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CHAPTER 1
General introduction

1.1 Big biology

Biologists traditionally tend to specialize in narrow areas within their field:
one cell, one process, one organism; they often study the selected processes
in isolation, abstracting away many interactions for tractability. On the
one hand, this methodology has brought numerous breakthroughs, such
as vaccinations and in vitro fertilization, the two discoveries honored with
a Nobel prize in medicine in 2010 and 2011 [1]. On the other hand, it
encourages understanding an organism as a bag of loosely-connected parts,
and thus may lead to missing vital system-level insights [2]. Systems biology
is a relatively young field that aims to describe the entirety of processes
within a living organism, and grasp the emergent properties of such processes
combined.This approach necessarily involves dealing with systems that model
entities at different scales: molecules, cells, organs, organisms; as well as with
systems of large size: thousands of concurrently-executing components.

The holistic approach of systems biology is feasible today, in the era of big
computers and big data, more than ever before. Powerful computers have be-
come inexpensive and thus easily available, which coincided with the advances
in high-throughput biological technologies, such as genome sequencing [3].
Being able to obtain copious amounts of data is, nevertheless, insufficient to
gain a deep understanding of biology [4, 5]; rather, big data makes scientists
realize the need for modeling, supported by computer analysis, in order to
extract knowledge from the data [4,6]. The challenge is not anymore to obtain
more data; the challenge is to use big data and big computers to do big biology.

1.2 Modeling in biology

Models are the most important tool of systems biology. A model is an
unambiguous, i.e. formal, representation of a biological system, at a chosen
level of abstraction. In molecular cell biology, the players include: genes, DNA,
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proteins, membranes, etc.; models describe relations between the players. A
model is executable [7] if it also represents dynamics of the system, such as
changes in protein levels, or movement of molecules through membranes. In
general, there are two kinds of models: continuous and discrete. In continuous
models variables are real numbers; such models are mainly expressed as
differential equations. In discrete models, quantities are discrete: variables
either explicitly denote the number of molecules [8, 9], or are discretized to
several predefined concentration levels [7,10,11]. Many methods of expressing
discrete executable models are in use, for example Petri nets [12], process
algebras [9], Boolean/Qualitative/Regulatory Networks [13,14], stochastic sys-
tems [15] and others—see [16] for a detailed discussion. Choosing a suitable
formalism depends on the modeler’s intuition and objectives, as different
formalisms are amenable to different analysis techniques.

Why would a biologist want to use formal models? For a start, formal
models are an excellent way to store and share knowledge on biological
systems, and to reason about such systems. Furthermore, experiments in silico
(in a computer), compared to the wet lab experiments, are cheaper, faster and
require less labor, as well as pose no ethical dilemmas; for example, Bonzanni
and I carried out thousands of in-silico experiments on the C. elegans worm
with a particularly lethal genetic makeup (e.g. Experiment 5, see Section 2.8),
while only few could have been realized in wet labs. Most importantly, we
were also able to execute computer experiments that would be impossible to
perform in a wet lab, such as selectively removing parts of the system, or al-
tering genes during an experiment; such experiments are called predictive and
are the holy grail of systems biology. Last but not least, our experience and
experience of others [17] show that the very process of building models leads
to biological insights, when the researcher is forced to rigorously formulate
the studied system.

In order to make model-based predictions about biology, one must be
convinced that the models faithfully represent nature; to this end, the mod-
els must be verified: checked for agreement against the known biological
evidence. The process of working with models is displayed in Figure 1.1,
and was discussed at length in [16]. The model is a working hypothesis
(A) representing the current understanding of the studied system. It has
to be corrected and calibrated until it passes a suite of verification tests (B)
that check that the in-silico experiments accurately reproduce the phenotypes
(characteristics) and behavior of the original system, with respect to the known
wet lab experiments. Afterwards, the predictive in-silico experiments can
be performed (C), which allows making hypotheses (D) about the underlying
biological processes. The conjectures are subsequently proved or disproved
in the wet lab, and the modeling cycle restarts when the model is altered to
account for the new facts.

We introduce verification (stage (B) in Figure 1.1) in more detail, as it is the
focus of this dissertation. The biological facts to check are typically ‘input-
output’ rules, where an input is an initial setup of the system, and an output is
the corresponding expected outcome. For instance, in the organ development
process studied in Chapter 2, the inputs contain 60 genetic perturbations
previously tested in a wet lab; for each genetic perturbation the expected
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Figure 1.1: Working with models of biological systems. (A) Prototypes of the model
are built using data obtained in the wet lab. (B) The model is corrected and
calibrated until it passes verification. (C) Predictive in-silico experiments
are performed, and (D) hypotheses are checked in a wet lab.

animal’s phenotype is specified in the form of the locations of the developed
organs. Another example is in Chapter 3, in which the inputs are initial
concentration levels of proteins in skin cells, and outputs are the reached
protein levels, from which it can be determined if a cell is proliferating or not.
The aim of verification is to check that the model behaves according to these
biological ‘rules’. If verification succeeds, we obtain a degree of confidence
that the model faithfully represents the biological process studied. In contrast,
failed verification suggests a bug in the model, or a gap in understanding of
the underlying biology.

Discrete and continuous models require in general very different verifica-
tion tools. In this research we target discrete systems; we do not address
verification of continuous systems, where—since differential equations are
deterministic—it is enough to execute such a model once, i.e. integrate the
equations. Determinism in this case is a consequence of the assumption
that the studied system is an ‘evenly-mixed soup’—in essence the model
describes the system’s average behavior. The same assumption is made by
stochastic simulations [15], also not addressed in this dissertation, which
simulate chemical reactions in a closed volume. Both differential equations
and stochastic simulations have two serious limitations: first, any system
with membranes, such as a cell, renders the even-mixing assumption invalid;
second, these techniques require precise values for constants and rates that
are mostly unavailable [18]. In practice biological systems are unevenly
distributed, and expressed in qualitative rather than quantitative terms.

An important technique to rigorously verify discrete biological systems is
model checking [19–21], in which temporal properties about a formal system
are checked by systematically examining the state space of the system. A
temporal property is expressed in terms of time—in this dissertation we
consider properties that use an intuitive notion of linear time, i.e. Linear
Temporal Logic (LTL), which allows building logical formulas using the tem-
poral operators such as ‘next’, ‘always’, ‘eventually’ and ‘until’. For example,
when considering a fluctuating system, one could check that it stabilizes, i.e.
that a certain state is ‘always eventually’ reached (Chapter 3). Importantly,
stabilization is a liveness property: it says that ‘something good’ eventually
happens. Another kind of properties are safety properties, which say that
’nothing bad’ ever happens, for example that the concentration level of a
protein is never low (Chapter 4). Both kinds of properties come up throughout
this dissertation.
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1.3 Goals and challenges

In this dissertation we investigate how to verify large discrete models of
biological systems. Such systems typically consist of a large number of
concurrently-executing small components. The main challenge when verifying
them is state explosion, caused by the exponential nature of concurrent
models. Namely, a system with N components, each in one of m possible
states, has the total of mN states. Enumerating states can easily exceed any
finite amount of computer memory. Therefore, the main focus of this work
is scalability: ability to handle systems with very large state spaces. In order
to achieve scalability, we use existing techniques and propose new ones in the
fields of high-performance computing and model checking.

The state explosion problem is approached in two ways in this dissertation.
Chapters 2 and 3 use two techniques independent of state space enumeration,
namely simulation and abstract interpretation (only executing parts of a
program relevant to what we want to prove); these methods scale very well and
are able to handle systems up to millions of variables. By contrast, Chapters 4
and 5 execute verification on a parallel computer, which can fit a larger state
space; although eventually limited by the amount of memory available, this
method enables implementing and applying general (Chapter 4) as well as
custom (Chapter 5) verification methods.

1.4 Contributions

This dissertation makes the following contributions:

� Chapter 2: We develop a Petri-net model of vulva formation in the
C. elegans worm; maximal parallelism is used for execution, which
means that many transitions fire within a single step of the network.
We check the model using Monte Carlo simulations: executing and
analyzing a large population of in-silico animals with various genetic
makeups. To make verification tractable, a linear approximation of
maximal parallelism is created, and the experiments are parallelized
for a cluster of computers. We found our model correctly emulates a
large number of biological experiments, and new predictive experiments
confirm published hypotheses about the stabilizing role of microRNA in
the studied process.

� Chapter 3: We propose a novel scalable technique for proving sta-
bilization (reaching a unique fixpoint) of large concurrent biological
systems. Our tool interprets a program abstractly: it over-approximates
the bounds of variables, and iteratively strengthens the bounds. It
achieves scalability by applying state space exploration only locally to
small pieces of the system rather than to the entire system as a whole.
Using the new tool, we proved stabilization of a mesh of 200 � 500 � 5
cells of mammalian epidermis (skin); the state space of that model
contains 26mln reachable states.

� Chapter 4: We design and implement a framework for writing parallel
graph algorithms that operate on large graphs split between memories
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of multiple machines. The key idea is that a user can customize data
and methods of graph vertices, and the framework provides seamless
execution of methods on local and remote vertices, as well as handles the
details of executing in a distributed environment. Using our framework,
we implemented SpinJadi, a distributed on-the-fly enumerative model
checker, a reimplementation of Spin [22]. Using SpinJadi, we checked
two mutual exclusion protocols, as well as a biological model of T-cell
activation during an immune response.

� Chapter 5: We introduce an efficient distributed algorithm to find termi-
nal strongly connected components (TSCCs) in large graphs. In biology,
TSCCs correspond to states of terminal differentiation (when a cell stops
specializing), or to steady states. Our algorithm is a parallel divide-
and-conquer graph algorithm: using reachability computations, a graph
is split into four independent subgraphs, which cannot be ‘crossed’ by
SCCs, and so can be searched recursively in parallel. We found ours was
the only algorithm able to process our case study: a model of human
haematopoietic (blood) cells.

1.5 Outline of this dissertation

This dissertation is organized as follows. Generally, each chapter presents
one method of verification of large concurrent systems, and applies it to one
or more biological examples. Chapter 2 discusses Monte Carlo simulations
of multi-cellular development in C. elegans. In Chapter 3 we describe a
scalable technique to prove stabilization for concurrent systems. Chapter 4
introduces our framework to write distributed graph algorithms, as well as
the distributed model checker created with it. In Chapter 5 we present a
distributed algorithm to find TSCCs in large graphs. Chapter 6 concludes this
dissertation. Additionally, the chapters are summarized in Table 1.1.

1.6 Collaborations

The work in this thesis was done mainly by me (at the VU University Am-
sterdam, Netherlands, and at Microsoft Research Cambridge, UK) with one
exception. The work in Chapter 2 was performed together with Nicola
Bonzanni (currently at the VU University Amsterdam and The Netherlands
Cancer Institute): Nicola’s focus was on biological modeling; mine was on
verification.
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CHAPTER 2
Monte Carlo simulation of

multi-cellular development

2.1 Introduction

Many efforts have been undertaken to elucidate how cells are able to coor-
dinate different and sometimes conflicting signals, producing a precise phe-
notype during organ formation in animals. C. elegans vulval development [1]
provides an elegant and relatively well-charted model to study the problem
central to developmental biology: how multiple pathways, in multiple cells,
interact to produce developmental patterns.

Defining suitable computational techniques for development modeling,
able to perform in-silico experiments, is an open and challenging problem. We
propose a coarse-grained quantitative approach based on Petri nets with an ex-
ecution semantics adapted to realistically mimic biology. Namely, models are
constructed as discrete bounded Petri nets, in which as many as possible con-
current components execute at a time—a principle called maximal parallelism.
We apply the new approach to model fate determination during formation of
a vulva, an egg-laying organ, in a small, soil-inhabiting, transparent worm,
C. elegans. Our approach allows us to model synchronization, asynchronous
events, conflicts and in general concurrent systems in a natural way.

In this chapter we study simulation-based verification—arguably the most
commonly used verification technique [2]. The model of vulval development
in C. elegans is verified using the Monte Carlo method, which consists in
analyzing a large number of traces of a system. Indeed, for each given genetic
perturbation, we performed 5000 executions of the model and matched
the outcomes against the expected phenotypes. Using this technique, it is
shown that our model correctly reproduces a large set of in vivo experiments,
with statistical accuracy, as well as generates gene expression time series in
accordance with biological evidence. In addition, we provide the necessary
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statistical data to establish a more detailed comparison with biological obser-
vations than was previously possible.

Our model encodes different published hypotheses about the biology of
vulval development [3,4]; notably, it includes the relatively recently discovered
miR-61 microRNA (very short RNA that regulates protein synthesis). Using
new in-silico (in a computer) experiments to elucidate the involvement of
miR-61 in down-regulating the lateral signaling, we confirm prediction [4] of
its contribution in stabilizing cell pattern formation.

It would not be possible to efficiently handle the large model of multi-
cellular organ formation in C. elegans, was it not for the optimization and
parallelization of the verification process. First, we optimized the Petri net
execution by introducing a greedy approximation of the algorithm to generate
a maximally parallel step; this reduced each step’s computation cost from
exponential to linear with respect to the size of the network. Second, we
parallelized the Monte Carlo verification for a cluster of computers, and
executed it on 64 multicore machines. Combination of these two techniques
reduced the time of verification, i.e. a set of Monte Carlo experiments (one for
each studied genetic perturbation), by many orders of magnitude: from the
estimated 100 years to about one hour.

The remainder of this chapter is organized as follows. Section 2.2 contains
an overview of the related work. In Section 2.3, we introduce our approach
to modeling biological systems. Section 2.4 briefly explains the biology of
vulval development in C. elegans. We present the model that we built of
the biological process in Section 2.5. The two next sections concern the
verification method: Section 2.6 details the simulation procedure, whereas
Section 2.7 shows how simulations were combined and parallelized as Monte
Carlo experiments. We give results of verification in Section 2.8, followed by a
discussion of the predictive experiments and biological results, in Section 2.9.
Section 2.10 concludes this chapter.

This chapter has been published before, as:

Bonzanni, N.; Krepska, E.; Feenstra, A.; Fokkink, W.; Kielmann, T.;
Bal, H. and Heringa, J.: Executing multicellular differentia-
tion: Quantitative predictive modelling of C. elegans vulval
development, Bioinformatics, 2009, 25(16), pages 2049–2056.
DOI:10.1093/bioinformatics/btp355

and in parts as:

Krepska, E.; Bonzanni, N.; Feenstra, A.; Fokkink, W.; Kielmann, T.;
Bal, H. and Heringa, J.: Design issues for qualitative modelling of
biological cells with Petri nets, Proc. Formal Methods in Systems
Biology, 2008, LNCS vol. 5054, pages 48–62. DOI:10.1007/978-3-
540-68413-8_4

http://dx.doi.org/10.1093/bioinformatics/btp355
http://dx.doi.org/10.1007/978-3-540-68413-8_4
http://dx.doi.org/10.1007/978-3-540-68413-8_4
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2.2 Related work

The first diagrammatic model, describing the regulatory network underlying
cell fate determination during C. elegans vulval development, was proposed
by Sternberg and Horvitz in 1989 [5]. Since then, global understanding
of the biological network has improved greatly. The first computational
model, proposed by Kam et al [6], combined multiple experimental ‘scenarios’
from [7] into a single model, using Live Sequence Charts (LSCs). Afterwards,
in two landmark papers, Fisher et al [8, 9] suggested two state-based mech-
anistic models. The first [8] used statecharts to represent internal states of
components, and LSCs to execute actions between them. They formalized
Sternberg’s model [5], but did not incorporate any additional data. A more
recent approach [9] was based on Reactive Modules, with modeling principles
akin to the previous paper. In contrast to the model presented in the current
chapter, the three listed models build on representing rules that the system
adheres to, rather than modeling the underlying biological processes.

Several other models of C. elegans vulval development have been published
based on different modeling methods. Giurumescu et al [10] proposed a
partial model based on ordinary differential equations (ODEs), while Sun
and Hong [11] developed a model based on automatically learned dynamic
Bayesian networks with discrete states. Independent from us, Li et al [12]
modeled part of C. elegans vulval development using hybrid functional Petri
nets with extensions. While they focused on model validation, we additionally
generated new insightful predictions.

Petri nets are enriched in many ways in order to model biological sys-
tems [13–15]. For example, qualitative Petri nets [16] can be used for structural
and invariant analysis, but they suffer from lack of precise biological data
and from the assumptions similar to ODEs they must make. Stochastic Petri
nets [17] incorporate kinetic constants, but these are mostly unknown or
approximate. Hybrid Petri nets [18] and their extensions on which Cell Illustra-
tor [14] is based, are rich and expressive, but model understanding and causal
backtracking can be impeded by the complexity of the formalism. In this chap-
ter we took a generally different approach: we did not enrich the formalism of
Petri nets, but rather changed their execution semantic to mimic biology.

The maximally parallel execution semantic that we adapted was introduced
by Burkhard [19]. A similar idea proposed by Fisher et al [20] is that
of ‘bounded asynchrony’, in which a component can get ahead of another
component by not more than k steps. In bounded asynchrony, components
are more loosely synchronized than they are in maximal parallelism, which is
more similar to a lockstep.

2.3 Biological interpretation of Petri nets

A Petri net [21, 22] is a bipartite directed graph that consists of two kinds of
nodes: places, which indicate local availability of resources, and transitions,
which describe dependencies between the resources (formal definition can be
found at the end of this section). Each place can hold one or more tokens,
which represent the number of resources available at the moment for example,
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in molecular biology, the resources include: genes, proteins, DNA, and other
molecules. Weighted arcs connect places and transitions. When a transition
fires it consumes tokens from input places, and produces tokens in output
places. Firing of a transition is interpreted as execution of a biological event,
for example creation of a complex molecule from two simpler molecules.
Executing the entire network emulates the whole studied process, such as
development of an organ.

Traditionally, Petri nets are discrete, unbounded, and execute fully asyn-
chronously: in every step, one random transition fires. This basic formalism
is often enriched in many ways to extend its expressiveness in order to model
biological systems [13–15]. Instead of extending the formalism further (and
its complexity), we preserve the simplicity of Petri nets, but we make the
way they are executed biologically-relevant. Note that each component of
the new semantics has been proposed earlier, but it is their combination and
application to biological systems that is novel.

Discrete and bounded
In our approach, the number of tokens in each place is discrete and bounded.
A gene is represented as a boolean value: one token means the gene is
switched on, and no token means the gene is off. For proteins, we use
abstract concentration levels 0–6: going from absence, via low, medium, and
high concentration, to saturated level. This is in contrast with using the
tokens to directly represent absolute numbers of molecules or fixed molar
concentrations [16]. Since such exact quantitative data is often unavailable,
we aim to represent relative concentration levels and qualitative information
about dependencies between proteins.

Besides being discrete, the levels of proteins are also bounded, as un-
restricted production of proteins is usually not realistic: in nature the cell
would saturate with the product, and the reaction would slow down or stop.
In addition, to guarantee that the highest concentration level can be attained,
we introduce bounded execution with overshooting: a transition can fire if each
output place has room for at least one token; the tokens above the maximum
level are ignored. Note that the choice of seven concentration levels is
somewhat arbitrary. We chose seven as we intend to stay in between a simple
boolean level and a complex model of differential equations, and because
seven concentration levels sufficed to express the biological knowledge about
C. elegans vulval development in a satisfactory fashion. If required, the
granularity of the model could be fine tuned by using more concentration
levels, at the cost of a larger state space.

Maximal parallelism
Biological systems are highly concurrent, as in cells all reactions can happen
independently in parallel; to emulate this in a Petri net, we apply a principle
of maximal parallelism introduced by Burkhard [19]. A fully asynchronous
approach would allow one part of the network to deploy prolonged activity,
while another part of the network shows no activity at all. In real life all
parts of a system progress at roughly the same rate [20], and so the key
idea of maximal parallelism is to let as many transitions as possible fire
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Figure 2.1: Example of resource
competition in a maxi-
mally parallel step.

Figure 2.2: Exponential cost of maximal
parallelism.

within a single step of the network. Formally, a parallel step is a multi-set
of transitions; in particular, the same transition may execute more than once
in a single step, provided there are sufficient input tokens and output slots for
all these transitions to execute. A maximally parallel step is one that leaves
no transition enabled in the network. When multiple maximally parallel steps
are possible—as is often the case when transitions compete for a common
resource—one maximally parallel step is selected at random.

For an example of maximally parallel steps, consider the network in Fig-
ure 2.1 (in this and later figures, if an arc weight is unspecified, it defaults
to 1). In the figure, each of the transitions t1, t2, and t3 is enabled twice in
isolation, and they compete for common resources p1 and p2. When transition
t2 executes—twice, once, or not at all—the rest of the resources must be
exhausted by t1 and t3. Therefore, the possible maximally parallel steps are:
f2� t2g, ft1; t2; t3g, and f2� t1;2� t3g.

Note at this point that a maximally parallel step is potentially costly
to compute, because there can be exponentially many—with respect to the
number of components—possible maximally parallel steps. To see this,
consider an example of n triangle-like structures in Figure 2.2. Each token
must go either left or right; if we denote these events with 0 and 1, the set of
possible maximally parallel steps corresponds to f0;1gn, meaning 2n steps.

Note also that, although maximal parallelism enforces activity throughout
the network, the reactions within the network are able to proceed at different
speeds. This is because the weights on arcs capture the relative rates of events
and concentration levels, as corroborated by our experiments. Namely, if A is
produced three times faster than B, then the weight of the arc that produces
A should be three times the weight of the arc that produces B.

Formal definitions
A Petri net bounded by N is formally a 5-tuple: �P; T ; F;W;M0�, where:

� P � fp1; p2; : : : ; pmg is a finite set of places;

� T � ft1; t2; : : : ; tng is a finite set of transitions, such that T \ P � ;;

� F � �P � T�[ �T � P� is a finite set of arcs;
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� W : F ! f0;1; : : :g is a weight function;

� M0 : F ! f0;1; : : : ;Ng is the initial marking.

In this chapter, we use N � 6.
Any function M : F ! f0;1; : : : ;Ng is called a marking. If Mj�p� � k, then

we say that, at time j, the place p contains k tokens. Assuming a marking M ,
a transition t is enabled if the two conditions hold:

� M�p� � W�p; t� for each input place p of t, and

� M�r� < N for each output place r of t such that W�t; r� > 0.

A firing of a transition t removes W�p; t� tokens from each input place p of t,
and creates min�W�t; r�; N �M�r�� tokens in each output place r of t.

Execution of a Petri net is a series of markings M0;M1;M2; : : :, such that
each marking Mi�1 is generated from the previous marking Mi by firing the
transitions generated by the chosen execution semantics. In this chapter,
we use the maximally parallel execution semantics. Consider marking M . A
parallel step s is s : T ! f0;1; : : :g. A parallel step is enabled if, for each place
p:

� the output transitions t1; t2; : : : of p can consume:

M�p� �
X

i

W�p; ti�s�ti�;

� the input transitions t01; t
0
2; : : : of p can produce:

M�p��
X

i

W�t0i; p�s�t
0
i� � N;

or at most one of the transitions, tk, ‘overshoots’:

M�p��
X

i except k

W�t0i; p�s�t
0
i��W�t

0
k; p��s�t

0
k�� 1� < N:

A maximally parallel step is a parallel step that leaves no transition enabled
in the network. When multiple maximally parallel steps are possible, one is
selected at random.

2.4 C. elegans vulval development

We used our new biological interpretation of Petri nets to model fate determi-
nation during vulva formation in the C. elegans worm. Our model is described
in the next section, while here we briefly describe the biology underlying this
process. We start by explaining the basic notions of molecular cell biology: if
you know what DNA, proteins and transcription are you can safely skip the
primer.
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Cell biology primer
DNA is a long-term information storage in an organism; it is identical in all
cells but not all cells behave the same as different pieces of DNA, called
genes, can be active, or expressed, at different times. DNA governs cell
behavior through proteins, which carry out all the labor in a cell, such as
growth, replication, movement, or synthesis of new proteins. Biologists think
about logical pieces of this complex machinery as pathways. Of particular
interest are signaling pathways: loops and cascades of signals that function
as a communication mechanism between cells, and within cells. For example
the Ras/MAPK pathway, a major player in our model of C. elegans vulval
development, is in general an important signaling pathway that transports
extracellular growth signals received at the membrane into the nucleus, where
they can be handled. Typically, signals are ‘forwarded’ by way of down-
and up-regulation, i.e. when a quantity of a cellular component decreases
or increases, respectively, upon influence of another component—an example
of this is given in Section 2.5.

How are proteins obtained from DNA? The central dogma of molecular
biology states that this happens in two phases: transcription followed by
translation. During transcription, in the nucleus (if there is one, otherwise
in cytoplasm), a gene is copied into a messenger RNA (mRNA) molecule, which
then travels outside of the nucleus. In a ribosome, the cell’s giant protein
factory, the mRNA ‘letters’ are translated into a sequence of amino acids
that form a protein. To take the computer science analogy suggested by
Cohen [23], DNA is a stored program, which is ‘executed’ as a protein. One
variation of this DNA-to-mRNA-to-protein process is that sometimes a cell
uses RNA directly, without translating into protein. This is for example how
microRNA works—in Section 2.9 we discuss the role of certain microRNA in
vulval development of C. elegans.

Note that this summary is intended for a laymen to understand the rest of
this chapter, as well as get better understanding of the whole dissertation. In
fact, cell biology is vastly more complex than this description, see e.g. [24].

Fate determination during vulval development in C. elegans
The vulva develops from six vulval precursor cells (VPCs), consecutively
numbered P3.p to P8.p (see Figure 2.3). Each VPC is competent to respond
to intercellular signals, and is potentially able to adopt either of the three cell
fates: 1�, 2�, or 3�. The adopted fate determines the cell’s participation in
further development: the 1�s become the center of a vulva, the 2�s support
the vulva, and the 3�s fuse with the worm’s skin. In the wild-type worm (as
in nature, i.e. not mutated) the VPCs invariantly adopt the 3�-3�-2�-1�-2�-3�

pattern [7], shown in Figure 2.3, which leads to a single vulva developing from
the three middle cells P5.p–P7.p.

This precise wild-type fate pattern is the result of an interplay between
two competing signals: the inductive signal produced by the Anchor Cell (AC)
and the lateral signal initiated by the P6.p cell. First, the inductive epidermal
growth-factor signal produced by the AC is transported to the three nearest
precursor cells (depicted in Figure 2.3 with arrows from the AC to cells).
This signal is strongest in P6.p, where it induces the 1� fate, inhibits the 2�
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Figure 2.3: Vulval development in the wild-type C. elegans. Six VPCs (P3.p–P8.p), the
anchor cell (AC), and the worm’s skin-like structure (hyp7) are shown. The
inductive signal from the AC promotes the 1�-fate in P6.p, and stimulates
the production of the lateral signal near the flanking cells, promoting the
2�-fate in P5.p and P7.p.

fate [3], and initiates lateral signaling [25] (horizontal arrows in Figure 2.3).
The lateral signal in P5.p and P7.p promotes the 2� fate [26] and inhibits
the 1� fate [27]. This negative feedback helps to reinforce different fates in
neighboring cells [4]: namely, if a cell adopts the 1� fate, it coerces the flanking
cells to adopt the 2� fate.

2.5 Modeling multi-cellular development

In this section we explain how we represented the process of cell fate de-
termination during vulval development in C. elegans using the new approach
of bounded maximally-parallel Petri nets (Section 2.3). The network that we
built contains 300 places, 300 transitions, and 1000 arcs. It is displayed
in Figure 2.4: although it is scaled down, one can distinguish the sub-
networks that represent the anchor cell (AC), the worm’s skin (hyp7), and six
interconnected VPC cells P3.p–P8.p. In addition, the models of individual VPCs
are identical. Each cell contains eleven genes that guide the development, and
eleven proteins that interact to arrive at the cell’s fate.

An example of representing biological knowledge as a Petri net is given
in Figure 2.5(a). This small network represents protein production. Namely, the
VAV-1 protein is synthesized if, and only if, the vav-1 gene is present. When
the transition fires, it consumes one vav-1 token, and atomically produces one
VAV-1 token and one vav-1 token (the number of tokens in vav-1 is constant).
The protein production Petri net occurs often in our model, as it was used for
all protein species in all cells.

Modularity
Protein production in Figure 2.5(a) is, in fact, an example of a functional
module. Modules are sub-networks that represent logical pieces of the system;
they can be used as building blocks to construct more complex modules,
and eventually the entire system. Following this principle, we assembled our
network in a five-stage bottom-up procedure. In the first stage, we identified
six basic modules encoding ‘atomic’ biological functions: protein production
discussed above, as well as protein activation, up-regulation, down-regulation,
constitutive degradation, and signaling. In the next stage, we represented each
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(a) (b)

Figure 2.5: (a) The VAV-1 protein is produced if and only if the vav-1 gene is switched
on. (b) VAV-1 production is down-regulated by miR-61, as the gray
transition competes for vav-1.

participating protein species with a new module constructed out of the basic
modules; for example the protein production module in Figure 2.5(a) was one
of the modules used to represent the VAV-1 protein species (not shown). In
the third stage, we assembled modules of pathways, which were reused next
to build the cell modules. In the final stage, all cells were interconnected:
six VPCs, AC and hyp7. In Figure 2.4, the modules of protein species can
be discerned within the VPCs. The rationale behind the modular approach is
to ease building and understanding biological networks, as well as to enable
recycling of modules to build other processes and organisms.

An example of combining modules is illustrated in Figure 2.5(b), where the
VAV-1 protein is down-regulated by miR-61 microRNA. In this example, when
miR-61 is absent, the new module has no influence on VAV-1. Otherwise, the
gray transition is enabled and competes for vav-1: an abundance of miR-61
results thus in halved production of VAV-1.

2.6 Simulation procedure

A simulation of our model is interpreted as an execution of an individual
C. elegans worm, and the outcome of the simulation as the worm’s phenotype.
Since a maximally parallel execution is non-deterministic, to wholly verify
the C. elegans model, a large population of worms, rather than a single
worm, must be simulated for each studied genetic perturbation. Similarly,
in experimental biology, replicating experiments is necessary to overcome
the variability intrinsic to biological systems. Doing this in silico is called
the Monte Carlo method, described in Section 2.7; in the current section we
discuss the procedure to perform a single simulation. First, we explain how
the simulation is initialized, i.e. the initial values for the participating genes
and proteins. Second, the procedure to perform the steps of a simulation is
described, in particular the reduction of its computational cost. Third, we



2.6. Simulation procedure 19

show how the worm’s phenotype is obtained from a finished simulation and
checked against the biological data.

Initialization: Genetic perturbations and calibration
The most important input to our simulation is a genetic makeup for C. elegans,
meaning the settings for all the participating genes. We consider three kinds
of gene expression, or ‘strength’: (a) wild-type (wt), i.e. the expression level
most common in nature, (b) a loss-of-function (lf ), when the gene is deleted or
dysfunctional, and (c) a gain-of-function (gf ), when the gene is over-expressed.
In our network, the genetic setup is simulated by placing tokens in predefined
places that represent gene expression. Each combination of gene settings
results in a correlated phenotype observed in a wet lab; some examples of gene
combinations and phenotype fate patterns in C. elegans vulval development
are listed in Table 2.1. Besides the genetic makeup, the concentration levels
of proteins must be initialized before a simulation. In all experiments, we
used the same settings for proteins obtained experimentally during model
calibration.

Execution: Approximate maximal parallelism
Initially, performing a single simulation of our model took up to several hours
on a desktop computer. Each simulation consists of 1000 maximally parallel
steps—this number was chosen empirically, as sufficient for all our stabilizing
experiments to reach a steady state. Executing a long simulation is costly,
as each maximally parallel step involves choosing one element at random
of an exponentially large set of possible steps (see Section 2.3). To speed
it up, we created an efficient greedy approximation of maximal parallelism. In
the approximated semantics, enabled transitions are taken at random until
exhausted. During that procedure transitions consume tokens but do not
output them; rather, after the enabled transitions are exhausted, all taken
transitions produce tokens in one go, thus completing generation of the
parallel step. Clearly, the cost of this procedure is linear with respect to the
size of the network. Additionally, this procedure is sound, i.e. it produces
a correct maximally parallel step, as well as it is able to produce any step
that can be produced by the full semantics. However, the two semantics
are not entirely equivalent: they differ in the distribution of probabilities
for maximally parallel steps; for example, the probability of choosing the
f2 � t2g step in the example network in Figure 2.1 (see Section 2.3) is lower
in the approximated semantics than it is in the original semantics. We
experimentally found that both semantics produce similar results in the
examples that we tested based on our model of C. elegans vulval development.
Using the approximated semantics reduces simulation time to not more than
three seconds for our model.

Determining the phenotype
After a simulation is finished, the fate of the VPC cells, and thus the worm’s
phenotype, is determined by correlating the concentration levels of two pro-
teins, MPK-1, a downstream product of the inductive signal, and LIN-12, which
is activated by the lateral signal [3, 28]. Specifically, a high-level of MPK-1
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Figure 2.6: Landscape produced from elevated levels in the three scoring functions.
The quadrants are labeled with the corresponding cell fates.

induces the 1� fate, independently of the level of LIN-12. If MPK-1 is low, the
adopted fate is determined by LIN-12: high LIN-12 results in the 2� fate, and
low LIN-12 results in the 3� fate. A dependence of fate on levels of (MPK-1,
LIN-12) is displayed in Figure 2.6. If levels do not clearly fit any of these
criteria, the result is non-deterministic: in nature, it would be determined
by small variations in protein levels. We calculate the LIN-12 and MPK-1
concentration levels as the average number of tokens over the final 50 steps,
in order to avoid unnecessary noise from the continual discrete changes in the
number of tokens.

To each executed simulation we assign a score, a number in �0;1�, which
describes how well the reached cell pattern fits the expected pattern: 1 means
a perfect fit, 0 means the results were far off, and scores between 0 and 1
are partial matches. The score for a phenotype is an average of scores for
individual cells. A cell’s score is obtained by applying three sigmoid (i.e.
S-shape) functions representing the three fates and choosing the fate that
returns the highest score. In fact, the landscape in Figure 2.6 is a combination
of the elevated regions in these three functions, similar to the piecewise
function in [10]. Such a continuous score is more useful than a piecewise
function to detect slight changes in scores when modifying the network,
especially during calibration.

2.7 Monte Carlo verification

Monte Carlo verification relies on obtaining a large sample of traces of the
model. For each studied genetic perturbation, we performed 5000 simulations
with different random seeds. Each individual simulation was performed
according to the procedure described in Section 2.6. A score of a Monte Carlo
experiment was obtained as a distribution of scores of the individual simula-
tions. Full verification of our model consists of 64 Monte Carlo experiments,
each for one studied genetic perturbation. These experiments are described
in Section 2.8, whereas in the current section we explain how the Monte Carlo
experiments were carried out.
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Parallelization
Initially, the entire suite of 5000�64 simulations, executed using the efficient
approximated semantics (Section 2.6), would take more than a week to com-
plete on a sequential machine. This is not acceptable, as verification must be
performed multiple times during model calibration. To speed up the Monte
Carlo experiments, we executed them on a parallel computer. The suite of
Monte Carlo experiments consists of a large set of independent jobs of varying
sizes. A single job is a sequential program, which reads the input model,
applies the input perturbation, performs the non-deterministic simulation
using an input seed for the random number generator, and outputs a score
that describes how well the reached protein levels match the expected levels.
The parallel application follows the master-slave model: each slave repeatedly
requests a job from the master, executes it, and returns the result to the
master, which computes the final score for each perturbation. Using 256 cores
(64 machines � 4 cores) of the DAS-3 [29] cluster, the parallelization allowed
the entire suite of in-silico Monte Carlo experiments to run in less than an
hour.

2.8 Verification results

To determine the capability of our model to reproduce and predict the bio-
logical behavior of C. elegans vulval development, we simulated 64 different
experimental conditions, which we partitioned into three sets. First, 22
experiments previously selected in [8] (Table 2.1) were used for calibration of
the model. Second, 30 experiments were used for validation: 26 from [8], three
from [1] (Table 2.2), and one from [4] (Exp. 52 in Table 2.4); in particular, ex-
periment 51 (Table 2.2) was never simulated in any previous work that we are
aware of. Third, the remaining 12 simulations constitute new predictions that
invite untried experiments in vivo; the most remarkable insights (Table 2.4)
are discussed in Section 2.9.

The main result of the verification of our C. elegans model is that it
reliably reproduces all in vivo experiments, except for the double mutant
lin-12(gf);lin-15(lf) (Table 2.1, Exp. 21 and 45), and even in these cases a
fraction of the predictions matches the expected pattern. The noticeable
differences of biological observations from different labs, and the few worms
examined in vivo, do not help to establish a trustworthy expected outcome.

Unstable patterns
Of the 22 experiments in Table 2.1, particularly interesting are the experi-
mental conditions that lead to unstable fate patterns, i.e. experiments 5, 21,
25, and 45. These results were already discussed in [9] and [11], but these
discussions lacked statistical detail about the possible outcomes. In fact, [11]
observed that the statecharts model of [8] often produces two adjacent 1�-fate
cells, which they claim is rarely observed in experiments, but they also do not
provide supplementary statistical details.

In Table 2.3 we provide statistical details for experiment 5. More than
93:4% of the predicted patterns match one of the expected biological 1�=2�-
1�=2�-2�-1�-2�-1�=2� combinations. Of all matching patterns, only 4.5% contain
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Table 2.1: A subset of in vivo experiments from [8] that we used for calibration of the
model. In the anchor cell AC column, ‘�’ stands for no AC, while ‘�’ means
that the AC is present. The Genotype column indicates mutation of genes:
loss-of-function (lf ) or gain-of-function (gf ); if not specified, the gene is
wild-type. By lst we denote the group of genes: lst-1, lst-2, lst-3, lst-4, and
dpy-23; Vul groups let-23, sem-5, let-60, and mpk-1 genes. Cell fate such as
1�=2� means that the cell may adopt either of the two fates.

Exp. AC Genotype Fate Pattern
lst Vul lin-15 lin-12 P3.p P4.p P5.p P6.p P7.p P8.p

1a � 3� 3� 2� 1� 2� 3�

2b � lf 3� 3� 1� 1� 1� 3�

3c � lf 3� 3� 3� 3� 3� 3�

5c � lf 1�=2� 1�=2� 2� 1� 2� 1�=2�

6d � lf lf 1� 1� 1� 1� 1� 1�

7e � lf lf 3� 3� 3� 3� 3� 3�

9f � lf 3� 3� 1� 1� 1� 3�

10g � lf lf 3� 3� 1� 1� 1� 3�

11c � lf lf 3� 3� 3� 3� 3� 3�

13c � lf lf 1� 1� 1� 1� 1� 1�

17c � gf 2� 2� 2� 1� 2� 2�

19c � lf gf 2� 2� 2� 2� 2� 2�

21c � lf gf 1�=2� 1�=2� 2� 1� 2� 1�=2�

25h � 3� 3� 3� 3� 3� 3�

26d � lf 3� 3� 3� 3� 3� 3
29c � lf 1�=2� 1�=2� 1�=2� 1�=2� 1�=2� 1�=2�

33c � lf 3� 3� 3� 3� 3� 3
37c � lf lf 1� 1� 1� 1� 1� 1�

41c � gf 2� 2� 2� 2� 2� 2�

42d � lf gf 2� 2� 2� 2� 2� 2
43c � lf gf 2� 2� 2� 2� 2� 2�

45c � lf gf 1�=2� 1�=2� 1�=2� 1�=2� 1�=2� 1�=2�

a [30] b [27, 31] c [5] d [32] e [5, 33, 34] f [5, 35] g Berset and Hajnal, unpublished data
h [36]

Table 2.2: In vivo experiments from [1] used for model validation.

Exp. AC Genotype Fate Pattern
let-60 lin-3 P3.p P4.p P5.p P6.p P7.p P8.p

49i � lf 3� 3� 3� 3� 3� 3�

50j � lf 3� 3� 3� 3� 3� 3�

51j � gf 3� 2� 1� 1� 1� 2�

i [37] j [1]
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Table 2.3: Statistical results for the Monte Carlo simulation of experiment 5 in Ta-
ble 2.1 (lin-15(lf)).

Exp. Fate Pattern Occurrences Percentage
P3.p P4.p P5.p P6.p P7.p P8.p

5 Wild-type patterns: 86:2%
1� 2� 2� 1� 2� 1� 1348 27:0%
2� 1� 2� 1� 2� 1� 1180 23:6%
2� 1� 2� 1� 2� 2� 946 19:0%
1� 2� 2� 1� 2� 2� 830 16:6%

Three or more adjacent 2�-fate cells: 4:5%
2� 2� 2� 1� 2� 1� 132 2:6%
2� 2� 2� 1� 2� 2� 93 1:9%

Two adjacent 1�-fate cells: 2:7%
1� 1� 2� 1� 2� 1� 88 1:8%
1� 1� 2� 1� 2� 2� 46 0:9%

three or more adjacent 2�-fate cells, while just 2.7% have two or more adjacent
1�-fate cells. These quantities correspond to the biological evidence that in
these experiments three adjacent 2�-fate, or two adjacent 1�-fate cells are very
unlikely. In the remaining 6.8% of runs (not included in Table 2.3), one or
more cells adopt the 3�-fate, and we interpret these outcomes as the ‘rare
phenotypes’ in which uninterpretable lineages are observed (i.e. in between 2�

and 3�), as noted for instance in [5].

Time courses
In our approach, each maximally parallel step corresponds to a step of the
studied biological process. Thus the traces of the executed simulations can
be interpreted as time courses of gene regulation in vulval development. In
Figure 2.7, the gene expression time series generated by our model are com-
pared against the fluorescent photomicrographs (photographs taken through
a microscope) of vulval formation of a wild-type C. elegans published by [27].
In the photographs in Figure 2.7(a), the egl-17p::cfp-lacZ reporter is a detector
for the inductive signal in the VPC cells. Figure 2.7(b) depicts the time series
generated by our model in a simulation of the wild-type animal. Initially MPK-1
is faintly expressed in P5.p and P7.p. Subsequently, expression in P5.p and
P7.p disappears, and MPK-1 remains at a high level only in P6.p, in accordance
with the fluorescent photomicrographs of Figure 2.7(a). We note that the
concentration levels at the end of the simulation are approximately constant,
indicating a steady state. Additionally, in a related experiment [27], the lst
genes were divided into two groups: pattern A which contains dpy-23 and
lst-3, and pattern B to which lst-1, lst-2 and lst-4 belong. Each group has its
own characteristic temporal expression pattern that corresponds closely to
the time series generated by our simulation (not shown).
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Figure 2.7: Comparison between photomicrographs of gene activity by fluorescently
labeled gene products, and simulation results. (a) Photomicrographs of
the graded expression of the inductive signal adapted from [27], Science
Magazine.© 2004, AAAS. (b) Time series plot generated by our model,
showing the graded expression of the inductive signal, initially faintly
present in P5.p and P6.p. A running average over 50 steps is used for
clarity of presentation. Concentration levels are on the vertical axis,
and maximally-parallel steps on the horizontal axis. One can correlate
photomicrographs a and b with point a and b in the time series.

2.9 Biological results

Our computational model, besides reproducing well-known biological exper-
iments, encodes and unifies different published hypotheses and conjectures,
shedding light on vulval development process in C. elegans. This process is a
result of an interplay between two pathways: the Ras/MAPK signaling of the
inductive signal, and the LIN-12/Notch pathway governing the lateral signal,
in which the LIN-12 protein is a major player [3, 27]. The two hypotheses
described next are related to LIN-12 down-regulation, and a role of the miR-61
microRNA in vulval development.

Encoded hypotheses
Endocytosis is a process by which cells absorb big molecules by engulfing
them. Shaye and Greenwald [3] propose that Ras activation leads to tran-
scription of an unknown factor that enhances down-regulation of LIN-12 by
altering its endocytic routing. In Figure 2.8 one can see how we captured
this hypothesis in our model. Ras activation enables the transcription of the
unknown gene, which down-regulates LIN-12 post-translationally. Notably,
changing the model of LIN-12 down-regulation from post- to pre-translation
disrupts this behavior and significantly alters our results.

Yoo and Greenwald [4] identified miR-61 as direct transcriptional target
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Figure 2.8: Single model capturing different biological suggestions linking the Ras
pathway, the LIN-12 protein, and the miR-61 microRNA in C. elegans vulval
development.

of the Notch pathway. The mir-61 gene encodes a microRNA which blocks
expression of the mRNA encoding VAV-1—a protein involved in LIN-12 down-
regulation—possibly promoting LIN-12 endocytosis. Therefore, they proposed
that activation of miR-61 by LIN-12 and the consequent down-regulation of
VAV-1 constitute a positive-feedback loop that promotes LIN-12 activity in
presumptive 2�-fate VPCs. Although the unknown factor conjectured by Shaye
and Greenwald does not seem to be required for the initial internalization of
LIN-12, VAV-1 is necessary for the constitutive internalization of LIN-12. No-
tice that VAV-1 is involved in both constitutive and enhanced post-translation
(endocytosis mediated) down-regulation of LIN-12.

miR-61 as a developmental switch and modulator
Modeling these hypotheses (Figure 2.8) and capturing their behavior has
proved necessary to obtain the expected results during in-silico experiments.
Moreover, we simulated several perturbations of the mir-61 microRNA gene,
obtaining the outcomes shown in Table 2.4. This nicely confirms the role of
the positive-feedback loop proposed by [4]. All experiments of Table 2.4, as
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Table 2.4: Selection of microRNA experiment outcomes predicted by our model. With
mir-61(ce) we denote constitutive (low) expression of mir-61.

Exp. AC Genotype Fate Pattern
mir-61 Vul lst P3.p P4.p P5.p P6.p P7.p P8.p

52k � ce 2� 2� 2� 2� 2� 2�

53 � ce 2� 2� 2� 2� 2� 2�

54 � ce lf 2� 2� 2� 2� 2� 2�

55 � ce lf 2� 2� 1� 1� 1� 2�

56 � lf lf 3� 2� 1� 1� 1� 2�

k [4]

far as we know, have not been tested in vivo (with the exception of experiment
52, which is described in [4]).

Experiments 52–55 confirm the specific role of miR-61 in influencing the
cell fate decision, as determined by Yoo and Greenwald. Experiment 56
suggests a possible secondary role. This is a double mutant miR-61(lf );lst(lf)
variation of the lst(lf) experiment 2, Table 2.1. Although the single mutant
lst(lf) expresses a stable VPC fate pattern, the loss-of-function of miR-61 in
the double mutant disrupts the stability of the pattern, as can be seen in the
statistical breakdown of Table 2.5. Based on this observation, we suggest that
besides acting as developmental switch, miR-61 plays a “tuning” role [38] to
ensure the stability of the cell fate pattern formation.

To the best of our knowledge, we are the first to model in silico microRNA
interactions during C. elegans vulval induction, supporting the conjecture
formulated in [4] that lin-12, miR-61, and vav-1 form a feedback loop that
helps maximize lin-12 activity in the presumptive 2�-fate VPCs.

Table 2.5: Detailed statistics for the simulation of experiment 2 (lst(lf), Table 2.1) and
56 (mir-61(lf);lst(lf), Table 2.4). Outcomes below 0.1% are omitted.

Exp. Fate Pattern Occurrences Percentage
P3.p P4.p P5.p P6.p P7.p P8.p

2 3� 3� 1� 1� 1� 3� 4800 96:0%
3� 3� 1� 1� 1� 2� 199 4:0%

56 3� 2� 1� 1� 1� 2� 1594 31:9%
3� 3� 2� 1� 1� 2� 1399 28:0%
3� 3� 2� 1� 2� 3� 1000 20:0%
3� 2� 1� 1� 2� 3� 998 20:0%
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2.10 Summary and conclusions

In this chapter, we presented a method of modeling biological systems using
bounded, discrete, maximally-parallel Petri nets. The new approach was ap-
plied to a multi-cellular process of fate determination during vulva formation
in C. elegans, and yielded a large concurrent model of this process. We verified
the model using Monte Carlo experiments, i.e. by obtaining and analyzing
a large number of traces of the system, and we found we could reliably
simulate a large set of in vivo experiments. Importantly, statistical accuracy
of worm populations was achieved, as well as an agreement of the time series
with photomicrographs. In order to make it tractable, the verification was
optimized and parallelized for a cluster of machines.

The network that we created is fairly large: roughly 70 genes and 230
proteins, which result in a state space of size 270 � 7230, meaning an order of
2715 of different possible states of the system. Clearly, verification by way
of enumeration of states is not viable. Instead, given a genetic makeup, we
described the range of the worm’s typical behaviors by analyzing an in silico
population of animals—obtained inexpensively and ethically—undergoing the
studied biological process. This method delivers results fast, scales well,
can be easily parallelized, and is applicable to a wide class of systems and
properties. Nevertheless, it has two downsides. First, it offers no guarantees
on coverage: one only attempts to cover the typical behaviors, rather than
all possible series of events. Second, it does not help much in deciphering
the control flow in the studied system, i.e. causality—development of tools to
support inferring causality from simulations is an important point in future
work. In spite of these two limitations, for those wanting to verify large non-
deterministic systems, simulations are typically a go-to method, or at least a
method applied to get the first understanding of the studied biological model.
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CHAPTER 3
Proving stabilization by

abstract interpretation

3.1 Introduction

Biologists are increasingly turning to computer science techniques, in par-
ticular to formal verification, in the quest to understand and predict the
behavior of complex biological systems. Unlike simulation-based methods
(Chapter 2), in formal verification biological models are analyzed as computer
programs, which allows rigorous checking of all states or all paths of a
model. In some cases known formal verification techniques work well, e.g.
[1–4]; unfortunately, in other cases—such as proving stabilization [5]—we find
existing abstractions and heuristics to be ineffective.

In this chapter we address the open challenge of finding scalable algo-
rithms for proving stabilization of biological systems. We define stabilization
as the existence of a unique fixpoint state that is always eventually reached. A
proof of stabilization elucidates system robustness with respect to time, while
stabilization counter-examples give insight into system homeostasis (stability)
imbalance—in all cases the results are useful to biologists. In general, systems
are expected to stabilize, particularly in developmental biology, but for some
systems, such as the heart beat or the circadian (day/night) clock, cyclic
behavior rather than stability is the desired outcome. In fact, note that a
biologist checking stabilization of a system, always knows if the system must
stabilize or must not stabilize. If the result conflicts the underlying biology,
there must be a bug in the model, or a gap in understanding the biology of the
studied system.

The solution to proving stabilization presented in this chapter bases on
abstract interpretation, a technique proposed by Cousot and Cousot [6]. In
abstract interpretation, a property about a program is proved by interpreting
the parts of the program relevant to the property at hand, and ignoring the
parts not relevant to that property. In other words, programs are executed
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partially, in such a way that abstract computations give information on the
actual computations, without performing them. Abstract interpretation can
speed up the verification, as well as significantly reduce the amount of
memory it needs. An intuitive example of abstract interpretation is ‘the rule of
signs’, i.e. determining the sign of the result of multiplication from the signs of
the multiplicands; another example is static code analysis commonly carried
out by development tools, e.g. checking that each used variable is declared
earlier in the code.

Abstract interpretation of a large concurrent program can still suffer
from the state explosion problem, which forces us to use some form of
modular reasoning, i.e. being able to compose specifications of components
that execute concurrently. Since stabilization is formally a liveness property,
we must be careful when using the powerful cyclic modular proof rules (e.g.
[7,8]), as they are only sound in the context of safety [9]. Furthermore, we find
that the complex temporal interactions between the modules are crucial to the
stabilization of the system as a whole; meaning that we cannot use scalable
techniques that simply abstract away the interactions altogether.

The biological systems considered in this chapter consist of concurrent
communicating components modeled in the Qualitative Networks (QNs) for-
malism [10] or Regulatory Networks (RNs) [11]. In both formalisms, each
component is a variable in

�
0;1; : : : N

	
where N is a small fixed constant.

Variables (in this chapter, we say ‘component’ and ‘variable’ interchangeably)
are updated in increments or decrements of 1, depending on the values of
input components (the exact formula is explained in Section 3.3). In QNs, all
variables are updated synchronously in lockstep, while in RNs updates are
asynchronous.

In this chapter we present a procedure for proving stabilization of biologi-
cal systems modeled as QNs or RNs. The key idea is that we break the global
liveness property (stabilization) into a chain of small liveness properties,
called local lemmas. Each local lemma describes a small part of the system
in isolation, and can thus be solved using quick local proof techniques. We
must now answer two questions: which form of lemmas should we use; and
how to find the lemmas that imply stabilization.

The key to our tool’s performance is the observation that it suffices to take
the lemmas only of a very limited form of a liveness property about a single
component:

�FG�p1�^ : : :^ FG�pk��) FG�q�;

where p1 : : : pk are atomic formulae over inputs of a small component that we
want to reason about, q is an atomic formula about this component’s output,
F denotes ‘eventually’ in LTL [12], and G denotes ‘always’. We compute the
set of all provable lemmas of this form by iterative strengthening; namely, we
walk the structure of the system and strengthen knowledge about individual
variables, in particular the lower and upper bounds on variables. After this
procedure, if for each component v its lemma implies FG�v � kv� for some
constant kv , we have proved stabilization. Otherwise, we search for a counter-
example to stabilization using the lemmas to restrict the counter-example
search space.
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Our stabilization proving procedure is sound and complete. We experimen-
tally confirm that it is scalable. We find that our lemma generation procedure
accelerates both the proving as well as the disproving of stabilization. Sec-
tion 3.7 demonstrates with experimental evidence how our lemma generation
procedure leads to many orders of magnitude speedup in cases where known
previous techniques work, and new results in cases where known techniques
fail. These include challenging published examples such as: a 3-D model of
the mammalian epidermis (skin) based on [10]; a model of metabolic networks
operating in type-2 diabetes [13]; a model of fate determination of vulval
precursor cells in C. elegans [14]; and a model of pair-rule cross-regulation
during segmentation in Drosophila fly embryo [15]. Applying our procedure
to the multidimensional model of epidermis revealed a bug in the model
from [10], as we proved the system non-stabilizing. Consulting the biological
papers corroborated that the model was, in fact, in disagreement with the
biological evidence. After fixing the bug we could prove the system stabilizing
(see Section 3.3).

Our algorithm depends on a domain L over which lemmas range. In sys-
tems encoded as Qualitative Networks and Regulatory Networks, the discrete
and bounded components are updated in increments or decrements of 1,
meaning it is sufficient to consider in L lemmas that restrict variables to
one subrange. This insight is the basis for an optimization of the lemma
generation algorithm, which works extremely fast in practice. Using the
optimized algorithm we were able to verify systems with up to three million
of discrete variables (see Section 3.7). When considering this optimization,
our technique can be thought of as analyzing the system using abstract
interpretation over the interval domain [6].

Our technique is geared towards efficiently proving stabilization where the
proof can be teased out by examining the system’s compositional structure.
This lemma generation strategy is potentially an overhead that may hinder
rather than help performance in some cases. Namely, this happens for non-
stabilizing systems, for which a counter-example can be found fast without
bounding the search space. In Section 3.7 we demonstrate an example of this.

An advantage of our procedure is compositionality: the local stabilization
lemmas give a specification that, when established for new components, im-
plies the whole system’s stabilization without re-running the entire procedure.
This can lead to experimenting with alternative components (e.g. testing
modified components during a search for new drugs). This observation also
leads to a practical advantage, as we check lemmas in parallel during the proof
search.

The remainder of this chapter is organized as follows. Section 3.2 contains
an overview of the related work. In Section 3.3, we introduce the problem
under consideration and our solution to it, explained informally using a
real-life biological example: a model of mammalian epidermis. Section 3.4
gives the formal definitions, and Section 3.5 the full algorithm, including the
optimizations and counter-example search. In Section 3.6, we present formal
proofs of soundness and completeness of the algorithms in Section 3.5. The
experimental results are discussed Section 3.7. We conclude with Section 3.8.
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This chapter has been published before, as:

Cook, B.; Fisher, J.; Krepska, E. and Piterman, N.: Proving stabiliza-
tion of biological systems. In Proc. 12th International Conference
on Verification, Model Checking, and Abstract Interpretation (VM-
CAI’11), 2011, LNCS vol. 6538, pages 134–149. DOI:10.1007/978-
3-642-18275-4_11

3.2 Related work

With the exception of [10], no tools have been previously reported that
are directly tailored to the problem of proving stabilization or other live-
ness properties of large biological systems modeled as discrete systems (e.g.
Qualitative Networks). Classic theory of stability of differential equations
is applied to continuous systems, e.g. in [16]. Recent work is known on
the stability of hybrid systems, e.g. [17–19]. In the context of stabilization
for discrete systems, Schaub et al [10] use the compositional structure of
a system modeled as a Qualitative Network to accelerate the computation
of a fixpoint-based computation of the reachable states. However, the final
check is not modular, and thus is less scalable than our approach. Regulatory
Networks [11], which are an ‘asynchronous’ variant of Qualitative Networks,
have been extensively studied, e.g. in [11,15], but the analysis relies on state
space enumeration, which is not scalable, or stable states computation that
does not account for reachability [20].

The current state-of-the-art amongst biologists interested in stabilization
is to use either techniques from [10] or off-the-shelf model checking tools for
finite-state systems. Recently developed tools for proving liveness of infinite-
state systems (e.g. [21]) could also be used. Abstract interpretation was also
used in a way similar to our method in [22] to produce tail invariants for
termination proofs. As we show in Section 3.7, our procedure is many orders
of magnitude faster than previously known approaches. The challenge is
that biological models are very large, causing timeouts and out-of-memory
failures for most tools not based on modular proof strategies. Note also
that stabilization is not directly expressible in popular temporal logics, e.g.
CTL or LTL, unless support for quantifiers is added, making the encoding of
stabilization tricky in most formal verification tools. Qualitative Networks
could be implemented in Lustre [23], which however only supports checking
safety properties.

We are not the first to attempt to address the difficulty of modular
reasoning for liveness. For example, several previous papers have reported
on heuristics tailored to the problem of proving liveness of non-blocking
concurrent programs [21, 24]. Their motivation is the same as here, but the
approaches used differ as they are tailored to different problems. Another
technique, as found in [25], is to use induction over time to facilitate the

http://dx.doi.org/10.1007/978-3-642-18275-4_11
http://dx.doi.org/10.1007/978-3-642-18275-4_11
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modular proving of liveness properties of finite-state models. In [25] the
modular decomposition is given manually, whereas in our work we use the
structure of the biological system to our advantage when automating the
search for the modular decomposition. To show that our proofs are non-
circular we use an argument similar to that of [25].

3.3 Example: Skin cells

Figure 3.1 contains a pictorial view of a simplified model of mammalian
epidermis (outermost skin layer) that consists of five stacked cells [10]. Each
cell represents a single skin layer and communicates with neighboring cells.
The bottommost cells proliferate, migrate upwards and eventually decide
to die and thus contribute to the cornified skin surface. It is this balance
between proliferation and cell death that makes the system interesting to
biologists: too much death is detriment to the skin, too little is cancerous. The
original model is expressed as a Qualitative Network [10]; formal definitions
of Qualitative Networks and Regulatory Networks are given later, here we
describe the epidermis model only informally.

The example model includes a few executing components, each updating
a single variable. See, for instance, the wnt3 and NotchIC3 variables in
Figure 3.1. Each variable holds a value, which is a number in

�
0;1; : : : N

	
,

where N � 1 is a predefined, globally-fixed granularity. A target function,
Tv , associated with each variable, v , determines how the variable is updated,
depending on the current evaluation of the target function:

v0 :�

8
><

>:

v � 1 v < Tv ;
v � 1 v > Tv ;
v v � Tv :

(3.1)

In a Qualitative Network all variables are updated synchronously in parallel,
whereas in a Regulatory Network they are updated asynchronously.

Intuitively, the update function of each variable is designed such that the
value of the variable follows its target, which depends on other variables. In
the biological setting, the typical target of a variable, v , combines the positive
influence of variables w1;w2; : : :ws with the negative influence of variables
ws�1;ws�2; : : :ws�r , and ignores all other variables in the network:

Tv�w1;w2; : : :ws�r � �max

0

@0;

66641
s

sX

k�1

wk �
1
r

rX

k�1

ws�k

7775

1

A

Graphically, this is often represented as an influence graph with edges
between each of w1;w2; : : : ;ws and v , and edges between each of
ws�1;ws�2; : : : ;ws�r and v . In this section we discuss only several target
functions used in the skin example; papers [10,13–15] contain target functions
used to model a large spectrum of aspects of signaling pathways, metabolic
and regulatory networks.

Briefly, the target functions of variables in the skin models are as follows.
The target of wnt3 is Twnt3 � N � NotchIC3, which means that NotchIC3
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inhibits wnt3 (in Figure 3.1 this fact is indicated by a ‘blocking’ arrow from
NotchIC3 to wnt3). The target of NotchIC3 is TNotchIC3 � min�3;deltaext3�
(indicated in the figure by an underline). The targets of the ext-variables
round averaged cell inputs, which effectively requires at least one of the
components to be present for some event to take place:

Tdeltaext1 �
�

delta0 � delta2

2

�
; Twntext1 �

�
wnt0 � wnt2

2

�
:

Figure 3.1 shows behavior of four selected variables, based on their target
function.

To complete the story about the biology of mammalian epidermis, the
cell’s fates are determined by the levels of NotchIC and delta in the stable
state (stability is discussed next in this section). Namely, in the k-th cell: if
NotchICk > deltak, the cell terminally differentiates; if NotchICk < deltak,
the cell proliferates; if the values are equal the cell is in transition. Generally,
in a healthy skin, the bottom cell (cell with Notch0, leftmost in Figure 3.1)
proliferates, the cell above is in transition, and the cells in the three top layers
are terminally differentiated.

Stabilization
If all executions end in the same cycle, and that cycle has length 1, then we say
the network stabilizes. Note that both Qualitative and Regulatory Networks are
finite-state systems with only infinite executions. Thus, every execution must
eventually end in some type of cycle. Stabilization guarantees both that the
system has only a single fixpoint and that the fixpoint is always eventually
reached—a violation of this property is the existence of two fixpoints or a
cycle of length greater than 1. Biologists are often interested to see what this
fixpoint is when it exists, and to see a counter-example when it does not.

When applied to the skin example, our tool incrementally finds a modular
proof of stabilization, as depicted in Figure 3.2. The tool starts by guessing
simple facts of the form FG�p� about variables that can be proved locally,
i.e. using the update function of only one variable, with the definitions of
the other variables abstracted away, see Figure 3.2(a). In this case, we can
infer locally the lemma FG�deltaext4 > 0� in the top cell. This property is
provable using only local reasoning; namely, the deltaext4 variable follows
a target d�2� delta3�=2e, which is always a positive number, independent of
the value of delta3.

In the next step, we iteratively use the established facts to guide the search
for additional facts to conclude. We search for locally provable facts of the
form FG�p� ) FG�q�, where we only try to prove FG�p� ) FG�q� if FG�p� is
a consequent in a previous iteration. To continue our example, in Figure 3.2(b)
we locally infer that

FG�deltaext4 > 0�) FG�NotchIC4 > 0�:

This implication holds as min�3; deltaext4�, the target of NotchIC4 in the
top cell, effectively equals deltaext4, because N � 3 is the maximal possi-
ble value of variables; since deltaext4 is eventually always positive, so is
NotchIC4, up to N steps later.
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In the next round, we can prove

FG�NotchIC4 > 0�) FG�wnt4 < N�

in the top cell, see Figure 3.2(c). This property holds locally, because the
target of wnt4 is N � NotchIC4. Figure 3.2(c) also contains several subsequent
stages of the proof. We continue such reasoning until no new implications
can be deduced. At that point, if we can conclude : : : FG�v � kv� for some
kv 2 f0;1 : : : Ng for each variable v , then we have found a global stable state
and proved that the model stabilizes.

A bug in the skin model
Applying our tool to the 1-D skin model described above proved the model
stabilizing. By contrast, applying the tool to the 2-D skin model built out of
several interconnected such 1-D models, proved the 2-D model not stabilizing.
This result is biologically surprising, so we suspected a bug in the original
model from [10]. After consulting biological literature [26], we discovered that
the bug was real, i.e. the original model was in disagreement with biological
evidence. The fix proposed was to change the value of the Notch protein
(constant input of NotchIC0 in the bottommost skin layer) from 0 to 1. By
doing so we effectively introduced a low level of Notch protein into the basal
layer of epidermis. With the bug fixed, we proved the multidimensional model
stabilizing. While this finding offered no new biological insight, it helped
to repair the existing model and confirmed the usefulness of our method to
biologists.

3.4 Preliminaries

Qualitative Networks (QN)
Following [10], a Qualitative Network (QN), Q�V; T ;N;n�, of granularity N�1
consists of n variables: V � �v1; v2 : : : vn�. The state of the system is a
finite map s : V !

�
0;1; : : : N

	
. The initial state is random. Each variable

vi 2 V has a target function Ti 2 T associated with it: Ti :
�
0;1; : : : N

	n !�
0;1; : : : N

	
. Qualitative Networks update the variables using synchronous

parallelism. Target functions direct the execution of the network: namely,
from a state v � �v1; v2 : : : vn�, the next state v0 � �v01; v

0
2 : : : v0n� is computed

by:

v0i �

8
><

>:

vi � 1 vi < Ti�v�;
vi vi � Ti�v�;

vi � 1 vi > Ti�v�:
(3.2)

Regulatory Networks (RNs)
A Regulatory Network (RN) [11], G�V; T ;N ; n�, consists of n discrete vari-
ables: V � �v1; v2 : : : vn� bounded individually by N : V ! f1; : : : ;Ng.
Variables have target functions from T associated with them that govern
updates of variables, as in formula (3.2). The updates are asynchronous, which
is the main difference between RNs and QNs. We additionally assume that
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the updates are fair, i.e. each variable that is not equal to its target value is
eventually updated.

Biological interpretation of QNs and RNs
QNs and RNs have proven to be a suitable formalism to model biological
systems [10,11,13–15]. A target function of a variable v is typically a simple
algebraic function, such as sum, over several other variablesw1;w2 : : :wm. We
often say that v depends on w1;w2 : : :wm or that w1;w2 : : :wm are inputs of
v . Qjv denotes the restriction (sub-network) of the network Q to the variable
v and its inputs, where the inputs behave arbitrarily (have no inputs of their
own). In the following, we use the term network to refer to both QNs and RNs.

Stabilization
We say that a network is stabilizing if there exists a unique state s that is
eventually reached in all executions, such that T�s� � s. Intuitively, this
means that, when walking the state space from an arbitrary state, or when
starting a simulation in an arbitrary state, we always end up in a fixpoint and
always the same one. Formally, we are attempting to prove the existence of
a unique state �k1; k2; : : : kn� such that FG�8vi 2 V: vi � ki�. Note that the
stabilization property is not expressible in LTL unless we add support for both
existential and universal quantification over states.

3.5 Stabilization algorithm

In this section we describe our algorithm, which attempts to efficiently prove
stabilization of systems using the modular strategy exemplified in Section 3.3.

Since the networks considered are finite and all executions are infinite,
each execution of the system must end in a cycle. We consider all possible
executions of a network and note the trichotomy: (a) all executions end in
the same fixpoint (the network stabilizes); or (b) there exists an execution
that ends in a cycle of length greater than 1 (the network cycles); or (c) all
executions end in a fixpoint and there exist at least two different fixpoints (the
network bifurcates). As described later in this section, our algorithm covers all
of these cases, and is therefore complete. We note that completeness depends
on the finiteness of networks considered and on the fact that the algorithm
falls back on the non-compositional CexSearch routine.

Notation
Given a network Q with a set of variables V , we define L to be a finite set of
predicates that range over the simple inequalities of the form �m � v � M�,
where v is any variable in V , and m and M are constants in f0;1; : : : ;Ng.

We use the term local lemma over a variable v to represent proved
assertions of the form

FG�p1�^ FG�p2�^ � � � ^ FG�pm�) FG�q�;

where q 2 L restricts v , and p1 through pm are predicates about variables in
the network proved previously.
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Algorithm 3.1: Stabilization proving procedure for a network Q with a set of variables
V bounded by N . If Q is stabilizing, returns the fixpoint; otherwise,
returns a counter-example.

procedure Prove(Q : Network(V , N))
returns Fixpoint or Counterexample

1: �Vmin; Vmax� :� GenLemmas�Q�
2: if

�
8v 2 V : Vmin�v� � Vmax�v�

�
then

3: return Stabilizing at fixpoint Vmin

4: else if CexSearch�Vmin; Vmax;Q� finds a counter-example � then
5: return Non-stabilizing with counter-example �
6: else
7: � :� Single fixpoint of Q
8: return Stabilizing at fixpoint �
9: end if

The stabilization algorithm (Algorithm 3.1, Prove)
Our procedure is displayed in Algorithm 3.1. It first applies a local lemma
generation procedure GenLemmas (Algorithm 3.2) that is explained next in
this section. In all practical cases we find that the lemmas found during this
phase directly imply stabilization in cases where the model does stabilize. If
no proof has been found, the strategy is reversed: our procedure searches
for one of two types of counter-examples: multiple fixpoints and non-trivial
cycles. Both counter-example finding procedures are complete; therefore,
in the instance that GenLemmas does not prove stabilization and yet no
counter-example is found, we have still proved stabilization. The procedure
CexSearch�Vmin; Vmax; Q� is used by Algorithm 3.1 to look for existence
of a counter-example in a network Q. Importantly, CexSearch uses the
proved variable constraints Vmin and Vmax to reduce the state space it needs
to explore. If CexSearch is unable to find a counter-example, no counter-
example exists. Thus, in this case, we know that we only need to find a single
trivial cycle. This is easily done using a decision procedure as in CexSearch,
or by simulating the system from an arbitrary state until the fixpoint is found.

Lemma generation (Algorithm 3.2, GenLemmas)
The key idea behind our approach is to first find local lemmas about the
update functions for specific variables in the network. That is, if a variable
v locally depends on variables w1;w2; : : :wm, we compute lemmas about
interactions between v and wi’s of the following form:

FG�p1�^ FG�p2�^ � � � ^ FG�pm�) FG�q�

where pi’s are predicates in L about variables wj ’s, and q is a predicate about
v . We compute local lemmas until no new ones can be deduced. If for each
variable v 2 V we can use the lemmas to prove that FG�v � kv� for some
constant kv , then we can report that the system is stabilizing.
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Algorithm 3.2: Lemma generation procedure GenLemmas for a networkQ with a set of
variables V bounded by N . Returns the set of all provable local lemmas
about variables in V ; these imply the bounds on variables Vmin, Vmax.

procedure GenLemmas(Q : Network(V , N))
returns Vmin; Vmax : V !

�
0;1; : : : N

	

1: F :� ;; P :� ;
2: 8v 2 V;v constant : Vmin�v� :� v ^ Vmax�v� :� v
3: 8v 2 V;v non-constant : Vmin�v� :� 0^ Vmax�v� :� N
4: for all non-constant variable v 2 Q do
5: F :� F [ fvg
6: end for
7: while F �; do
8: w :� pick a variable from F
9: for all variable v 2 outputs�w� do
10: for all lemma l 2 NewLemmas�v; Vmin; Vmax� do
11: F :� F [ fvg
12: P :� P [ flg
13: update bounds Vmin�v� and Vmax�v� as implied by l
14: end for
15: end for
16: end while
17: return (Vmin,Vmax�

The procedure GenLemmas, displayed in Algorithm 3.2, iteratively com-
putes a set of lemmas, P. During the iterative search, it maintains a set of
frontier variables, F , for which new facts have been proved, but not used
yet. Initially, F contains all unfixed variables in the network (Lines 4–6).
The procedure repeatedly picks variable w from F (Line 8), and generates
new local lemmas about variables that depend on w (Lines 9–10). The new
lemmas are used to strengthen Vmin and Vmax (Line 13), the bounds that over-
approximate the variables; namely, for each v 2 V we have

FG
�
Vmin�v� � v � Vmax�v�

�
:

Algorithm 3.2 terminates because a variable’s bounds can be updated at
most N times, so each variable can be enqueued at most N times. From
this it also follows that GenLemmas performs no exponential explorations.
Generation of the new local lemmas NewLemmas is shown in Algorithm 3.3.
For a given variable v , it searches the language of base inequalities L for
predicates about v that improve its current approximation; it checks the
lemmas and returns those that are true. The cost of NewLemmas depends on
the size of L; since L is a language of simple inequalities over each variable,
the loop in Line 3 executes at most �N � 1�2 times, where N is usually a
small constant in biology. Therefore, the computational cost of NewLemmas
is O�n��N�1�2� � O�n�, assuming a constant cost for ProveLemma (see the
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Algorithm 3.3: Procedure NewLemmas that generates new lemmas about a variable v
in a network with variables V bounded by Vmin and Vmax.

procedure NewLemmas(v 2 V ; Vmin; Vmax : V !
�
0;1; : : : N

	
)

returns Lemmas

1: S :� ;; �w1;w2; : : : ;wm� :� inputs�v�
2: p :�

�V
i Vmin�wi� � wi � Vmax�wi�

�

3: for all predicate q 2 L over v that strengthens Vmin�v� or Vmax�v�
do

4: l :�
�
FG�p�) FG�q�

�

5: if ProveLemma�l;Qjv� then
6: S :� S [ flg
7: end if
8: end for
9: return S

following discussion). The worst-case complexity of GenLemmas is O�n2N �
n� � O�n3�.

Recall that with Qjv we denote the restriction of Q to a variable v and its
inputs. The call ProveLemma ��;Qjv� is the application of model checking
techniques to prove that Qjv respects the property �; we used the Cadence
SMV model checker [27] (see Section 3.7). The key to the performance of
our implementation is that checking � locally is extremely fast. Since we
are able to prove stabilization of the entire system while only ever applying
ProveLemma to small parts of the system, our procedure is very efficient.
That, coupled with the fact that ProveLemma calls can be executed in batches
and thus in parallel on as many processors as are available, makes the method
scalable.

Theorem 3.1 establishes the soundness and completeness of our method.

Domain specific optimization
Until now we have presented a general procedure that works with most
models of concurrent updates, and all possible update relations (not just
those defined per variable to follow the target functions). However, due

Algorithm 3.4: Domain-specific fast lemma generation F-NewLemmas

procedure F-NewLemmas(v 2 V ; Vmin; Vmax : V !
�
0;1; : : : N

	
)

returns Lemmas

1: �w1;w2; : : : ;wm� :� inputs�v�
2: p :�

�V
i Vmin�wi� � wi � Vmax�wi�

�

3: T :� Tv
��i�Vmin�wi�; Vmax�wi��

�

4: return fFG�p�) FG�min�T� � v �max�T��g
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to specific target functions used in QNs and RNs, we can reimplement the
lemma generation routine in such a way that ProveLemma is never needed,
leading to significant performance improvements. Our alternative procedure
F-NewLemmas is shown in Algorithm 3.4. We consider a variable v and its
inputs w1;w2 : : :wm. Instead of guessing the influence of inputs under the
constraints Vmin and Vmax on the output v , we compute it exactly. Namely, we
compute the set T of values of target function Tv applied to all possible input
combinations:

T � Tv
��
Vmin�w1�; Vmax�w1�

�
�
�
Vmin�w2�; Vmax�w2�

�
� : : :

: : :�
�
Vmin�wm�; Vmax�wm�

��
; (3.3)

thus obtaining a new approximation for v : min�T� � v � max�T�. In
Theorem 3.2 we argue the correctness of this procedure, i.e. that the lemmas
generated by F-NewLemmas indeed hold.

The worst-case cost of the stabilization proving procedure using F-
NewLemmas is O�n2Nd+1� where the network has n components, of maximal
in-degree d (Nd results from generating input combinations). Since in all of
our examples N and d are small, this procedure works exceptionally fast (see
the experimental results in Section 3.7). If N or d were large, the procedure
with NewLemmas could in principle be more efficient than F-NewLemmas.

Search for counter-examples
In Algorithm 3.1, if the lemmas do not imply stabilization then the counter-
example search procedure, CexSearch, is called to search for a counter-
example, or exhaustively show that no counter-example exists. The procedure
uses the bounds Vmin and Vmax computed earlier to limit the search space that
is exhaustively explored.

CexSearch is designed to find one of two types of counter-examples:
multiple trivial fixpoints and non-trivial cycles. The searches for both types
of counterexamples are done in parallel, and whichever is found first is
returned. In the case of multiple fixpoints, CexSearch encodes the problem of
existence of at least two fixpoints as an instance of a satisfiability problem. A
decision procedure is used to search for the existence of two different states:
�v1; : : : vn� and �w1; : : : ;wn� such that each of them is a fixpoint:

8i 2 f1 : : : ng :
�
v0i � vi ^w

0
i � wi

�
^ 9i 2 f1 : : : ng : �vi � wi�;

where the system’s next states, �v0i� and �w0i�, are determined by (3.2). We can
ignore reachability here because the set of initial states is equal to the set of
all possible state configurations. Note also that, for efficiency, we conjoin the
system with extra constraints using Vmin and Vmax:

8v 2 fv1; : : : vn; w1; : : :wng : Vmin�v� � v � Vmax�v�:

Experimentally we found that the information from the proved lemmas leads
to tremendous speedups when searching for multiple fixpoints. Satisfiability
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of the query proves the existence of at least two different fixpoints. If it is
unsatisfiable, the system is cyclic or terminating; in the next phase we search
for a non-trivial cyclic counter-example.

To find a non-trivial cycle we use bounded model-checking [28] together
with the encoding of liveness to safety found in [29]. Namely, we check
for the existence of cycles of length k � 2;3 : : :, until a cycle is found
or the system diameter reached, i.e. when k reaches the state space size,Q
v2V jVmax�v�� Vmin�v�j. The search for a cycle of length k is encoded as a

formula satisfiability problem. A decision procedure is used to search for k
states v1;v2 : : : ;vk that form a cycle and are pairwise different:

8j � 1 : : : k : �vj�0 � vj ^ 8j � l : vj � vl:

For efficiency, as we unroll the system Q we conjoin it with constraints on the
values of the variables that come from the proved lemmas

8j � 1 : : : k; i � 1 : : : n : Vmin�vji � � v � V
max�vji �;

as was done in the search for fixpoints. Again we find that the information
from the proved lemmas leads to tremendous speedups when searching
for non-trivial cycles. Termination of the unrolling uses a naive diameter
check [28], leading to a sound and complete technique. Fortunately, we know
only of toy examples where a search to the system’s diameter is necessary.

3.6 Formal proofs

This section gives formal proofs for the algorithms in Section 3.5.

Theorem 3.1. Procedure GenLemmas, displayed in Algorithm 3.2, is sound and
complete.

Proof. A proof found by our procedure, P, consists of a list of local lemmas.
The discovery order of the lemmas creates a partial order between them. Fix a
complete linear order on the lemmas that linearizes this partial order. Let
L1; L2; : : : be this linear order, where Li is

�
FG�pi�) FG�qi�

�
, and qi is a

predicate on variable vi. We show by induction that for every i, FG�qi� holds.
Base. The first lemma to be discovered relies on nothing and is proved by

model checking, or by Theorem 3.2 in case the optimized procedure is used.
Induction step. We prove that FG�qi� holds. By the definition of the linear

order, every conjunct in pi appears as qj for some j < i. Thus, FG�pi� holds
by the assumption of the induction step. By soundness of model checking or
Theorem 3.2, the call to ProveLemma�Li; Qjvi� establishes FG�pi�) FG�qi�.
We conclude that FG�qi� holds.

Soundness follows, as we only accept a proof if, for each variable vl, a
statement FG�vl � kl� for some constant kl is a consequent of one of the
lemmas. The state �k1; : : : kn� corresponds to the unique fixed-point in the
definition of stabilization, see Section 3.4.

Completeness results from the trichotomy discussed in Section 3.5, over
which all cases are covered by our procedure. Note that completeness depends
on the finiteness of the networks studied and the language L.
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Table 3.1: Biological examples tested. N�1 indicates the granularity of the network;
#variables and #edges represent the number of variables (components)
and the number of interactions between variables (edges), respectively, in
the model. The skin models Skin2D and Skin3D contain bugs that were
detected for the first time by our tool. The repaired versions are suffixed
with Fxd.

Model N�1 #vars #edges

SSkinFxd 4 25 45
SkinFxd 4 60 90

ESkin6Fxd 4 72 108
ESkin7Fxd 4 84 126
ESkin8Fxd 4 96 144
Skin2DFxd 4 300 530

Skin2D 4 300 530

Model N�1 #vars #edges

Skin3DFxd 4 1200 2420
Skin3D 4 1200 2420

Diabetes8d 3 75 148
Diabetes15w 3 75 148

VPC4 3 48 92
VPC6 3 72 138

P.R.(EctoEve) 4 7 23

Theorem 3.2. Consider variable v and its inputs w1;w2 : : :wm. We will prove
that for any S � �0; N�n

FG ��w1;w2 : : :wm� 2 S�) FG �v 2 �min�T�;max�T��� ;

where T � Tv�S�. In other words, if values of inputs of a variable v stay within
S at times �t0;1�, the value of v stays in �min�Tv�S��;max�Tv�S��� at times
�t0 �N;1�.

Proof. Indeed, if FG��w1 : : :wm� 2 S�, then there exists a time t0 such that
from that time onwards we have �w1 : : :wm� 2 S, and so Tv�w1 : : :wm� 2 T
and, in particular, Tv�w1 : : :wm� 2 �min�T�;max�T��. Since v changes at
most by 1 per step according to the equation:

v0i �

8
><

>:

vi � 1 vi < Ti�v�;
vi vi � Ti�v�;

vi � 1 vi > Ti�v�;
(3.4)

no more than N steps after t0 the value of v will reach, and never leave,
�min�T�;max�T��. It follows that FG�v 2 �min�T�;max�T���.

3.7 Experimental results

We have implemented Algorithm 3.1 in a tool called BioCheck, using Cadence
SMV [27] as the implementation of ProveLemma and Z3 [30] as the decision
procedure. The NewLemmas procedure is easily parallelized: the local lemmas
are proved in batches rather than one-by-one. All experiments were performed
on a PC equipped with 4GB memory and a quad-core Intel processor with
hyper-threading.
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Biological systems tested
Information about the examples used during our experimental evaluation can
be found in Table 3.1. These models are variations on four base systems: skin,
diabetes, vulval development, and pair-rule genes.

The mammalian epidermis model [10], SkinFxd, consists of 5 cells, each
containing 12 variables. We tested a simplified version, SSkinFxd, where
only 5 variables per cell directly relevant to stabilization were considered
(Figure 3.1). We also built elongated variants of this model: ones that consist
of more than 5 cells, ESkin6-8Fxd, and ones that emulate multidimensional
skin tissue. Skin2DFxd contains 4 � 5 cells (240 variables) and represents
skin cross-section. Skin3DFxd consists of a 4�5�5��100� 3-D mesh of cells
(1200 variables). Note that, using our tool, we are the first to find a bug in the
skin model from [10] (Section 3.3).

The model of several molecular pathways operating in type-2 diabetes and
chronic obesity [13], Diabetes, exists in two variants: 8 days and 15 weeks
after mice started being fed a fatty diet.

The model of vulval precursor cells (VPCs) [14] represents the process of
cell fate determination during the formation of vulva, an egg-laying organ,
in the C. elegans worm (this process was discussed in Chapter 2). The VPC4
model includes 4 cells; in nature, there are 6 VPCs, but the model was reduced
by its author to 4 cells to make analysis by other tools tractable. Our tool
easily handles the extended model, VPC6, which includes 6 cells.

We also tested PairRule, a regulatory network of genes operating during
segmentation in the Drosophila embryo [15], and a mutant of this network,
PairRuleEctoEve, with ectopic (in the wrong place) expression of the even-
skipped gene. In [15], Sanchez et al report the former model non-stabilizing
and the latter stabilizing, which is confirmed by our results. As the pair-rule
model is very small, the time to analyze it is negligible and is not included in
the performance comparison.

Comparison against other tools
The comparison between our tool and existing tools is presented in Table 3.2.
In this table we have compared the following tools:
� BC is our tool BioCheck implementing Prove (Algorithm 3.1) using

NewLemmas (Algorithm 3.3).
� FBC is BioCheck with domain-specific optimization, i.e. using F-

NewLemmas (Algorithm 3.4) instead of NewLemmas.
� Naive is an implementation of bounded model checking using a diame-

ter check as the termination condition, i.e. Naive�Q� � CexSearch�;;;;Q�.
� TRM� is the application of Terminator [21] to solve a slightly different

problem than stabilization (as stabilization itself is not encodable using
LTL). For all the models that do stabilize, we test if the provided fixpoint
is eventually reached. For those that do not guarantee stabilization
we look for a non-trivial cycle. We use the symbol � to remind the
reader that this application is not solving quite the same problem as
stabilization.

� SMV�1 and SMV�2 apply Cadence SMV and NuSMV [31], respectively, to the
same problem as is used in TRM�.
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Table 3.2: Comparison of our approach with other tools. ‘P’ means that the model
was proved stabilizing; ‘D’ means that stabilization was disproved. BC is
found in Algorithm 3.1 in Section 3.5. FBC is the domain-specific version
of BC using F-NewLemmas instead of NewLemmas. Runtimes are given in
seconds. T indicates a timeout, where the threshold was set to 20 minutes.
M represents an out-of-memory exception. The memory threshold was set
to 4GB. V indicates tool failure after reporting too many variables or other
kind of resources.

Model Result BC FBC Naive TRM� SMV�1 SMV�2 QNB SPN� VIS

SSkinFxd P 3:8 0:0 T T M T M T T
SkinFxd P 9:0 0:0 T T M T M T T

ESkin6Fxd P 10:6 0:0 T T M T M T T
ESkin7Fxd P 12:9 0:0 T T M T M T T
ESkin8Fxd D 12:3 1:0 2:1 T M M M T T
Skin2DFxd P 50:3 0:0 T T M M M T T

Skin2D D 56:5 13:1 T T M M M M T
Skin3DFxd P 257:3 0:1 T T V M V M T

Skin3D D 396:8 182:8 T T V M V M T
Diab.8d. P 4:9 0:0 T T M T M T T

Diab.15w. P 5:2 0:0 T T M T M T T
VPC4 P 4:6 0:0 T T T T M T T
VPC6 P 7:0 0:0 T T M T M T T

� QNB is a tool from [10] that computes infinitely-often visited states in
a network. For the comparison in Table 3.2, we could only use the
tool that treats a system as a whole, rather than the version using the
system’s hierarchical structure to accelerate the whole-system reachable
states computation. This acceleration-based technique has not been
implemented. When applied manually to the example Skin, on similar
hardware, the acceleration-based technique took 21 minutes (see [10]).
With some help by the author of the tool, we have established that the
acceleration-based technique still would not be able to handle our larger
examples.

� SPN� is the application of Spin [32] on the same formulas as in TRM�.
� VIS is used in our experiments to symbolically compute the model’s

reachable state spaces, from which we look for a stable state.
Note that all previously known approaches fail to scale to the larger examples.
For example, in the column TRM� the encoding creates a program that, in
essence, forces the liveness prover to find termination arguments for each
possible path through the loop, which is a very large set (e.g. SkinFxd
contains 360 such paths). For this reason, Terminator times out. In the
case of SMV�, the SkinFxd has 460 reachable states, which exceeds the
typical limits of symbolic model checking tools. Note that unlike Naive, our
implementation of CexSearch with range restrictions does scale. This shows
how the range restrictions that come from the lemmas help reduce the state
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Table 3.3: Experimental details of application of our tool to the examples. Proof
size is the number of lemmas in the proof, if the stabilization was
proved. Otherwise counter-example size is given: cycle length and
number of variables involved in the cycle. All times are given in
seconds. F-GenLemmas is the domain-specific GenLemmas procedure that
uses the optimized generation of new lemmas F-NewLemmas instead of
NewLemmas. CEX is short for counter-example.

Model Gen-
Lemmas

F-Gen-
Lemmas

Proof
size

CEX
Search

CEX
Size

SkinFxd 9.0 0.0 177 – –
ESkin6Fxd 10.6 0.0 212 – –
ESkin7Fxd 12.9 0.0 251 – –
ESkin8Fxd 11.3 0.0 2 1.0 74

Skin2D 43.4 0.0 2 13.1 215
Skin2DFxd 50.3 0.0 926 – –

Skin3D 14.1 0.1 2 182.7 860
Skin3DFxd 257.3 0.1 3896 – –

VPC4 4.6 0.0 75 – –
VPC6 7.0 0.0 107 – –

Diabetes8days 4.9 0.0 132 – –
Diabetes15weeks 5.2 0.0 132 – –

PairRule 4.8 0.0 2 1.6 4
PairRule(EctoEve) 1.7 0.0 8 – –

space significantly.

Note that in the case of the non-stabilizing ESkin8Fxd algorithm, our
lemma generation procedure performs worse than the naive method. This
demonstrates (as mentioned in Section 3.1) that our lemma generation proce-
dure could in some cases hinder rather than help performance.

Details of experiments
Table 3.3 contains more statistics about the results of BioCheck during
the experimental evaluation. The optimized lemma generation procedure
performs an order of magnitude faster than the one that uses a model
checker. The size of the counter-examples found corresponds to the number
of variables in the network that haven’t been fixed by the proof procedure (not
shown); meaning that the proof procedure comes close to a counter-example.

Scaling-up BioCheck to millions of cells
In Table 3.4 we check how our proof procedure scales to larger examples. We
run them on models containing up to 104 cells (with or without bug) until we
ran out of memory. The NewLemmas-based implementation does not time
out on exactly one of these examples. In contrast, the F-NewLemmas-based
implementation successfully verifies all but the 200� 500 mesh model.



50 Proving stabilization by abstract interpretation

Table 3.4: Performance of our tool FBC on scaled-up variants of the Skin3DFxd model.
All times are given in seconds. M represents an out-of-memory exception.

Mesh
(#cells)

#Vars
(N+1=4)

F-Gen-
Lemmas

10�10�5 6:0 � 103 0.8
10�20�5 1:2 � 104 1.6
20�20�5 2:4 � 104 3.6
10�50�5 3:0 � 104 4.5
20�50�5 6:0 � 104 9.8
50�50�5 1:5 � 105 25.0

Mesh
(#cells)

#Vars
(N+1=4)

F-Gen-
Lemmas

75�75�5 3:4 � 105 57:4
100�100�5 6:0 � 105 103:8
100�200�5 1:2 � 106 208:5
200�200�5 2:4 � 106 423:0
100�500�5 3:0 � 106 544:3
200�500�5 6:0 � 106 M

3.8 Summary and conclusions

In this chapter we have addressed the open problem of scalable stabilization
proving with a new sound and complete modular proof procedure. Our
procedure takes advantage of the fact that, in practice, we can limit the set
of possible modular proofs from which we search to those where the local
lemmas are of a very restricted form. This leads to tremendous speedups,
both for proving as well as disproving stabilization. It seems that it is the
inherent robustness of biological systems that makes our technique work so
well—evolutionary developed systems remain naturally stable in the presence
of timing and concentration variations.

Using BioCheck, we were able to prove stabilization for a 3-D mesh of
200 � 500 � 5 mammalian skin cells. The state space of this model contains
26mln reachable states, which is by far the largest state space that we approach
in this dissertation. Verification based on abstract interpretation coupled
with modular reasoning is successful because it does not explicitly enumerate
states or paths of systems; instead, it over-approximates the execution of a
system using data structures of linear size with respect to the number of
concurrent components. The greatest limitation of this technique is the need
for tailoring to classes of properties and systems, i.e. abstract interpretation
must only extract information relevant to the property at hand, and different
kinds of properties require different kinds of information. In the future,
it would be interesting to adapt our technique to prove additional liveness
properties beyond stabilization, as well as exploit the circular proof rules
e.g. [7, 8] for the purpose of proving stabilization in very large but finite
systems.
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CHAPTER 4
Distributed processing of large

graphs

4.1 Introduction

Model checking [1] is a technique to automatically check properties of pro-
grams (models) by systematically examining their state spaces (see Chapter 1).
This technique is easy to use and widely applicable, but it is also limited by the
amount of memory available to store the state spaces, which tend to be large
due to state explosion. We mention two important approaches to mitigate this
problem. First, state space size can be reduced; a simplest such technique
is on-the-fly model checking, in which state space exploration and checking
run concurrently, allowing to find bugs in partially explored models. Second,
more memory can be obtained by splitting a state space between memories
of multiple machines—this approach is called distributed model checking.
Importantly, such a distributed environment requires that the verification and
state space reduction algorithms are parallelized, which we address in this
chapter.

Model checking is a graph algorithm: it operates on graphs in which states
of a system are vertices, and transitions between the states are edges. Such
graphs have two important properties: they are large and sparse (the number
of edges per state is small compared to the total number of states); we observe
that real-world graphs, i.e. graphs connecting people, places, etc., also exhibit
these properties. For example, as of 2012: Facebook connects close to a billion
users [2]; OpenStreetMap reports 1.5 billion of geographic locations [3]; and
Google indexes a trillion unique web URLs [4]. These real-world graphs are
sparse, as the number of links in a web page or the number of person’s friends
are small compared to the size of the network.

In this chapter, we generalize the problem of implementing distributed
model checking to the problem of implementing a general-purpose framework
to write distributed algorithms that operate on large, sparse, partitioned
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graphs. Following this idea, we design a graph processing model that is
amenable to parallelization, and we realize it in a novel framework called
HipG. Next, we use the framework to create and evaluate SpinJadi, our
distributed enumerative on-the-fly model checker.

Writing distributed graph algorithms is challenging. First, it requires that a
large unstructured graph is partitioned into chunks of balanced size in such a
way that relatively few edges span different chunks, as each such edge incurs
communication overhead; creating such a partitioning may be hard [5, 6].
Second, the amount of computation per graph node and edge is generally
small, and the computations are unstructured, as they are typically driven by
a node-edge relation. Consequently, the communication to computation ratio
is often high, resulting in an immense communication overhead. In addition,
graph computation tends to exhibit poor locality due to the graphs’ irregular
structure [7]. Finally, on a distributed machine, obtaining good load balancing
is hard, as in general work cannot be migrated (part of the graph would have
to be migrated and all workers informed).

While for sequential graph algorithms a few graph libraries exist, notably
the Boost Graph Library [8], for parallel graph algorithms no standards have
been established. The current state-of-the-art amongst users wanting to
implement distributed graph algorithms is to either use the generic C++
Parallel Boost Graph Library (PBGL) [9,10] or, most often, create ad-hoc imple-
mentations, in which the main challenge is to implement communication. Not
only does the ad-hoc coding effort have to be repeated for each new algorithm,
but it also obscures the original elegant graph algorithm. A programmer
spends considerable time tuning the communication, which is prone to errors.
While it may result in a highly-optimized problem-tailored implementation,
the code can only be maintained or modified with substantial effort.

In this chapter we propose HipG, a distributed framework aimed at im-
plementing HIerarchical Parallel Graph algorithms that operate on large-scale
graphs. Graphs can be read from disk, synthesized in memory, or created on-
the-fly during execution of an algorithm. They can be pre-partitioned by the
user or partitioned automatically by the framework. The key idea in HipG is to
expose each graph node as an object with customizable data and methods, and
deliver a unified interface to executing methods on local and non-local graph
nodes. This way a graph node can seamlessly execute methods on any other
graph node. In particular, nodes may execute methods on their neithbors,
which execute methods on the neighbors’ neighbors, etc., which results in
a fine-grained, recursive, structure-driven computation. These computations
are parallelized automatically by HipG, which handles details of an execution
on a parallel machine, and thus allows the user to focus on the algorithm at
hand. Separation of the graph algorithm from communication details enables
the algorithm to be expressed elegantly and easy to modify.

In HipG, the user controls the fine-grained graph computations by way of
special objects called synchronizers. Synchronizers may spawn, await, and
stop graph computations, as well as gather global results of such computa-
tions. Importantly, they can also spawn new synchronizers, which execute
independently in parallel. This feature allows to create divide-and-conquer (i.e.
hierarchical) graph algorithms: sub-synchronizers can solve sub-problems on
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sub-graphs. While this will be especially useful in Chapter 5, in the current
chapter we give an example using decomposition into strongly connected
components (see Section 4.4). Another graph processing model that can be
expressed in HipG is the bulk synchronous parallel (BSP) [11] model, which
alternates computation with communication phases; we give an example of a
BSP program (breadth-first search) written in HipG in Section 4.3.

Although the user must be aware that a HipG program runs in a distributed
environment, the code is high-level: explicit communication is not exposed
by the API, nor are the algorithms tied to graph representations. Parallel
composition is done in a way that does not allow race conditions, so that
no locks or thread synchronization code have to be implemented by the user.
These facts, coupled with the use of an object-oriented language, makes for
an easy-to-use, but expressive, language to code parallel graph algorithms.

In this chapter we also introduce SpinJadi (Section 4.5), our distributed
enumerative on-the-fly model checker, and a reimplementation of the model
checker Spin [12]. The input to SpinJadi is a multithreaded program in
the Promela language [12]. The model checker starts with an empty graph,
explores the system’s initial state, its successors, the successors of the suc-
cessors, and so on, until a bug is found in the partially-explored state space,
or the entire state space is exhausted. It is the input file that determines the
next neighbor function that HipG uses to on-the-fly compute successors of
states.

SpinJadi partitions the state space between the workers using hashing;
each new state is explored locally, or sent to the worker that owns it. Safety
properties are checked on states during exploration, but the crucial and most
challenging part of the tool is checking properties about the system’s infinite
executions, for instance that a certain state is always eventually reached. Such
properties are described in an input program by way of annotating certain
‘bad’ states as accepting; to determine that a property does not hold, we
must find a cycle that contains an accepting state. We use an algorithm for
distributed cycle detection by Brim et al [13], which is based on finding a
vertex that is its own maximal predecessor and thus must be on a cycle.

We implemented HipG in Java. See Section 4.6 for a discussion of this
choice, as well as other implementation details. Using HipG we processed
on our cluster [14] graphs of size of the order of 1010, and obtained good
performance (see Section 4.7). SpinJadi was tested on two mutual exclusion
protocols from the BEEM repository [15], as well many biological models
formalized as Regulatory Networks [16] (see Chapter 3) from the GINsim
repository [17]. We report on the model of T-cell activation during an immune
response, one of the largest models in the repository.

We find that programs written in HipG are in general short and elegant: a
program for decomposing a graph into its strongly connected components
in HipG is an order of magnitude shorter than the hand-optimized C/MPI
version of this program [18] and three times shorter than the corresponding
implementation in PBGL (Section 4.2).

The remainder of this chapter is organized as follows. Section 4.2
overviews related work. The model and usage of HipG are explained
in Section 4.3, and the ability to create divide-and-conquer algorithms is
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illustrated in Section 4.4. In Section 4.5 we present on-the-fly computations
in HipG, and in particular our distributed model checker SpinJadi. The
implementation of HipG is discussed in Section 4.6, followed by an evaluation
in Section 4.7. Section 4.8 concludes this chapter.

This chapter has been published before, as:

Krepska, E.; Kielmann, T.; Fokkink, W. and Bal, H.: HipG: Parallel
processing of large-scale graphs. In Operating Systems Review,
2011, vol. 45, pages 3–13, selected papers from ICDCN’11.
DOI:10.1145/2007183.2007185

which is an extended (with SpinJadi) version of the conference
paper:

Krepska, E.; Kielmann, T.; Fokkink, W.; and Bal, H.: A high-
level framework for distributed processing of large-scale graphs.
Proc. 12th International Conference on Distributed Computing and
Networking (ICDCN’11), 2011, LNCS vol. 6522, pages 155–166.
DOI:10.1007/978-3-642-17679-1_14

4.2 Related work

HipG is a distributed framework aimed at providing users with a way to code,
with little effort, parallel algorithms that operate on partitioned graphs. An
analysis of other platforms suitable for the execution of graph algorithms is
provided in an inspiring paper by Lumsdaine et al [7] that, in fact, advocates
using massively multithreaded shared-memory machines for this purpose.
However, such machines are very expensive and software support is lack-
ing [7]. The library in [19] realizes this concept on a Cray machine. Yet
another interesting alternative would be to use partitioned global address
space languages like UPC [20], X10 [21] or ZPL [22], but we are not aware
of support for graph algorithms in these languages, except for the shared
memory solution [23] based on X10 and Cilk.

A graph programming framework that most closely resembles HipG is the
Signal/Collect [24] framework targeted at the Semantic Web community. In
Signal/Collect graph computations are expressed in terms of signals sent
along edges, which correspond to HipG’s execution of methods on graph
nodes. An advantage of the Signal/Collect model is that the scheduling of sig-
nals allows for malleability: the model provides synchronized, asynchronous,
and prioritized executions. However, similarly to Pregel, the user controls
signals but not the global execution; HipG allows the global execution to be
defined by the user (via synchronizers). In addition, Signal/Collect is only
implemented for shared memory systems.

The prominent sequential Boost Graph Library (BGL) [8] gave rise to a
parallelization that adopts a different approach to graph algorithms. Par-

http://dx.doi.org/10.1145/2007183.2007185
http://dx.doi.org/10.1007/978-3-642-17679-1_14
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allel BGL [9, 10] is a generic C++ library that implements distributed graph
data structures and graph algorithms. The main focus is to reuse existing
sequential algorithms, only applying them to distributed data structures,
to obtain parallel algorithms. PBGL supports a rich set of parallel graph
implementations and property maps. The system keeps information about
ghost (remote) vertices, although that works well only if the number of
edges spanning different processors is small. Parallel BGL offers a very
general model, while both Pregel and HipG trade expressiveness (for example
neither offers any form of remote read) for more predictable performance.
ParGraph [25] is another parallelization of BGL, similar to PBGL, but less
developed; it does not seem to be maintained. We are not aware of any work
directly supporting the development of divide-and-conquer graph algorithms.

The Bulk Synchronous Parallel (BSP) model of computation [11] alternates
work and communication phases. We know of two BSP-based libraries that
support the development of distributed graph algorithms: CGMgraph and
Pregel. CGMgraph [26] uses the unified communication API and parallel
routines offered by CGMlib, which is conceptually close to MPI [27]. In Google’s
Pregel [28] the graph program is a series of supersteps. In each superstep the
Compute(messages) method, implemented by the user, is executed in parallel
on all vertices. The system supports fault-tolerance consisting of heartbeats
and checkpointing. Impressively, Pregel is reported to be able to handle bil-
lions of nodes and use hundreds of workers. Unfortunately, it is not available
for download. Pregel is similar to HipG in two aspects: the vertex-centered
programming and composing the parallel program automatically from user-
provided simple sequential-like components. However, the repeated global
synchronization phase in BSP, although suitable for many applications, is not
always desirable. HipG is fundamentally different from BSP in this respect, as
it uses asynchronous messages with computation synchronized on the user’s
request. Notably, HipG can simulate the BSP model, which is shown in the
breadth-first search implementation in Section 4.3.

What HipG does not currently support is combining the memory with
external storage. In [29] some nodes created during enumerative model
checking are stored on disk and accessed through Bloom filters to reduce the
number of I/O operations. In [30] parts of the graph are stored on solid-state
memory devices that are significantly faster than disks. Both solutions were
designed for shared memory systems.

Besides general graph programming frameworks, tailored solutions to
some parallel graph problems exist. In the formal methods community
a number of distributed model checkers were developed to cope with the
state explosion problem. The DiVinE LTL model checker [13, 18, 31, 32] can
utilize both multi-cores and distributed memory. DiVinE is highly optimized
for performance [33]. Another notable model checking tool, LTSmin [34],
introduces a new high-level layer in which new algorithms and new interface
languages can be plugged in. Both tools are implemented in MPI/C++.

To store graphs we used the SVC-II distributed graph format [35]. Graph
formats are standardized only within selected communities. In case of large
graphs, binary formats are typically preferable to text-based formats, as
compression is not needed. See [35] for a comparison of a number of formats
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Figure 4.1: Reachability search that starts from p and leads to the gray colored nodes
distributed at three machines.

used in the formal methods community. A popular text format is XML, which
is used for example to store OpenStreetMap [36]. RDF [37] is used to represent
semantic graphs in the form of triples (source, edge, target). Najork [38]
describes how the web graph can be compactly stored in memory. By contrast,
in bioinformatics, graphs are stored in many databases and integrating them
is ongoing research [39].

4.3 Basic model and API

The input to a HipG program is a directed graph; HipG partitions the graph
into chunks of equal size. A chunk is a set of graph nodes and their outgoing
edges; in other words, edges are co-located with their source nodes. The
target node of an edge is called a neighbor or a successor. Undirected edges
are modeled as two directed edges. Each node is an object containing user-
defined arbitrary data and a unique identifier, for example by a pair (chunk,
index). Chunks are given to workers who are responsible for processing nodes
that belong to them.

Graphs are typically processed by following their structure, i.e. the node-
edge relationship. For example, an algorithm may start processing at a
pivot node, then process its neighbors, the neighbors’ neighbors, etc., until
all reachable nodes have been processed—such an algorithm is called a
reachability search, and is illustrated in Figure 4.1. In HipG this is realized
by allowing the user to define custom methods on graph nodes, and providing
a unified interface to execute methods on local and non-local nodes, as well as
a seamless access to a node’s list of neighbors. This is explained in detail by
the following example.

Example: Reachability search
Figure 4.2(a) displays the core of the reachability search implementation in
HipG in Java. First, a node interface is defined, MyNode, telling HipG which
methods can be executed on remote nodes. In general, methods listed in the
interface can be executed on any graph node of which an identifier is known.
MyLocalNode is the node implementation. Each node has a flag that denotes
whether it has been visited. The visit() method visits an unvisited node and its
neighbors. The parts underlined in the code are provided or required by HipG,
the remaining parts are user-defined. There are several essential observations
to be made about the code in Figure 4.2(a). First, no locks or other methods of
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1 interface MyNode extends Node {
public void visit();

}
class MyLocalNode implements MyNode

5 extends LocalNode<MyNode> {
boolean visited = false;
public void visit() {

if (!visited) {
visited = true;

10 for (int i=0; hasNeighbor(i); ++i)
neighbor(i).visit();

}
}

}

(a) Graph nodes.

1 class Visitor
extends Synchronizer {

public Visitor(
5 MyLocalNode pivot) { ... }

public void run() {
if (pivot != null)

pivot.visit();
10 barrier();

}
}

(b) Synchronizer.

Figure 4.2: Reachability search in HipG.

synchronization were needed; the exclusive access to the node is assured by
the framework. Lack of synchronization makes the code look sequential and
therefore easy to program. Nevertheless, the user must be aware that the code
will execute in a parallel setting: the order in which methods execute cannot
be predicted and relied upon in the algorithm; even on a single processor,
HipG might reorder node method calls to prevent stack overflow. Second, the
layout of the graph data structures is not exposed to the user; in fact, not
only may the actual data structure vary in various graph implementations, but
parts of it might not even be created yet (as in Section 4.5). Finally, the user
did not need to provide different handling of local and non-local neighbors:
access to all graph’s nodes is unified. All these facts make HipG node methods
easy to read and high-level: the code reflects the algorithm behind it.

Synchronizers
The algorithm in Figure 4.2(a) is initiated at the pivot node and terminates
when all reachable nodes have been processed. In HipG this is written as:
pivot.visit() followed by a barrier(), see Figure 4.2(b). This code is, in fact, the
simplest example of a synchronizer, a logical object that manages distributed
computations. The three basic operations of a synchronizer are:
� It initiates distributed computations, which execute in parallel or in

sequence. For example, the call to pivot.visit() starts a ‘wave’ of visit()
method calls as in Figure 4.1.

� It awaits termination of all computations issued directly and indirectly;
this is achieved using barrier(). A barrier blocks the synchronizer until
all computations initiated by this synchronizer have completed. For
example, the barrier after pivot.visit() blocks until all reached nodes have
been visited and there are no visit()’s in transfer.

� It gathers results of distributed computations, e.g. a globally elected
pivot, or a size of a set of nodes partitioned between workers (see the
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1 class BFS extends Synchronizer {
Queue<MyLocalNode> Q = new Queue<MyLocalNode>();
int localQsize;

5 public BFS(MyLocalNode pivot) {
if (pivot != null) Q.add(pivot);
localQsize = Q.size();

}

10 public void run() {
do {

for (int i=0; i<localQsize; ++i)
Q.pop().found(this);

barrier();
15 localQsize = Q.size();

} while (GlobalQsize(0) > 0);
}

@Reduce
20 public long GlobalQsize(long partialQsize) {

return partialQsize + Q.size();
}

}

Figure 4.3: Breadth-first search in HipG.

next example in this section).
One can imagine a synchronizer as an ‘agent’ that manages distributed graph
computations on behalf of the user. For each logical synchronizer, one
instance of it is delegated to each worker machine; these instances commu-
nicate, for example to determine termination of computations. Each logical
synchronizer has a unique id, determined on spawn, and consistent across all
workers (see Section 4.6).

Example: Breadth-first search
Figure 4.3 shows the breadth-first search (BFS) implemented in HipG. The aim
of BFS is to compute—layer by layer—all nodes reachable from a pivot node.
The major part of our BFS implementation is the BFS synchronizer, of which
an instance executes on each worker. BFS maintains a queue Q of nodes in
the current layer, partitioned between the workers. The worker that owns the
pivot, inserts it into the queue (line 6). The run() method loops over the nodes
in the current layer (line 12), and appends their unvisited neighbors to Q (not
shown) in the method found (line 13), in this way building the new layer. Note
that the newly discovered nodes may be added to the local queue or a queue
on the worker that owns the neighbor. The barrier (line 14) blocks until the
new layer is fully created, i.e. until found messages have been processed, and
there are no messages in transit. Building layers terminates when an empty
layer is reached (line 16); to this end, the global size of Q is computed by
GlobalQsize using a special Reduce annotation provided by HipG. Without it,
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the call to GlobalQsize would be a regular method call returning the size of Q;
with it, HipG automatically at compile time translates the call to GlobalQSize
into a global reduce operation, which blocks until each worker executes this
method and the final result is obtained. Each call to a reduce operation
combines a partial result with local data, and forwards the updated partial
result to another worker. In our case, the result will be a sum of sizes of all
Qs. We note that (i) each worker executes the reduce method exactly once;
(ii) the execution blocks until the result of the reduction is obtained; (iii) the
final result is consistent across all workers; and, importantly, (iv) the order
of execution of reduce operations cannot be predicted and relied upon in the
user’s code, so the operation must be commutative.

We note that synchronizers only use high-level communication routines
such as barriers and reduce operations; no synchronization mechanisms are
needed, even if there are multiple synchronizers per worker. Conceptually,
the framework executes each run() method in isolation and sequentially, with
exclusive access to the synchronizer’s data structures, and independently of
other synchronizers. Note that BFS alternates computation with global syn-
chronization, which follows the bulk synchronous parallel (BSP) model [11].

Lifting to parallel applications
The two examples above, Visitor in Figure 4.2 and BFS in Figure 4.3, show
that a user of HipG writes graph algorithms by defining two components:
graph nodes with custom data and methods, and one or more synchronizers’
run() methods. The former represent structure-driven computations on graph
nodes, whereas the latter manage such graph computations. These two
components constitute the whole HipG program.

Note that the user-defined code in the two examples looks sequential:
it is the model that ties it into a parallel application. The runtime system
automatically lifts a HipG program into a parallel application on a distributed
machine. Importantly, at compile-time, it translates calls to methods on non-
local nodes into asynchronous messages. Since messages are asynchronous,
methods must not return values. Returning a value of a method can be
realized by sending a message back to the source, although, typically, HipG’s
dedicated mechanism of computing global results (reduction) is more efficient.

4.4 Divide-and-conquer graph algorithms

Divide-and-conquer graph algorithms divide computations on a graph
into several sub-computations on sub-graphs. HipG enables creation of
sub-algorithms by allowing synchronizers to spawn any number of sub-
synchronizers. Therefore, a HipG algorithm is, in fact, a tree of executing
synchronizers, and thus a hierarchy of distributed algorithms. Synchronizers
can manage child synchronizers, for example wait for child termination.
Unless explicitly synchronized, all synchronizers execute independently and in
parallel. The user starts a graph algorithm by explicitly creating and spawning
the root synchronizer. The system terminates when all synchronizers
terminate. We illustrate divide-and-conquer graph algorithms in HipG with
an example of decomposition into strongly-connected components.
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FB(V ):
p = pick a pivot from V
F = FWD(p)
B = BWD(p)
Report �F \ B� as SCC
In parallel:

FB�F n B�
FB�B n F�
FB�V n �F [ B��

V

F

Bp

Figure 4.4: Divide-and-conquer SCC-decomposition.

Strongly-connected components
A strongly connected component (SCC) of a directed graph is a maximal set of
nodes S such that there exists a path in S between any pair of nodes in S. We
briefly describe FB [40], a divide-and-conquer graph algorithm for computing
SCCs, and sketch its implementation in HipG. The concept is explained in
Figure 4.4. FB partitions the problem of finding SCCs of a set of nodes V
into three sub-problems on three disjoint subsets of V . First an arbitrary
pivot node is selected from V . Two sets F and B are computed as the sets
of nodes that are, respectively, forward reachable and backward reachable
(i.e. reachable in the transposed graph) from the pivot. The set F \ B is an
SCC. All SCCs remaining in V must be entirely contained either within F nB or
within B n F or within the complement set V n �F [ B�.

The crucial part of FB implementation is displayed in Figure 4.5. The syn-
chronizer starts by selecting a global pivot from V (line 4) with the SelectPivot
reduce operation (discussed earlier). The pivot owner initializes forward and
backward reachability searches that create sets F and B in V (lines 6–9) by
flagging the reached nodes and storing them in separate queues (not shown).
After F and B are fully computed, three sub-synchronizers are spawned to
solve three sub-problems on F n B, B n F and V n �F [ B�.

Note that FB uses the input graph as well as its transpose, which has to
be provided by the user or can be computed by HipG (in fact, the transpose
computation is a graph algorithm written in HipG); HipG contains routines
that can access the transpose: hasInNeighbor(i) and inNeighbor(i), similar to
hasNeighbor(i) and neighbor(i) in Figure 4.1. Most importantly, we observe
that Figure 4.5 elegantly reflects the algorithm in Figure 4.4. A corresponding
C/MPI application (see Section 4.7) has over 1700 lines of code that entirely
obscures the algorithm, and the PBGL implementation has 341 lines, while the
entire FB in HipG is only 113 lines.

4.5 On-the-fly graph algorithms

Encapsulating graph data structures and exposing only a high-level graph
interface to the user, makes HipG highly malleable. Not only are algorithms
not tied to particular graph representations, but also graphs can be created
on-the-fly, i.e. during execution: a node is created on first access to it.
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1 class FB extends Synchronizer {
...
public void run() {

MyNode pivot = SelectPivot(null);
5 if (pivot == null) return;

if (pivot.isLocal()) {
pivot.fwd(this, flags);
pivot.bwd(this, flags);

}
10 barrier();

spawn(new FB(F n B));
spawn(new FB(B n F ));
spawn(new FB(V n �F [ B�));

}
15 }

Figure 4.5: FB algorithm in HipG.

This allows overlapping graph creation with computation for performance,
and is essential in cases when the algorithm only requires a part of the
graph to execute, while the entire graph would not fit in the memory. To
generate a graph on-the-fly, the user provides a definition of a next neighbor
function prior to execution. Using this feature we implemented a distributed
model checker, which otherwise might have taken months to develop from
scratch. Distributed model checkers already exist, most notably DiViNe [31]
(see Section 4.2), and are typically large projects; the high-level API of HipG
allows to vastly speed up development and try new algorithms with little
effort.

Distributed model checking
We implemented SpinJadi, a distributed enumerative on-the-fly model checker
based on SpinJa1 [41], a recent Java reimplementation of Spin [12], a state-
of-the-art sequential model checker. The input to our model checker is a
Promela [12] file, which represents a multithreaded program augmented with
assertions and an LTL (see Chapter 1) property to be checked. In enumerative
on-the-fly model checking, the reachable states of a model are explored and
checked concurrently; the initial state is explored first, then successors of the
initial state, successors of the successors, etc.

Two algorithms play a major role in distributed enumerative LTL model
checking: on-the-fly visitor and MAP ; SpinJadi invokes one of them, depending
on the options supplied by the user. The first algorithm, the on-the-fly visitor,
computes reachable states and checks them; it is implemented similar to the
code in Figure 4.2(a), only augmented with many checks on visited states:
maximal depth, assertions, deadlocks. The states are generated on-the-fly
from the input program using a next neighbor function we adapted from

1SpinJa rhymes with Ninja; SpinJadi rhymes with Jedi
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1 interface MapNode extends Node {
public void map(MAP algo, long propag);

}

5 class LocalMapNode
extends OnTheFlyLocalNode<MapNode>
implements MapNode {

boolean accepting;
10 long map = ?;

public void map(MAP alg, long propag) {
if (id() == propag)
ReportAcceptingCycle();

15 else if (propag > map) {
map = propag;
if (accepting)
propag = max(map, id());

for (int i = 0; hasNeighbor(i); ++i)
20 neighbor(i).map(alg, propag);

}
}

}

(a) MAP node.

1 class MAP extends Synchronizer {
Graph<MapNode> graph;
MapNode pivot;

5 public void run() {
do {
if (pivot != null)
pivot.map(this, 0, -1);

barrier();
10

if (FoundAcceptingCycle())
break;

for (MapNode node : graph) {
15 if (node.accepting &&

node.map < node.id())
node.accepting = false;

node.map = ?;
}

20 barrier();
} while (AcceptingNodesLeft());

}
}

(b) MAP synchronizer.

Figure 4.6: Maximal accepting predecessors (MAP) algorithm in HipG. The map values
are initialized to ?, which denotes a special value smaller than any other
value: ?< �1 < id().

SpinJa. The visitor terminates when an error is found, or the state space
is exhausted.

The second algorithm checks properties of infinite executions of the model
(for example a property that a certain ‘stable’ state is eventually reached from
any other state), which is more challenging. We used Maximal Accepting
Predecessors (MAP), a distributed algorithm by Brim et al [13], which searches
for accepting cycles. Namely, a user describes the illegal infinite executions in
the input file by way of annotating certain ‘bad’ states as accepting. Existence
of an accepting cycle, i.e. a cycle that contains an accepting state, proves that
the property under consideration does not hold. MAP assumes that the graph
nodes have unique totally-ordered identifiers. It relies upon the observation
that an accepting cycle exists if and only if there exists a graph node with itself
as its maximal (with respect to identifiers) accepting predecessor. Therefore,
in each iteration, MAP computes the maximal accepting predecessor of each
node. If one of the accepting nodes is its own maximal accepting predecessor,
an accepting cycle is reported. Otherwise, nodes which cannot be on an
accepting cycle are discarded and the next iteration is started. In [13] this
algorithm is described in detail and its correctness argues; next, we briefly
discuss how it was implemented in HipG.
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MAP implementation in HipG
Figure 4.6(a) shows computation of the maximal accepting predecessor for
graph nodes. Each graph node has a flag that says whether the state is
accepting; this value is initialized (not shown) from the input program when
the node is created. The identifier of the current maximal accepting pre-
decessor is stored in the variable map, and forwarded to neighbors. If a
node receives its own identifier, an accepting cycle is reported (lines 13–14).
Otherwise, only map values greater than the current value are accepted (line
15) for propagation (lines 19–20); an accepting node propagates the maximum
of its map and its identifier (lines 17–18). The computation terminates when
all map values stabilize.

The MAP synchronizer, which describes the whole MAP algorithm, is
displayed in Figure 4.6(b). In each iteration, it computes all map values (lines
7–9). If an accepting cycle was reported by one of the graph nodes (this is
realized by way of asynchronous notifications, not shown), MAP terminates
(lines 11–12). Otherwise, it discards the accepting nodes that cannot be on
an accepting cycle (lines 15–17), i.e. when map < id (see [13]), and restarts the
map computation (line 18). When no accepting cycle is found and the state
space is exhausted and all accepting states discarded (line 21), no accepting
cycle exists. The AcceptingNodesLeft() is implemented using HipG’s reduction
mechanism described in Section 4.3.

4.6 Implementation

HipG is designed to execute in a distributed-memory (message-passing) en-
vironment. We chose to implement HipG in Java because of its portability
and performance (due to the just-in-time compilation) as well as an excellent
software support of the language, although Java required us to carefully
ensure that memory is utilized efficiently. We used the Ibis [42] message-
passing communication library and the Java 6 virtual machine implemented
by Sun [43].

A HipG program is executed by a number of workers. Each worker stores
a single chunk of the graph. Logically, HipG executes a set of synchronizers
in parallel. In this section we describe the implementation of workers and
synchronizers, and briefly mention the compile-time instrumentation, that
provides the syntactic sugar of a seamless graph interface without any lan-
guage extensions.

Graph storage on a worker
The input to a HipG program is a directed graph (or graphs). If the graph
is not pre-partitioned by the user, HipG partitions it into chunks of equal-
size by uniformly hashing each node to an owner. Currently the number of
edges spanning different chunks is not minimized. Each worker stores the
entire chunk in memory. A chunk is a collection of graph nodes and their
outgoing edges. Two chunk layouts are currently implemented: explicit and
map. In the explicit layout all nodes are stored in an array and uniquely
identified by a pair of integers (worker, index). Edges on a worker are stored
as two global arrays, one for references to local nodes and one for identifiers
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Figure 4.7: Tree of 4 synchronizers on 2 workers.

of remote nodes. Although this structure is not elegant, it is transparent
to the user and memory-efficient, as it minimizes the prohibitive per-object
memory overhead of garbage-collected languages (16 bytes per-object in 64-
bit HotSpot). The explicit layout is efficient but difficult to modify at run-time,
which is in contrast with the map implementation based on a hash table. The
user defines a key of this table and a hashing method. The map representation
is used in on-the-fly graph algorithms. In the distributed model checker that
we implemented, the key used was a byte array that represents a state in the
checked program. In the on-the-fly algorithms the edges are not stored, but
generated by the user’s successor function. Last but not least, as most of the
worker’s memory is used to store the graph, we tuned the garbage collector to
use a relatively small young generation size (5–10% of the heap size).

Communication
The HipG workers communicate intensively all-to-all. Messages representing
execution of methods on remote nodes account for the bulk of the traffic
between the workers. Workers only execute methods on graph nodes that they
own (the ‘owner-computes’ rule). Each method call belongs to some synchro-
nizer, which is supplied as the first argument of the method (compare with
the example in Figure 4.6(a)(line 12)). A message consists of an identifier of a
synchronizer it belongs to, an identifier of a graph, an identifier of the target
node, and serialized arguments. Arguments are serialized automatically, and
we strive to make the serialization efficient. On reception of a message, the
target node is retrieved; if it belongs to a graph generated on-the-fly, the node
might not exist yet, in which case it is created and stored. Further, the method
to execute is decoded from the message, and the parameters are de-serialized
and passed to the method. During the execution of the method, new method
calls can be spawned. If such a method is called on a local node, it is executed
right-away (until some depth), or stored on the synchronizer’s queue (when
that depth is exceeded) to be processed later. If the method is called on
a remote node, it is buffered for sending. The messages are combined in
non-blocking buffers and flushed repeatedly by the worker’s sender thread.
Asynchronous receiving is performed by a pool of threads provided by the
Ibis communication library.

Synchronizer implementation
Each synchronizer is executed by all workers. Each synchronizer has a unique
identifier, determined on spawn by the worker with rank 0, and broadcast
to all workers. A synchronizer can spawn any number of sub-synchronizers,
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so it also maintains information about its father and children. An example
of the tree of synchronizers (synchronizer objects on workers) is shown
in Figure 4.7, where numbers indicate synchronizer’s identifier and dotted
lines represent instances of the same synchronizer. The execution of a
synchronizer, i.e. its run() method (which is executed by each worker), can
be understood as alternating communication phases, when methods on nodes
are executed, and synchronization phases, i.e. blocking because of a barrier
or a reduction operation. Barriers are implemented with the token-based
distributed termination detection algorithm by Safra [44]. When a barrier
returns, it means that all method calls that belong to the synchronizer have
been processed and there are no messages in transit. The reduce operation
is also implemented by token traversal [45], and the result announced to all
workers by the worker with rank 0. Notifications (used in Section 4.5) are
implemented as acknowledged asynchronous messages.

Worker implementation
After reading the graph, the user’s main() program typically initiates root
synchronizers, waits for all synchronizers to terminate, and handles the
computed results. The part of the runtime that executes synchronizers
we refer to as a worker. A worker is a single thread that stores all local
instances of synchronizers, and emulates execution of multiple independent
synchronizers in parallel—by looping over a queue of active synchronizers. If
a synchronizer is ready to progress (a blocking routine has just terminated),
the worker executes the next ‘step’ (see next paragraph), of the run() method,
or terminates the synchronizer, when run() has finished. A worker terminates
when all synchronizers have terminated.

Program instrumentation
Before executing, HipG programs have to be instrumented. The Ibis
rewriter [42] optimizes object serialization. The HipG rewriter translates
remote method calls into messages, and breaks down the run() methods into
‘steps’ at each blocking routine. Thanks to this, a single worker thread can
execute all synchronizers, without the need for many context switches, while
the user perceives a synchronizer’s run() method as a thread. The ‘stepping’ of
the run() method is accomplished by bytecode rewriting: each step of the run()
method finishes with a checkpoint, and starts with reading such a checkpoint.
Instrumentation is part of the provided HipG library, and needs to be called
before execution. No special Java compiler is necessary.

4.7 Evaluation

In this section we report on the results of experiments conducted with HipG.
The evaluation was carried out on the VU-cluster of the DAS-4 system [14].
The cluster consists of 74 dual quad-core 2.4 GHz Intel Xeon CPUs, with 24
GB of memory per compute node. The processors are interconnected with
32Gbps-capable 4xQDR InfiniBand. The time to initialize workers and input
graphs was not included in the measurements.



70 Distributed processing of large graphs

All graphs were partitioned randomly—meaning that if a graph is parti-
tioned in p chunks, a graph node is assigned to a chunk with probability 1=p.
The portion of remote edges is thus �p � 1�=p, which is very high (75–99% in
used graphs) and realistic to model an unfavorable partitioning (many edges
spanning different chunks). An advantage of this scheme is load-balancing:
the numbers of edges stored at the workers are likely to be similar. We also
note that in this setting, when computing a graph problem with twice as many
workers, 2 � p, the amount of computation stays constant, but the volume of
communication increases by a factor 1� 1=�2�p � 1��. For p � 4, used in this
evaluation, this factor is below 17%.

Message-based applications
We start with the evaluation of performance of applications that almost solely
communicate (only one synchronizer spawned). Visitor, which implements
the reachability search (see Figure 4.2), was started at the root node of a
large binary tree directed towards the leaves. BFS, a breadth-first search (see
Figure 4.3), was started at a random node of a synthetic social network. Both
graphs are stored explicitly in memory prior to execution. The results are
presented in Table 4.1 (the first two applications) and Figure 4.8. We tested
both applications on 2–64 processors, running two workers per compute node
(two workers per node is a compromise: we want to test the framework
using as many workers as possible, each handling a largest possible piece
of memory).

To obtain more fair results, rather than keeping the problem size constant,
we double the problem size when we double the number of workers. We note
that this can only be done for very regular graphs and computation structure,
and in this case we expect constant numbers for the first two applications
in Table 4.1. Thanks to this we are able to test the graph applications on
a wide range of workers; additionally, we avoid spurious improvements due
to better cache behavior, keep the heap filled, but also avoid too many small
messages that occur if the stored portion of a graph is small. Next, we argue
the correctness of the speedup computation by doubling the problem size
with doubling the number of workers. Let Tp�s� denote execution time on
p workers on problem of size s. A graph problem is ‘regular’, if solving
a doubled problem with the same number of workers takes twice as long,
i.e. Tp�s� � Tp�2s�=2, for any p, s, which is the case of Visitor/Bin-n and
BFS/LN-n, when n is not very small. The speedup plotted is given by the
formula p � Tmin�smin�=Tp�p � smin�, thus equal to the ‘traditional’ speedup
formula. We compute speedup against the time Tmin it takes the smallest set
of workers to solve a given parallel problem (on two machines, each with two
workers, min � 4).

For visitor we used binary trees, Bin–n, of height n � 27 : : :32, i.e. up to
8:6 �109 nodes and edges. The LN–n graphs used for BFS are random directed
graphs with degrees of nodes sampled from the log-normal distribution
LnN �4:0;1:3�, aimed to resemble real-world social networks [28,46]. An LN–
n graph has n � 107 nodes and expected n � 1:3 � 109 edges. We used LN–n
graphs for n up to 64 and thus up to 6:4 � 108 nodes and 8:1 � 109 edges. In
both experiments, all edges of the input graphs were visited. Both applications
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Appl. #W Input Time Mem

Visitor 4 Bin–27 28:57 7:0
8 Bin–28 30:36 7:1
16 Bin–29 33:71 7:5
32 Bin–30 37:68 7:7
64 Bin–31 41:93 8:0
128 Bin–32 45:64 8:1

BFS 4 LN–2 118:62 8:4
8 LN–4 129:39 8:7
16 LN–8 138:83 8:8
32 LN–16 146:72 9:2
64 LN–32 135:25 9:5
128 LN–642 138:95 9:6

S.Jadi-E 4 peter.7 507:39 9:3
8 peter.7 229:14 6:8
16 peter.7 114:47 6:0
32 peter.7 64:55 5:0
64 peter.7 35:50 5:2
128 peter.7 20:45 4:8

Appl. #W Input Time Mem

S.Jadi-A 4 ander.6 2157:36 9:0
8 ander.6 874:16 6:8
16 ander.6 337:59 5:4
32 ander.6 148:19 4:9
64 ander.6 66:07 4:8

128 ander.6 36:18 4:8

S.Jadi-E 4 TCRsig29 M >10
8 TCRsig29 M >10
16 TCRsig29 384:78 7:9
32 TCRsig29 193:32 5:3
64 TCRsig29 105:22 4:6

128 TCRsig29 57:21 4:8

S.Jadi-A 4 TCRsig29 M >10
8 TCRsig29 M >10
16 TCRsig29 M >10
32 TCRsig29 235:51 7:3
64 TCRsig29 121:09 6:4

128 TCRsig29 69:59 5:7

Table 4.1: Performance of Visitor, BFS and SpinJadi. #W means the number of
workers; halved #W is the number of physical machines used. Time is given
in seconds, and memory is given per worker in GB; M means out-of-memory.
The speedup for all applications is shown and compared in Figure 4.8.

achieved at least 60% efficiency on 128 workers, which is satisfactory for
applications with little computation, O�n�, compared toO�n� communication.
The efficiency achieved by BFS on LN–n graphs reaches almost 80%, as the
input is more randomized, and has a small diameter compared to a binary
tree, which reduces the number of barriers performed.
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Figure 4.8: Speedup of Visitor, BFS and SpinJadi.
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On-the-fly applications
We performed two kinds of evaluations of the distributed model checker
(see Section 4.5): assertion/deadlock checking SpinJadi-E, which enumerates
the entire state space (ignores errors), and SpinJadi-A, which searches for
accepting cycles. For both applications, we set unlimited exploration depth.
We used the following models:

� Two examples from the BEEM repository of model checking bench-
marks [15]: Peterson’s mutual exclusion protocol for 5 processes
(peterson.7) and Anderson’s mutual exclusion protocol for 6 processes
(anderson.6). For the Anderson’s protocol we checked a liveness
property that says that a process is in the critical section infinitely
many times.

� A biological example, TCRsig29, which models signaling during T-cell
activation. In this process, T-lymphocytes (also called T-cells) use a
special receptor, TCR (T-cell Receptor), to detect foreign antigens, which
leads to an immune response. This model was originally created by
Klamt et al [47], and written as a Boolean Regulatory Network [16] by
Naldi et al [48]. We obtained that model from the GINsim repository [17],
and translated it to a Promela model with asynchronous updates using
a methodology similar to the one proposed by Bošnački et al [49]. The
original model had 40 components, of which we removed 11 without
changing any of the semantics of the model2, in order to make the model
more tractable. We could not repeat the steady state analysis of [48], i.e.
when checking a given steady state, SpinJadi finds additional accepting
cycles; this is likely due to the fact that the MAP algorithm does not take
fairness into account. Instead, we used SpinJadi-A to check a simple
safety property of TCRsig29.

We tested the SpinJadi-E and SpinJadi-A applications on 4–128 workers,
as presented in Table 4.1 and Figure 4.8. As expected, SpinJadi-E scales
similarly to Visitor; the major difference between Visitor and SpinJadi-
E is that Visitor allocates memory prior to execution, which is not timed,
while SpinJadi-E allocates almost all memory during execution. SpinJadi-E
verification of peterson.7 algorithm generates 142 million states, and 616
million transitions (on all workers combined); on TCRsig29, the state space
reaches 83 million states and 1 billion transitions. The SpinJadi-A application
also scales well; note that it is tested on properties that are expected to hold,
and indeed in neither case it finds a bug. On the anderson.6 model SpinJadi-
A performs exceptionally well; it is not entirely clear why—it likely is due
to particularly visible improved caching on more processors (anderson.6
contains more atomic and d_steps than the other examples). Each run of
the anderson.6 generates about 10 million states and 1 billion of transitions;
on TCRsig29, the state space SpinJadi-A contains 166 million states and 1
billion transitions.

2We removed IP3, Ca, Calcin, SEK, JNK, Jun, Fos, Rsk, CREB, Raf, MEK. Neither of these
components is a part of any feedback loop; in fact, all of them are cascade elements near
‘outputs’ of the model, and removing them only shortens cascades such as PLCg_a ! IP4 !
Ca! Caldin! NFAT (NFAT has no outputs) to PLCg_a! NFAT.
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p Myri Eth

MX OM HipG P4 HipG

L487487T5
4 36:6 141:4 41:1 94:8 45:7
8 26:6 81:6 22:1 82:5 30:0
16 96:5 60:5 48:4 179:0 37:0
32 40:0 57:3 39:1 163:4 41:0
64 24:1 46:7 24:4 234:6 41:8

L10L10T16
4 69 255 148 302 225
8 73 280 226 462 330
16 89 376 315 804 506
32 136 661 485 1794 851
64 128 646 277 1659 461

L60L60T11
4 45:1 152:9 47:3 110:8 98:8
8 34:5 99:8 46:8 111:5 116:0
16 37:1 128:6 60:4 216:2 125:9
32 30:1 82:0 57:4 214:7 171:8
64 32:0 108:8 66:1 311:4 141:2

Table 4.2: Performance of OBFR-MP.

Synchronizer-based applications
To evaluate the performance of hierarchical graph algorithms written in HipG,
we ran the OBFR-MP algorithm [18] that decomposes a graph into strongly
connected components (SCCs). OBFR-MP is a divide-and-conquer algorithm
like FB [40] (see Section 4.4), but processes the graph in layers. We compared
the performance of the OBFR-MP implemented in HipG against a highly-
optimized C/MPI version of this program used for performance evaluation
in [18] and kindly provided to us by the authors. The HipG version was
implemented to resemble the C/MPI version: the data structures used and
messages sent are the same. This is because here we are not interested in the
speedup of the decomposition algorithm, which may vary depending on the
input [18]; rather, we want to see the difference in performance between an
optimized C/MPI version and HipG version of the same application.

The experiments were performed on the DAS-3 [50] cluster, which has less
memory than DAS-4, but allows for a richer performance analysis. DAS-3
consists of 74 dual dual-core 2.4 GHz AMD Opterons with 4 GB of memory
per compute node. The compute nodes are interconnected with 10G-Myrinet
and 1G-Ethernet. We compare HipG against (i) ‘MX’, which denotes a low-
latency virtually-unbeatable MPI implementation from Myrinet tied to the
network interface; (ii) ‘OM’, which denotes OpenMPI, a newer socket-based
implementation of MPI, running over Myrinet; and (iii) ‘P4’, the standard
implementation of MPI, over Ethernet.

The experiments use 4–64 compute nodes, with one worker per node. We
tested OBFR-MP on synthetic graphs called LmLmTn, which are in essence
trees of height n of SCCs, such that each SCC is a lattice �m � 1� � �m �
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Figure 4.9: Scaled OBFR-MP execution time.

1�. An LmLmTn graph has thus �2n�1 � 1� SCCs, each of size �m � 1�2.
The performance of the OBFR-MP algorithm inherently depends on the SCC-
structure of the input graph, which is clearly visible in the MX, OM and P4
columns of Table 4.2. We used three graphs: one with a small number of large
SCCs, L487L487T5; one with a large number of small SCCs, L10L10T16; and
one that balances the number of SCCs and their size, L60L60T11. Each graph
contains a little over 15 � 106 nodes and 45 � 106 edges.

The C/MPI application running over MX is the fastest, as it has the smallest
software stack. HipG performs, on average, 1:8 times slower than MX, but the
most fair opponents for HipG are OM and P4, which have a similar (deeper)
socket-based software stack. Table 4.2 is summarized in Figure 4.9, where
execution times are scaled against MX and P4. On average, HipG is 2:0 times
faster than OM on Myrinet, and 2:5 times faster on Ethernet. Most importantly,
the speedup or slowdown of HipG follows the speedup or slowdown of the
C/MPI application run over MX, which suggests that the overhead of HipG will
not explode for larger problem sizes.

Memory utilization
In graph algorithms, more important than speedup is memory efficiency (see
further discussion). In a HipG worker, memory is divided between the graph,
the communication buffers and the memory allocated explicitly by the user.
On a 64-bit machine, a graph node uses 80 bytes in Visitor and on average
1 KB in BFS, including the edges and all overhead. Table 4.1 presents the
maximum heap size used per-worker. It remains almost constant for Visitor
and BFS, which is expected, as the graph size is doubled when we double the
number of workers. BFS uses in general more memory than Visitor, because
it stores a queue of nodes (see Figure 4.3).

In SpinJadi, graph nodes are larger: each contains a byte array that
represents a state. The size of this array depends on the input program: for
the two tested protocols it is about 30 bytes; for TCRsig29, it is about 90
bytes. This difference is because the biological model contains a large number
of small concurrent components—29 (originally 40) protein species—while the
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BEEM models contain 5–6 large components (the processes). In fact, this is a
typical difference between models designed by humans, and models evolved
by nature.

Metrics for distributed graph algorithms
The results in this section do not aim to prove that we obtained the most
efficient implementations of the Visitor, BFS, MAP or OBFR-MP algorithms.
When processing large-scale graphs, the speedup less important than being
able to store the graph in memory and process it in acceptable time. We note
that the sizes of graphs tested with HipG are of the order of the largest existing
real-life graphs mentioned in Section 4.1. We aimed to show that large-scale
graphs can be handled by HipG and satisfactory performance can be obtained
with little coding effort, even for complex on-the-fly or hierarchical graph
algorithms.

4.8 Summary and conclusions

In this chapter we propose (1) HipG, a model and a distributed framework that
allows users to code, with little effort, parallel graph algorithms; and (2) Spin-
Jadi, a distributed enumerative on-the-fly LTL model checker implemented
using HipG. The key idea in our graph framework is to expose each graph node
as an object with customizable data and sequential methods, and to provide
a unified interface to executing methods on local and non-local graph nodes.
Fine-grained recursive computations implemented this way can be controlled
using synchronizers. HipG parallelizes such an application automatically. Us-
ing HipG we obtained elegant and short implementations of several published
graph algorithms, good memory utilization and performance, as well as out-
of-the-box portability.

An important feature of HipG is that it allows algorithms to execute on
graphs generated on-the-fly; to create SpinJadi, we combined this feature with
two model checking algorithms: state space generation and accepting cycle
detection [13]. We tested the model checker on large models from the BEEM
repository [15], and on biological examples from the GINsim repository [17]
that we translated into Promela.

Of the verification methods presented in this dissertation, enumerative
model checking is the most widely applicable and can handle the most general
properties. Its main limitation is that it requires vast amounts of memory to
store state spaces, which we alleviate by splitting the state space between
memories of multiple computers. The major drawback of this approach—
besides requiring a parallel computer—is the need to parallelize verification
algorithms, including any state space reduction methods. In the future, we
would like to apply HipG to parallelize more graph algorithms, in particular in
the context of distributed model checking, for example supporting modeling
languages beyond Promela, and implementing reduction techniques such as
Partial Order Reduction [51]. We would also like to improve speedup by using
better graph partitioning methods, such as one proposed in [5]. It would
also be interesting to use external-memory [29] or semi-external memory
(flash drives) [30, 52] to store portions of a graph during computation. HipG
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currently does not address fault-tolerance, which could be implemented by
freezing the computation and checkpointing, or with a distributed snapshot
algorithm, for example the one by Lai-Yang [45].
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for distributed verification. In Proc. Computer Aided Verification (CAV’06), LNCS
vol. 4144, pages 278–281. Springer, 2006. DOI:10.1007/11817963_26.

[33] K. Verstoep, H. E. Bal, J. Barnat, and L. Brim. Efficient large-scale model checking.
In Proc. Parallel & Distributed Processing (IPDPS’09), pages 1–12. IEEE, 2009. DOI:
10.1109/IPDPS.2009.5161000.

[34] S. Blom, J. van de Pol, and M. Weber. LTSmin: Distributed and symbolic
reachability. In Proc. Computer Aided Verification (CAV’10), LNCS vol. 6174, pages
354–359. Springer, 2010. DOI:10.1007/978-3-642-14295-6_31.

[35] S. Blom, I. van Langevelde, and B. Lisser. Compressed and distributed file
formats for labeled transition systems. In Proc. Parallel and Distributed Methods
in Verification (PDMC’03), ENTCS vol. 89, pages 68–83. Elsevier, 2003. DOI:
10.1016/S1571-0661(05)80097-0.

[36] L. Denoyer and P. Gallinari. The Wikipedia XML corpus. ACM SIGIR Forum, 40:64–
69, 2006. DOI:10.1145/1147197.1147210.

[37] Resource description framework. URL: http://www.w3.org/RDF.

[38] M. Najork. The scalable hyperlink store. In Proc. Hypertext and hypermedia
(HT’09), pages 89–98. ACM, 2009. DOI:10.1145/1557914.1557933.

[39] A. R. Joyce and B. O. Palsson. The model organism as a system: Integrating
’omics’ data sets. Nature Reviews Molecular Cell Biology, 7:198–210, 2006. DOI:
10.1038/nrm1857.

[40] L. Fleischer, B. Hendrickson, and A. Pinar. On identifying strongly connected
components in parallel. In Proc. Parallel and Distributed Processing (Irregular’00),
LNCS vol. 1586, pages 505–511. Springer, 2000. DOI:10.1007/3-540-45591-4_
68.

[41] M. de Jonge and T. C. Ruys. The SpinJa model checker. In Proc. SPIN conference
on Model checking software (SPIN’10), volume LNCS vol. 6349, pages 124–128.
Springer, 2010. DOI:10.1007/978-3-642-16164-3_9.

[42] H. Bal, J. Maassen, R. van Nieuwpoort, N. Drost, R. Kemp, T. van Kessel,
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CHAPTER 5
Distributed search for terminal

strongly connected components

5.1 Introduction

In Chapter 4, we verified biological systems using model checking, which we
posed as a graph algorithm. Generally, any graph algorithm could be applied
to state spaces to understand the behavior of the system at hand. One such
custom verification algorithm in the context of biology is decomposition of
a state space into strongly connected components (SCCs) [1–3]. In a directed
graph, an SCC [4] is a maximal subgraph that contains a path from any vertex
to any other vertex. Of particular importance are terminal SCCs (TSCCs),
i.e. SCCs from which no other component can be reached; in other words,
a TSCC is a leaf in a graph in which each SCC is contracted into a single vertex.
An SCC in a state space of a biological model, e.g. a cell, can represent an
irreversible state of the system; a TSCC corresponds to a steady state, or a
state of terminal differentiation (when the cell stops specializing), also called
an ‘attractor’ [1,2]. Besides biology, TSCCs are useful in many other domains
(see Section 5.2).

In this chapter, we address the open challenge of efficiently finding TSCCs
in large graphs. In a sequential setting, TSCCs are best found with an efficient
SCC-decomposition algorithm based on depth-first search (DFS), such as the
one by Tarjan [5]. Several parallel SCC-decomposition algorithms have been
proposed [6–8], based on the computation of reachable vertices from a given
vertex, which—unlike DFS [9]—is an operation that can be parallelized effi-
ciently. Another inspiring algorithm, CH, introduced by Orzan [10], finds all
SCCs by coloring vertices and removing SCCs of vertices with specific proper-
ties (see Section 5.2 and Section 5.7 for more details). In all cases, if only TSCCs
are needed, the parallel SCC-decomposition algorithms do unnecessary work.

In this chapter we present TSCCdc, a novel parallel algorithm specifically
designed to find TSCCs. The key is that the search for TSCCs is expressed
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recursively, and thus can be solved with a divide-and-conquer graph algo-
rithm. An input graph is split using reachability computations into subgraphs
which cannot be ‘crossed’ by SCCs. By construction (see Section 5.5) one of
the subgraphs can be discarded; one is an SCC, which is checked for being
terminal; and two subgraph are searched recursively in parallel.

Even on unfavorable graphs, we found TSCCdc on average more than twice
faster than OBFR-MP [7], a state-of-the-art SCC-decomposition algorithm, and
a factor of ten faster than the CH algorithm adapted to only find TSCCs
(see Section 5.7). We also studied real-life examples: graphs representing a
biological system of human blood cells [3]. In one case our algorithm obtained
a 200-fold speedup, and in two cases it was the only one able to solve the
problem at all.

All algorithms in this chapter, including the competing ones, were imple-
mented using HipG, our distributed framework for distributed graph algo-
rithms, described in Chapter 4. Thanks to HipG, we obtain code that is elegant
and easy to modify, as well as efficient.

Additionally, we observe that applying TSCCdc to a transposed graph finds
all leading SCCs, i.e. SCCs which cannot be reached from any other SCCs.

The remainder of this chapter is organized as follows. In Section 5.2
we discuss the related work. Preliminary definitions are briefly introduced
in Section 5.3. Section 5.4 explains the relation between reachable sets and
SCCs, and provides a correctness proof for the TSCCdc algorithm explained
in Section 5.5. Section 5.6 describes the implementation of our algorithm,
which is evaluated in Section 5.7. We conclude with Section 5.8.

Brief description of TSCCdc
The full description of the algorithm can be found in Section 5.5. Applied to a
graph with vertices V , TSCCdc first computes a set F of vertices reachable in
V from a random pivot in V . Next, it computes a set B of vertices backward
reachable in V from F . Finally, TSCCdc computes C , the SCC of the pivot,
using a backward reachability search within F . We observe that this way the
set V was divided into four nested graphs: C � F � B � V . By construction,
B n F cannot contain TSCCs (see Section 5.4) and is discarded; the SCC C is
terminal if and only if F � C ; the two remaining subgraphs, V n F and F n C , if
non-empty, are solved with TSCCdc recursively in parallel.

While the idea of recursive graph computation is identical to that proposed
by Fleischer et al in [6], the algorithm in [6] differs from TSCCdc in how the
graphs are divided into subgraphs, how the subgraphs are handled. Most
notably, B and C are computed differently: we compute B as a backward
reachability from the result of another reachability search, rather than from
the pivot—this way we discard a larger B n F set. Another difference with [6]
is that we discard the result of the backward reachability search instead of
solving it in parallel.

5.2 Related work

Besides biology, a major area where TSCCs are useful is model checking [11],
for example checking safety properties [11, Chapter 3], efficient state space
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generation [12], finding counter-examples in symbolic model checking [13],
or verification of liveness properties [14]. In hardware design, non-TSCCs
represent illegal states of a machine [15–17]. In analysis of Petri nets [18], they
allow to express stronger liveness properties [19,20]. TSCCs can also be found
in applications such as analyzing the World Wide Web [21], or bug detection
in C programs at Microsoft [22]. All these applications tend to generate very
large graphs which cannot fit the memory of a single machine and thus require
distributed processing.

The first parallel SCC-decomposition algorithm was proposed by Fleischer
et al [6]. In this algorithm, an SCC containing a randomly selected vertex
is computed as an intersection of forward and backward reachability searches
from that vertex, and the remainders are searched recursively—see Section 5.4
for details. The ideas in the algorithm by Fleischer et al are similar to
those presented in this chapter. The key differences are that in TSCCdc we
apply backward-reachability search to a result of another reachability search,
rather than a single vertex, and that parts of the sets are omitted. Barnat et
al [7,23,24] introduced OBFR-MP, an SCC-decomposition algorithm in which a
graph is first split into ‘rooted chunks’, and then each chunk is decomposed
into a series of O-, B- and F-layers. The B-layers are handled recursively in
parallel (see Section 5.7 for more technical details). This algorithm performs
particularly well when a graph contains many trivial SCCs, i.e. SCCs consisting
of a single vertex. An algorithm based on a concept similar to that of OBFR-
MP was proposed by Xie and Beerel [25] in the field of computer-aided design,
where it was used in a sequential setting and on graphs stored as Binary
Decision Diagrams [26].

Schudy et al [27] proposed an insightful optimization to the algorithm
in [6]: randomization of pivots selection, which gives stronger guarantees
on the time complexity (we only consider a case with a number of processor
independent of the input size). This optimization adds a cost in the order of
O�log jV j�; since [27] does not evaluate the optimized algorithm, it is unclear
how much it helps in practice when applied to large problems.

Orzan [10] (also described in [7]) proposed CH, a parallel SCC-decomposi-
tion algorithm based on vertex coloring. The algorithm consists of alternating
coloring and ‘heads-off’ phases. During coloring, initially vertices are assigned
a unique color. Whenever the color is updated, it is propagated to vertices with
a smaller color. When all colors stabilize, the SCCs containing the ‘heads’,
i.e. the vertices that kept their original color, are computed with a backward-
reachability search within color, and the algorithm proceeds without them.
This algorithm is reported to work well for graphs with many small SCCs [7]. In
this chapter, for the purpose of evaluating the TSCCdc algorithm, we adapted
CH—see Section 5.7—to only find TSCCs.

5.3 Preliminaries

In this chapter we consider directed graphs (the notion of strongly connected
components does not make sense for undirected graphs). A transpose of a
directed graph is the same graph with the edges reversed. A directed graph
is strongly connected if there exists a path between any pair of its vertices.
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Figure 5.1: An example graph partitioned into SCCs (left), and its quotient graph
(right). The gray SCCs are leading and the black ones are terminal.

A maximal strongly connected subgraph of a graph G is called a strongly
connected component (SCC) of G. Each vertex belongs to exactly one SCC,
so the decomposition of a graph into SCCs is well-defined and unique.

A quotient graph is a graph in which each SCC is contracted into a single
vertex. There is an edge C1 ! C2 between vertices in the quotient graph if
there exists an edge from a vertex in C1 to a vertex in C2. The quotient graph
is directed and acyclic. Figure 5.1 shows an example quotient graph. In the
quotient graph, if a component has no incoming edges, it is leading. If it has
no outgoing edges, it is called a terminal SCC (TSCC). The example graph in
Figure 5.1 has six SCCs: three are trivial (a single vertex), two are leading and
two are terminal.

If there is a directed path from vertex v to vertexw (v � w), we say thatw
is reachable (or forward-reachable) from v , and that v is backward-reachable
from w. In particular, any vertex is both reachable and backward-reachable
from any other vertex within an SCC. By performing a forward (backward)
reachability search from a given pivot vertex v , we mean computing the set
of all vertices forward (backward) reachable from v . The vertex from which a
reachability search is initiated is commonly referred to as a pivot vertex.

5.4 Reachability versus strongly connected components

In this chapter we use two procedures, Fwd and Bwd, that compute sets of
reachable vertices in a directed graph G � �VG; E�. Let V be a set of vertices
in VG. Then Fwd (P , V ) computes all vertices in V reachable from some vertex
in P � V . Similarly, Bwd (P , V ) computes all vertices in V backward-reachable
from P . Typically, P contains a single pivot vertex.

Computing reachable vertices carries important implications about the
SCCs. First, no SCC can ’cross’ a border of a set computed with Fwd or Bwd [6]:

Lemma 5.1. Let P � V and F � Fwd�P; V�. Any SCC of V must lie either
completely within F or completely within V n F . This is also true if F �
Bwd�P; V�.

Proof. Consider a set of vertices lying partly within F and partly outside F . For
F � Fwd�P; V�, the outside part is not reachable from the inside part, so this
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is not an SCC. Likewise, for F � Bwd�P; V�, the inside part is not reachable
from the outside part.

As a consequence, given a set returned by Fwd or Bwd, we can search for
SCCs independently within and outside of this set.

We can also use reachability searches to demarcate SCCs that contain a
given vertex v as an intersection Fwd�v; V�\ Bwd�v; V�. This fact is the cor-
nerstone of the SCC-decomposition algorithm proposed in [6]. Equivalently, V
can be changed to F in Bwd in this formulation:

Lemma 5.2. Let vertex v 2 V and F � Fwd�v; V�. The SCC C that contains v
is Bwd�v; F�.

Proof. Consider a vertex w in the SCC that contains v , i.e. there exist paths
v � w and w � v . Clearly, all vertices on both paths belong to F . Therefore,
Bwd�v; F� will discover them.

The Fwd and Bwd operations are used in this chapter to find TSCCs. First,
note that an SCC is terminal if it is equal to its forward-reachable set. Second,
combining the Fwd and Bwd computations we can find regions with and
without TSCCs. Namely, given any SCC, the components ‘upstream’ of it in
the quotient graph cannot be terminal. Even stronger, the same is true if we
consider SCCs ‘upstream’ of a set of SCCs, namely:

Lemma 5.3. Let v 2 V , F � Fwd�v; V� and B � Bwd�F; V�. No SCCs in B n F
can be terminal.

Proof. This lemma is illustrated in Figure 5.2. Note that F � B. Applying
Lemma 5.1 twice, any SCC must lie entirely within one of the three sets: V nB,
B n F or F . Since B n F is a result of a backward reachability search, from any
SCC in B n F , an SCC within F can be reached.

This lemma is the foundation of our TSCC-search: our algorithm repeatedly
generates such F and B sets and discard the B n F set.

Figure 5.2: Illustration of Lemma 5.3: F � Fwd�v; V� and B � Bwd�F; V�; there are no
TSCCs in BnF .
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5.5 The TSCCdc algorithm

In this section we present TSCCdc, a parallel algorithm to find all terminal
SCCs in a directed graph. TSCCdc is a divide-and-conquer algorithm: using
reachability searches we partition a graph into several regions and handle
each region independently in parallel. This idea is inspired by the SCC-
decomposition algorithm [6].

The pseudocode of TSCCdc is displayed in Figure 5.3, along with an
illustration. The input is a directed graph G � �V ; E�. If it is empty, it contains
no SCCs. Otherwise, we pick a pivot v at random from V . First, we construct
the set F � Fwd�v; V� of vertices in V reachable from v . Next, we compute the
set B � Bwd�F; V� of vertices from which there exists a path to some vertex in
F . The sets F � B divide V into three subsets, V n B, B n F and F , and any SCC
in V is entirely contained in one of them (Lemma 5.1). Most importantly, there
can be no TSCCs in B n F (Lemma 5.3), so we no longer take it into account.
Note that, unlike [6], we compute B as a backward reachability search of an
entire set of pivots F , rather than only v ; this way we increase the size of B nF ,
which can be discarded.

To find TSCCs in F , we need the SCC C that contains v , which we compute
as the intersection of forward and backward reachability searches from v
(Lemma 5.2). If C equals F , we report it as a new TSCC. Next, we search
for TSCCs within V n B and within F n C ; the computations in V n B and F n C
are independent, so they can be performed in parallel. The efficiency of our
procedure relies on the fact that reachability can be efficiently parallelized.

TSCCdc terminates because the graph is fixed and the set of vertices
removed in each iteration is non-empty, i.e. v 2 C; F; B. The worst-case
time complexity of TSCCdc is O��jV j � jEj�2�, for example for a ‘line’ graph
with, where we remove 1-element SCC at a time using three reachability
computations of cost O�jV j � jEj�.

5.6 Implementation

We implemented TSCCdc on a distributed-memory machine using HipG, our
framework for writing distributed graph algorithms (Chapter 4). The algo-
rithm in Figure 5.3 does not preclude implementation on a shared-memory
machine, but our intention is to handle large graphs, for which we need
more memory; therefore, besides being task-parallel, the algorithm that we
report on in this chapter is also data-parallel. HipG was described in detail in
Chapter 4; in the current section, before we discuss TSCCdc itself, we briefly
reiterate some of the details of the framework relevant to the implementation
of TSCCdc.

HipG
HipG is written in Java, and so is the code in this section. The framework
allows expressing graph algorithms using high-level concepts of vertices and
edges, which results in easily readable and maintainable code. Each worker is
assigned a portion of the vertices of the input graph and executes methods
on vertices that it owns. The basis of the TSCCdc algorithm is computation of
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1 TSCCdc (V ) {
if (V �;) {
v = pick a random pivot in V
F = Fwd (v , V )

5 parallel {
B = Bwd (F , V )
C = Bwd (v , F )

}
if (C == F ) report C to be a TSCC

10 parallel {
TSCCdc (F n C)
TSCCdc (V n B)

}
}

15 }

Figure 5.3: TSCCdc: a divide-and-conquer graph algorithm to search for TSCCs. With
the reachability searches in Lemma 5.3 we decompose the graph G �
�V ; E� into V n B, B n F , and F , from which we further tease out C , the
SCC that contains pivot v .

distributed reachability. HipG allows to execute methods on any vertex, even
non-local, in which case HipG translates the calls into asynchronous messages.
Using this feature we implemented the reachability searches that compute F ,
B and C . For example, Figure 5.4 shows a snippet of the forward reachability
search that computes F . Such a search is initiated from v with a single call to
v.fwd(). A call to fwd() may generate calls to fwd() on other vertices on other
workers, which may initiate more fwd() calls, and so on. To detect that all fwd()
calls have been completed and none are in transit, we use barrier(), which is in
HipG based on the distributed termination detection algorithm by Safra [28].
Note that the code in Figure 5.4 is only a snippet: in the remainder we assign
the vertex to F and flag it as visited (see the second part of this section for
more algorithm-specific implementation details).

TSCCdc consists of a tree of tasks (synchronizers) running independently
in parallel, of which each executes reachability searches and barriers (de-
scribed above). Besides computing on vertices, tasks spawn new tasks to
solve sub-problems. The runtime system provides exclusive execution of the
synchronizers, so that no locks or thread synchronization is necessary in the
user code, even when accessing the synchronizer’s data. A snippet of the
TSCCdc synchronizer is displayed in Figure 5.5. Unlike the code in Figure 5.4,
which is executed by the vertex owner, the code in Figure 5.5 is executed by all
workers. Together they spawn a new task: logically, a spawn spawns a single
new task, which is represented at each worker. The runtime system takes care
of starting, executing and terminating the synchronizers.
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1 class TsccLocNode extends LocalNode {
public final void fwd(TSCCdc ) {

if (inV && !visited)
. . .

5 for (int j = 0; hasNeighbor(j); ++j)
neighbor(j).fwd(tscc);

}
}

Figure 5.4: TSCCdc: computing F .

1 class TSCCdc extends Synchronizer {
public void run() {

. . .
if (globalFsize == globalCsize)

5 TSCCs.addComponent(. . . );
else spawn(new TSCCdc (g, F));

}
}

Figure 5.5: Spawning a new task.

TSCCdc
TSCCdc generates many sets of vertices: each set is assigned a unique
identifier, and a vertex belongs to the set if its field id (not shown) equals
that of the set. As as consequence, each vertex belongs to exactly one set at
a time. In addition, to enable iteration over elements of a set, sets are stored
explicitly as partitioned lists (an example of this was given in Figure 4.3).

The input of a TSCCdc synchronizer is a set of vertices V . Then it proceeds
as follows (see Figure 5.3). First, a random pivot v is selected from V . This is
realized with a global reduce operation, which HipG supports [29]. Next, the F
reachability search is performed. Within fwd(), a vertex adds itself to the new
set F . After F has been built completely, two backward reachability searches
are performed: computation of C starting at v and computation of B starting
at all elements of F . When all reachability searches have terminated, a TSCC is
checked and a new task started as in Figure 5.5, with B n F and the remainder
of V as inputs.

5.7 Evaluation

We evaluated our algorithm on the DAS-4/VU cluster [30] on up to 64 compute
nodes. Each compute node runs Linux (CentOS, version 6), has 2 � 4 Intel
cores of speed 2:4 GHz, and is equipped with 24 GB of memory. The cluster
interconnect is 4xQDR InfiniBand. As a Java Virtual Machine we used Oracle’s
HotSpot version 1.6 [31]. We used three kinds of graphs:

� ToL (n, m), a ‘tree of lattices‘ illustrated in Figure 5.6(a), a binary tree of
height n with edges directed toward leaves, such that each tree vertex
represents an SCC. Each SCC is a lattice m �m with columns and rows
looped. This graph has a total of �2n�1 � 1�m2 vertices. The tree is the
quotient graph, of which the 2n leaves are TSCCs.

� LoL (n,m), a ‘lattice of lattices‘ illustrated in Figure 5.6(b), an n�nmesh
of SCCs with edges directed toward the south-east corner. Like in ToL,
each SCC is an m �m lattice with rows and columns looped. A LoL (n,
m) graph has n2m2 vertices. The n-lattice is the quotient graph, with
the south-east corner as the only TSCC.

� BioPNSS (n), a state space of a Petri net [18] representing a biological
system of differentiation of human blood cells [3]. The number n is



5.7. Evaluation 89

(a) (b)

Figure 5.6: Synthetic graphs: a tree (a) and a lattice (b) of looped lattices.

the network ‘granularity’, i.e. the number of values that any variable can
take—for example n � 2 would mean a Boolean network. The size of the
graph thus grows exponentially with n.

We compare TSCCdc against two algorithms: OBFR-MP and TSCCch. OBFR-
MP is a state-of-the-art SCC-decomposition algorithm [7]. It splits a rooted
graph into OBF-layers. If a graph is not rooted it first decomposes it into
rooted chunks. The O-layer consists of vertices without predecessors, the B-
layer is the backward-reachable set of the O-layer, and the F-layer contains
successors of the B-layer. The B-layers are handled recursively by the same
algorithm.

While the ideas behind OBFR-MP are fairly similar to those in this chapter,
the concept of CH [10] is diametrically different from all reachability-based

Table 5.1: Graphs used for evaluation. The number and sizes of all SCCs in the two
largest BioPNSS graphs is unknown, as no algorithm was able to compute
it (but we could compute TSCCs).

Graph Vertices Edges SCCs SCC size TSCCs

ToL(0, 20000) 400 � 106 800 � 106 1 400 � 106 1
ToL(5, 2500) 394 � 106 788 � 106 63 6 � 106 32
ToL(10, 500) 512 � 106 1024 � 106 2047 250000 1024
ToL(14, 120) 472 � 106 944 � 106 32767 14400 16384
LoL(8, 2500) 400 � 106 800 � 106 64 6 � 106 1
LoL(45, 500) 506 � 106 1013 � 106 2025 250000 1

LoL(180, 140) 635 � 106 1270 � 106 32400 19600 1
BioPNSS(5) 49 � 106 537 � 106 11 � 106 � 960 2
BioPNSS(6) 362 � 106 3990 � 106 � 2 � 1 2
BioPNSS(7) 1977 � 106 21750 � 106 � 2 � 1 2
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Table 5.2: Run times for ToL graphs (seconds). ‘M’ means out of memory.

ToL(0, 20000) ToL(5, 2500)

p TSCC
dc

OBFR
-MP

TSCC
ch

TSCC
dc

OBFR
-MP

TSCC
ch

8 128:1 146:0 2305:8 153:0 268:3 2101:8
16 80:5 86:4 1069:7 127:0 171:7 M
32 47:6 53:0 598:9 74:7 114:1 451:8
64 29:2 33:8 380:5 56:6 77:1 225:2

ToL(10, 500) ToL(14, 120)

p TSCC
dc

OBFR
-MP

TSCC
ch

TSCC
dc

OBFR
-MP

TSCC
ch

8 255:9 369:5 M 1011:8 450:7 M
16 186:0 241:4 726:4 494:5 520:3 M
32 155:9 189:5 310:4 459:3 367:8 196:6
64 120:2 128:4 159:3 370:5 248:8 87:2

Table 5.3: Run times for LoL graphs (seconds). ‘M’ means out of memory.

LoL (8, 2500) LoL (45, 500) LoL (180, 140)

p TSCC
dc

OBFR
-MP

TSCC
ch

TSCC
dc

OBFR
-MP

TSCC
ch

TSCC
dc

OBFR
-MP

TSCC
ch

8 87:6 261:0 M 82:7 332:8 M 98:1 337:6 M
16 58:5 152:5 M 49:2 189:3 930:6 57:0 235:0 M
32 37:0 114:2 516:8 31:3 127:5 459:0 37:4 150:8 M
64 12:9 69:2 253:6 9:1 19:0 219:1 29:65 103:9 222:1

Table 5.4: Run times for BioPNSS graphs (seconds). ‘M’ means out of memory; ‘T’ is
timeout (2 hours).

BioPNSS(5) BioPNSS(6) BioPNSS(7)

p TSCC
dc

OBFR
-MP

TSCC
ch

TSCC
dc

OBFR
-MP

TSCC
ch

TSCC
dc

OBFR
-MP

TSCC
ch

8 29:6 1013:1 438:1 M M M M M M
16 13:7 1162:2 183:6 85:7 T M M M M
32 8:4 1475:0 72:5 44:5 T M M M M
64 5:0 2505:2 33:4 33:8 T M 671:2 T M
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Figure 5.7: Comparison of run times of OBFR-MP and TSCCch, scaled to TSCCdc .

algorithms: the key idea is that the vertices are colored with colors that
increase along edges (see Section 5.2). For the purpose of evaluation, we
adapted CH to TSCCch, which searches only for TSCCs. Let us consider the
SCCs found by a single iteration of CH: observe that in particular all leading
SCCs were found. It can be determined whether the component is leading or
not during the reachability phase; namely, if a component has an incoming
edge from a vertex of another color, that component is not leading. This
algorithm finds all leading components, so, applied to the transposed graph,
finds all TSCCs. The TSCCch algorithm accounts for all these observations:
it is a single iteration of CH, applied to the transposed graph, and with the
reachability phase augmented with checking for edges incoming from vertices
with a different color.

Table 5.2 and Table 5.4 show run times of the TSCCdc, OBFR-MP and
TSCCch algorithms applied to the graphs listed in Table 5.1. The time spent
reading the graph is not included in the measurements. In all runs, vertices
were randomly assigned to processors. All algorithms pick pivots truly at
random, as compared to taking the first one found, which may bias run times.
For the same reason, TSCCch randomizes initial colors of vertices.

Figure 5.7 displays the run times from Table 5.2 and Table 5.4, averaged
per graph and normalized to TSCCdc. We show only the smallest BioPNSS
graph, because the competing algorithms fail on the large graphs. Without
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Figure 5.8: Scalability of TSCCdc .

taking the BioPNSS graphs into account, TSCCdc is on average more than
twice faster than OBFR-MP, and faster than TSCCch by a factor close to 10.
On the BioPNSS (5) graph, TSCCdc is almost 200 faster than OBFR-MP, and 7
times faster than TSCCch. We also observe that TSCCdc performs better—in
comparison to OBFR-MP—on the LoL graphs than on the ToL graphs, because
of larger backward-reachable sets in the LoL graphs (sub-lattices of n � n
lattices compared to path too root in a tree of height n). TSCCdc is slower in
one case only; namely, for ToL (14, 120), which is the graph with a structure
most unfavorable to TSCCdc: large F sets and small B n F sets. Most notably,
for the BioPNSS (6) and BioPNSS (7) examples (Table 5.4), TSCCdc was the only
algorithm to solve the given problems at all, as it was able to quickly discard
large B n F sets.

Note that TSCCch often runs out of memory—this is caused by the buffer-
ing space needed to handle an enormous volume of communication that re-
sults from recoloring vertices (a single recolored vertex may cause recoloring
of the entire graph). Indeed, averaging all completed runs of TSCCch, a vertex
was recolored 38 times during the execution of the algorithm. This problem
is exacerbated in graphs with large SCCs like ToL (0, 20000), as all vertices
in an SCC must end up with the same color. Contrastingly, graphs with a
large number of small SCCs, such as ToL (14, 120), are likely to have many
‘heads’, which means less recoloring. In such a case TSCCch is a clear winner,
provided it has enough memory—in our experience, the memory needed for
buffering must at least be a small multiple of the graph size.

Figure 5.8 shows the speedup of the TSCCdc algorithm per input graph.
On graphs with large and medium SCCs, the efficiency of TSCCdc on 64
processors is about 58%; the efficiency on graphs with small SCCs, i.e. ToL (14,
120) and LoL (180;140) is about 38%. Poorer scalability on ToL graphs results
from the fact that the backward-reachable sets are small in such a tree, and
many small forward-reachability searches must be performed in branches.

We observed that scalability of the algorithms considered here greatly
depends on the average length of messages sent. The communication pattern
in these algorithm is as follows. Each processor communicates with all other
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processors, and the traffic consists almost entirely of small pieces of work sent
to remote vertices. Each piece of work is typically of size 16–20 bytes, so each
processor aggregates these small messages per destination. Aggregation (also
called ‘message combining’) must be balanced for good performance: while
too aggressive aggregation may delay progress of the algorithm, too weak
aggregation leads to short messages and message start-up time dominates the
run time. In our experience good performance was obtained when message
length was at least 0:5–1 KB. In case of graphs with many small SCCs, such as
ToL (14, 120), the average message length drops to 0:05–0:2 KB for TSCCdc,
but for the same graph it is an acceptable 0:5–1 KB in OBFR-MP, which
performs larger reachability searches in parallel.

We point out that, when processing large graphs, the first objective is to
ensure the graphs can be processed at all in an acceptable time. Good speedup
is a secondary objective. In case of our algorithm, not only was TSCCdc the
only one able to solve the BioPNSS (6) and BioPNSS (7) examples, but also it
sustains efficiency of 40 � 60% on 64 compute nodes. This means that both
objectives were met.

5.8 Summary and conclusions

We have presented a new parallel algorithm, TSCCdc, for finding TSCCs in
large graphs. It is a divide-and-conquer algorithm, which, at each recursion
level, computes a backward-reachability search of a set obtained by a forward-
reachability search from a random vertex. The algorithm is memory-bound, so
our implementation targets a distributed-memory architecture. The algorithm
and its competitors in this chapter were implemented using HipG, our high-
level framework for implementing distributed graph algorithms.

We conclude that a user wanting to find TSCCs in a large graph should
use TSCCch, a version of the CH [10] algorithm adapted to only find TSCCs
(see Section 5.7)—if the graph contains many small SCCs and the size of the
memory is at least several times larger than the graph. In all other cases, our
TSCCdc algorithm offers a performance improvement of up to several orders
of magnitude over a full SCC-decomposition. In the real-life biological model
of blood cells formation [3], it was the only algorithm that was able to compute
TSCCs.

Barnat et al [7] reuse a model checking technique called OWCTY, for fast
removal of trivial SCCs; an idea for future work is to add this technique to
TSCCdc. It would also be interesting to apply Schudy’s optimization [27] (see
Section 5.2) to our algorithm.
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CHAPTER 6
Summary and conclusions

Executable models are the most important tool of systems biology: they
are used to unambiguously encode our understanding of complex biological
processes, and they allow to conduct experiments otherwise technically
impossible or unethical. Examples of executable models include differential
equations, Petri nets, Boolean and qualitative networks, stochastic systems,
and many others. In order to make model-based predictions about biology,
the models should faithfully represent nature; to this end, the models must
be verified: checked against the known biological evidence.

In this dissertation we investigated how to verify large discrete models
of biological systems. Such systems typically consist of a large number of
concurrently-executing small components. The main challenge when verifying
them is state explosion: exponential growth of the state space with the number
of concurrent components in the system. Therefore, the main focus of this
work is scalability: ability to handle systems with very large state spaces. In
order to achieve scalability, we use existing techniques and propose new ones
thus making contributions to the fields of high-performance computing and
model checking.

6.1 Summary of the thesis

In Chapter 2 we studied Monte Carlo simulations. In this method, a system is
analyzed by performing and examining a large number of simulations; intu-
itively, a population of animals is emulated undergoing the studied biological
process. We applied this approach to our model of cell fate determination
during formation of a vulva (an egg-laying organ) in the C. elegans worm;
the size of the state space of this model is in the order of 2715. For each
of the 64 genetic perturbations of our model, we performed 5000 simulations.
Besides aggressive optimization of a single simulation, we parallelized the
Monte Carlo experiments for a cluster of computers, which resulted, on a
distributed machine with 256 cores, in reducing the time needed to run the
entire suite of verification experiments to less than an hour.
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While simulations may not reach all corners of a state space, formal
methods, i.e. analyzing a model as a computer program, are able to check
all states or all paths of a system. One such method is abstract interpretation,
which allows to prove a property about a system by interpreting only parts
of it relevant to the property under consideration. In Chapter 3, we proposed
BioCheck, an efficient procedure to prove stabilization (reaching a unique
fixpoint) of systems. The tool proves stabilization by building the global
liveness property from a chain of small liveness properties, which are fast to
prove. BioCheck achieves scalability by applying state space exploration only
locally to small pieces of the system rather than the entire system as a whole.
We used it to prove stabilization of a 3–D mesh of 200x500x5 mammalian
skin cells; the state space of this model contains 26mln reachable states.

In Chapters 4 and 5, we treated a state space as a large sparse graph, which
has to be split between multiple machines to mitigate the state explosion
problem; an important consequence of this approach is that verification
algorithms need to be parallelized. Chapter 4 introduced HipG, a high-level
framework for writing such distributed graph algorithms. The key idea in
HipG is that a user expresses a graph algorithm by defining data stored by a
vertex, as well as the vertex’ methods. The framework allows to seamlessly
execute methods on any graph vertex, local or remote. HipG parallelizes
the graph application automatically and handles the details of execution on
a distributed machine.

Using HipG we implemented SpinJadi, a distributed enumerative model
checker, which explores a state space in an on-the-fly fashion: it starts
with an empty graph, explores the system’s initial state, its successors, the
successors of the successors, and so on, until a bug is found or the state
space exhausted. Properties of infinite executions are checked using an on-
the-fly cycle detection algorithm by Brim et al. Using SpinJadi, we checked two
mutual exclusion protocols, as well as a biological model of T-cell activation
during an immune response.

In Chapter 5 we introduced TSCCdc, an efficient distributed algorithm to
find TSCCs in large graphs. In biology, TSCCs correspond to states of terminal
differentiation (when a cell stops specializing), or to steady states. TSCCdc is a
parallel divide-and-conquer graph algorithm: using reachability computations,
a graph is split into four independent subgraphs, which cannot be ‘crossed’
by SCCs, and so can be searched recursively in parallel. We found TSCCdc
was the only algorithm able to process our case study: a model of human
haematopoietic (blood) cells, of size in the order of 234 of vertices and edges.

6.2 Summary of contributions

The core contributions of this dissertation are as follows.

� We introduced a new approach using parallel Petri nets to modeling
in biology, which we used to create a model of vulval development
in C. elegans—this model includes two previously published but not
modeled hypotheses about the process.
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� We proposed a novel scalable technique to prove stabilization of con-
current systems, and we were the first to verify a large 3D mesh of
mammalian skin cells.

� We designed and implemented a new framework to easily write dis-
tributed graph algorithms, and used it to create a distributed on-the-fly
enumerative model checker.

� We introduced a novel efficient distributed algorithm to find terminal
strongly connected components in a large graph, and thus determine
the steady states of a biological system.

6.3 Conclusions

The scalable methods described in this dissertation can help users in the veri-
fication of real-life systems, enabling holistic insight into biological processes
(see Chapter 1). The state explosion problem makes the task of verification of
large parallel systems very challenging. In general, we approached it in two
ways. First, we use techniques that are independent of state space enumera-
tion: simulations, and abstract interpretation combined with modular reason-
ing. Second, we execute verification on a parallel computer, which can fit larger
state spaces; in particular, we parallelized model checking, a widely-applicable
verification method, as well as a customized biology-inspired method basing
on TSCCs. Neither of the presented methods is a clear winner; rather, choosing
an appropriate technique depends on the system and the properties targeted.

6.4 Future outlook

We have shown that the methods described in this dissertation can be very
useful, but as an ‘encyclopedia’ of scalable verification methods, this thesis is
far from complete. For example, it would be interesting to adapt the described
methods to systems with probabilities and systems outside molecular biology.
The largest systems in this dissertation were solved using BioCheck; in the fu-
ture we could adapt BioCheck to solve other liveness properties, for example
by conjoining liveness with stabilization. Monte Carlo verification is both scal-
able and widely-applicable, but it is lacking support to estimate coverage and
understand causality. In the field of distributed model checking, we would like
to parallelize some of the existing state space reduction techniques, and find
new ones targeted specifically at biological systems. Finally, we plan to reuse
HipG to implement many other custom graph-based verification algorithms.

This dissertation clearly shows that solving large parallel systems involves
interdisciplinary research that encompasses fields such as biology, computing,
algorithms, theory. Collaboration between scientists of these different fields
is essential for further advancements in systems biology. Looking ahead, we
predict that verification methods for larger and larger systems will be needed,
in order to, eventually, model, check, and execute an entire organism.
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Samenvatting
(Summary in Dutch)

Naar ‘Big Biology’:
Snelle Verificatie van Grootschalige Simultane Systemen

Executeerbare modellen vormen het belangrijkste instrument van de sys-
teembiologie: ze worden gebruikt voor het eenduidig coderen van ons begrip
van complexe biologische processen en ze maken het mogelijk experimenten
uit te voeren die anders technisch onmogelijk of onethisch zouden zijn.
Om model-gebaseerde voorspellingen te kunnen doen over biologie, moeten
modellen een getrouwe weergave zijn van de natuur. Hiertoe moeten mo-
dellen gecontroleerd worden, d.w.z., worden vergeleken met het beschikbare
biologische bewijsmateriaal.

In dit proefschrift onderzoeken we hoe grote discrete modellen van bio-
logische systemen geverifieerd kunnen worden. Dergelijke systemen bestaan
doorgaans uit een groot aantal simultane kleine onderdelen. De belangrijkste
uitdaging bij het verifiëren hiervan is de toestandsexplosie: de exponentiële
groei van de toestandsruimte bij het vergroten van het aantal simultane
componenten in het systeem. Daarom is de belangrijkste focus van dit
proefschrift de schaalbaarheid: het vermogen om systemen met een zeer grote
toestandsruimte te behandelen. Om schaalbaarheid te bereiken gebruiken we
deels bestaande technieken, maar stellen we ook enkele nieuwe voor op het
gebied van grootschalig rekenen en model verificatie.

In hoofdstuk 2 bestuderen we Monte Carlo simulaties. In deze methode
wordt een systeem geanalyseerd door het uitvoeren en onderzoeken van een
groot aantal simulaties; in dit geval wordt een populatie van organismen
nagebootst tijdens het ondergaan van het bestudeerde biologische proces. We
passen deze benadering toe bij ons model over de bepaling van het celtype
tijdens de vorming van een vulva (het orgaan dat eitjes produceert) in de worm
C. elegans; de grootte van de toestandsruimte van dit model is in de orde van
2715. Voor elk van de 64 genetische verstoringen binnen ons model voerden
we 5000 simulaties uit. Naast agressieve optimalisatie van individuele simu-
laties paralleliseerden we de Monte Carlo experimenten op een rekencluster
van computers. Op een gedistribueerde machine met 256 processorkernen
resulteerde dit in een vermindering van de benodigde tijd voor de volledige
verzameling van controle-experimenten tot minder dan een uur.
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Waar simulaties mogelijk niet alle uithoeken van een toestandsruimte
kunnen bereiken, zijn formele methoden, d.w.z. het analyseren van een model
in de vorm van een computerprogramma, wel in staat alle toestanden of
trajecten in een systeem te controleren. Een dergelijke methode is abstracte
interpretatie, die het mogelijk maakt om een eigenschap van een systeem
te bewijzen door het interpreteren van slechts de relevante delen hiervan
voor de betreffende eigenschap. In hoofdstuk 3 introduceren we BioCheck,
een efficiënte procedure voor het bewijzen van stabilisatie (het bereiken van
een unieke vast punt) van systemen. Deze applicatie bewijst stabilisatie
door de constructie van de globale liveness eigenschap uit een keten van
kleinere liveness eigenschappen, die snel zijn aan te tonen. BioCheck bereikt
schaalbaarheid door het alleen lokaal doorzoeken van de toestandsruimte
op kleine delen van het systeem in plaats van het systeem als geheel. We
gebruikten dit om stabilisatie van een 3-D topologie van 200 � 500 � 5
zoogdier-huidcellen te bewijzen; de toestandsruimte van dit model bevat
226mln bereikbare toestanden.

In hoofdstukken 4 en 5 behandelen we een toestandsruimte als een grote
ijle graaf, die moet worden verdeeld over meerdere machines om de toe-
standsexplosie te beperken; een belangrijk gevolg van deze aanpak is dat de
verificatie-algoritmen moeten worden geparalleliseerd. Hoofdstuk 4 introdu-
ceert HipG, een hoog niveau raamwerk voor het schrijven van deze gedistri-
bueerde graafalgoritmen. De kerngedachte in HipG is dat een gebruiker een
graafalgoritme uitdrukt door het definiëren van de data opgeslagen door een
knoop en de methoden die geëexecuteerd kunnen worden op een knoop. Het
raamwerk maakt het mogelijk om naadloos methoden op een knoop van de
graaf uit te voeren, zowel lokaal als op een andere machine. HipG paralleliseert
de graafapplicatie automatisch en zorgt voor de details van de uitvoering op
een gedistribueerde machine.

Met behulp van HipG implementeerden we SpinJadi, een gedistribueerde
enumeratieve model checker, waarin een toestandsruimte gaandeweg wordt
onderzocht: het begint met een lege graaf, verkent het systeem in de oorspron-
kelijke toestand, haar opvolgers, de opvolgers van de opvolgers, en zo verder,
totdat er een bug gevonden wordt of tot de toestandsruimte is uitgeput.
Eigenschappen van oneindige executies worden gaandeweg gecontroleerd met
behulp van een cykeldetectie-algoritme door Brim et al. Met behulp van
SpinJadi hebben we twee mutual exclusion protocollen en een biologisch
model van T-cel activatie tijdens een immuunrespons onderzocht.

In hoofdstuk 5 introduceren we TSCCdc, een efficiënt gedistribueerd algo-
ritme voor het vinden van terminaal sterk verbonden componenten (TSCC’s)
in grote grafen. In de biologie komen TSCC’s overeen met toestanden van
terminale differentiatie (wanneer een cel stopt met zijn specialisatie), of met
stationaire toestanden. TSCCdc is een parallel verdeel-en-heers graafalgo-
ritme: met behulp van bereikbaarheidberekeningen is een graaf te splitsen
in vier onafhankelijke subgrafen die niet kunnen worden ’overgestoken’ via
SCC’s, en die zo parallel recursief kunnen worden doorgezocht. Ons algoritme
was als enige in staat een realistisch voorbeeldmodel te verwerken: een model
van menselijke hematopoëtische (bloed) cellen, met een grootte in de orde van
234 knopen en zijden.
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Samengevat, de bijdragen van dit proefschrift zijn als volgt. Hoofdstuk 2
introduceert een nieuwe benadering van het modelleren in de biologie, die we
gebruiken voor het modelleren van de vulva ontwikkeling in C. elegans—dit
model bevat twee eerder gepubliceerde, maar niet gemodelleerde hypothesen
over het proces. Hoofdstuk 3 bevat een nieuwe schaalbare techniek om de
stabilisatie van gelijktijdige systemen aan te tonen. In hoofdstuk 4 ontwerpen
en implementeren wij een nieuw raamwerk om het schrijven van gedistribu-
eerde graafalgorithmen te vereenvoudigen; bovendien wordt dit raamwerk
gebruikt voor het implementeren van een gedistribueerde verdeel-en-heers
enumeratieve model checker. Hoofdstuk 5 introduceert een nieuw efficiënt
gedistribueerd algoritme voor het vinden van terminaal sterk verbonden com-
ponenten in een grote graaf.
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