3.3.1 Documentation 50
3.3.2 Conceptual model 51
3.3.3 Calculation process 51
3.3.4 Data 52
3.3.5 Source code 52
3.3.6 Reproducibility and transparency 52
3.4 Discussion 54
3.4.1 Model size and complexity 55
3.4.2 Lack of incentives 55
3.4.3 Use of computers 56
3.4.4 Change of attitude 57
3.5 Conclusion 58

4 PILOT STUDIES 59
4.1 Introduction 59
4.2 Pilot 1: Ontologies in peer reviews 61
 4.2.1 Related work 61
 4.2.2 Method 62
 4.2.3 Results 64
 4.2.4 Discussion 66
4.3 Pilot study 2: Reconstructing Semantics 68
 4.3.1 Related Work 68
 4.3.2 Method 69
 4.3.3 Ontology reconstruction 70
 4.3.4 Characteristics of the analyzed spreadsheets 73
 4.3.5 Interview with Model Developers 74
 4.3.6 Discussion 75
4.4 Pilot 3: Knowledge Representation in Scientific Models 77
 4.4.1 Related work 77
 4.4.2 Method 77
 4.4.3 Results 79
 4.4.4 Discussion 83
4.5 Discussion and Conclusion 83

5 SPREADSHEET ANNOTATION 85
5.1 Introduction 85
5.2 Related work 87
5.3 Method 90
 5.3.1 Basic principles 90
 5.3.2 Property 1: blocks within a table 93
 5.3.3 Property 2: units of measure 93
5.3.4 Property 3: quantities 94
5.3.5 Property 4: block typology 94
5.3.6 Property 5: grouping of similar domain concepts 95

5.4 Case study 97
5.4.1 Data set 98
5.4.2 Vocabularies 100
5.4.3 Ground truth annotation 100
5.4.4 Baseline annotation 101

5.5 Results 102
5.5.1 Annotation of unit terms: approach 2 102
5.5.2 Annotation of quantity terms: approach 3 105
5.5.3 Block typology 106
5.5.4 Grouping of similar domain concepts: approach 5a 108

5.6 Discussion 108
5.6.1 Discussion of the annotation approach per property 108
5.6.2 General discussion 111

5.7 Conclusions and future work 113

6 Constructing the calculation model 115
6.1 Introduction 115
6.2 Related work 117
6.3 Methodology 119
6.3.1 Basic principles 119
6.3.2 Construction and aggregation of the cell dependency graph 120
6.3.3 Development and application of heuristics 121

6.4 Case study: set up 122
6.4.1 Raw Data 122
6.4.2 Construction of the ground truth calculation workflow 123
6.4.3 Results of the ground truth calculation workflow 124
6.4.4 Comparison with the ground truth calculation workflow 126

6.5 Case study: results 126
6.5.1 Automatic aggregation 126
6.5.2 Development and application of heuristics 127
6.5.3 Comparison with the ground truth workflow 128

6.6 Discussion 130
6.7 Conclusion and future work

7 SYNTHESIS
7.1 Introduction
7.2 Related Work
7.3 Reconstruction of the domain model
7.3.1 Two layers within the domain model
7.3.2 Requirements for spreadsheet tables
7.3.3 Reconstruction of the descriptive layer
7.3.4 Reconstruction of the computational layer
7.4 Analysis of table design
7.4.1 Method
7.4.2 Results
7.5 Heuristics
7.5.1 Recognizing and annotating blocks
7.5.2 Collecting missing information using vocabularies
7.5.3 Deducing missing information from the table context
7.5.4 Formula analysis
7.6 Repairability and implications of deviations
7.6.1 Deviant basic structure
7.6.2 Grouped phenomena
7.6.3 Deviant unit notations
7.6.4 Incomplete quantity notations
7.6.5 Unclear phenomenon notations
7.6.6 Insufficient c.e. regions
7.7 Conclusion and discussion

8 CONCLUSION AND DISCUSSION
8.1 Research Questions Revisited
8.1.1 How can the domain model behind a natural science spreadsheet be adequately described?
8.1.2 What are guidelines for the process of reconstructing the domain model behind a natural science spreadsheet?
8.1.3 General conclusion
8.2 Discussion and Further Research

A APPENDICES
A.1 Appendix Chapter 2
A.1.1 Supplementary Information 177
A.1.2 Knowledge rules 177
A.2 Appendix Chapter 4: Heuristics 182
A.3 Appendix Chapter 5: Heuristics and rules 183

BIBLIOGRAPHY 197