested as a plausible explanation (Fig. 1). This described 
cooperation may have contributed to the significant stimulation of tube outgrowth by 
the relatively large number of early/classical EPC and the modest incorporation of 
supposed late-outgrowth EPC into the endothelial lining that we observed in our ini-
tial studies (Chapter 3). This type of combination therapy now awaits more thorough 
examination for possible therapeutic application. 

Next to the induction of angiogenesis by growth factors, and the supply of endothe-
lial cells (either by the resident blood vessel wall population, or by circulating pro-
genitor cells) for capillaries, the developing blood vessels need to be stabilized by 
mural or perivascular cells. Mesenchymal stromal cells have been suggested as a 
promising source of angiogenesis-promoting and blood vessel-supporting cells63-73. 
Because of their multi-potency as well as immune suppressive properties, these 
cells make an interesting candidate for cell-based therapies71, 74-82. In fact, a posi-
tive role of paracrine factors produced by MSC on neovascularization has been de-
scribed by a number of groups 83-103. In agreement with other publications, we report 
the production and secretion of considerable amounts of pro-angiogenic factors, 
such as CXCL1, FGF-2, HGF, IL-6, MDK, u-PA, PGE2, TGF-ß1, and VEGF by MSC 
(Chapter 6). Proliferation, one of the key components of angiogenesis was signifi-
cantly increased when incubating human endothelial cells with conditioned medium 
from human fetal lung mesenchymal stromal cells (FL-MSC-CM). Furthermore, incu-
bation of endothelial cells with FL-MSC-CM supplemented with the cytokine TNF-α 
significantly stimulated tube formation in a 3D fibrin matrix. VEGF and HGF were 
largely responsible for this stimulatory effect on angiogenesis, which is supported by 
a large number of reports83, 87, 88, 91-100, 104-109. Next to the production of growth factors 
and cytokines, proteases are also produced by MSC. MSC-derived uPA as well as 
MMP have been reported to have a stimulatory effect on endothelial tube formation 
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in 3D fibrin gels due, in part, to degradation of the matrix105, 110. 

In this context it is of interest to note that Au et al. used human bone marrow-derived 
mesenchymal stromal cells (hMSC) as a source of stabilizing perivascular cells57. 
MSC efficiently stabilized nascent blood vessels in vivo by functioning as perivas-
cular precursor cells. The engineered blood vessels derived from human umbilical 
cord vein endothelial cells and hMSC remained stable and functional for more than 
130 days in vivo. In contrast, single injection of endothelial cells resulted in the for-
mation of tube-like structures, but these capillaries were non-functional and regres-
sed within 30 days57. Co-implantation of progenitor cells for both endothelial cells as 
well as perivascular cells may have therapeutic potential above the use of terminally 
differentiated cells (Fig. 1). In vivo, the engineered vascular networks formed by co-
culture of human endothelial and mesenchymal progenitor cells isolated from blood 
and bone marrow remained patent at 4 weeks58. The formation of these long-lasting 
microvascular networks by postnatal progenitor cells obtained from less invasive 
sources constitutes an important step forward in the development of clinical strate-
gies for tissue vascularization.

Endothelial transcriptional profile of short-term and prolonged hypoxia
One of the aspects that received still little attention is the behavior of endothelial pro-
genitor cells and mature (differentiated) endothelial cells present in a hypoxic area. In 
particular, the different effects of short-term and prolonged hypoxia on vascular en-
dothelial cells received little attention in regenerative medicine. This is rather contra-
dictory since a number of diseases, like cancer, heart ischemia and chronic infection, 
are usually accompanied by prolonged hypoxia111-121. Because of the lack of data on 
chronic hypoxic exposure we started a detailed genomic analysis of human endothe-
lial cells subjected to short and prolonged periods of hypoxia. Comparison with five 
previously published microarray studies on short-term hypoxia-exposed endothelial 
cells122-126 showed a substantial overlap in identity of the genes, more than originally 
anticipated. The stringency of microarray analysis, which was responsible for a con-
siderable underestimation of the number of hypoxia-induced genes, resulted in the 
identification of highly significant ‘common’ hypoxia-regulated genes. Genes with 
lower statistical significance may therefore appear at random in the various studies. 
More importantly, when we compared the effects of acute versus chronic hypoxia, 
it became clear that the differences were limited and reflected, if any, a quantitative 
rather than a qualitative difference. Indeed, only eight genes responded qualitatively 
different to the duration of hypoxia, based on statistical analysis. Concerning HIF 
protein levels, HIF-1α was transiently induced by hypoxia, but it decreased rapidly 



C
ha

pt
er

 8

236

again after 12 hours, while the transient activation of HIF-2α lasted for more than 24 
hours, but finally also decreased. These data apparently imply that other factors co-
regulate the activity of the HIF-1 circuit during chronic hypoxia.

In cardiovascular (patho)physiology, chronic hypoxia and subsequent chronic activa-
tion of the HIF pathway can be both adaptive as well as deleterious. The shift from 
aerobic to glycolytic metabolism as enforced by HIF-1α regulation is a beneficial 
short-term effect, whereas long-term protective effects included HIF-1α-/HIF-2α-
mediated induction of angiogenesis127-130. Conversely, in advanced ischemic heart 
disease the adaptive regulation of HIF appeared to be imbalanced. Chronic activation 
of the HIF pathway in vivo resulted in severe progressive heart failure, formation of 
malignant cardiac tumors with the capacity to metastasize, and premature death131. 
A study on human chronic heart failure supported these findings, suggesting the 
detrimental effect of a chronically activated HIF system132. Furthermore, prolonged 
HIF signaling potentially contributed to the pathogenesis of endothelial dysfunction, 
characterized by decreased vasorelaxation, increased thrombosis and inflamma-
tion, as well as an altered angiogenic potential; all factors intimately associated with 
progression and severity of cardiovascular disease133. Under our experimental con-
ditions prolonged hypoxia dramatically reduced HIF protein levels (Chapter 7). In-
creased expression of PHD-2, PHD-3 and HIF-3α4, an alternatively spliced variant 
of HIF-3α with a HRE-inhibiting domain structure134, 135, were most likely responsible 
for this time-dependent repression of HIF. The adverse effects of a fully active HIF 
system during chronic hypoxia can thereby be prevented119, 131, 136-142. In fact, when 
we conducted our study on the time-dependency of hypoxia, it was demonstrated 
that chronic hypoxia induced HIF-1α and HIF-2α ‘desensitization’, caused by aug-
mented PHD expression and activity143.In addition, it was demonstrated that the neg-
ative Ets transcription factor (Net) may play a role in the time-dependent regulation 
of hypoxia-induced gene transcription, as was evident by the requirement for both 
HIF-1α and Net in a large number of hypoxia-regulated genes. Net regulated the ex-
pression of several genes known to control HIF-1α stability, including PHD-2, PHD-3 
and Siah2144. Recently, Serchov et al. demonstrated that during short-term hypoxia 
PHD-1 and PHD-3 interacted with Net resulting in its stabilization which coincided 
with HIF-1α stabilization145. In mouse endothelial cells, Net repressed PHD-2 and -3 
expression, partially prolonging HIF-1α-mediated regulation. However, in prolonged 
hypoxia, the induction of PHD-2 and PHD-3 gradually predominated, resulting in 
degradation of both Net and HIF-1α145. 
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Regarding endothelial cells, hypoxia and its principal transcription factor HIF are 
considered the major driving forces for neovascularization126, 146-151. Apart from the 
formation of new capillaries, supplying arterioles need to enlarge, since short-term 
effects, like vasodilatation, are no longer sufficient to adequately regulate the per-
fusion of the expanded vascular bed124, 152. In agreement with others, we showed 
that the HIF pathway was markedly induced in endothelial cells during short-term 
hypoxia, with increased protein levels of HIF-1 and -2α153-155. These transcription fac-
tors migrate to the nucleus, where they form an active transcriptional complex with 
HIF-1β156-159. By binding to hypoxia-responsive elements inside the promoter regions 
of genes, a large number of angiogenic growth factors, receptors and proteases are 
synthesized, like vascular endothelial growth factor (VEGF)160, placental growth fac-
tor (PlGF)161, platelet-derived growth factor B (PDGF-B)162, basic fibroblast growth 
factor (bFGF)162, and stromal-cell derived factor 1 (SDF-1)163. Collectively, these fac-
tors promote endothelial cell survival, proliferation, and migration, whereby they try 
to restore tissue perfusion164-170. Although the current believe is that the majority of 
angiogenic molecules is synthesized and secreted by perivascular and stromal cells 
inside the hypoxic area24, 163, 171-173, we found that endothelial cells also can contribute 
to this process by increased expression of the growth factors VEGF-A, VEGF-B, 
and PlGF as well as the proteases MMP2 and MMP10 (Chapter 7). Apparently 
some autocrine pathway is utilized to promote survival during prolonged periods of 
hypoxia, and perhaps even activates proliferation, migration, and capillary tube for-
mation166-169, 174, 175. It is suggested that this response is triggered by hypoxia-induced 
activation of the MEK/ERK2-pathway, and, as documented in some studies, inde-
pendent from VEGF, although this remains debatable176-178.
Our studies have provided a first step to better understand the short- and long-
term responses of human endothelial cells to hypoxia. Future studies have to verify 
whether there is a specific response of the endothelial genome to hypoxia. In this 
respect the considerable contribution of HIF-2α, which is more tissue-specific than 
HIF-1α may play a role179-181.   

Next to the important role of HIF, KLF-2 was identified as a potential hypoxia-regu-
lated transcription factor, given its reduction during hypoxia which coincided with a 
number of direct and indirect KLF-2 target genes (Chapter 7). It appears that hypox-
ia partially mimics a pro-inflammatory transcription profile with increases in a num-
ber of proinflammatory and profibrotic genes that were repressed by KLF-2, such 
as MCP1, PAI-1, E-selectin and endothelin182, 183. Furthermore, a recent publication 
demonstrated the potent inhibitory role of KLF-2 on angiogenesis184. Mechanistically, 
KLF-2 promoted HIF-1α degradation in a von Hippel-Lindau protein-independent 
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but proteasome-dependent manner. The down-regulation of KLF-2 thus may also 
contribute to limit this way of HIF-1α degradation. It is too early to estimate whether 
KLF-2 might be a suitable target for modulating the angiogenic response in disease 
states.

The information on gene induction by acute and prolonged hypoxia in human umbili-
cal vein and microvascular endothelial cells may act as a reference for future studies 
on the effects of various degrees and durations of hypoxia on early EPC and ECFC. 
Precursors of EPC typically reside in the hypoxic osteoblastic niche of the bone 
marrow. However, once these cells enter the blood, they become exposed to much 
higher oxygen tension. The chemo-attraction of these cells in the ischemic tissue, as 
driven by factors like VEGF and SDF-1, results in a completely new hypoxic environ-
ment with different properties being demanded from these cells. Understanding of 
their behavior at those sites is needed for optimal use of such cells in tissue repair.

Finally, although this thesis mainly focuses on the role of hypoxia on angiogenesis 
and adult vasculogenesis in neovascularization, it goes without saying that growth 
and development of larger supplying blood vessels is equally important in improving 
tissue perfusion185. During the acute phase of hypoxia, small capillaries are rapidly 
formed in, and around, the border of the hypoxic area. However, their survival is 
completely dependent on the proper connection to supplying arterioles. In a large 
number of types of tumors this process is imbalanced resulting in malfunctioning 
vasculature186, 187. In developing granulation tissue and wound repair more organized 
vascular structures are formed. The resident collateral vessels need to grow and 
mature in order to bypass the blockage and find connections to the newly formed 
capillary plexus. Without this process, the small blood vessels as formed in hypoxia-
induced angiogenesis rapidly become obsolete and are swiftly degraded188-191. 

Perspective
The concept of progenitor cells that can differentiate into true endothelial cells with 
high proliferative potential or into perivascular-positioned, angiogenesis-promoting 
cells is attractive, but also highly debated. As mentioned before better characteri-
zation and identification of ECFC and its circulating precursor as well as the early 
outgrowth/circulating angiogenic cells in the blood by specific markers would help to 
improve the isolation, separation and amplification of these cells, and the possible 
use of these cells for autologous and possibly heterologous transplantation.
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Hypoxia plays a key role in the overall biology of progenitor cells24, 163, 173. Upon im-
paired tissue perfusion, hypoxia induces the expression of various cytokines and 
growth factors in perivascular cells (vascular fibroblasts, smooth muscle cells). 
These factors initiate the mobilization of endothelial progenitor cells and circulating 
angiogenic cells from the bone marrow to the systemic circulation192, 193. Locally, hy-
poxia is responsible for a cytokine gradient across the blood vessel which, presum-
ably, is responsible for progenitor cell homing and extravasation, whereby these 
cells positioned themselves in and around the developing vessels194. By secreting 
proangiogenic molecules, the perivascular myeloid cells support resident endothelial 
cells and endothelial progenitors to proliferate and thereby neovascularization. In all 
of the above-mentioned steps, proteases are indispensable. Manipulating mobilizing 
and/or entrapment signals may offer therapeutic opportunities to stimulate angiogen-
esis30, 195-198. 

In vivo, a number of diseases are most likely responsible for the failure to adequa-
tely compensate for reduced perfusion upon vascular occlusive events. The resul-
ting hypoxia would normally activate the HIF system, thereby initiating a cascade of 
adaptive processes to restore perfusion. However, in type 2 diabetes, high glucose 
is responsible for a decrease in transactivation by HIF-1α during hypoxia199. Cova-
lent modification of the co-factor p300 by the dicarbonyl metabolite methylglyoxal 
resulted in impaired binding to HIF-1α and a reduction of VEGF production, thereby 
hampering neovascularization. It is therefore not surprising than compounds are be-
ing designed to stimulate HIF signaling. The clinical use of PHD and FIH inhibitors 
has been suggested in ischemic disorders such as myocardial infarction, stroke, and 
peripheral artery disease to promote neovascularization and restore tissue oxygen-
ation. These organic small molecules interfere with the utilization of iron and/or 2-ox-
oglutarate by the PHD resulting in inhibition of HIF prolyl hydroxylation and activation 
of HIF-dependent transcription200-207. Promising results have been documented in 
the preclinical treatment of stroke, anemia, myocardial infarction, and ischemic renal 
disease208-215. Although some of these agents have now entered human clinical trials, 
the safety of chronically administering HIF prolyl hydroxylase inhibitors to humans 
remains an important issue, especially given the potential links between HIF and 
cancer212, 216, 217.

Adenoviral or peptide-based gene delivery of stabilized HIF-1α is another strategy, 
and has been shown to effectively enhance angiogenesis and vascular maturation 
in dermal wounds, reduce infarct size in a preclinical model of myocardial infarction, 
and improved outcome in a mouse model of diabetic peripheral artery disease218-225. 
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In addition to this preclinical data, a clinical study had provided evidence that genetic 
variation at the HIF-1α locus contributes to variation in the arteriogenic response to 
ischemia. The relative risk for the absence of collaterals was increased five-fold in 
cardiovascular patients with the variant allele226. In these patients, a relative defi-
ciency of HIF-1α may prevent arteriogenesis and thus provide a rational for HIF-1α 
gene therapy227.

Altogether, this thesis provides a wide platform of fundamental research and re-
sults on two important determinants of neovascularization, being hypoxia and pro-
angiogenic progenitor cells. The described mechanisms may help to initiate novel 
preclinical experiments to increase the knowledge on stimulating neovasculariza-
tion, supporting the fields of cardiovascular research as well as tissue engineering. 
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