The impact of the outdoor physical environment on older adults with osteoarthritis
Timmermans, E.J.

2017

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Timmermans, E. J. (2017). The impact of the outdoor physical environment on older adults with osteoarthritis. [PhD-Thesis - Research and graduation internal, Vrije Universiteit Amsterdam].

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 09. Mar. 2024
SUMMARY / 
SAMENVATTING
The impact of the outdoor physical environment on older adults with osteoarthritis

Osteoarthritis (OA) is a degenerative joint disease, which is mainly characterized by damage and loss of articular cartilage. Osteoarthritis is one of the most common forms of musculoskeletal disorders worldwide and its incidence increases with age. The condition is associated with joint pain, functional limitations, loss of quality of life and considerable societal costs.

Theories from environmental gerontology suggest that characteristics of the outdoor physical environment can facilitate or impede functioning and well-being in older adults. The ecological model of aging from Lawton assumes that unique combinations of personal competence and environmental characteristics determine an individual’s level of functioning. Derived from this ecological model, the environmental docility hypothesis suggests that the less competent the individual, the greater the impact of environmental factors on that individual. Due to the experience of more joint pain and functional limitations, older adults with OA may have lower competence than those without the condition and may therefore be more vulnerable to environmental demands. As a consequence, the impact of environmental factors on functioning and well-being may be greater in older adults with OA than in those without the condition. Subjective outdoor physical environment characteristics refer to perceptions of one’s outdoor physical environment and objective outdoor physical environment characteristics refer to area-level indicators that can be characterized independent of a person’s own perception. Knowledge on how perceived and objective outdoor physical environment characteristics affect aspects of daily functioning of older adults with OA could be used to guide environmental interventions and policy interventions that aim to promote functioning and well-being in older people with OA. Research on the influence of the outdoor physical environment on functioning in older adults with OA is, however, limited.
This thesis aimed to contribute to the understanding of the impact of the outdoor physical environment on the daily lives of older adults with OA in Europe. The main objective was to examine the associations of outdoor physical environmental characteristics with various aspects of daily functioning in older adults with OA. A second aim was to examine whether environmental factors have a greater impact on aspects of daily functioning in older adults with OA than in those without the condition.

In this thesis, data from the population-based European Project on OSteoArthritis (EPOSA) were used. Furthermore, additional data from the Hertfordshire Cohort Study (HCS) and the Longitudinal Aging Study Amsterdam (LASA), both participating in the EPOSA study, were used separately in this thesis. The EPOSA project studies the personal and societal burden and its determinants of OA in the ageing European population. The EPOSA project is a collaborative study including pre-harmonized data from six ongoing cohort studies on older community-dwelling persons aged 65 to 85 years. These cohort studies were from six European countries, including Germany, Italy, the Netherlands, Spain, Sweden and the United Kingdom.

In Chapter 2, the association between joint pain and self-perceived weather sensitivity was examined in older adults with OA, by using data from the EPOSA study. In addition, characteristics of older persons with OA were identified that are most predictive of perceived weather sensitivity. The majority of older adults with OA reported that their joint pain was affected by weather conditions. It was observed that self-perceived weather sensitivity was associated with more pain in older adults with OA. Furthermore, it was found that women and more anxious persons were more likely to report weather sensitivity. Older people with OA from Spain and Italy were more likely to indicate themselves as weather-sensitive persons in comparison to those from Sweden.

In Chapter 3, the associations of joint pain with objectively measured daily weather conditions, 3-day average weather conditions, and day-to-day changes in weather conditions were examined in older adults with OA, by using data from the EPOSA
study. It was found that higher daily average relative humidity levels and higher 3-day average humidity levels were associated with more joint pain in these individuals. Furthermore, it was found that joint pain in older adults with OA was more strongly affected by daily average humidity in relatively cold weather conditions compared to relatively warm weather conditions. The associations between day-to-day weather changes and joint pain did not confirm causation.

In Chapter 4, the association between outdoor physical activity (PA) and objectively measured weather conditions was examined in older adults from six European countries, by using data from the EPOSA study. In addition, it was assessed whether outdoor PA and weather conditions were more strongly associated in older persons with OA than in those without the condition. The findings showed that increased temperature was associated with increased outdoor PA in older adults. Furthermore, increased humidity levels were associated with decreased outdoor PA in older persons. Temperature was more strongly associated with outdoor PA in older people without OA than in those with OA. Furthermore, it was observed that with increased humidity levels, older adults without OA spent less time walking outdoor than those with the condition. Thus, outdoor PA was more strongly associated in older adults without OA than in their counterparts with OA.

In Chapter 5, the associations of perceptions of neighbourhood cohesion and neighbourhood problems and objectively measured neighbourhood deprivation with the use of neighbourhood resources were examined in older adults with and without lower limb OA (LLOA), by using data from the HCS. Furthermore, it was assessed whether these relationships were stronger in older persons with LLOA than in those without the condition. A trend for a positive association between use of public transport and perceived neighbourhood problems was observed in older adults without LLOA, whereas a trend for a negative association was found in older persons with LLOA. Perceived neighbourhood problems did not impact the use of other neighbourhood resources, including parks and walking areas, places to sit and rest, and public facilities, in older adults with and without LLOA. Regardless of LLOA, perceived neighbourhood cohesion and objectively measured neighbour-
hood deprivation were not associated with use of neighbourhood resources in older adults.

In Chapter 6, the associations of objectively measured neighbourhood built environment characteristics with objectively measured PA were assessed in Dutch older people with and without LLOA, by using data from the LASA. It was also examined whether these relationships were stronger in older adults with LLOA than in their counterparts without the condition. It was observed that street connectivity and distances to specific resources within a neighbourhood had no impact on the total time spent on PA in the full sample. Larger distances to specific health care resources (general practice and physiotherapist) and retail resources (supermarket) were found to be associated with more time spent on PA in older adults with LLOA than in those without the condition. In particular, it was observed that with increased distances to these specific resources, older adults with LLOA spent more time on high-light PA (e.g., slow walking) than those without LLOA.

In Chapter 7, the association of quality of life (QoL) with perceived neighbourhood problems was examined in older adults with and without OA, by using data from the HCS. Furthermore, it was assessed whether this relationship was stronger in older adults with OA than in those without OA. In addition, it was examined whether the association between perceived neighbourhood problems and QoL in older adults was mediated by outdoor PA. The findings showed that the cross-sectional associations between QoL and perceived neighbourhood problems were not significant in the full sample at baseline and at follow-up, and it was observed that these relationships did not differ between older adults with and without OA. However, over time, perceiving more neighbourhood problems was associated with a stronger decrease in QoL in older adults with OA than in those without the condition. No support was found for a possible explanation that older adults with OA experience more difficulties with regard to spend time on outdoor PA when they perceive more neighbourhood problems, and that this results in poor QoL.
In Chapter 8, the general discussion, the most important results and conclusions were discussed. Methodological strengths and limitations were described, and practical implications were given. Furthermore, suggestions for future research were provided. The findings from this thesis suggest that specific perceived and objectively measured characteristics of the outdoor physical environment facilitate or impede aspects of daily functioning in older adults with and without OA. Some supportive evidence was observed for the environmental docility hypothesis. Some specific environmental characteristics, such as distances to specific resources and perceived neighbourhood problems, are more strongly associated with functioning and well-being in older adults with OA than in those without the condition. The current findings suggest that there are potentially important environmental factors (e.g., perceived neighbourhood problems) that can be addressed to improve functioning and well-being in the growing group of older adults with OA. More research is needed to confirm our findings and to further examine how other outdoor physical environmental factors are associated with functioning and well-being in older adults with and without OA.
SAMENVATTING

De impact van de fysieke leefomgeving op ouderen met artrose

Artrose, oftewel gewrichtsslijtage, is een reumatische aandoening waarbij het kraakbeen in kwaliteit achteruitgaat en dunner en zachter wordt. Artrose is één van de meest voorkomende gewrichtsaandoeningen bij ouderen wereldwijd en de incidentie van artrose neemt toe met de leeftijd. De aandoening wordt onder andere gekenmerkt door gewrichtspijn, functionele beperkingen en verlies van kwaliteit van leven. Daarnaast gaat artrose gepaard met hoge maatschappelijke kosten.

Theorieën uit de omgevingsgerontologie suggereren dat het functioneren en welzijn van ouderen kunnen worden gestimuleerd of belemmerd door fysieke omgevingskenmerken. Het ecologische model over veroudering van Lawton gaat ervan uit dat unieke combinaties van persoonlijke vaardigheden en omgevingskenmerken het functioneren van een individu bepalen. Op basis van dit model stelt de ‘environmental docility hypothesis’ dat de invloed van omgevingsfactoren op het functioneren van een persoon groter is als die persoon minder goede persoonlijke vaardigheden heeft en minder bekwaam is. Ouderen met artrose ervaren mogelijk meer gewrichtspijn en functionele beperkingen dan ouderen zonder artrose. Hierdoor zijn ouderen met artrose mogelijk kwetsbaarder dan ouderen zonder deze gewrichtsaandoening en hebben factoren uit de fysieke leefomgeving een grotere invloed op het functioneren en welzijn van deze mensen. Subjectieve omgevingskenmerken berusten op de waarneming en ervaring van de omgeving door individuen en objectieve omgevingskenmerken beschrijven de omgeving onafhankelijk van de waarneming en ervaring van personen. Kennis over hoe subjectieve en objectieve omgevingsfactoren het functioneren van ouderen met artrose beïnvloeden kan worden gebruikt om richting te geven aan interventies en beleid, met als doel om het functioneren en welzijn van ouderen met artrose te bevorderen.

Onderzoek naar de invloed van de fysieke leefomgeving op het functioneren van ouderen met artrose is echter beperkt.
Dit proefschrift heeft als doel een bijdrage te leveren aan het inzicht in de invloed van de fysieke leefomgeving op het dagelijks leven van ouderen met artrose in Europa. Het hoofddoel was om te onderzoeken wat het verband is tussen fysieke omgevingskenmerken en verschillende aspecten van het dagelijks functioneren van ouderen met artrose. Daarnaast is nagegaan of de invloed van fysieke omgevingsfactoren groter is op aspecten van het dagelijks functioneren van ouderen met artrose dan op het functioneren van ouderen zonder artrose.

In dit proefschrift zijn gegevens van het European Project on OSteoArthritis (EPOSA; acroniem voor ‘Europees project over artrose’) gebruikt. Daarnaast zijn aanvullende gegevens van de Hertfordshire Cohort Study (HCS) en de Longitudinal Aging Study Amsterdam (LASA) gebruikt. Zowel de HCS als de LASA zijn betrokken in de EPOSA-studie. In het EPOSA-project wordt onderzoek gedaan naar de persoonlijke en sociaal-maatschappelijke gevolgen van artrose, en de determinanten hiervan, voor ouderen uit zes Europese landen. De EPOSA-studie is een Europees samenwerkingsproject waarin gegevens over ouderen tussen de 65 en 85 jaar uit zes cohortonderzoeken zijn samengebracht. Deze cohortonderzoeken zijn afkomstig uit zes Europese landen, namelijk Duitsland, Italië, Nederland, Spanje, Zweden en het Verenigd Koninkrijk. In de zes cohortonderzoeken zijn, op basis van vooraf gemaakte afspraken, de gegevens op dezelfde manier verzameld.

In Hoofdstuk 2 hebben wij de relatie onderzocht tussen gewrichtspijn en ervaren weergevoeligheid. Daarnaast hebben wij bepaald welke kenmerken het meest voorspellend zijn voor ervaren weergevoeligheid bij ouderen met artrose. In dit onderzoek zijn gegevens gebruikt van de EPOSA-studie. De resultaten laten zien dat het merendeel van de ouderen met artrose aangeeft dat hun gewrichtspijn wordt beïnvloed door weersomstandigheden. De weergevoelige ouderen met artrose ervoeren meer gewrichtspijn dan de niet-weergevoelige ouderen met artrose. In ons onderzoek konden we verschillende groepen ouderen onderscheiden die relatief veel last van weergevoeligheid hadden. Vrouwen bleken meer geneigd te zijn om weergevoeligheid te rapporteren dan mannen. Tevens bleek dat de meer angstige ouderen met artrose meer geneigd waren tot het rapporteren van weer-
gevoeligheid dan de minder angstige ouderen met artrose. Daarnaast bleek dat, in vergelijking met ouderen uit Zweden, ouderen uit Spanje en Italië meer geneigd waren om weergevoeligheid te rapporteren.

In Hoofdstuk 3 hebben wij de relatie onderzocht tussen gewrichtspijn en verschillende objectieve weerparameters bij ouderen met artrose. In dit onderzoek zijn gegevens van de EPOSA-studie gebruikt. De resultaten van ons onderzoek laten zien dat de gewrichtspijn van ouderen toeneemt wanneer de luchtvochtigheid stijgt. Daarnaast bleek dat de invloed van luchtvochtigheid op gewrichtspijn wordt versterkt als de temperatuur relatief laag is. Weersveranderingen tussen twee opeenvolgende dagen waren niet geassocieerd met gewrichtspijn in ouderen met artrose.

In Hoofdstuk 4 hebben wij de relatie tussen fysieke buitenactiviteit en objectieve weerparameters bij ouderen beschreven, met gegevens uit de EPOSA-studie. Daarnaast zijn wij nagegaan of de invloed van weerparameters op fysieke buitenactiviteit groter was bij ouderen met artrose dan bij ouderen zonder deze gewrichtsaandoening. De resultaten laten zien dat ouderen meer tijd besteden aan fysieke buitenactiviteit wanneer het warmer weer is. Daarnaast bleek dat ouderen minder tijd besteden aan fysieke buitenactiviteit wanneer het vochtiger weer is. Een hogere temperatuur was sterker geassocieerd met meer fysieke buitenactiviteit bij ouderen zonder artrose dan bij ouderen met deze gewrichtsaandoening. De resultaten laten verder zien dat ouderen zonder artrose minder tijd besteden aan wandelen dan ouderen met artrose, wanneer de luchtvochtigheid toeneemt. De invloed van het weer op fysieke buitenactiviteit is dus niet groter bij ouderen met artrose dan bij ouderen zonder artrose.

In Hoofdstuk 5 hebben wij de invloed onderzocht van subjectieve buurtcohesie, ervaren buurtproblemen en objectieve buurtachterstand op het gebruik van faciliteiten in de buurt door ouderen met en zonder knie- en/of heupartrose. Daarnaast zijn wij nagegaan of de impact van deze omgevingsfactoren op het gebruik van faciliteiten groter was bij ouderen met knie- en/of heupartrose dan bij ouderen zonder


In Hoofdstuk 7 hebben wij de relatie onderzocht tussen kwaliteit van leven en ervaren buurtproblemen bij ouderen met en zonder artrose, met behulp van gegevens
uit de HCS. In dit onderzoek zijn wij ook nagegaan of de invloed van ervaren buurtproblemen op kwaliteit van leven groter is bij ouderen met artrose dan bij ouderen zonder artrose. Daarnaast zijn wij nagegaan of de relatie tussen kwaliteit van leven en ervaren buurtproblemen kan worden toegeschreven aan verminderde fysieke buitenactiviteit. De resultaten laten zien dat kwaliteit van leven en ervaren buurtproblemen niet aan elkaar gerelateerd waren, noch op de baseline-meting noch op de follow-up meting. Daarnaast bleek dat de invloed van ervaren buurtproblemen op de kwaliteit van leven niet verschillend was voor ouderen met en zonder artrose. Echter, in vergelijking met de ouderen zonder artrose, ervoeren de ouderen met artrose een sterkere afname in kwaliteit van leven tussen de baseline-meting en de follow-up meting, wanneer zij meer buurtproblemen ervoeren. De relatie tussen kwaliteit van leven en ervaren buurtproblemen kon niet worden toegeschreven aan verminderde fysieke buitenactiviteit.

In Hoofdstuk 8, de algemene discussie, hebben wij de belangrijkste resultaten en conclusies bediscussieerd. Daarnaast hebben wij methodologische sterke punten en beperkingen beschreven en praktische implicaties en aanbevelingen voor verder onderzoek aangedragen. De bevindingen uit dit proefschrift suggereren dat zowel specifieke ervaren als objectieve kenmerken van de fysieke leefomgeving van invloed zijn op aspecten van het dagelijks functioneren van ouderen met en zonder artrose. Een aantal van onze bevindingen ondersteunen de ‘environmental docility hypothesis’ en laten zien dat fysieke omgevingsfactoren, zoals afstanden naar specifieke faciliteiten en ervaren buurtproblemen, een grotere invloed hebben op het functioneren en welzijn van ouderen met artrose dan op het functioneren en welzijn van ouderen zonder artrose. De resultaten suggereren dat er belangrijke omgevingsfactoren (bv. ervaren buurtproblemen) zijn die aangepakt kunnen worden om het functioneren en het welzijn van de steeds groter wordende groep ouderen met artrose te verbeteren. Nader onderzoek is nodig om onze bevindingen te bevestigen en om te bepalen welke andere omgevingsfactoren ook belangrijke determinanten zijn van functioneren en welzijn bij ouderen met en zonder artrose.
ACKNOWLEDGEMENTS /
DANKWOORD
ACKNOWLEDGEMENTS / DANKWOORD

De afgelopen jaren heb ik met veel plezier aan mijn proefschrift gewerkt. Met de hulp, steun en het advies van veel mensen heb ik dit proefschrift kunnen schrijven. Ik wil hierbij een aantal mensen in het bijzonder bedanken.

I would like to thank all respondents and interviewers who have participated in the European Project on OSteoArthritis (EPOSA). Without your participation, it would not have been possible to conduct research and to complete a PhD-thesis. Thank you very much.

Heel veel dank gaat uit naar mijn promotiegroep: Dorly Deeg, Suzan van der Pas en Laura Schaap.

Dorly, ontzettend bedankt voor de fijne begeleiding de afgelopen jaren. Ik bewonder jouw grote kennis over alle aspecten van onderzoek en hoe jij al jouw werkzaamheden weet te combineren. Ik heb met veel plezier met je samengewerkt en ik ben trots dat ik mijn promotieproject heb mogen doen bij jouw LASA. Bedankt voor de fijne tijd en de mogelijkheden die je mij gegeven hebt om mij als wetenschappelijk onderzoeker te ontwikkelen.

Suzan en Laura, ik heb mij geen fijnere copromotoren kunnen wensen dan jullie. Jullie begeleiding vind ik geweldig: opbouwende feedback, goede vragen en met humor. De gezellige en ontspannen sfeer die jullie altijd meenemen, vind ik erg fijn. Jullie hebben mij aangemoedigd om naast het promoveren ook andere activiteiten op te pakken. Bedankt voor deze duwtjes in de rug. Ook als deze richting de out of my comfort zone waren. Ik heb er veel van geleerd. Heel erg bedankt!

I would like to thank all members of the EPOSA research team for their commitment to the project and the fruitful collaboration. Michael Denkinger, Richard Peter, Florian Herbolsheimer und Luise Steeb, vielen Dank für ihre Bemühungen! Stefania Maggi, Sabina Zambon, Paola Siviero, Federica Limongi, Marianna Noale e Antonella Gesmundo, grazie per il vostro impegno. Ángel Otero, Maria Victoria Castell, Rocío Queipo e Mercedes Sánchez-Martínez, gracias por sus esfuerzos. Nancy Pedersen och Rozita Broumandi, tack för ert gott arbete. Special thanks to Elaine Dennison, Cyrus Cooper, Mark Edwards and Camille Parsons. In particular, I would like to thank you for your hospitality during my stay in Southampton. Thank you for all your time and efforts. My research internship at the Lifecourse Epidemiology Unit in Southampton is one of the highlights of my PhD-project. Thank you very much for the great time.

I also would like to thank the advisory board members of the EPOSA study: prof. dr. W.G. van Aken, prof. dr. J. Dekker, prof. dr. G. Peat and dr. M. Daumer. Thank you for all your advices.

I would like to thank all my co-authors. Herewith, I would like to particularly thank Catharine Gale, Marjolein Visser, Hidde van de Ploeg and Alfred Wagtendonk for their input and collaboration.

Gert-Jan Pepping, bedankt dat jij jouw enthousiasme voor wetenschappelijk onderzoek met mij gedeeld hebt. Dit is aantekelijk en besmettelijk gebleken.

Graag wil ik alle LASA-collega’s bedanken voor hun collegialiteit. De afgelopen jaren ben ik altijd met veel plezier naar het werk gegaan en daarin hebben jullie een belangrijke rol gespeeld. Bedankt voor de fijne en gezellige werksfeer. In het bijzonder

De afgelopen jaren heb ik in verschillende commissies met veel mensen prettig samengewerkt. Ik wil graag alle leden van de LASA ABM-commissie, LASA PhD-commissie, LASA Website/Kennisdisseminatie-commissie en de EMGO+ Kwaliteitscommissie hiervoor bedanken.

Promoveren is niet mogelijk zonder kamergenoten. Marieke, Nicole, Wim, Tjalling en Evert, ik wil jullie bedanken voor jullie behulpzaamheid en gezelligheid. In het bijzonder wil ik jullie bedanken voor: het bouwen van tentjes, de filmmomenten op de woensdagmiddag, het interactie-geduld, de kopjes koffie van de chemokar (1-1-startjes of 0002’tjes), het hilarische app-verkeer, de etentjes, de Willekes, de wetenschappelijke doorbraken en het delen van columns, preken, pleidooien en propaganda. Bedankt voor de geweldige tijd in kamer A-515.

In het bijzonder wil ik ook graag Almar, Elisa, Hans, Irina, Laura, Liset, Maaike, Marie-Louise en Silvia bedanken voor het helpen bij kleine en grote vragen, het gratis advies, de leuke gesprekken, de wandelingen door het park, de grapjes en de voor- en nabeschouwingen van het weekend.

Almar, een speciaal woord van dank voor jou. Heel leuk dat ik je heb leren kennen buiten het werk om en fijn dat je mijn paranimf bent. Ik kijk met veel plezier terug op onze congresbezoeken en onze raps. Het was weer lachen.
René, ik wil oe bedanken voor oe steun, humor en het balkoneren. 
Oe ben mijn held!

Maarten en Ans, bedankt voor jullie lieve steun en gezelligheid. Joren en Yara, ik wil jullie ook bedanken voor alle gezellige momenten. Ik ben heel blij met jullie.


“Het succes van je kinderen is ook een beetje het succes van jezelf.” Jan en Nelleke, bedankt voor jullie liefde, steun, betrokkenheid, humor en momenten van relatievering. Jullie staan altijd voor me klaar. Bedankt!

Lieve Bente, wat fijn dat ik alles met je kan delen en dat je er altijd voor mij bent. Ik ben heel gelukkig met jou en Stijn. Ik houd van jullie.
ABOUT THE AUTHOR
ABOUT THE AUTHOR

Erik Timmermans was born on February 2, 1988 in Warnsveld, the Netherlands. After finishing secondary school at the Baudartius College in Zutphen in 2006, he started his study in Human Movement Sciences at the University of Groningen. In 2011, he obtained his Master’s degree (cum laude) with a specialization in sport, learning and performance, and he worked as a teaching/research assistant at the Center for Human Movement Sciences of the University Medical Center Groningen. In November 2012, he started as PhD candidate at the Longitudinal Aging Study Amsterdam at the EMGO+ Institute of the VU University Medical Center in Amsterdam. In this position, he worked on the European Project on OSTeoArthritis (EPOSA). The EPOSA project studies the personal and societal burden and its determinants of osteoarthritis in older adults from six European countries. During his PhD-project he obtained an EMGO+ Travel Grant and visited the MRC Lifecourse Epidemiology Unit in Southampton, United Kingdom, to collaborate with researchers in the field of epidemiology and rheumatology. Between April 2015 and March 2016, he worked part-time as post-doctoral researcher in the Geoscience and Health Cohort Consortium (GECCO). In this position, he identified and collected existing geo-data for six cohort studies within the EMGO+ Institute. Currently, he works as post-doctoral researcher at the department of Public Health of the Academic Medical Center in Amsterdam.
LIST OF PUBLICATIONS
LIST OF PUBLICATIONS

In this thesis


Other publications
Timmermans EJ, Deeg DJH. De invloed van het weer op gewrichtspijn bij ouderen met artrose. [In English: The influence of weather conditions on joint pain in older adults with osteoarthritis]. Gerōn 2016;18:70-72.


Submitted for publication


