Multiplexing Biochemical Signals

de Ronde, W.H.

2012

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 26. Apr. 2022
# Contents

1 Introduction                              1  
   1.1 Cellular communication       1  
      1.1.1 Signaling cascades  2  
   1.2 Information theory     4  
      1.2.1 Mutual information 6  
   1.3 Linear-Noise Approximation 17  
   1.4 Numerical optimization 21  
      1.4.1 Simulated Annealing 22  
      1.4.2 Numerical Evolution 22  
   1.5 Scope of this thesis 23  

2 Effect of feedback on the fidelity of information transmission of time-varying signals 25  
   2.1 Introduction 26  
   2.2 Methods 28  
   2.3 Results 31  
      2.3.1 The simple cascade 32  
      2.3.2 Autoregulation 34  
      2.3.3 Feedback 38  
   2.4 Discussion 44  
   2.5 Acknowledgements 48  
   2.A Supplementary Information 49  
      2.A.1 Gillespie Simulations 49  
      2.A.2 Linear cascades 50  
      2.A.3 Autoregulation 52  
      2.A.4 Autoregulation by V 52  
      2.A.5 Feedback 54  
      2.A.6 Comments on Fig. 2.7c 58  

3 Information transmission in networks with feed-forward loops or diamond motifs 59  
   3.1 Introduction 60  
   3.2 Methods 61  
   3.3 Results 63  

3.3.1 Simple Cascades ........................................... 63
3.3.2 The feed-forward motif .................................... 63
3.3.3 Multimerization ............................................. 73
3.3.4 Diamond motif ............................................. 75
3.4 Discussion ..................................................... 77
3.5 Acknowledgements ............................................. 80
3.A Supplementary Information .................................. 81
  3.A.1 Simple cascades .......................................... 81
  3.A.2 0R coherent feed-forward ................................ 82
  3.A.3 AND coherent feed-forward ............................... 85
  3.A.4 Comparison of the coherent feed-forward AND and 0R motifs ... 88
  3.A.5 Incoherent feed-forward motif ........................... 90
  3.A.6 Multimerization .......................................... 93
  3.A.7 Numerical validation ...................................... 96
  3.A.8 Influence of the phase .................................... 97

4 The Berg-Purcell limit revisited .................................. 101
  4.1 Introduction ................................................. 102
  4.2 Theory ....................................................... 104
  4.3 Numerical Results .......................................... 108
  4.4 Validity assumption under biological conditions ................ 112
  4.5 A simple coarse-grained model ................................ 114
  4.6 Discussion ................................................... 115
  4.A Supplementary Information ................................. 117
    4.A.1 The correlation function ................................. 117
    4.A.2 Derivation of Eq. 4.13 .................................. 119

5 Protein Logic .................................................... 123
  5.1 Introduction ................................................. 124
  5.2 Methods ...................................................... 125
  5.3 Results ...................................................... 126
    5.3.1 Functions accessible by parameter variation ............. 127
    5.3.2 Functions accessible by recombination .................... 130
  5.4 Discussion ................................................... 133
  5.5 Acknowledgements .......................................... 135
  5.A Supplementary Information ................................ 136
    5.A.1 Optimization details ...................................... 136
    5.A.2 Formal proof for a XOR-gate for receptor Q1W ............ 138
    5.A.3 Parameter sensitivity ..................................... 140
    5.A.4 Figure 5.3b is exhaustive ................................ 141
6  Reliability of frequency- and amplitude-decoding in gene regulation 145
6.1  Introduction .................................................. 146
6.2  Model ......................................................... 147
6.3  Results ....................................................... 148
6.4  Acknowledgements ............................................ 153

7  Amplitude multiplexing of biochemical signals 155
7.1  Introduction .................................................. 156
7.2  Model ......................................................... 156
7.3  Multiplexing .................................................. 159
7.4  Acknowledgements ............................................ 162

8  Multiplexing oscillatory biochemical signals 163
8.1  Introduction .................................................. 164
8.2  The model ..................................................... 166
  8.2.1  Encoding .................................................. 167
  8.2.2  Decoding $V^p$ to $X_1, X_2$ ............................ 167
8.3  Multiplexing .................................................. 171
8.4  Experimental observations ................................. 174
8.5  Discussion .................................................... 176
8.A  Supplementary Information .................................. 179
  8.A.1  Encoding .................................................. 179
  8.A.2  Linear Approximation .................................. 180
  8.A.3  Decoding .................................................. 182
  8.A.4  The conversion of $W^p$ to $X_1$ ......................... 188
  8.A.5  Numerical optimization ................................ 191

References 193
Summary 209
Samenvatting 213