Chapter 5

Retaining affective commitment through webcare: The role of a conversational human voice

Abstract

This chapter examines the effect of webcare interactions between companies and customers in social media on customers’ affective commitment to the company. Since previous studies almost exclusively tested relational webcare effects in experimental settings among non-customers, research into the effects of real webcare interactions on actual customers is scarce. To address this gap, this chapter employed a longitudinal design aimed to investigate the relation between actual customers’ webcare interactions with a company and changes in affective commitment. Furthermore, we examined the role of conversational human voice in this relation. In a two-wave survey among 763 customers of an international airline, we measured customers’ webcare interactions, their affective commitment and the perceived conversational human voice of the company. The results show that customer webcare interaction is positively related to affective commitment at both t1 and t2, but not associated to change in affective commitment. This relation is explained by conversational human voice, which indirectly affects the relation between customer webcare and change in affective commitment. The implications of the findings for the development of webcare strategies are discussed.

Keywords: conversational human voice, webcare, online interaction, affective customer commitment
Introduction

Social media channels such as Facebook and Twitter are increasingly used by consumers as platforms to communicate with companies and, more particularly, for obtaining customer service. As a result, many companies are planning to increase their use of social media platforms, and have incorporated webcare activities as an integral part of their public relations and customer service program (Stelzner, 2017). Van Noort and Willemsen (2012, p. 133) defined webcare as “the act of engaging in online interactions with (complaining) consumers, by actively searching the web to address consumer feedback (e.g., questions, concerns and complaints)”. Providing webcare on social media platforms varies from answering questions, reacting to compliments, and solving problems. Webcare activities are typically carried out by company representatives, who – during online contact situations – are the personification and “voice” of the company, for both customers using webcare and consumers who passively witness the company’s webcare activities as bystanders.

Although a substantial portion of webcare consists of dealing with service failures (i.e., service recovery), webcare interactions also include reacting to general questions, positive consumer feedback and recommendations. The general goals for companies in these different types of webcare interactions are often similar: to promote positive word of mouth (WOM) and to prevent negative WOM of webcare users by adequately responding to their reactions and comments, and to improve or retain relational outcomes for the organization (such as commitment or reputation). Research shows that online interactivity, such as webcare, is a key factor in attaining relational outcomes, and that higher levels of interactivity on social networking sites may elicit favorable attitudes toward the product and the company itself (Dou, 2013; Kelleher, 2009; Sicilia, Ruiz, & Munuera, 2005). Interactivity in online environments also contributes to customer satisfaction (Ballantine, 2005; Lin, 2007). Indeed, websites (such as social networking sites) that offer interactive features tend to foster greater involvement with both the site and the company maintaining it (Guillory & Sundar, 2013). Given the apparent importance of online interactivity, it is surprising that research on webcare has almost solely focused on the effect on bystanders (i.e., research participants witnessing webcare interactions), rather than on consumers who are actually involved in these interactions. With a single exception (Willemsen, Neijens, & Bronner, 2013), to our knowledge no studies have focused on the effects of ‘real life’ webcare on its actual users – and were all conducted in experimental settings (see Van Noort, Willemsen, Kerkhof, & Verhoeven (2014) for a recent overview of webcare related research). Experimental
studies typically show positive effects of webcare on bystanders’ brand perceptions and relational outcomes (Schamari & Schaefer, 2015; Van Noort & Willemsen, 2012). These effects are more pronounced when webcare is delivered in a personal and informal manner, and employing what Kelleher (2009) labelled a “conversational human voice”: a way of communicating that resembles regular conversation-style interaction. Perceiving a conversational human voice in webcare interaction is related to positive brand evaluations (Park & Lee, 2013; Van Noort & Willemsen, 2012).

While research focusing on webcare in an experimental setting generally shows positive effects on research participants, the effects on actual users of webcare might be different. The current study aims to fill this void in the current literature by reporting the results of a one-year prospective study among customers of an international airline, part of whom have been in touch with the airline’s webcare team. We focus on whether and how engaging in webcare interactions relates to customers’ affective commitment. Affective commitment is one of the most commonly used dependent variables in buyer-seller relationship studies and implies a customer’s desire to continue the relationship with a company into the future (Wilson, 1995). Affective commitment has been shown to affect behavioral loyalty, and is crucial for developing and maintaining mutually beneficial business relationships (Harrison-Walker, 2001; Palmatier, Dant, Grewal, & Evans, 2006; Sashi, 2012). Given that during webcare interactions the quality of a relationship is put to the test, we consider affective commitment as a highly relevant and interesting focal concept in this study.

Hence, our study focuses on the relation between customers’ webcare interactions and change in affective commitment to the company, and on the role of conversational human voice in this relation. Below we will first review the existing literature in this field. After detailing our methods and presenting the results, we will discuss the implications of our findings for social media strategies of companies.

Literature review

The nature of webcare

Before we turn to the effects of webcare, we want to specify the definition of webcare of Van Noort & Willemsen (2012) as mentioned in the previous section. First, recent figures show that most webcare nowadays takes place on company-maintained or owned pages (e.g., the company’s website or Facebook/Twitter page). The use of such social networks shows a strong growth, and 66% of marketers appear to plan on
increasing (Stelzner, 2017). For instance, in the third quarter of 2016, the 10 brands with the highest webcare demand in the telecom industry together received 0.6 million questions via Facebook, and 0.3 million via Twitter (Socialbakers, 2016). Based on these figures webcare is – rather than “actively searching the web to address consumer feedback” (van Noort & Willemsen, 2012, p. 133) – currently better defined as “addressing feedback on non-company and company owned/maintained platforms”.

Second, Van Noort and Willemsen (2012) state that the aim of webcare is “to restore or improve the brand evaluations of complaining customers and/or of those who have been exposed to the NWOM [negative word of mouth] of complaining customers” (p. 133). In contrast to this statement, webcare is not restricted to dealing with negative word of mouth (i.e., feedback in the form of questions, concerns and complaints), but can also include responding to positive feedback or customer suggestions. In fact, reinforcing positive consumer engagement may be a feasible strategy with regard to webcare (Schamari & Schaefers, 2015). In line with the above two points, we define webcare as a company’s act of engaging in online interactions with consumers, addressing negative and positive feedback, on non-company and company owned/maintained platforms. Because of the increasing importance of webcare via company-maintained pages on social networking sites (Stelzner, 2017), in the current study we will focus on webcare activities on these channels.

Effects of webcare

Existing research on the effects of webcare is mostly experimental, and is mostly using a sample of bystanders. In these studies, effects on relational outcomes of company webcare were tested of negative and positive consumer eWOM, and also of non-responding by companies to consumer complaints. These experimental studies show positive effects of company webcare use on brand evaluations. That is, in reaction to negative eWOM, positive effects of webcare were reported by Dens, de Pelsmacker and Purnawiraman (2015), Min, Lim and Magnini (2015), and Lee and Song (2010). Schamari and Schaefers (2015) focused on company responses to positive eWOM, and also reported positive effects of webcare. In most studies including a non-response condition, the webcare interaction started with negative eWOM (for an overview see Van Noort et al., 2014). Most of the studies that include a non-response condition showed positive effects of responding (versus not responding) to a customer complaint posted in social media. For example, in an experimental study of Sparks, So and Bradley (2016), a response from the company (compared to not responding) yielded more favorable trust and customer concern inferences. Likewise, Van Noort
and Willemsen (2012) contrasted a non-response condition with proactive (i.e., without request of consumer) and reactive webcare (i.e., on request of consumer), and found that negative brand evaluations were attenuated by both types of webcare interventions.

Only one study showed no positive effects of webcare on brand evaluations, and even negative effects when a complaint was refuted by the company (Kerkhof, Utz, & Beukeboom, 2010).

Webcare users vs. webcare bystanders

The fact that most existing webcare studies focus on bystanders and not on the actual users of webcare provides an important limitation in generalizing the findings of the studies mentioned in the previous section. There are reasons to assume that the conclusions based on webcare studies among bystanders cannot simply be extended to actual webcare users. One reason is that consumers involved in actual webcare interactions are predominantly customers of a company (Dijkmans, Kerkhof, & Beukeboom, 2015; Zauner, Koller, & Fink, 2012). Customers have personal, direct experiences with the products or services of a company, and have a stake in their relationship with the company. A social media mention by a customer starting a webcare interaction likely follows on these direct experiences and stakes, which can be either positive or negative. Especially in the case of a negative experience – such as a deficient product followed by a disappointing customer service – customers may be in a strong emotional state that may affect the way they perceive and react to webcare. For example, Verhagen, Nauta and Feldberg (2013) find, among actual customers, that emotions are strong drivers of negative eWOM.

Research into the effects of real webcare interactions on actual customers is scarce. A single study by Willemsen, Neijens and Bronner (2013) investigated the effects of webcare among consumers who had engaged in negative eWOM. About half of their respondents who had desired webcare had indeed received webcare. The average evaluation of the webcare received was 5.13 on a 1-10 scale, indicating that satisfaction was relatively low, especially among consumers who had indicated that they engaged in negative eWOM in order to vent their negative emotions, or to help other consumers. The authors concluded that providing webcare cannot transform negative eWOM into positive eWOM. This suggests that the effect of providing webcare as such may not unconditionally result in positive effects on (future) behavior or relational outcomes, as experimental studies among bystanders predominantly show.

In order to gain a better understanding of webcare effects on actual webcare users, a prospective research design is needed that takes into account prior differences between
users and non-users. To our knowledge no such study exists – a research gap that we address in our study.

Webcare and affective customer commitment

In the current study, we focus on affective customer commitment as an outcome of webcare interactions. Commitment is an important relational outcome in building successful and enduring relationships with customers (Garbarino & Johnson, 1999; Morgan & Hunt, 1994). Moorman, Zaltman and Deshpandé (1992, p. 316) defined commitment as “an enduring desire to maintain a valued relationship”. Allen and Meyer (1990) distinguished three types of commitment: affective commitment (based on an emotional or psychological bond; on favorable feelings), normative commitment (based on moral obligation and duty), and calculative commitment (based on perceived high switching costs and/or lack of alternatives) (see also Gruen, Summers, & Acito, 2000; Johnson, Sivadas, & Garbarino, 2008). Although webcare interaction might also affect other commitment types (i.e., normative and calculative commitment), in our study we chose to investigate the effects on affective commitment, since it is regarded as the most personal, intense, and enduring component of commitment (Gundlach, Achrol, & Mentzer, 1995; Pimentel & Reynolds, 2004) and refers to a sense of belonging and identification with a company (Gundlach et al., 1995; Pritchard, Havitz, & Howard, 1999).

Because affective commitment is related to important relevant outcomes for companies, it has become an important concept in the relationship marketing literature (Bloemer & Odekerken-Schröder, 2007; Evanschitzky, Iyer, Plassmann, Niessing, & Meffert, 2006). Affective commitment is positively related to the intention to stay in a relationship and willingness to invest in it (Wetzels, De Ruyter, & Van Birgelen, 1998), customer loyalty, trust and purchase intentions (Bloemer & Odekerken-Schröder, 2007; Sashi, 2012). Moreover, it is positively related to positive word-of-mouth communication (Bloemer & Odekerken-Schröder, 2003; Harrison-Walker, 2001), suggesting that affectively committed customers are prone to communicate their positive feelings about a brand or company to others. Chen et al. (2013), for instance, demonstrate that affective commitment is an important driver of users’ content creation behavior on social network sites. Thus, for companies it is highly valuable to achieve and maintain high levels of affective commitment among customers.

As indicated, existing research is largely based on experiments with bystanders, and generally shows positive effects of webcare on relational outcomes (see e.g., Dens et al., 2015; Min et al., 2015; Schamari & Schaefer, 2015; van Noort & Willemsen, 2012).
In addition to these experimental studies, in our study we will investigate the effects of webcare in a real-life setting with actual users of webcare. Given the importance of affective commitment for companies, and the fact that it is related to other relational outcomes (such as trust, customer loyalty, and purchase intentions – that were under investigation in earlier studies), we will study the effects of webcare on affective commitment. Although the effects of webcare on bystanders may not necessarily be identical for actual webcare users, we nevertheless expect that (in line with earlier experimental studies) webcare interactions with a company – in response to either negative, neutral, or positive feedback – will have a positive effect on building and maintaining a customer’s affective commitment. Therefore, we formulate the following hypothesis:

H1. Customer webcare interaction is positively related to change in affective commitment.

Conversational human voice

Online presence on social media platforms in general, and more specifically through webcare interactions, enables companies to publicly show their “human face” and their commitment to customers. This may be strengthened when companies are perceived to employ a conversational human voice (CHV) (Kelleher & Miller, 2006) in their online communications. CHV has been defined as “an engaging and natural style of organizational communication as perceived by an organization’s publics based on interactions between individuals in the organization and individuals in publics.” (Kelleher, 2009, p. 177). It was first mentioned by Levine et al. (2001), noticing that a ‘human voice’ was increasingly used by organizations in computer-mediated communications between organizations and the public, and in particular via participatory media such as social media. A study of Park and Lee (2013) showed that CHV was perceived to be greater for organizations’ social networking pages with a ‘human’ presence than for those with a corporate presence. The webcare and public relations literature on conversational human voice stress the important role of perceiving the company’s communication as empathic, inviting, friendly and respectful (Dijkmans, Kerkhof, Buyukcan-Tetik, & Beukeboom, 2015; Kelleher, 2009; Min et al., 2015; Park & Cameron, 2014).

Kelleher (2009) showed that consumers with high exposure levels to interactive online media were more likely to perceive the organization as “communicating with a conversational voice.” (p. 172). In a study of Kerkhof, Beugels, Utz, & Beukeboom
(2011), a personal tone of voice in the online communication of a company – as often noticeable in actual webcare – increased the level of perceived conversational human voice, compared to using a corporate voice. Hence, we propose the following hypothesis:

H2. Customer webcare interaction is positively related to conversational human voice.

Research shows that CHV is an important factor in improving relationships in an online context (Kelleher & Miller, 2006; Yang & Lim, 2009) and is positively related to relationship outcomes and subsequent favorable feelings. Several studies have established that the use of CHV in corporate social media activities is beneficial for trust, corporate reputation, and brand attitude (see e.g., Kelleher, 2009; Schamari & Schaefer, 2015; Sparks et al., 2016; Su, John Mariadoss, & Reynolds, 2015). Even in crisis situations, companies using CHV and interaction in their communication were able to improve their overall impression in reaction to worried or dissatisfied customers, as was shown in a study of Sweetser and Metzgar (2007). Empathic company responses to negative hotel reviews led to more positive evaluations of these responses in a study by Min, Lim and Magnini (2015). In a study aimed at determining what types of social media messages worked best for hospitality companies, conversational messages were liked and commented on by more Facebook users compared to sales/marketing messages (Kwok & Yu, 2013). Importantly, two studies show significant correlations between CHV and commitment (Kelleher, 2009; Kelleher & Miller, 2006). In line with these studies, we hypothesize that:

H3. Conversational human voice is positively related to change in affective commitment.

CHV may also explain (part of) the relation between social media interactions and relational outcomes. In a longitudinal study among customers and non-customers of an international airline, perceived level of CHV mediated the effect of exposure to a company’s social media activities on corporate reputation one year later (Dijkmans, Kerkhof, Buyukcan-Tetik, et al., 2015). Several other studies also showed a mediating role of CHV in effects of companies’ social media activities on brand evaluations (Beukeboom, Kerkhof, & de Vries, 2015; Van Noort & Willemsen, 2012). Following this line of argument, we hypothesize that:
Retaining affective commitment through webcare

H4. Conversational human voice mediates the effect of customers’ webcare interaction on change in affective commitment.

Our conceptual model and the hypotheses are summarized in Figure 1.

Figure 1. Conceptual model

![Conceptual model diagram](image)

Method

Case company

For our study, we selected a company from the airline industry. This industry and its companies are among the most active in the commercial use of social media (Hvass & Munar, 2012). According to studies of Socialbakers (2013, 2014), the airline industry is the most “socially devoted” business sector. Within this sector we chose KLM Royal Dutch Airlines, part of Air France KLM, as a case company. KLM is a major international player in the aviation industry, and is well-known in the Netherlands with an aided brand awareness of more than 90% (De Smeth, 2011). KLM is highly (inter)active on social media, with an 24/7 presence in 13 different languages (KLM, 2016), and on the most commonly used online platforms (e.g., Facebook, Twitter, Instagram,
YouTube, Google+). In December 2016, KLM had 11.6 million ‘fans’ on Facebook, 2.2 million ‘followers’ on Twitter, and in the third quarter of 2016 they answered over 7200 customer questions on their Facebook page with an average response time of 76 minutes (Socialbakers, 2016). Initially, KLM’s social media activities aimed only at customers, but at a later stage the target group was broadened to include all other interested consumers. KLM is widely recognized for its innovative social media activities, also evidenced by a number of awards (e.g., IFITT Innovation Award (2012), SimpliFlying Award (2014), DDMA Customer Data Award (2012), Dutch Interactive Award (2013)).

Participants and procedure

The present study focuses on customers of KLM: customers that did, and that did not have webcare interactions with the company. Since this study was part of a broader research program aimed at studying the effects of KLM’s social media activities (see Dijkmans, Kerkhof, & Beukeboom, 2015; Dijkmans, Kerkhof, Buyukcan-Tetik, et al., 2015), the surveys assessed various participant variables (e.g., social media exposure, perceived corporate reputation, flight frequency in general and with the case company) – some of which were included in the present study as control variables. Our main dependent variable (affective commitment) is related to being a customer of a company (Verhoef, 2003), and this variable was only measured among KLM customers. The present study thus focused on a part of this larger dataset and included only KLM customers ($N = 763$).

Data was collected through online surveys in two waves with a one-year interval. The participants, all residing in the Netherlands, were recruited in four different ways, resulting in four subsamples. The first and largest subsample provided us with a general and representative picture of the (adult) Dutch population. This sample was provided by the Dutch market research firm Motivaction, which administers an online panel of 20,000 members, representative for the adult Dutch population. The members of this panel regularly participate in market research, often on behalf of companies. The participants from this subsample were rewarded for taking part in this survey, as a regular agreement of their membership of the panel. A total of 6650 members from this online panel were selected and invited by e-mail by the market research firm, and – via a hyperlink – directed to the online questionnaire. This led to a response of 31% ($n = 2077$; 59% of total N_{t1}).

To ensure a sufficient number of social media users and participants having webcare interaction with KLM, a second and third subsample was selected by posting a message on KLM’s Facebook- and Twitter page with a call to participate in the study and a
hyperlink to the online questionnaire. This resulted in 304 participants from Facebook (9% of total N_{t1}) and 176 from Twitter (5% of total N_{t1}).

Finally, to ensure a sufficient number of customers, a fourth subsample was taken randomly by KLM from their loyalty member database. A total of 6564 members, residing in the Netherlands, were invited by e-mail by the aforementioned market research firm to participate in the study with a hyperlink to the questionnaire. The response rate of the loyalty members subsample at $t1$ was nearly 15%, resulting in 974 participants (28% of total N_{t1}). In sum, the first wave resulted in 3531 participants in total.

The second wave of data ($t2$) was collected one year after the first one. All respondents from the first wave were asked – via e-mail – to participate once again in our survey. This resulted in a total N_{t2} of 1969 respondents taking part in both waves (56% of N_{t1}; 60% male), consisting of 65% from the Motivation market research panel, 27% from the loyalty program, 5% from Facebook and 3% from Twitter. As noted, from this sample of 1969 respondents, only the data of KLM customers was used. To be classified as “customer”, a participant must have used the services (for private or business use) of KLM in the two years before the second wave of our study. Within this definition, 763 participants (38.8% of N_{t2}; 74% male) were classified as customers, and are as such included in the current study ($N = 763$). The age distribution of this sample was < 25 years: 5%, 25-35: 13%, 36-45: 19%, 46-55: 27% and > 55: 36%. Only the participants from the Motivaction market research panel were rewarded for taking part in this survey, as a regular agreement of their membership of the panel – the other participants did not receive any compensation (in both waves).

The content of the surveys was identical for the two waves. Depending on the route in the questionnaire and the corresponding number of posed questions, completion took about 8 to 10 minutes for most participants. First, participants were asked about their perception of the case company’s CHV, subsequently about their affective commitment with the company, and lastly about webcare interaction.

Measures

Customer webcare interaction.

In the second wave of our study, we asked participants whether and how often they had webcare interaction with the case company via Twitter and Facebook in the last year (i.e., between $t1$ and $t2$), with answer options ranging from “0 = no interaction” to “1 = 1 time”, “2 = 2 times” and “3 = 3 times or more”. Based on this question, our “customer webcare interaction” variable was composed, wherein participants were
labeled “no” if they did not (answer option: 0; 635 respondents; 72% male; 83.2% of N), or “yes” if they did engage in webcare interaction (answer options: 1, 2, 3; 128 respondents; 81% male; 16.8% of N) with the case company. Of the 128 respondents who did have webcare interaction in the last year, 36 respondents reported to have had webcare once (28.1% of N_{webcare interaction}), 32 reported two times (25.0%), and 59 reported three times or more (46.1%) (M = .36, SD = .88). Additionally, we asked the respondents that had webcare interaction about the reason(s) for having this contact with the case company’s webcare department, with 7 answer options (multiple answers possible): “Had a question” (24.9% of N_{webcare interaction}), “Had a problem or complaint” (19.5%), “Company responded to my message or tweet” (15.7%), “Gave a compliment” (14.2%), “Responded to an action, message or tweet from the case company” (10.7%), “Had a suggestion or gave feedback” (8.4%), and “Responded to a message or tweet of someone else about the company” (6.5%).

Affective commitment.

Affective commitment was assessed at t1 and t2 using the three-item scale by Verhoef (2003) (i.e., “Because I feel a strong attachment to KLM, I remain a customer of KLM”, “I am a loyal customer of KLM”, “Because I have positive feelings about KLM, I want to remain a customer of KLM”). Participants were asked to rate their agreement with these three statements on a five-point Likert-type scale (ranging from 1 = “Strongly disagree” to 5 = “Strongly agree”). The scale had a Cronbach’s Alpha of .84 (t1) and .79 (t2). We averaged the scores of the three items for the first and second wave, resulting in two indexes of affective commitment (M_{t1} = 3.70, SD_{t1} = .76; M_{t2} = 3.74, SD_{t2} = .74) on a scale ranging from 1 to 5.

Conversational human voice.

CHV was measured at t1 and t2, although for the purpose of the current study only t2 data was used. To assess perceived conversational human voice, all participants were asked six questions about (a) the company’s willingness to converse, (b) its openness to dialogue, (c) its efforts to communicate in a human voice, (d) its attempts to be interesting in communication, (e) its attempts to be enjoyable in communication, and (f) its promptness of feedback addressing criticism with an open manner. These items were derived from the 11-item scale of Kelleher (2009, p. 181) and were measured on a scale of 1 to 5 (with answer categories of 1 = “Strongly disagree” to 5 = “Strongly agree”). The number of questionnaire items for CHV was reduced to limit the length of the questionnaire. We selected four items with the highest factor loading on CHV from the
study of Kelleher and Miller (2006) (i.e., items (a) to (d)), supplemented with two items that were most relevant for the purposes of the research program (i.e., items (e) and (f)). The scale had a Cronbach’s Alpha of .86 at t2. Additionally, a principal components factor analysis, including all six items, revealed one main interpretable factor with a pre-extraction eigenvalue of 3.55 (which accounted for 59% of the variance). All six items loaded significantly (factor loadings > .67) on the main factor. On the basis of this analysis we averaged the responses of the six items into one index of conversational human voice at t2 (M = 3.44, SD = 0.58, α = .86), with higher scores indicating a higher perceived level of conversational human voice.

Since CHV and affective commitment were measured with the same method, the same response scale, and at the same point in time, we assessed potential common method bias with Harman’s single-factor test (Podsakoff & Organ, 1986). According to this approach, common method variance is present if a single factor accounts for the majority of the covariance in the two variables. An exploratory factor analysis (EFA) at t2 of all CHV and affective commitment scale items revealed two factors explaining 63 percent of the variance in the two constructs. This analysis suggested that common method variance was unlikely to confound the interpretations of the results in our study.

Control variables.

In addition to the above main variables, we included six control variables in our analyses because of their potential relation with our dependent variable (i.e., Affective Commitment t2), and to thus improve the accuracy of our model.

First, we assessed customers’ general flying frequency and flying with the case company (in the year before the second wave of the survey) as a control variable. More intensive usage of the company’s products, and the product category in general (i.e., flying) relates to higher levels of tie strength (Stanko, Bonner, & Calantone, 2007) and could potentially relate to higher levels of affective commitment. General flying frequency was measured on a scale of 1 to 9, from “1 = 0 times” (0% of N) ranging up to “9 = 8 times or more” (38% of N). Flying frequency with the case company was measured on a scale of 1 to 5, ranging from “1 = 0 times” (0% of N), “2 = 1 - 2 times” (48% of N), “3 = 3 - 4 times” (20% of N), “4 = 5 - 6 times” (8% of N), and “5 = 7 or more times” (24% of N).

Second, we included membership of the case company’s loyalty program (no/yes) as a control variable where “0 = no member” and “1 = member”. Our sample consisted of 82% loyalty program members (N = 623). Membership of a company’s loyalty program
can be expected to be positively associated with affective commitment (Leenheer, van Heerde, Bijmolt, & Smidts, 2007).

Third, exposure to the company’s social media activities was included as a control variable. In previous research this variable proved to affect relational outcomes such as corporate reputation (Dijkmans, Kerkhof, Buyukcan-Tetik, et al., 2015). This variable was measured by asking to what extent participants were familiar with the company’s social media activities on a 4-point scale, ranging from 1 = “Not familiar” (37.7% of N), 2 = “Somewhat familiar” (33.2% of N), 3 = “Familiar” (18.5% of N), and 4 = “Very familiar” (10.6% of N). The customers who were at least “somewhat familiar” with the company’s social media activities were subsequently asked “On which social networking sites do you follow KLM?”, with answering options Facebook and/or Twitter. Familiarity with, and following of the company’s social media activities were combined to reflect the participants’ level of exposure to the company’s social media activities, resulting in a classification in three categories: low exposure (i.e., following the company neither on Facebook nor on Twitter, or no familiarity with the company’s social media activities; score “0”; 37.7% of N), medium exposure (i.e., following on Facebook or Twitter; score “1”; 29.6% of N), and high exposure (i.e., following on Facebook and Twitter; score “2”; 32.6% of N). On a scale ranging from 0 to 2, mean and standard deviation for exposure to social media activities was $M = .95$ and $SD = .84$.

Lastly, age category and gender were included as control variables, because we expected these variables to affect the other variables in our analysis, and thus the relations in our conceptual model.

Results

Matching webcare and non-webcare participants

Our study investigates a so-called endogenous treatment effect in a non-experimental setting (i.e., webcare as something that participants either did or did not have), which means that selection bias may have occurred (Berk, 1983). This requires careful consideration of potential confounding factors in our analyses. Table 1 gives an overview of Pearson’s correlations between the main and control variables and shows that the control variables are related to at least one and in most cases two or three of the key variables in the model.
Table 1. Pearson’s Correlations (N = 763)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Customer webcare interaction</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Conversational human voice</td>
<td>.20**</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Affective commitment t2</td>
<td>.09*</td>
<td>.47**</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) Affective commitment t1</td>
<td>.15**</td>
<td>.43**</td>
<td>.70**</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5) Exposure to company social media activities</td>
<td>.52**</td>
<td>.30**</td>
<td>.20**</td>
<td>.21**</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6) Flight frequency in general</td>
<td>.16**</td>
<td>-.03</td>
<td>.13**</td>
<td>.15**</td>
<td>.15**</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7) Flight frequency with company</td>
<td>.16**</td>
<td>-.01</td>
<td>.26**</td>
<td>.29**</td>
<td>.13**</td>
<td>.77**</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8) Company loyalty program membership</td>
<td>.14**</td>
<td>.02</td>
<td>.26**</td>
<td>.27**</td>
<td>.10**</td>
<td>.43**</td>
<td>.35**</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(9) Gender (m/f)</td>
<td>-.08*</td>
<td>-.03</td>
<td>.05</td>
<td>.00</td>
<td>-.10**</td>
<td>-.20**</td>
<td>-.18**</td>
<td>-.06</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(10) Age category</td>
<td>-.26**</td>
<td>-.14**</td>
<td>.08*</td>
<td>-.02</td>
<td>-.33**</td>
<td>-.12**</td>
<td>-.05</td>
<td>.03</td>
<td>.05</td>
<td>-</td>
</tr>
</tbody>
</table>

Note. **p<.01; *p<.05
For example, exposure to company’s social media activities showed positive
correlations with webcare interaction ($r = .52$), CHV ($r = .30$) and Affective
commitment in t1 ($r = .21$) and t2 ($r = .20$). Company loyalty program membership
as well as flight frequency with the company are positively correlated with Affective
commitment in t1 and t2 (r's between .26 and .29). Age is negatively correlated with
webcare interaction and CHV ($r = -.26$ and -.14), but not with affective commitment. For
gender, a weak correlation was found with webcare interaction ($r = -.08$). With regard
to the correlations between the main variables, CHV and Affective commitment were
strongly positively related in t1 ($r = .43$) as well as in t2 ($r = .47$). Webcare interaction
was positively correlated with CHV ($r = .20$), and with Affective commitment in t1 ($r = .15$) and t2 ($r = .09$).

Since the majority of our control variables are correlated with the main variables,
and we have a non-webcare interaction comparison group ($n = 635$) that is relatively
large compared to the webcare interaction group ($n = 128$), propensity score matching
is particularly well-suited to rule out the confounding effects of the control variables
(Dehejia & Wahba, 2002; Rosenbaum & Rubin, 1985). Propensity score matching relies
on the same structural assumption for causal inference as linear regression models do,
namely the assumption of selection on observables. The main advantage of propensity
score matching over regression is that it restricts inferences to samples for which there
is overlap in covariate distributions across the ‘treatment group’ (i.e., respondents who
did have webcare interaction). The goal of propensity score matching is to find a group
among the comparison population (respondents who did not have webcare interaction)
that is as similar as possible to the ‘treatment group’. To achieve this, first the
propensity score for each respondent is estimated, which is the conditional probability
of being in the treatment group given our six measured control variables. Then, the
estimated propensity scores are used to create a matched control group from among
the comparison population: each respondent with webcare interaction, is matched with
a member of the comparison group that has the closest propensity score. Respondents
from the comparison group that are not matched are discarded from subsequent
analyses.

We used the MatchIt package in R (Ho, Imai, King, & Stuart, 2011) to find the
best method of propensity score matching. Genetic matching yielded the highest
improvement in balance between the two groups (see Table 2). Genetic matching uses
an evolutionary search algorithm to determine the weight each control variable is given
(Diamond & Sekhon, 2012). After applying genetic matching, a non-webcare interaction
comparison group of 132 respondents remained. A total of 503 respondents from the
comparison group were thus discarded from further analysis since they insufficiently matched with the webcare users in our sample. This left a sample of $N = 260$ on which we tested our hypotheses, with a weight factor for each respondent in the comparison group as a result of the genetic matching procedure. This weight factor per respondent represents the matching score and was included in our further analyses.
Table 2. Summary of balance after genetic matching

<table>
<thead>
<tr>
<th>Control variables:</th>
<th>Before matching</th>
<th>After matching</th>
<th>Percentage Balance Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total sample</td>
<td>Webcare users</td>
<td>Control group</td>
</tr>
<tr>
<td>Exposure to company social media activities</td>
<td>.95</td>
<td>1.91</td>
<td>.75</td>
</tr>
<tr>
<td>Flight frequency in general</td>
<td>6.08</td>
<td>7.04</td>
<td>5.89</td>
</tr>
<tr>
<td>Flight frequency with company</td>
<td>3.08</td>
<td>3.52</td>
<td>2.99</td>
</tr>
<tr>
<td>Company loyalty program membership (n/y)</td>
<td>.82</td>
<td>.94</td>
<td>.79</td>
</tr>
<tr>
<td>Gender (m/f)</td>
<td>1.26</td>
<td>1.19</td>
<td>1.28</td>
</tr>
<tr>
<td>Age category</td>
<td>3.78</td>
<td>3.10</td>
<td>3.92</td>
</tr>
<tr>
<td>Main variables:</td>
<td>Customer webcare interaction (n/y)</td>
<td>.17</td>
<td>1.00</td>
</tr>
<tr>
<td>Conversational human voice</td>
<td>3.44</td>
<td>3.69</td>
<td>3.39</td>
</tr>
<tr>
<td>Affective Commitment</td>
<td>3.74</td>
<td>3.88</td>
<td>3.71</td>
</tr>
</tbody>
</table>
To test whether there were differences on the focal variables between our four subsamples (i.e., Motivaction market research panel, company loyalty program, Facebook, Twitter), we conducted several one-way ANOVAs (see Table 3). As to be expected, webcare interaction was significantly lower in the company loyalty program group and Motivaction market research panel group, compared to the Facebook and Twitter subsamples. The dependent variables affective commitment at both t1 and t2 and CHV, however, did not show differences between subsamples.

Table 3. Mean and SD of Affective Commitment (AC), Conversational Human Voice (CHV) and Webcare Interaction (WI) in the four subsamples and in total

<table>
<thead>
<tr>
<th></th>
<th>AC_{t1}</th>
<th>AC_{t2}</th>
<th>CHV</th>
<th>WI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motivation market research panel (N = 29)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>3.69</td>
<td>3.76</td>
<td>3.39</td>
<td>.31</td>
</tr>
<tr>
<td>SD</td>
<td>.80</td>
<td>.42</td>
<td>.66</td>
<td>.47</td>
</tr>
<tr>
<td>Company loyalty program (N = 121)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>3.96</td>
<td>3.95</td>
<td>3.57</td>
<td>.37</td>
</tr>
<tr>
<td>SD</td>
<td>.66</td>
<td>.64</td>
<td>.52</td>
<td>.49</td>
</tr>
<tr>
<td>Facebook (N = 56)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>4.01</td>
<td>3.99</td>
<td>3.74</td>
<td>.64</td>
</tr>
<tr>
<td>SD</td>
<td>.73</td>
<td>.65</td>
<td>.56</td>
<td>.48</td>
</tr>
<tr>
<td>Twitter (N = 54)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>3.89</td>
<td>3.88</td>
<td>3.74</td>
<td>.72</td>
</tr>
<tr>
<td>SD</td>
<td>.74</td>
<td>.77</td>
<td>.62</td>
<td>.45</td>
</tr>
<tr>
<td>Total sample (N = 260)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>3.93</td>
<td>3.91</td>
<td>3.62</td>
<td>.49</td>
</tr>
<tr>
<td>SD</td>
<td>.71</td>
<td>.65</td>
<td>.58</td>
<td>.50</td>
</tr>
</tbody>
</table>

Note. Table based on weighted sample after genetic matching (N = 260).

Note. For each column, means with a different subscript (a, b) are significantly different at $p < .05$, according to Bonferroni comparisons.

Note. Although these subsamples are recruited differently, respondents in one subsample may share properties with other subsamples (e.g., respondents recruited from Facebook, Twitter or the Motivaction market research panel may also be company loyalty program members and vice versa).
Hypothesis tests

Our hypotheses (see Figure 1) predicted direct positive relationships between customers’ webcare interaction and changes in level of affective commitment (H1), between webcare interaction and CHV (H2), and between CHV and changes in affective commitment (H3). Lastly, we predicted that CHV acts as a mediator in the relationship between webcare interaction and changes in affective commitment (H4).

To test these hypotheses, we performed a regression-based path analysis using “PROCESS” (Model 4), a computational tool for SPSS to estimate conditional indirect effects in moderated and/or mediated models (Hayes, 2013; Hayes & Matthes, 2009; Preacher, Rucker, & Hayes, 2007). “PROCESS” uses an ordinary least squares regression analysis and bootstrapping procedures for estimating direct and indirect effects and is able to estimate a combination of moderation and mediation with a dichotomous independent variable. We regressed affective commitment on webcare interaction with CHV as a mediator, controlling for levels of affective commitment at t1. Table 4 summarizes the results of the regression analysis model, which explains 41% of the variance in affective commitment.
Retaining affective commitment through webcare

Table 4. Mediated regression analysis of Affective Commitment\(_t2\) (AC)

<table>
<thead>
<tr>
<th></th>
<th>CHV (mediator)</th>
<th>AC(_t2) (DV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(B (SE B))</td>
<td>(B (SE B))</td>
</tr>
<tr>
<td>Constant</td>
<td>2.48 (.19)**</td>
<td>.95 (.24)**</td>
</tr>
<tr>
<td>Affective Commitment(_t1)</td>
<td>.27 (.05)**</td>
<td>.48 (.05)**</td>
</tr>
<tr>
<td>Customer webcare interaction</td>
<td>.14 (.07)*</td>
<td>-.09 (.07)</td>
</tr>
<tr>
<td>Conversational human voice (CHV)</td>
<td>—</td>
<td>.31 (.06)**</td>
</tr>
</tbody>
</table>

Direct effect of customer webcare interaction
Indirect (conditional) effect of customer webcare interaction
95% CI
Total effect of customer webcare interaction

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(R^2)</td>
<td>.13</td>
</tr>
<tr>
<td></td>
<td>.41</td>
</tr>
</tbody>
</table>

** \(p < .001; \ast \ p < .05\)

Note. Table based on weighted sample after genetic matching (\(N = 260\)).

Note. Regression performed by using the “PROCESS” tool, model 4 (Hayes, 2013). Independent variable (customer webcare interaction) and mediator (CHV) are mean centered prior to analysis to render a parameter estimate that is interpretable within the range of the data. All coefficients are unstandardized and based on models with all primary variables entered.

Note. \(B = \) unstandardized effect size. Bootstrap resamples = 10,000.

In contrast to our prediction (H1), and although significant positive correlations (Table 1) were found between webcare interaction and affective commitment both at \(t1 (r = .15)\) and \(t2 (r = .09)\), the regression results showed no direct association between webcare interaction and changes in affective commitment \((b = -.09, SE = .07, n.s.)\). Thus, H1 was rejected.

To gain a better understanding of this result, we analyzed it in more detail. First, we compared the levels of affective commitment over time (i.e., \(t1 \) versus \(t2\)) for each webcare interaction group separately. Using paired samples t-tests, we compared \(t1\) with \(t2\) consecutively for the total sample \((N = 260)\), the webcare interaction group \((N = \)
128), the non-webcare interaction group \((N = 132)\), and the 7 webcare interaction type groups (as listed in Table 5). No significant differences between t1 and t2 were found for any of the groups. Subsequently, we compared the differences in affective commitment between the groups (i.e., webcare interaction versus non-webcare interaction group), at t1 and at t2. Independent samples t-tests showed no significant differences in affective commitment level between the webcare and non-webcare group at t1 or at t2. In sum, in line with the regression analysis and against H1, these additional analyses also show no direct changes in affective commitment as a result of having webcare interaction.

Table 5. Affective Commitment (AC) for various customer webcare interaction types at t1 and t2

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>(M_{t1})</th>
<th>(M_{t2})</th>
<th>(\Delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All customers</td>
<td>260</td>
<td>3.93</td>
<td>3.91</td>
<td>-.02</td>
</tr>
<tr>
<td>Customers not having webcare interaction</td>
<td>132</td>
<td>3.92</td>
<td>3.95</td>
<td>+.03</td>
</tr>
<tr>
<td>Customers having webcare interaction</td>
<td>128</td>
<td>3.94</td>
<td>3.88</td>
<td>-.06</td>
</tr>
<tr>
<td>Type of interaction *:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Question</td>
<td>64</td>
<td>3.95</td>
<td>3.98</td>
<td>+.03</td>
</tr>
<tr>
<td>• Problem or complaint</td>
<td>51</td>
<td>3.86</td>
<td>3.83</td>
<td>-.03</td>
</tr>
<tr>
<td>• Company responded to message or tweet</td>
<td>42</td>
<td>3.77</td>
<td>3.74</td>
<td>-.03</td>
</tr>
<tr>
<td>• Compliment</td>
<td>37</td>
<td>3.98</td>
<td>3.95</td>
<td>-.03</td>
</tr>
<tr>
<td>• Response to action, message or tweet from company</td>
<td>29</td>
<td>4.05</td>
<td>3.97</td>
<td>-.08</td>
</tr>
<tr>
<td>• Suggestion or feedback</td>
<td>22</td>
<td>3.97</td>
<td>3.92</td>
<td>-.05</td>
</tr>
<tr>
<td>• Response to message of someone else about company</td>
<td>17</td>
<td>4.02</td>
<td>3.80</td>
<td>-.22</td>
</tr>
</tbody>
</table>

Note. Table based on weighted sample after genetic matching \((N = 260)\).

Note. * More than one answer option possible.

Note. The mean differences between or within groups are not statistically significant.

With respect to H2 and H3, the regression analysis (Table 4) showed that customer webcare interaction was indeed positively related to CHV \((b = .14, SE = .07, p < .05)\)
Retaining affective commitment through webcare

and that CHV was positively related to change in affective commitment ($b = .31, SE = .06, p < .001$). This respectively confirms H2 and H3. Furthermore, and in line with H4, there was a positive indirect effect of customer webcare interaction, through CHV, on change in affective commitment ($b = .04, SE = .02, 95\% CI = .01, .10$). This shows that CHV fully mediates the relation between webcare interaction and affective commitment. The model including direct and indirect effects together explained 41% of the variance in affective commitment at t2.

Conclusion and discussion

The manner in which a company deals with customer feedback, most notably on social media platforms through webcare, plays a crucial role in developing and maintaining enduring customer relationships. In building these relationships, affective commitment has shown to be a critical variable. It is a driver of developing and maintaining mutually beneficial relationships between partners (Kumar, Hibbard, & Berry, 1994), and is a crucial driver of loyalty (Cater & Zabkar, 2009; Palmatier et al., 2006; Sashi, 2012). Particularly in a service setting like the aviation industry, it is the most intense form of commitment (Gundlach et al., 1995; Pimentel & Reynolds, 2004).

In the present two-wave longitudinal study among actual customers of an international airline, we investigated the effects of having webcare interactions on affective commitment. Results showed that – although customers’ webcare interactions with a company were positively related to affective commitment at both t1 and t2 – having webcare interactions did not result in a direct change in affective commitment (H1). Interestingly, however, results revealed that the perceived level of conversational human voice in these webcare interaction plays a crucial role in driving changes in affective commitment. We observed positive direct associations between webcare interaction and CHV (H2), and between CHV and change in affective commitment (H3). Moreover, a significant indirect relation was found of webcare interaction via CHV on changes in affective commitment (H4).

Although we did not find a direct effect of webcare interaction on change in affective commitment (H1), in modern and nowadays common conceptions of mediation, it is not necessary to have a main effect in order to assess the presence of mediation (Hayes, 2009). That is, in his seminal paper, Hayes (2009) argues that “it is possible for M to be causally between X and Y even if X and Y aren’t associated. In this case, some prefer to avoid the term mediator when describing M and instead refer
simply to X’s indirect effect on Y through M.” (p. 413) (see also Mathieu & Taylor, 2006). In other words, notwithstanding the absence of a direct effect of webcare interaction on change in affective commitment in our conceptual model, the mere presence of a significant indirect effect through CHV is an important result. Indeed, it emphasizes the critical role of CHV in retaining affective commitment in situations of webcare interaction with customers.

The fact that we observed no direct effect of webcare interaction on change in affective commitment (rejecting H1) is in contrast with previous mainly experimental research, which predominantly shows positive effects of webcare interaction on relational outcomes (see e.g., Schamari & Schaefer, 2015; Van Noort & Willemsen, 2012). In interpreting this divergence, we consider the following explanations.

First, the current study tested the effects of actual webcare on real customers. Research to date has mostly used an experimental design, and has almost exclusively focused on the effects of consumers witnessing and assessing webcare interactions of others, instead of on the webcare experiences of actual customers. When actual customers engage in webcare, they likely have had previous direct experiences with the company, the webcare interaction being just one of them. Previous studies indeed imply that, compared to non-customers, customers’ evaluations of a company may be less affected by a single event (Dijkmans, Kerkhof, & Beukeboom, 2015; Zauner et al., 2012).

Second, the actual webcare interactions of customers are much more heterogeneous than the webcare interactions that served as stimulus materials in experimental studies on webcare. Our respondents reported various reasons for having webcare interactions, ranging from negative (i.e., complaints) to neutral (i.e., asking a question) to positive (i.e., compliments and suggestions). Some of these reasons are likely to be associated with customer experiences and emotions, both positive and negative, that may have brought about their webcare interactions and that may overrule the effect of the webcare interaction. Only in the case of a very pleasant and surprising interaction (see Schamari & Schaefer, 2015 for the role of consumer surprise in the effects of webcare) webcare may result in a noticeable positive change in affective commitment. Also, our sample included customers who were involved in various combinations of webcare interaction types (see Table 5). This may have resulted in less pronounced results and in the divergence of our findings compared to earlier, mainly experimental studies. Future studies that aim at more precision in assessing the events, and the associated customer emotions, that brought about the webcare interaction could help to further understand the impact of webcare interactions on customer commitment.
A third reason for a lack of a direct effect may arise from the fact that the majority of our sample (82% of N = 763) consists of company loyalty program members. Earlier research showed that affective commitment and customer loyalty program membership are related (see e.g., Iglesias, Singh, & Batista-Foguet, 2011; Leenheer et al., 2007; Mattila, 2006). Our data indeed show higher initial levels of affective commitment (M_{AC-loyalty} = 3.79 versus M_{AC-nonloyalty} = 3.27; t(761) = 7.65, p < .001) among loyalty program members compared to non-loyalty program members. According to previous studies, highly committed customers expect a personal treatment and have high expectations of the company in general, even more so in the case of service failures (Tax, Brown, & Chandrashekaran, 1998). Failing to meet these high expectations may result in negative responses, which might eventually result in a decrease of affective commitment (Bejou & Palmer, 1998; Goodwin & Ross, 1992; Grégoire, Tripp, & Legoux, 2009; Kelley & Davis, 1994; McDougall & Levesque, 1999). Thus, increasing the level of affective commitment after webcare interaction among actual, already highly committed customers may therefore be difficult to attain for companies. Future research may include measures for customer expectation and satisfaction level related to webcare interaction to shed further light on this.

Subsequently, our study showed that online interactivity (i.e., through webcare) is positively related to CHV (H2). This finding is in line with Kelleher (2009), who showed that level of online interactivity was positively related to perception of a ‘human voice’ in communication. It is also consistent with Kerkhof, Beugels, Utz, & Beukeboom (2011), showing that a ‘personal voice’ increased the level of perceived CHV. Social network sites are suitable platforms for companies to display their ‘human face’ and warmth in dialogues with the public (Malone & Fiske, 2013). Online platforms such as Facebook and Twitter invite people to take part in conversations, which indeed makes them suitable places to communicate in a conversational and human style (Kelleher & Miller, 2006). Through these platforms, companies can show that they are open to discussion, able to admit mistakes and use a sense of humor.

Next, we found a strong positive association between CHV and change in affective commitment (H3). Our findings indicate that, similar to findings among webcare bystanders in experimental studies on webcare, CHV plays an important role in the effects of webcare among customers who engage in webcare interactions. Van Noort and Willemsen (2012) found that one of the most important predictors of post-webcare brand evaluations is a company’s perceived CHV. Findings from other studies also show positive relational effects of experiencing CHV (e.g., higher perceptions of corporate
reputation, trustworthiness, brand attitude) (see e.g., Dijkmans, Kerkhof, Buyukcan-Tetik, et al., 2015; Sparks et al., 2016; Su et al., 2015).

An important last finding of our study, supporting H4, was that webcare indirectly affects change in affective commitment through CHV. In other words, the level of affective commitment after customer webcare interaction improves if the company applies a CHV in its online communication. Therefore, using CHV is a critical factor for yielding positive relational results in webcare interactions. It enhances the perceived humaneness of communications, which positively affects attitudes toward the company (Guillory & Sundar, 2013; Kelleher, 2009; Li & Li, 2014). In cases of webcare in reaction to negative feedback, CHV may serve as a buffer against possible adverse relational effects (see also Sweetser & Metzgar, 2007).

Our finding on the mediating effect of CHV on affective commitment (H4) is also in line with research on the concept of ‘rapport’, defined as “a customer’s perception of having an enjoyable interaction with a service employee, characterized by a personal connection between the two interactants” (Gremler & Gwinner, 2000, p. 92). Rapport, which focuses on the customer’s evaluative aspects of the customer-company interaction, consists of two components: (a) ‘enjoyable interaction’ (referring to evaluative aspects of interaction) and (b) ‘personal connection’ (referring to the intensity of the relationship). Rapport is strongly related to affective commitment (Kim & Ok, 2010). Indeed, dimensions of enjoyable interaction (i.e., enjoyment, warmth, relating, harmony, sense of humor, comfortableness) and personal connection (i.e., bond, care, personal interest, relationship closeness, and looking forward to seeing again) are also reflected in the dimensions of CHV. Therefore, a lack of these elements during (service) interactions such as through webcare (resulting in a low perceived CHV) may also result in lower affective commitment. The role and impact of each of these elements on relational outcomes may be an avenue for future research.

Some limitations should be considered when interpreting the results of our study. The airline industry as a whole – where our case company KLM Royal Dutch Airlines is part of – is among the most “top social care industries” worldwide (Socialbakers, 2016). Within this industry, KLM is one of the most (inter)active on social media and in webcare. Therefore, our case company may not be representative for the average company employing webcare activities, which may limit the generalizability of the results.

Furthermore, although in this study we were able to draw conclusions about the different types of real life webcare interaction types, the number of respondents was not sufficient to reliably distinguish between the effects of the different individual interaction types (e.g., questions, complaints, compliments, etc.). Future empirical
studies should aim at including a larger number of respondents who had webcare interactions in order to investigate the distinct effects of the different webcare types on relational outcomes.

A last limitation to consider is that conversational human voice is a general measure, which does not specifically refer to (actual) webcare interactions. Thus, it is possible that the perceived level of the company’s CHV was influenced by communications via other channels, such as traditional media (e.g., newspapers, television), telephone contact with the company’s call center, or the company’s employees during the utilization of its services.

Notwithstanding these limitations, this study contributes to a better understanding of the relation between webcare interactions and affective commitment, and the role of CHV in this relation. Since – contradictory to most earlier experimental studies – no positive relation between webcare interaction and change in affective commitment was found, this suggests that everyday practice may be different from experimental settings. Further research should shed more light on the nature of these differences, for instance by comparing the relational effects of customers actually involved in webcare interactions with a control group consisting of only passively involved consumers (i.e., who only read or witnessed the same interactions ‘from a distance’). Another interesting direction for additional research might be to distinguish between webcare bystanders (i.e., passive witnesses of other’s webcare interactions) and ‘non-bystanders’ (i.e., people who never even observed social media interactions between the company and other consumers). This would facilitate a better understanding of the relational effects of passively witnessing webcare.

Our finding that customer webcare interaction with a company is not directly associated with change in affective commitment, but that there is an indirect positive relation via CHV, has scholarly as well as managerial relevance. It emphasizes the important role of CHV in gaining and retaining relational outcomes for organizations in webcare interactions. Truly caring about the individual customer’s service outcome, relating to his/her needs, transparency in dialogue and being enjoyable in communication facilitates and improves CHV in online interactions. Our findings provide evidence that for companies employing webcare activities and seeking for optimization of its effectiveness, applying a conversational human voice in its online communication plays a pivotal role. Therefore, a sophisticated application of CHV should be a guiding principle in developing effective online communication strategies.
References

Retaining affective commitment through webcare

