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LSD variants in PD

ABSTRACT

Objective: Mutations in the glucocerebrosidase gene (GBA), which cause Gaucher
disease, are also potent risk factors for Parkinson’s disease (PD). We examined
whether a genetic burden of variants in other lysosomal storage disorder (LSD)
genes is more broadly associated with PD susceptibility.

Methods: The sequence kernel association test (SKAT-O) was used to interrogate
variant burden within 54 LSD genes, leveraging whole exome sequencing (WES)
data from 1,167 PD cases and 1,685 control subjects recruited from across the
United States and Europe. For replication, we interrogated two independent
datasets, including WES from an additional 436 cases and 169 controls, and
exome-wide genotyping from 6,713 cases and 5,964 controls. Secondary analyses
were also performed to highlight the specific LSD genes driving the aggregate
association signal.

n Results: In the discovery cohort, we demonstrate a significant burden of rare, likely

damaging LSD gene variants in association with PD risk. The association signal was
robust to the exclusion of GBA, and similar results were obtained in our replication
cohorts. Secondary analyses confirm associations at the GBA and SMPD1 loci, and
newly implicate CTSD, SLC17A5, and HGSNAT as candidate PD susceptibility genes.
The majority of PD cases (56%) have at least one putative damaging variant in an

LSD gene and 22% carry multiple alleles.

Interpretation: Our results highlight several promising new susceptibility loci
and reinforce the importance of lysosomal mechanisms in PD pathogenesis. We
suggest that multiple genetic hits may act in combination to degrade lysosomal
function, enhancing PD susceptibility.

72
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INTRODUCTION

Parkinson’s disease (PD) is a common neurodegenerative disorder with evidence for a
substantial genetic etiology.? Studies in families as well as large population-based cohorts
have implicated more than 30 genes;?>® however, the risk alleles identified to date explain
only a fraction of PD heritability estimates,®® suggesting the involvement of additional
loci. Beyond discovering the responsible genes, a major challenge remains to understand
the mechanisms by which these factors alter disease onset and/or progression, including
whether they act independently or function within coherent biologic pathways.

Substantial evidence highlights the importance of lysosomal mechanisms
in PD susceptibility and pathogenesis.>* Prior to its discovery as a PD risk locus, the
glucocerebrosidase gene, GBA, was known to cause Gaucher disease, an autosomal
recessive lysosomal storage disorder (LSD). Increased risk for PD in heterozygous carriers
of GBA loss-of-function alleles was first recognized in families of individuals with Gaucher
disease.™*? A follow-up study in a large, case-control sample confirmed that heterozygous
GBA variants confer at least a five-fold increased risk of PD.* GBA variants may also
modify PD clinical manifestations, causing earlier age-of-onset and a higher risk of
cognitive impairment. LSDs—of which there are more than 50—are Mendelian-inherited,
metabolic disorders collectively caused by dysfunction in lysosomal biogenesis or function,
and similarly characterized by the abnormal accumulation of non-degraded metabolites
in the lysosome.’'® The strong genetic evidence linking Gaucher disease and PD risk
leads to the intriguing hypothesis that more broadly, LSDs and PD may share a common
genetic mechanism. Other LSD genes have therefore become attractive candidate PD risk
genes.'”*? Several studies have consistently supported a role for SMPD1,?>?® which causes
Niemann-Pick type C disease. Initial reports evaluating other LSD genes, including NPC1,
NPC2, MCOLN1, NAGLU and ARSB, have either shown conflicting results or await further
replication.?*? LSDs are individually quite rare in populations of European ancestry, as are
the known genetic variants established to cause these disorders.'*® However, with the
exception of GBA, most studies of LSD gene candidates have been small and therefore
likely underpowered to detect the effects of rare alleles or those with more modest effect
sizes.

Genome-wide association studies (GWAS) in large PD case-control cohorts have
independently implicated more common risk alleles at another LSD gene, SCARB2,"*
which encodes a membrane protein required for correct targeting of glucocerebrosidase
to the lysosome. Besides this growing genetic evidence, studies in cellular and animal
models also implicate the lysosome in the clearance of a-synuclein®*32 which aggregates
to form Lewy body pathology in PD. Reciprocally, a-synuclein disrupts neuronal vesicle
trafficking and lysosomal function 3334

In this study, we leverage the largest PD whole exome sequencing (WES) dataset
currently available to systematically examine the overlap between genes responsible for

73
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LSD variants in PD

LSDs and PD risk. Our results reveal an aggregate burden for genetic variants among 54
genes established to cause LSDs and suggest that many genes besides GBA contribute to
PD risk.

METHODS

Subjects
The International Parkinson’s Disease Genomics Consortium (IPDGC) WES discovery
dataset used for this study consists of 2,852 samples of Northern and Western European
ancestry, including 1,167 PD cases and 1,685 controls not known to have PD.?%353%" Subjects
were recruited from academic medical centers across the United States and Europe. PD
cases were diagnosed with PD at a mean age of 41.2 years (SD=10.9); 40.4% of which have
a family history of PD. Control subjects were on average 63.8 years of age (SD=17.1). 1,201
control exomes originated from the Rotterdam Study exome dataset version 1 (RSX1). The
Rotterdam Study is a prospective population-based cohort study based in Rotterdam, the
Netherlands. WES was performed on DNA from participants from the RSX1 subcohort,
enrolled in 1990, with an average age at baseline of 68.6 (SD=8.6, 54.4% female).3® All
n IPDGC and RSX1 subjects gave written informed consent for participation in genetic
research, which was approved by relevant oversight committees/institutional review
boards. PD patients harboring known pathogenic variants in PD genes were excluded from
analysis. Following quality control filters, the Parkinson’s Progression Markers Initiative
(PPMI) replication dataset®® includes 436 cases and 169 controls of Northwest European
descent. The PD cases were diagnosed at an average age of 59.8 years (SD=10.0), and
27.1% were known to have a family history of PD. PPMI controls were an average of 61.8
years of age (SD=10.1) at the time of evaluation. Data used in the preparation of this
article were obtained from the PPMI database (www.ppmi-info.org/data). For up-to-
date information on the study, visit www.ppmi-info.org. Samples analyzed for both the
IPDGC and PPMI cohorts were derived from whole blood. The NeuroX dataset has been
previously described in detail,?®*® including 6,713 individuals with PD and 5,964 controls.
NeuroX cases were diagnosed at an average age of 61.6 (SD=12.4) and controls were
evaluated at an average age of 64.1 (SD=14.3).

Sequencing/genotyping and quality control

WES for the IPDGC and RSX1 cohorts was performed using the Roche Nimblegen SeqCap
v2 or lllumina exome capture kits to prepare sample libraries, followed by paired-end
sequencing with Illumina HiSeq2000. The generation of the PPMI WES dataset are described
elsewhere (www.ppmi-info.org). Although the datasets originate from different consortia,
the same algorithms were used for read processing. The Burrows-Wheeler Aligner (BWA)-
MEM* was used for alignment of sequencing reads to the human reference genome
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(hg19). Using Picard tools (http://broadinstitute.github.io/picard), Binary Alignment/Map
(BAM ) files were generated in a sorted and indexed manner. Alignments were Base-Quality
score recalibrated and indels realigned using the Genome Analysis Toolkit (GATK)*'v3.3-0,
after which single nucleotide variants and small insertions/deletions were called with the
HaplotypeCaller (GATK) to one gVCF file per individual. The IPDGC and RSX1 WES datasets
(hereafter referred to as simply the IPDGC discovery dataset) were merged by joint variant
calling of the individual gVCF files. Variants that were not assigned with the standard GATK
quality annotation ‘PASS’ were excluded for subsequent analyses. 94.4% and 98.0% of the
IPDGC and PPMI exomes, respectively, achieved a minimum of 10x coverage.

For individual quality control (QC), samples were excluded for ambiguous gender,
deviating heterozygosity/genotype calls, low genotype calls, cryptic relatedness following
identity-by-descent analyses, or poor clustering on multi-dimensional scaling (MDS)
component analysis indicating population outliers. Analyses of relatedness and MDS
were based on linkage disequilibrium-pruned common variants. Genotype and variant QC
was accomplished by removal of low-quality genotypes (Phred-scaled genotype quality
score < 20, depth < 8) and variants with low call rates or departure from Hardy-Weinberg
equilibrium (HWE). Furthermore, for the IPDGC discovery dataset, variants were only
considered when located within the overlapping targeted regions of the applied library n
preparation capture kits. Post-QC procedures, a total of 462,946 and 192,421 variants
were called for the IPDGC and PPMI datasets, respectively.

NeuroX consists of 242,901 exonic variants from the Illumina Infinium
HumanExome BeadChip and 24,706 custom variants related to neurologic disease.?**
For individual QC, as above, samples were excluded for gender ambiguity, dubious
heterozygosity/genotype calls, evidence of relatedness, or poor MDS clustering. For variant
QC, variants were excluded for subsequent analyses with low call rates, departure from
HWE, or with significant differences in missingness rate between cases and controls. Post-
QC procedures, we called 177,028 exonic variants from the NeuroX LSD gene-set.

Variant selection

Our analyses initially considered 54 LSDs (Table 1), based on widely accepted clinical,
pathologic, and metabolic criteria.'**¢ All variants within the LSD gene-set were extracted
from the three datasets. For the IPDGC WES dataset, no variants in the genes CLN5 and
NEU1 passed the pre-specified maximum missingness criteria of 15%, yielding 1,175 total
exonic variants for consideration in these analyses. Variants were categorized in nested
groups including (1) nonsynonymous (n=786 variants in 51 genes), (2) likely damaging
(n=609 variants in 51 genes), or (3) loss-of-function (n=69 variants in 27 genes) (see Table 1
and Supplementary Table 1). Loss-of-function variants included stop gain/loss, frameshift,
and splicing mutations falling within 2 base pairs of exon-intron junctions. Predictions
of variant pathogenicity were obtained from ANNOVAR,** based on the Combined
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LSD variants in PD

Table 1 - part 1. LSD genes and variants in the IPDGC cohort.

Disease Gene Variants®
Aspartylglucosaminuria AGA 13 (10)
Metachromatic Leukodystrophy ARSA 5(5)
Maroteaux-Lamy disease ARSB 11 (10)
Farber Lipogranulomatosis ASAH1 20(17)
Kufor-Rakeb syndrome ATP13A2 24 (18)
Neuronal Ceroid Lipofuscinosis (CLN3) CLN3 18 (17)
Neuronal Ceroid Lipofuscinosis (CLN5) CLN5 -
Neuronal Ceroid Lipofuscinosis (CLN6) CLN6 10 (7)
Neuronal Ceroid Lipofuscinosis (CLN8) CLN8 9(4)
Cystinosis CTNS 15 (13)
Galactosialidosis CTSA 14 (11)
Neuronal Ceroid Lipofuscinosis (CLN10) CTSD 7 (4)
Neuronal Ceroid Lipofuscinosis (CLN13) CTSF 12 (10)
Pycnodysostosis CTSK 6 (5)
Neuronal Ceroid Lipofuscinosis (CLN4B) DNAJC5 5(5)
Fucosidosis FUCA1 16 (13)
Pompe disease GAA 15 (10)
Krabbe disease GALC 37 (31)
Morquio A disease GALNS 22 (14)
Gaucher disease GBA 42 (33)
Fabry disease GLA 9(7)
GM1-Gangliosidosis/Morquio B GLB1 8 (4)
GM2-Gangliosidosis GM2A 1(1)
I-Cell disease GNPTAB 40 (32)
Sanfilippo D syndrome GNS 20(11)
Neuronal Ceroid Lipofuscinosis (CLN11) GRN 20(13)
Sly disease GUSB 18 (11)
Tay-Sachs disease HEXA 20 (18)
Sandhoff disease HEXB 10 (7)
Sanfilippo C syndrome HGSNAT 22 (15)
Mucopolysaccharidosis Type IX HYAL1 14 (9)
Hunter syndrome IDS 9(8)
Hurler syndrome IDUA 8(4)
Neuronal Ceroid Lipofuscinosis (CLN14) KCTD7 4(3)
Danon disease LAMP2 9(7)
Wolman disease LIPA 15 (10)
Alpha-Mannosidosis MAN2B1 12 (11)
76
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Table 1 - part 2. LSD genes and variants in the IPDGC cohort.

Disease Gene Variants®
Beta-Mannosidosis MANBA 18 (15)
Mucolipidosis Type IV MCOLN1 19 (14)
Neuronal Ceroid Lipofuscinosis (CLN7) MFSD8 19 (15)
Schindler Disease/Kanzaki disease NAGA 9(8)
Sanfilippo B syndrome NAGLU 10 (9)
Sialidosis NEU1 -
Niemann-Pick Disease Type C1 NPC1 44 (35)
Niemann-Pick Disease Type C2 NPC2 2(2)
Neuronal Ceroid Lipofuscinosis (CLN1) PPT1 9(7)
Sphingolipid-activator deficiency PSAP 22 (16)
Action mycolonus-renal failure syndrome SCARB2 10 (7)
Sanfilippo A syndrome SGSH 12 (9)
Salla disease SLC17A5 18 (17)
Niemann-Pick Disease Type A/B SMPD1 27 (23)
GM3-Gangliosidosis ST3GAL5 11 (11)
Multiple Sulfatase Deficiency SUMF1 -
Neuronal Ceroid Lipofuscinosis (CLN2) TPP1 16 (13)

.The number of variants (MAF < 3%) in each LSD gene is shown for the IPDGC discovery cohort, including total number of
nonsynonymous variants and likely damaging variants based on CADD (in parentheses). Of the 54 LSD genes considered, no
exonic variants in CLN5 or NEU1 passed quality control filters (see Methods), and no nonsynonymous variants were identified
in SUMF1. LSD=Lysosomal storage disorder; CADD=Combined Annotation Dependent Depletion.

Annotation Dependent Depletion (CADD) algorithm (v1.3, http://cadd.gs.washington.
edu).* In accordance with prior work,* we selected a CADD C-score>12.37, representing
the most damaging 2% of all possible nucleotide changes in the genome.

For the PPMI cohort, no variants were called in DNAJC5, resulting in a dataset
of 515 total exonic variants, of which 256 variants from 49 genes were nonsynonymous
and 187 variants in 47 genes met the CADD criteria for putative damaging changes
(Supplementary Table 1). For the NeuroX cohort, all genes in the 54-gene-set were
represented, resulting in 467 nonsynonymous variants, of which 348 were classified as
likely damaging (Supplementary Table 1). Within these categories, variants were based on
two minor allele frequency (MAF) thresholds: (a) <1% and (b) <3%. The latter, more relaxed
frequency threshold is based on the population prevalence*®* and known incomplete
penetrance of PD risk alleles.*®*°
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LSD variants in PD

Statistical analysis

The sequence kernel association test — optimal (SKAT-0)*'*2 was performed, using the
R-package SKAT v1.0.9 to determine the difference in the aggregate burden of rare LSD
gene variants between PD cases and controls. Covariates were included to adjust analyses
for gender and WES coverage (pre-QC missingness). Twenty MDS components were also
included to account for other possible confounding factors, such as latent population
stratification. In order to establish statistical significance, all SKAT-O results with an
unadjusted p < 0.05, were subject to permutation testing, implemented within SKAT-O. An
adjusted p-value was derived from an empirical distribution of null results based on 10,000
trials in which case/control assignment was randomized. Following this permutation
test, an adjusted p-value (padj) < 0.05 was considered significant. Independently, we
also performed permutation testing based on 1,000 random gene-sets similar in size
to the LSD set. All p-values reported in the text are adjusted p-values; Table 2 reports
both unadjusted and adjusted p-values. SKAT-O analysis was initially performed for the
complete LSD gene-set, considering each class of variants defined based on frequency
and functional characteristics. If the result was significant (padj< 0.05), the analysis was
repeated excluding all GBA variants in order to confirm the involvement of additional
n genes. Lastly, secondary analyses were performed using SKAT-O to evaluate variants in
each LSD gene independently.

To estimate statistical power, we performed 1,000 SKAT simulations of causal
subregions within the discovery or replication datasets. We assumed a PD prevalence
of 0.0041 and 0.0017 for the IPDGC and PPMI datasets, respectively, based on their
distinct ages of onset.*® For gene-set simulations, subregion length was defined as the
sum of individual LSD gene coding region lengths (169.5 kb or 170.4 in IPDGC and PPMI,
respectively). For single gene simulations, the average gene length was used (3.5kb or
3.2 kb, respectively). The MAF cutoff for causal variants was set to 0.00035 (based on the
frequency of rare GBA loss-of-function alleles in the IPDGC data set) or 0.03 for the rare
or more common variant models, respectively, and penetrance was assumed to be either
100% or 10%. Because we predict that LSD gene variants associated with PD will have
a damaging effect, all causal variants were assumed to have a positive coefficient (risk
rather than protective alleles).

RESULTS

Variants were extracted from 54 LSDs, based on widely accepted clinical, pathologic,
and metabolic criteria (Table 1).24'%* To test our hypothesis that an aggregate burden
of variants in the LSD gene-set contributes to PD risk, we implemented SKAT-O, which
aggregates genetic information across defined genomic regions to test for associations.%>2
Importantly, SKAT-O is robust to a wide frequency spectrum, including rare and more
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common alleles, and to variants with different magnitudes and directions of effect. The
genetic architecture of PD susceptibility, including the number, frequency, and effect
sizes of responsible variants, remains incompletely defined. We therefore performed
complementary analyses considering 3 nested categories of variants based on increasing
potential pathogenicity: (1) all non-synonymous variants, (2) likely damaging variants,
and (3) loss-of-function variants. For category 2, we leveraged the CADD framework,
which integrates predictions from numerous bioinformatic algorithms into a single
“C-score” and ranks all possible nucleotide changes in the genome based on potential
to disrupt gene/protein function.** We selected a stringent C-score threshold predicting
the top ~2% most damaging genomic variants; this subset is highly enriched for known
pathogenic alleles.*® Although most LSD gene variants that cause disease are individually
rare, we further reasoned that more frequent variants might also contribute to PD given
the increased prevalence, along with the incomplete penetrance documented for many
established risk alleles, including GBA variants.**>>* We therefore sampled variants at
two frequency thresholds: (a) MAF < 1% for rare variants, and (b) MAF < 3% to include
somewhat more common variants. In sum, our analytic strategy considers multiple
frequency and functional characteristics, affording optimal sensitivity for detection of
associations between LSD gene variants and PD susceptibility. n

The results of the SKAT-O analyses for LSD gene-set variants within the IPDGC
discovery cohort are presented in Table 2. Following permutation (see Methods),
significant associations were detected for the LSD gene-set considering either all non-
synonymous variants (category 1b, Py = 0.010) or likely damaging variants (category 2a,
p,,;=0.038 and 2b, P o= 0.003). No association was observed when considering only loss-
of-function alleles (category 3), possibly due to the relative paucity of such variants limiting
statistical power (Supplementary Table 1). The observed associations between LSD gene
variant burden and PD risk also remained significant (padj< 0.05 for categories 1b and 2b)
in an independent permutation test considering the likelihood of obtaining similar results
based on randomly selected gene-sets. We next repeated each analysis with significant
results, but excluding all GBA variants. As expected, the strength of the associations was
attenuated; however, the association between likely damaging variants (MAF < 3%) and
PD was robust to the exclusion of GBA and remained significant (category 2b, pad/,=0.026).
Further, the association of LSD gene variants in category 1b remained suggestive. Our
results indicate that the association between variant burden and PD risk in the IPDGC
discovery cohort is mediated, at least in part, by the effects of LSD genes other than GBA,
an established PD susceptibility locus.

To replicate our findings, we leveraged two independent cohorts, including an
additional WES dataset from PPMI (436 PD cases and 169 controls)* and the NeuroX
exome-wide genotyping dataset from IPDGC (6,713 PD cases and 5,964 controls)?3,
We again implemented SKAT-O to detect a potential variant burden in PD cases versus
controls (Table 2).
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In PPMI, we discovered consistent evidence for an excessive LSD variant burden
in PD, and this signal was independent of GBA. However, the association was detected
exclusively among rare alleles (MAF < 1%) and only when considering all non-synonymous
variants (category 1a). It is possible that SKAT-O is sensitive to cohort differences between
PPMI and the IPDGC, including both sample size and pertinent demographic features
(e.g. age of onset and family history; see Methods). In the substantially larger NeuroX
dataset, burden associations were detected among 3 out of 4 variant classes (categories
1la, 1b, and 2b), despite the less comprehensive genotyping coverage compared to
WES. A major driver for the robust LSD gene-set association in NeuroX (categories 1b
and 2b, pudj=0.0001) appears to be the more common GBA®**¢ variant (Freq_=0.021,
Freq.,..=0-011), which has been reported to be associated with PD risk in several large
studies.>>*® Importantly, consistent with our findings in the IPDGC discovery cohort, the
LSD gene-set burden association for all variant categories remained significant in NeuroX
following exclusion of GBA. Thus, based on analyses in three independent PD case-control
datasets, we demonstrate a burden of variants in LSD genes associated with PD risk, and
this signal is at least partially independent of GBA.

To determine which additional LSD genes/variants may be responsible for the

observed association with PD risk, we performed secondary analyses using SKAT-O to n
assess for potential contribution of variants within each gene considered independently.
For these analyses, we returned to the IPDGC discovery dataset, and again focused on
likely damaging variants, which showed the strongest association signal in our primary
analysis (category 2b). In these gene-based analyses, besides the expected result for
GBA (padj= 0.0001) and confirmation of SMPD1 (padj= 0.029), we discover evidence of
novel aggregate associations for variants in CTSD (padj= 0.002), SLC17A5 (pudj= 0.005), and
HGSNAT (padj= 0.046). The specific variants implicated within each of these genes are
included in the Supplemental Data (Supplementary Table 2), along with all other putative
damaging variants considered in our full LSD gene-set analysis. While our datasets are
underpowered to definitively assess the contributions of a particular rare variant in any
single gene (see Discussion), these results identify the most likely specific loci driving the
aggregate LSD gene-set association signal detected in the IPDGC discovery sample.

Lastly, we examined the distribution of putative damaging LSD gene variants
(MAF < 3%, category 2b) within the IPDGC WES cohort (Figure 1). Consistent with our
finding of an excessive variant burden in PD, the distribution of variants appeared
modestly right-skewed in cases. The average variant burden among IPDGC cases was 0.9
alleles per individual, which was slightly higher than that seen in controls (0.8 alleles per
individual). Given their commonality, the majority of IPDGC cases (56%) have at least 1
putative damaging variant in an LSD gene, and 22% carry multiple alleles. As discussed
further below, this is consistent with a hypothetical model in which multiple LSD gene
variants may interact to influence PD risk.

81

14465-jansen-layout.indd 81 18/04/2017 12:20



LSD variants in PD

0.475 -
0.45
0.475 -
. Controls
0.4 4
W PD Cases
0.375
0.35
£
g
£ 0325
$
0.3
2
g 0.275 -
]
e
8
£ 025 -
2
g 0.225
0.2
0.175
0.15
0.425
01 -
0.075 -
0.05
0.025 -
0 1 2 3 4 5 G 7 ] 9
Variant Number per Individual

Figure 1. Distribution of LSD variants in the IPDGC cohort. The number of likely damaging LSD
variants (MAF<3%, CADD C-score>12.37) per individual is shown versus the fraction of Cases or
Controls in the IPDGC discovery cohort. Many individuals harbor multiple LSD alleles, and the
distribution is right-skewed among PD cases.

DISCUSSION

This study reveals an important connection between the genetic factors broadly
responsible for LSDs, which are predominantly pediatric Mendelian disorders, and PD,
an adult-onset neurodegenerative disorder with complex genetic etiology. Specifically,
among 54 genes that cause LSDs, we find evidence for a burden of damaging alleles in
association with PD risk. This association persisted after excluding GBA, consistent with a
contribution from additional LSD genes. More than half of PD cases in our cohort harbor
one or more putative damaging variants among the LSD genes. Thus, our results implicate
several promising new PD susceptibility loci and reinforce the importance of lysosomal
mechanisms in PD pathogenesis.
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The strengths of this study include a large PD case/control discovery cohort as
well as two independent datasets for replication of our findings. Since our understanding
of the characteristics of causal alleles—including in both PD and LSDs—is incomplete, our
initial analyses systematically considered multiple variant classes binned into categories
based on frequency and putative functional impact. Interestingly, consideration of likely
damaging alleles based on bioinformatic predictions, including more common LSD
variants (MAF < 3%), appeared to offer optimal sensitivity for detection of a significant
aggregate variant association. Critically, the implementation of burden association tests
for joint consideration of LSD genes significantly improves statistical power over single
gene and variant tests.’” In populations of European ancestry, loss-of-function alleles,
including those established to cause LSDs, are individually rare (Table 1), and based on
post-hoc simulations (see Methods), we estimate poor power for discovery of rare PD
risk alleles at isolated loci. For example, assuming a rare variant model (MAF = 0.035%,
as for GBA loss-of-function alleles in our sample) and even assuming full penetrance, the
IPDGC discovery cohort has only 30% power to discover an association for a single gene.
However, a similar simulation considering the full set of 54 LSD genes was fully powered
(100%). Our consideration of higher frequency variants further enhances power for both
discovery and replication, especially when coupled with filtering based on potential n
pathogenicity. For example, allowing for more common variants (MAF < 3%) and assuming
10% of such alleles are causal, we estimate that the smaller PPMI cohort achieves 95%
power for replication of a gene-set association, whereas negligible power (1%) is available
for interrogation of a single gene candidate. We anticipate that larger WES datasets will
significantly improve power, including for per gene analyses. In the IPDGC and PPMI
cohorts, WES offers comprehensive characterization of LSD gene variants. By contrast,
since the NeuroX data is restricted to those variants included on the genotyping array,
it is possible that many potential pathogenic variants would be missed. Nevertheless, a
total of 348 putative damaging variants were detected, including alleles for all LSD genes
(Supplementary Table 1). The substantially larger NeuroX sample size makes this cohort
more broadly representative of the population, and our findings likely therefore more
generalizable. Since our cohort was composed of individuals with European ancestry, it
will also be important to examine other ethnic populations in the future, especially those
potentially enriched for LSD-causing variants due to genetic bottlenecks.

We also performed analyses in the IPDGC cohort to pinpoint the specific drivers
from the LSD gene-set responsible for increasing PD risk. Our results (i) recapitulate the
established association with GBA, (ii) strengthen the emerging evidence in support of
SMPD1, and (iii) newly implicate SLC17A5, HGSNAT and CTSD as candidate PD susceptibility
genes. Recessive mutations in SMPD1 cause Niemann-Pick type A/B disease and this locus
has been independently implicated in PD risk based on several published studies.?*%
Similar to GBA, SMPD1 (encoding sphingomyelinase) participates in ceramide metabolism.
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While our analysis identified 23 candidate SMPD1 risk alleles (Supplementary Table 2),
they appear distinct from those reported in other studies of PD. Notably, we did find a
non-synonymous variant, p.P332L, predicted to be damaging (CADD=32), and another
substitution at this same amino acid position, p.P332R, was previously implicated in a
Chinese PD cohort.”2 Among the novel candidate genes, SLC17A5, HGSNAT, and CTSD, most
of the implicated variants are rare (MAF<1%). Only one of these variants (rs16883930 in
SLC17A5)is present in the 1000 Genomes reference,*® having been previously examined in
large GWAS, and this was non-associated with PD risk (p>0.05) based on available data.>®
Mutations in SLC17A5, HGSNAT, and CTSD cause the rare LSDs, Salla disease, Sanfilippo
C syndrome (Mucopolysaccharidosis IlIC), and Neuronal Ceroid Lipofuscinosis (CLN10),
respectively, which are characterized by the accumulation of sialic acid, heparan sulfate,
or lipofuscin pigment. In addition to promoting lysosomal stress, glucosylceramide,
which accumulates in Gaucher disease, has been suggested to directly promote the
aggregation of a-synuclein.?* Interestingly, CTSD encodes a lysosomal aspartyl proteinase
which has been independently implicated in a-synuclein degradation.®®5! Besides HGSNAT
(MPSIIIC), other genes linked to mucopolysaccharidoses, including NAGLU (Sanfilippo B
syndrome / MPSIIIB)?” and ARSB (MPS6)® have been previously implicated as PD risk
n loci, and a-synuclein Lewy body pathology has also been documented in brain autopsies

from selected Sanfilippo B cases.®? In sum, the LSD genes and variants implicated by our
studies are excellent candidates for further replication, including resequencing and/
or genotyping in the largest available PD case/control samples. Although we employed
rigorous quality control procedures for calling variants from WES and genotyping data,
definitive confirmation of specific variants will require additional studies.

There is a growing recognition of the importance of lysosomal biology in PD
pathogenesis.™ First, the lysosome is an important route for a-synuclein degradation.3°*2
Genomicvariantsthat elevate a-synuclein protein levels—such asrare locus multiplication®
or a common polymorphism that enhances promoter activity®*—also increase PD risk.
Knockdown of selected LSD genes, including GBA or SCARB2, in neuronal cells or in mouse
models impairs a-synuclein clearance,**®*® whereas increasing glucocerebrosidase
activity has the opposite effect.” Second, lysosomal autophagy plays a critical role in
mitochondrial quality control, and substantial evidence, including from genetics, highlight
mitochondrial dysfunction in PD.% Third, there is accumulating evidence from numerous
experimental models that a-synuclein interferes with endoplasmic reticulum-to-Golgi
vesicle trafficking, inducing reciprocal disruptions in lysosomal biogenesis.*®* Expression
of a-synuclein impeded trafficking of multiple hydrolases linked to LSDs, including GBA,
within human dopaminergic neurons.® In one recent study, subjects with idiopathic PD, in
which GBA carriers were excluded, were found to have modest but significantly reduced
glucocerebrosidase enzymatic activity based on peripheral blood testing.”® Fourth, besides
GBA and the other genes implicated in our study, mutations in ATP13A2, a rare cause of
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recessive juvenile-onset parkinsonism and dementia has been independently implicated
to cause the LSD Neuronal Ceroid Lipofuscinosis.”® Lastly, many other common and rare
PD risk alleles, including at RAB7L1, GAK, LRRK2, and VPS35 have strong functional links
to vesicle trafficking, including for lysosomal biogenesis and function. Together, these
findings support a model in which partial loss-of-function in genes regulating lysosomal
activity, such as those that cause LSDs, may increase vulnerability to a-synuclein-mediated
mechanisms in PD.

Complex genetic disorders such as PD likely result from the cumulative impact and
interaction of both common and rare allelic variants at multiple genomic loci.?? Polygenic
modeling approaches have previously demonstrated how common risk alleles can
cumulatively impact PD risk and age-of-onset.?®’? In addition, a recently published analysis
in the IPDGC WES and NeuroX cohorts identified evidence for oligogenic interactions
underlying PD risk, including alleles for GBA and those for established Mendelian PD
genes.” In the IPDGC, WES reveals a substantial proportion of PD cases (22%) carrying 2 or
more likely damaging variants in LSD genes. This observation suggests the possibility that
multiple variants may interact in a multi-hit, combinatorial manner to degrade lysosomal
function, causing the accumulation of a-synuclein and potentially other toxic substrates,
and thereby increasing susceptibility for PD. Recent work has also implicated oligogenic n
inheritance in other neurologic disorders including, amyotrophic lateral sclerosis’*”¢ and
idiopathic peripheral neuropathy,”” and further reveals how genes causing early-onset,
monogenic disorders may act in combination to additionally trigger late-onset, complex
genetic disorders. Future studies, including even-larger, case-control cohorts with WES
and complementary experiments in PD cellular or animal models, are needed to further
investigate whether a variant burden in LSD genes, perhaps in combination with other
susceptibility loci, underlies oligogenic risk in PD.
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