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18 2.1. ABSTRACT

Abstract

Large-scale identification of native binding orientations is crucial for understanding the role of
protein-protein interactions in their biological context. Measuring binding free energy is the
method of choice to estimate binding strength and reveal the relevance of particular confor-
mations in which proteins interact. In a recent study, we successfully applied coarse-grained
molecular dynamics simulations to measuring binding free energy for two protein complexes
with similar accuracy to full atomistic simulation, but 500-fold less time consuming. Here, we
investigate the efficacy of this approach as a scoring method to identify stable binding confor-
mations from thousands of docking decoys produced by protein docking programs. To test our
method, we first applied it to calculate binding free energies of all protein conformations in
a CAPRI (Critical Assessment of PRedicted Interactions) benchmark dataset, which included
more than 19000 protein docking solutions for 15 benchmark targets. Then, based on the bind-
ing free energies, we ranked all docking solutions to select the near-native binding modes under
the assumption that the native-solutions should have lowest binding free energies. In our top
100 ranked structures, for the easy’ targets that have many near-native conformations, we ob-
tain a strong enrichment of acceptable or better quality structures; for the hard’ targets with
no near-native complexes in the decoys, our method is still able to retain structures which have
native binding contacts. Moreover, in our top 10 selections, our approach shows a comparable
performance when compared with other state-of-the-art docking scoring functions. As a proof
of concept, CLUB-MARTINI performs remarkably well for many targets and is able to pinpoint
near-native binding modes in the top selections. To the best of our knowledge, this is the first
time interaction free energy calculated from molecular dynamics simulations have been used as

a scoring method to rank docking solutions at a large scale.

Introduction

Protein-protein Interactions (PPIs) play a central role in all cellular processes. Proteins rely
on their binding capacity to construct complexes and build interaction networks to fulfill bio-
logical functions [e.g., Ezkurdia et al., 2009, Jones and Thornton, 1996, Valencia and Pazos,
2002]. Knowledge of binding affinity and native binding modes of proteins are essential to
gain a thorough understanding of protein-protein interactions in relation to their function [e.g.,
Moal et al., 2013, Vakser, 2014]. During the last decades, experimental techniques such as
yeast two-hybrid, tandem affinity purification, mass spectrometry and protein micro-arrays for
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large scale determination of protein-protein interactions, as well as immunoblots, ELISA and gel
electrophoresis for calculation of binding strength, have been developed to identify and annotate
protein interaction [e.g., Pollard, 2010, Shoemaker and Panchenko, 2007a,b]. However, owing
to the exceeding cost of experimental techniques, computational approaches are increasingly
useful to estimate binding affinity and to assist in finding the best possible interaction candidate
[e.g., Ehrenberger et al., 2015, Kastritis and Bonvin, 2010].

Molecular docking is a low-cost and fast approach to predict binding orientations, which has
been developed specifically for this purpose ([e.g., Halperin et al., 2002, Vakser, 2014]). Dock-
ing includes two steps to predict binding modes: the first step is searching the conformational
space of the protein molecules and generating (very many) docking poses. The second step is
scoring the solutions constructed in the first step, with the aim of finding native or near-native
ones. Often, the two steps are combined in one docking tool. Several types of algorithms exist
to address the docking search problem (see Huang [2014] for a recent comprehensive review).
Also for the second step, various kinds of scoring functions have been developed [Lensink and
Wodak, 2014, Moal et al., 2013], including, empirical or knowledge-based potentials [Grinter
and Zou, 2014, Khashan et al., 2012, Kriiger et al., 2014] and physics-based potentials [Liu et al.,
2013, Vreven et al., 2011].

Although much effort has been devoted to the application of docking to PPI, accurate prediction
remains a challenge that is far from solved, especially the second step which scores and ranks
docking conformations. Kastritis and Bonvin (2010) found a poor correlation between scores
produced by docking scoring functions and experimental binding affinities; none of the scoring
function were able to predict binding affinities correctly in all situations [Kastritis and Bonvin,
2010]. On the other hand, it is reported that binding free energy calculation based on molecular
dynamics (MD) simulations are much more accurate than docking scoring functions when used
to measure binding affinities, and can even approach accuracies of experimental determination
[Kastritis and Bonvin, 2010, Tuncbag et al., 2009]. One may assume that MD simulations, given
long enough simulation time and an accurate force field, will yield the bound state of protein
complex as its free energy minimum (e.g., [Raval et al., 2012]). However, simulations require
long timescales for sufficient sampling to search the lowest free energy stable state, and are
computationally very costly. To speed up these MD simulations, in our recent study [May et al.,
2014] we successfully applied the coarse-grained (CG) MARTINI protein force field instead
of a full atomic description to estimate binding affinities for proteins. Basically, we sacrifice
forcefield detail for enhanced sampling. However, the CG method was shown to be as accurate
as full-atom MD simulation for binding free energy estimation for the two protein complexes
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studied, but 500-fold less time-consuming. The achieved speedup now opens up the possibility
to combine the docking searching strategy to produce a set of near-native binding decoys, which
is quick and inexpensive, with estimated binding free energies from coarse-grained MD simu-
lations, as a relatively expensive but accurate scoring method. We find this approach to achieve
a good balance between efficiency and effectiveness for protein binding orientation prediction.
To illustrate this, we here evaluate the capacity of estimated binding free energy from coarse-
grained MD simulations to locate near-native binding poses amongst conformations produced
by docking programs. We present a proof of concept for the approach of using Free Energy
calculation to score binding orientations from protein-protein docking. The benchmark dataset
we used is the CAPRI Score_set, which contains over 19,000 structures from 15 published tar-
gets from the CAPRI docking experiment [Lensink and Wodak, 2014]. For most of the targets
with near-native conformations we obtain significant enrichment of acceptable or higher quality
structures in our top 100 selected structures. For targets with few near-native binding modes,

our method can identify structures which include native interface contacts.

Materials and Methods

2.1 Force fields and Software

To calculate the coarse-grained (CG) potential of mean force (PMF) for our proteins of inter-
est, we used the procedure developed in our previous work [May et al., 2014]. In short, we
used the MARTINI force field [Marrink et al., 2007] with default time step of 20fs to perform
the CG simulations. The Coarse-graining of protein structures was done using the MARTINI
model which maps about 4 heavy atoms into a single interaction center. All 20 amino acids are
considered as four different types of particles: polar (P), nonpolar (N), apolar (C), or charged
(Q) [Monticelli et al., 2008]. GROMACS 4.0.5 [Hess et al., 2008] was employed to perform all
MD simulations, using parameters for the MD simulations as described previously[May et al.,
2014]. A tool that calculates the PMF from a single starting conformation in a PDB file was

developed in Python. The code is available upon request.

2.2 Estimating Interaction strength

To evaluate the Free energy difference between bound and unbound states, one needs to integrate

a path between these states. As described previously [May etal., 2014], a series of closely spaced
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distances (r) between the two centers of mass (COM) was used and for each distance a constraint
force was applied to maintain the interaction of the two proteins at the set distance during the
MD simulations. In detail, first, the distance between the two centers of mass of the docking
conformation was calculated (dockcor). When performing the simulation, 23 distances spaced
at 0.05 nm starting -0.1 nm below dock oy, and 9 distances spaced at 0.1 nm starting at 1.15 nm
beyond dockcoy, were used as MD simulation coordinates. From the resulting profile of force
as function of distance, now the PMF was calculated as described previously[May et al., 2014].
The PMF describes the interaction free energy between two structures as function of distance.
For each conformation of two interacting proteins, the binding free energy (AG?) was obtained
from the difference between the lowest PMF value at r,,;, and highest PMF at larger distance
Timax, Where 1, < r,q. This binding free energy is used as an approximation of the binding
strength, and in this work to rank the docking poses.

2.3 Datasets

To assess the ability of our method to distinguish near-native from incorrect binding modes, we
used the CAPRI Score_set as a benchmark dataset [ Lensink and Wodak, 2014]. CAPRI is well
known as a community-wide experiment on the critical assessment of prediction of interactions.
The CAPRI Score set, which comprises around 19,000 complexed structures from multiple
rounds of CAPRI experiments, is published as a realistic benchmark dataset for protein docking
scoring functions. The interest of this dataset is that it does not contain the true target (crystal)
structures, but includes many ’real life’ non-occuring or incorrect, acceptable and native-like
docking poses. The dataset collects structures from 15 published CAPRI targets predicted by 47
different predictor groups, which represent the state of the art of protein docking [Lensink and
Wodak, 2014]. The CAPRI benchmark set used in this study is annotated regarding structural
correctness, and as such does not reflect a typical research situation. However, an individual
researcher may generate an input decoy dataset of any size using various docking servers that
are readily available online. In this dataset, about 10% of the structures represent acceptable

quality or better, based on the three measures used in CAPRI:
* fna fraction of native ligand-receptor contacts;

* L-rms: Root mean square deviation (RMSD) over the ligand backbone atoms with both
of the receptors fitted on each other (docking versus solved structures);

e [-rms: RMSD of backbone atoms of interface residues between docking structures and
the solved structures.
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Using these measures, each structure is assigned to one of four categories based on the clas-
sification used in CAPRI:

1. High quality: f,,, > 0.5 and L-rms < 1.0 and I-rms < 1.0

2. Medium quality: f4 > 0.5 and L-rms > 1.0 and I-rms > 1.0 or 0.3 < f,,; < 0.5 and
(L-rms < 5.0 or I-rms < 2.0)

3. Acceptable: f,4, > 0.3 and L-rms > 5.0 and I-rms > 2.0 or 0.1 < fnat < 0.3 and (L-rms
< 10.0 or I-rms < 4.0)

4. Incorrect: f4 < 0.1 or L-rms > 10.0 and I-rms > 4.0

As a measure for target difficulty, we take the fraction of docked structures of acceptable
or better quality. In most figures, we organised the targets from ‘easy’ to ‘hard’ based on this

measure.

2.4 Sampling procedure

First, binding free energy (AG%) of each structure is calculated from a single MD simulation
(replicate) at each distance (in May et al., 2014[May et al., 2014], 10 or 20 replicates per distance
were used). Based on these free energies, we then rank the binding orientations for each target
under the assumption that a lower free energy is more stable. Using this ranking, we selected
the best (lowest) 50% structures for each target. For this subset, we ran four more replicates
per distance to increase sampling and obtain a more accurate estimate of AG%/. Based on the
average AG? over the five replicates (for the best 50% structures), we picked the top 1, 5, 10,
20 and 100 lowest binding free energies for each target. These sets we analysed and compared
to the benchmark dataset. Note that, the crystal structure (PDBID: 2W83) of Target 37 includes
a JNK-interacting protein JIP4 which contains a leucine zipper domain (90 A elongated long
coiled-coil) [Isabet et al., 2009a]. Due to its size, and the fact that simulations are performed
in explicit water, this PMF calculation experiment required an excessive amount of CPU hours.
Therefore, for Target 37, only one replicate simulation was performed.

To evaluate the performance of our method and compare binding strength among different qual-
ity binding poses, we also calculated the binding free energies of the X-ray crystal structures
from the PDB for all targets by Coarse-Grained MD simulation using 20 replicates.
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Results and Discussion

For each of the 19,000 structures (docked conformations) of the 15 targets in the CAPRI Score_set,
we estimated the binding affinity (AG%) using the CLUB-MARTINI CG MD simulations and
constraint force integration, as detailed above in Methods. We then use these data to rank the
docking conformations on increasing AG? (lowest, strongest binding, first).

3.1 Near-native structures with lower binding free energies

To investigate the potential of AG as a scoring function, we first correlate the binding free
energies to the Score set benchmark parameter interface RMSD (I_rms), which is the most
important determinant of the binding interface quality[Lensink and Wodak, 2014]. Figure 2.1
shows the comparison between AG? (one replicate) and I-rms for all docking decoys of Target
47 (which is an easy target with many high quality docking solutions; results for other targets
can be found in SI Figure A.1). For all docked structures, lower I _rms values reflect near-native
binding poses and a lower AG? reflects a more stable binding pose with a higher binding
strength. As can be seen from Figure 2.1, there is a clear separation between low and high
I-rms especially for lower binding free energies (AG% < -105). Previously we showed that
our method can be used to approximate experimental binding free energies [May et al., 2014].
The separation shown in Figure 2.1 demonstrates that binding free energies calculated are also
accurate enough to be used as a scoring function for ranking docked conformations.

Figure 2.1 also shows that there is a large AG? variation among low I_rms structures. This
might reflect true differences in stability, even for very similar structures, however, we expect
this to be mainly the uncertainty in our calculated AG% which could be a limiting factor when
applying our method to rank docking binding orientations. The AG? calculations might be not
accurate enough. To obtain more accurate binding free energies, more simulations are needed
as already observed by May et al, 2014. To obtain some estimate of this accuracy, we selected
the first target, Target 29, to run two replicate simulations for each structure in the Score_set
and compare the rank position differences between the two replicates (data not shown). The
average rank difference over all 2083 complexes for Target 29 was 400, which is around 25% of
the number of structures for this target. Based on this variation estimate, we may select the best
scoring (lowest) half on the AG? using a single replicate simulation with reasonable reliability.
For that selected best 50% of docking conformations, we ran four additional replicates to get

more accurate AG? estimates. This approach was applied to all targets. We average the AG
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Figure 2.1: Distribution of AG® over all structures vs. interface quality parameter I_rms (Target
47). Each dot represents one structure in the Score_set of Target 47. The y axis shows the RMSD of back-
bone atoms of interface residues between docking decoys and crystal structures (I_rms); the x axis shows
AGY which describes the predicted binding strength. Same plots for other targets are in SI Figure A.1.
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calculations over the total of five replicates, and based on this we select the candidate near-native
structures. To assess whether our sampling has been sufficient to improve accurate estimations
of the binding strength, we checked the distribution of AG% in different quality categories
(high, medium, acceptable and incorrect) using only 1 or 2, or all 5 replicates. For comparison,
we also calculated the AG? based on the native binding mode of the crystal structure using 20
replicates. Here we take Target 47 as an example (results for all targets are included in SI Figure
A.2). Figure 2.2 A shows the distributions of AG% from 1, 2 and 5 replicate MD simulations.
The four bars for each represent high (red), medium (orange), acceptable (yellow) and incorrect
(gray) structures respectively. From the plot, we observe that the mean AG? separates clearly
between high, medium, acceptable and incorrect. Moreover, as hypothesized, the predicted
binding free energy increases from high to low quality structures. This clearly shows that CLUB-
MARTINI is able to predict lower binding free energies for near-native binding poses. Figure 2.2
B shows that the spread of AG% within each quality category decreases with increasing number
of replicates. Moreover, for *high’ quality structures, the mean AG? is quite stable and close
to that of the crystal structures (in purple) and gets even closer with more replicates. This trend
suggests that further improvement of binding free energy calculation may be possible with more
replicates. For the other targets, we observe similar trends in most cases (see SI Figure A.2).
For Target 50 (SI Figure A.2), we see that the initial (single replicate) AG% for high quality
structures is higher than that of the crystal structure, which is likely due to errors arising from
using a limited number of replicates. Reassuringly, we indeed see this gap decreasing when

more replicates are used.

3.2 Enrichment in selecting near-native structures in CAPRI Score set

After ranking our docking structures based on the binding free energy calculation, we compared
the percentage of acceptable or better quality structures in our top selections with that in CAPRI
Score_set. Figure 2.3 shows the comparison of the top 100 structures for each target. The two
bars represent the percentage of structures in each quality category in Score set and our top
100 selections, respectively. The targets in Figure 2.3 are ordered on the fraction of acceptable
or better structures in the CAPRI Score_set, which should correspond to the level of difficulty
in docking prediction[Lensink and Wodak, 2010b, 2013] (note that for clarity the y axis scale
decreases from left to right). For almost all of the Targets that include near-native binding orien-
tations in the Score set, CLUB-MARTINI can retain at least acceptable quality structures in the
top 100 selection, with two exceptions, target 29 and target 35, which will be discussed below
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Figure 2.2: Distribution of AG® for structures in different quality categories (Target 47). (A)
AGY distributions using 1, 2 or 5 replicate MD simulations (left to right). Each includes four bars for high,
medium, acceptable and incorrect structures, from left to right, respectively. (B) Direct comparison within
each quality category, and crystal structure. Each quality category contains three bars, showing the NG
distribution using 1, 2 and 5 replicates, from left to right, respectively. Corresponding plots for the other
Targets can be found in Sl Figure A.2.
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in section 3.5 Future Improvements. Moreover, for most of the targets, our method enriches the
percentage of near-native structures (high in red, medium in orange and acceptable in yellow
in Figure 2.3), except for targets 29, 32 and 35. For target 47, which is an easy docking prob-
lem, our complete top 100 selection is of at least acceptable and by far most are of high quality.
In addition, for targets which have high quality models in the data set (T47, T41, T40, T29),
our approach always enriches that fraction, with the single exception of target 29 which has
only 2 high quality conformations in 2083 structures to begin with. It turned out that the small
random variations in the single replicate AG%' caused these to be lost during the first ranking.
From these results, we can conclude that CLUB-MARTINI is able to enrich near-native binding
modes at any difficulty level.

For Target 36 and Target 38 (the hardest docking problems), there are no acceptable conforma-
tions in the data set, i.e., they are all *incorrect’. To also illustrate our prediction performance
here, we compare our method based on the native interface contacts using average Recall (f4)
and Precision (1-fonnar) as defined in Score_set[Lensink and Wodak, 2014]. This measure is
similar to using the fraction of predicted binding residues[Lensink and Wodak, 2010a], but the
fraction of native contacts is more sensitive to the interface quality. Figure 2.4 shows the com-
parison among Score_set, our top_half, top 100 and top 10 for all targets. The fact that the
Recall increases from Score_set, top_half, to top_100 for most targets shows that our method is
able to enrich the interface native-contact. For the two most difficult targets (T36, T38), contain-
ing only incorrect models, we do obtain structures with native binding contacts, and in particular
we obtain a significant enrichment for Target 38 (Precision follows the same trend as Recall, as

can be seen in SI Figure A.3).

3.3 Selecting near-native structures in our top ranked solutions

Table 2.1 summarizes the quality of structures selected in the Top 1, 5, 10 and 20 for multiple
targets. For the top 1, we can select one high quality structure for Target 47, and one acceptable
for Target 53 (2 targets out of 13). In the Top 5, we can select acceptable or better ones for
two additional targets (4/13) and again one more (5/13) in the Top 10 and six targets (6/13)
in the Top 20. This indicates that our method is quite able to enrich native binding modes for
almost half the targets. CLUB-MARTINI is indeed capable of obtaining favourable candidates
within a reasonably small selection, which shows its potential to be directly used to limit the
range of putatively correct binding solutions that may aid other expensive experiments, such
as for example in drug design. Furthermore, such a selection of candidates is small enough
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Figure 2.3: Enrichment of acceptable or better structures. For each of the 13 targets with acceptable
or better decoys, two columns (from left to right) show the CAPRI Score_set and the top 100 in our rank
of binding free energy calculation. Red, orange and yellow represent the fractions of high, medium and
acceptable quality structures, respectively, of the number of the selected docking decoys. The ordering of
the targets is based on the fraction of acceptable or better structures in each target; easy targets with a
high fraction are on the left, hard targets with low fraction on the right. Note that for improved readability,
the vertical scale decreases from left to right.




CHAPTER 2. CLUB-MARTINI: COARSE-GRAINED SIMULATION 29

[__Iscore_ser
40 4 28 - 10 4 [ ToP_HALF
45
90 4 2] I Tor_100
35| 24 ] B ror_10 404
80 -|
22 8
30 35
- 70 -| 2]
5
4 18 3.0+
g ® ] 16 67
¢ s0- 254
2 20 -| 14 4
T 40 12 20
= 54 10 ]
s 30 ol 1.5
S 10
o
20 H 64 2] 1.0 4
4
10 51 05
24
0 04 0 0 .0
T47 T41 T40 T53 T50 T29 T37 T32 T46 T54 T35 T39 T30 T36 T38

Targets

Figure 2.4: Enrichment of native-contacts between Score_set and our method. Four bars for each
target represent the Recall in Score_set, Top_half, Top_100 and Top_10, respectively (left to right). For
most of the Targets, Top_10 obtains the best Recall. The ordering of the targets is the same as in Figure
2.3.(hardest on the right). Note that for improved readability, the vertical scale decreases from left to right.
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to be subjected to visual inspection, which may further help to pinpoint the solutions of highest
relevance. In practice, when investigating how two proteins interact with each other, we envision
an approach in which one first generates a set of docking solutions using several cheap docking
approaches, and then our CLUB-MARTINI can be employed to rank the docking orientations
and find the most relevant binding poses.

Table 2.1: Success selections of top ranked structures

Selection | Target Quality Total (% )
High | Medium | Acceptable
T47 1 0 0 100
Torl T53 0 0 1 100
T47 3 2 0 100
T41 0 0 4 80
TOP'S T53 0 0 3 60
T37 0 2 0 40
T47 7 3 0 100
T41 0 1 7 80
TOP 10 | T53 0 1 5 60
T37 0 3 0 30
T50 0 0 1 10
T47 14 6 0 100
T41 0 4 13 85
T53 0 3 9 60
TOP 20 T37 0 4 2 30
T50 0 0 3 15
T40 1 2 0 15

The table is derived from 5-replicate MD simulation for all targets, except Target 37 where only one replicate simulation was
available due to limits on computational resources.

3.4 Comparison between CLUB-MARTINI and other scoring methods in CAPRI.

We also compare our method with the overall performance of other scorers participating in the
CAPRI scoring rounds [Lensink et al., 2007, 2014, Lensink and Wodak, 2013]. Each ’scorer’
ranked and submitted up to 10 selections from an anonymized set of docked conformations

uploaded by ’predictors’. The Score set in this paper is identical to an anonymized set, with
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Figure 2.5: Comparison with overall performance of ’scorers’ in CAPRI experiments. There are
three bars for each target: red for CLUB-MARTINI Top_10, orange for CLUB-MARTINI Top_100 and yellow
for CAPRI 'Scorers’. We consider our Top_100 performance significantly better for five targets: T41, T53,
T54, T39 and T30 (higher than 1.5 fold relative to CAPRI Scorers); and similar for four more: T47, T40, T37
and T46 (0.67 to 1.5 fold). The ordering of the targets is the same as in Figure 2.3.(hardest on the right).

the exception of a few structures removed in the construction of Score_set based on additional
tests (for example, minimum sequence coverage of 70%)[ Lensink and Wodak, 2014]. Note that,
’scorers’ are allowed to modify the selected structures, so sometimes what scorers submit is of
better quality than what they initially selected. In the current work, we did not attempt such
improvements, although the simulation based method on principle could support that.

Figure 2.5 shows the comparison between the percentage of acceptable or better models in our
top 10 and top 100 selections and the overall selection of ’scorers’ in CAPRI. Our top 100 is
significantly better for five targets: T41, T53, T54, T39, T30 (5/13) and similar for four more:
T47, T40, T37, T46 (in total 9/13 better or similar). Our top 10 selections obtain similar or
higher fractions acceptable or better for T47, T41, T53, T37 (4 out of 13 targets).

In addition to this overall comparison between our method with the average ’scorer’ perfor-
mance in CAPRI, we also compared our method with the performance of individual state-of-
the-art ’scorers’ in the CAPRI rounds. Table 2.2 shows details of the near-native binding poses
identified by seven best *scorers’. Targets without near-native solutions and those for which all
the seven ’scorers’ did not predict, are not shown in the table. Full details for all targets and

scorers are presented in SI Table A.1. For most targets for which these "best scorers’ give at
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least acceptable quality predictions, our method is also able to select near-native binding modes
(5/9). Moreover, we rank 2nd for Target 53, 3rd for Target 47, 3rd for Target 41, 5th for Target
37 and 7th for Target 50. Our method is not able to find the correct binding modes in our top 10
selections for two “hard’ targets (Target 46 and Target 35) and two ’easy’ targets (Target 29 and
Target 40). We will discuss some possible reasons for this in the next section. In conclusion,
our method works well for most targets and even better than the majority of the "best’ scoring
functions for some targets.

Table 2.2: Comparison of top 10 selections between CLUB_MARTINI and state of art docking scoring func-
tions

Groups T47 T46 | T50 | T53 T29 | T35 | T37 T40 T41 Total
Bates 10/10%* 2% 2% | /1% | 4/2%* 6/1%%% | 10/9%* 4% 8
Bonvin 10/9%33/ %% | 2% 2% | 8/3%% | 9/5%* 2/1%% | 10/2%%* 10%* 8
Elber 1* 2% | 5/1%* 8/3 %% 1* 5
Fernandez-Recio 10/4%%%/6%* 6/1%% | 4/1%% | 5/1*%** | (0 3/2%%* 5
Wang 2/2%** 7/6%% | 5/1%* 1% | 6/4%% | 8/1*** 7* 7
Weng 9/G***/3%* 3* 1* 3/1%% | 3/2%* 2/ ¥HE | T QAR 4% 8
Zou 10/10%%* 1% | 2/1%% | 1% 4/2% %% [ 10/2%%% | 10/2%%* 7
CLUB_MARTINI | 10/7%%*/3%% | 1* | 6/1%* 0 0 3wk 0 8/1%* 5

The Table lists the number of acceptable or better quality models from different groups. For each group, the number of submitted
correct models of each category are listed: high(***), medium(**), and acceptable (*) are listed. For example, *10/7***/3%*’
means that there are 10 acceptable or better quality binding poses in total, of which 7 structures are with high quality and 3 models
are with medium accuracy. Note that all number in the table except our method are from previous CAPRI paper [Lensink and
Wodak, 2010b][Lensink and Wodak, 2013].

3.5 Further Improvement

As shown above, CLUB-MARTINI can enrich near-native structures for most targets, even
for ‘hard’ ones with no or few high or medium quality decoys. Even for Target 37, we can
obtain strong enrichment even though we only performed a single replicate simulation due to
computational constraints. Nevertheless, our method is unable to obtain high performance for
some targets, notably, Target 29 and Target 35, as reflected by both the enrichment and preci-
sion analysis. Here we will discuss same contributing factors to this low performance for these
two targets. SI Figure A.2 shows that for T29 the average binding free energies of ’incorrect’
structures are lower than those of the crystal structure. This explains why our method based on
binding free energies calculation was unable to separate different quality binding poses. There
may be several reasons for this. First, the CG MARTINI forcefield may not accurately rep-
resent the interaction for this particular pair of proteins. Second, the quality of the docking
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conformations for each target is judged based on the respective crystal structure. However, the
crystal structure may not reflect the functionally relevant binding conformation; or there may
be alternate binding modes of which the crystal structure only represents single one, while the
forcefield captures another. For example, in Figure 2.1, some incorrect structures (high I-rms
ones) have low binding free energies; some of these might represent alternative binding modes,
and hence have favourable free energies. This factor may introduce errors into the evaluation
of our ranking based on binding free energy calculations. For Target 40, a special situation oc-
curs, that the crystal structure contains two distinct binding modes. In SI Figure A.2, we show
the binding free energy for both of them, and we can observe that one has a significantly lower
binding free energy than the other. When ranking decoys for such a target, only binding modes
corresponding to the lowest will end up being selected. Without concrete data on alternative
binding modes from a crystal structure, we cannot know if this may be the case as well for other
targets.

In this work, we spent 1.1 million CPU hours for all simulations. Although we speed up MD
simulation by using the coarse-grained model, the computational cost clearly is still a limiting
factor for our method. By clustering conformations of similar orientation, either from the dock-
ing or the snapshots from the simulations, we may obtain effectively increased sampling and
save on CPU hours for that particular binding orientation.

We investigated whether better enrichment may be achieved when more replicate simulations
are performed. SI Figure A.4 shows the percentage of acceptable or better structures in our top
100 selection for all targets using 1, 2 or 5 replicates. Three bars for each target represent the
enrichment for 1, 2 and 5 replicates from left to right. For most targets, despite the increased
accuracy of AG? as shown above (Figure 2.2 & SI Figure A.2), there are no big differences
in enrichment with more replicates, except for T40 and TS50 whose enrichment increases more
than 5 percent points. As shown in Figure 2.2 and SI Figure A.2, the variance of binding free
energy for near-native structures shrinks with more replicates and gets closer to the ’real” struc-
tures. This indicates the binding free energies become more accurate with increased sampling.
For targets where the binding free energy of the crystal structure is unfortunately higher than
the incorrect binding poses, for example target 29, more replicates would not lead to improved
enrichment. However, for most of the targets the interaction free energy of the crystal structure
is lower than that of the incorrect structures. Therefore, we would expect that using more repli-
cates (e.g., 10 or 20 as in our original analysis [May et al., 2014]) would further improve the
enrichment. This opens up the possibility for researchers to attain higher precision by investing

more CPU resources for selected targets.
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Conclusions

Ranking all docking solutions effectively and identifying the native-solutions correctly are the
leading demand of a scoring function. Here, we have shown that calculating binding free ener-
gies from Coarse-grained MD simulations using the MARTINI force-field can be an effective
way to detect favourable interactions amongst many diverse binding orientations. To the best of
our knowledge, this is the first time that interaction free energy from force field simulations is
used as a scoring method to rank docking solutions at a large scale. As an outlook, our approach,
unlike most other docking scoring functions, is closer to the physical reality, which opens up the
possibility to provide an absolute and quantitative description of protein interactions, allowing

the prediction of complete interactomes in silico.
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