Contents

CHAPTER 1 | INTRODUCTION...2
1.1 Life is a complex system..3
 1.1.1 Complex and Complicated...3
 1.1.2 Life...4
1.2 The cell...5
1.3 Methods to study the cell...6
 1.3.1 Top-down approach (in vivo)...6
 1.3.2 Bottom-up (in vitro)...7
1.4 The outline of this thesis..8

CHAPTER 2 | ACOUSTIC FORCE SPECTROSCOPY12
2.1 Introduction..13
2.2 Results...13
 2.2.1 Experimental setup...13
 2.2.2 AFS applied to tethered DNA...15
 2.2.3 Force-extension, constant-force and dynamic force spectroscopy measurements..17
2.3 Conclusions...20
2.4 Supplementary methods...22
 2.4.1 Experimental setup...22
 2.4.2 One-dimensional acoustical model....................................23
 2.4.3 Microsphere tracking...23
 2.4.4 Force calibration..23
 2.4.5 Response time...24
 2.4.6 Thermal fluctuations and instrumental uncertainty............25
 2.4.7 Dynamic force spectroscopy measurement.......................25
 2.4.8 DNA tethers...27
 2.4.9 Buffers and RecA solutions..28
2.5 Supplementary figures..29

CHAPTER 3 | TUNING THE MUSIC ACOUSTIC FORCE SPECTROSCOPY 2.0 ...36
3.1 Introduction..37
3.2 Material and methods..37
 3.2.1 AFS-chip properties..37
<table>
<thead>
<tr>
<th>3.2.2</th>
<th>Electrical connection of the chip</th>
<th>38</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.3</td>
<td>Imaging the sample</td>
<td>39</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Computer</td>
<td>39</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Microsphere tracking</td>
<td>39</td>
</tr>
<tr>
<td>3.2.6</td>
<td>DNA Tethering</td>
<td>39</td>
</tr>
</tbody>
</table>

3.3 One-dimensional acoustical model

<table>
<thead>
<tr>
<th>3.3.1</th>
<th>KLM model</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.2</td>
<td>Parameters used in the model</td>
<td>42</td>
</tr>
<tr>
<td>3.3.3</td>
<td>The quality number (QN)</td>
<td>42</td>
</tr>
</tbody>
</table>

3.4 Results

<table>
<thead>
<tr>
<th>3.4.1</th>
<th>Transparent piezo</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.2</td>
<td>Use of liquid-immersion objectives</td>
<td>43</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Optimizing layer thicknesses</td>
<td>44</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Direct measurement of the force profile</td>
<td>47</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Optimizing the acoustic-force profile</td>
<td>50</td>
</tr>
</tbody>
</table>

3.5 Discussion and conclusion

| 3.6 | Supplementary figures | 54 |

CHAPTER 4 | SINGLE-MOLECULE MEASUREMENTS USING ACOUSTIC FORCE SPECTROSCOPY

<table>
<thead>
<tr>
<th>4.1</th>
<th>Introduction</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>Material</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>AFS experimental setup</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>DNA labeling</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Surface chemistry buffers</td>
<td>62</td>
</tr>
</tbody>
</table>

4.3 Methods

<table>
<thead>
<tr>
<th>4.3.1</th>
<th>Measuring the impedance of the AFS chip</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.2</td>
<td>DNA labeling protocol for surface tethering</td>
<td>64</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Labeling microspheres with digoxigenin</td>
<td>65</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Preparation of DNA tethered to the surface and microspheres</td>
<td>66</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Measurements on tethered particles</td>
<td>67</td>
</tr>
<tr>
<td>4.3.6</td>
<td>Data analysis</td>
<td>67</td>
</tr>
</tbody>
</table>

4.4 Notes

| 4.4 | Notes | 69 |

CHAPTER 5 | REAL-TIME ASSEMBLY OF VIRUS CAPSIDS ONTO DNA

<table>
<thead>
<tr>
<th>5.1</th>
<th>Introduction</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>Methods and materials</td>
<td>75</td>
</tr>
</tbody>
</table>
CHAPTER 6 | UNRAVELLING THE FOLDING ENERGY LANDSCAPE OF SHORT-HANDLE DNA HAIRPINS USING ACOUSTIC FORCE SPECTROSCOPY ... 92
6.1 Introduction... 93
6.2 Methods and materials... 95
 6.2.1 CD4 hairpin with short handles... 95
 6.2.2 Surface tethering protocol .. 96
 6.2.3 Temperature control ... 96
6.3 Theoretical background of a two-state model ... 97
 6.3.1 Bell-Evans theory ... 97
 6.3.2 Continuous Effective Barrier Approach (CEBA) 99
6.4 Results.. 101
 6.4.1 Constant force spectroscopy ... 101
 6.4.2 Dynamic force spectroscopy ... 103
6.5 Discussion.. 107
6.6 Supplementary figures.. 110

CHAPTER 7 | SINGLE-CELL ACOUSTIC FORCE SPECTROSCOPY (SCAFS) RESOLVING KINETICS AND STRENGTH OF T-CELL ADHESION TO FIBRONECTIN ... 114
7.1 Introduction... 115
7.2 Results.. 115
 7.2.1 Manipulating cells with acoustic forces ... 115
 7.2.2 Three binding stages of adhering cells ... 118
 7.2.3 IL7 accelerates CD4 adhesion ... 118
List of figures

Figure 1.1 | Categorizing systems in four ways.. 3
Figure 1.2 | Schematic image of the cell response... 5
Figure 2.1 | Principle of Acoustic Force Spectroscopy ... 14
Figure 2.2 | Acoustic Force Spectroscopy in action... 16
Figure 2.3 | Force-extension and constant-force measurements 18
Figure 2.4 | Dynamic force spectroscopy measurements ... 19
Figure 3.1 | Illustration of the AFS setup... 38
Figure 3.2 | Measuring the acoustic energy loss due to immersion objective
using pKYBI DNA.. 44
Figure 3.3 | Layer thickness optimization for AFS chip ... 45
Figure 3.4 | Mapping the acoustic force within the fluid layer 48
Figure 3.5 | Overstretching curve of 45.5 kbp lambda DNA 51
Figure 4.1 | Measuring the impedance of the AFS chip ... 64
Figure 4.2 | A schematic drawing of the DNA labeling protocol 65
Figure 4.3 | AFS data analyses tethered particles .. 68
Figure 5.1 | Principles of OT, AFM and AFS ... 74
Figure 5.2 | Measuring the interaction of truncated VP1 on the tethered DNA 78
Figure 5.3 | Quantifying the force-extension curves of DNA incubated with
‘intact’ VP1 proteins ... 80
Figure 5.4 | Measuring the compaction of 1 µm DNA tethers by VLPs 81
Figure 5.5 | Compaction and decompaction events found by our step-finding
algorithm .. 82
Figure 6.1 | Sketch of the folding free-energy landscape of the CD4 hairpin
and the AFS assay ... 94
Figure 6.2 | Quantification the CD4 DNA hairpin state under constant tension
.. 102
Figure 6.3 | Resolving the kinetics of the native and the unfolded state 104
Figure 6.4 | Dynamic force spectroscopy experiments of CD4 hairpins........... 106
Figure 7.1 | CD4–adhesion mechanism .. 116
Figure 7.2 | scAFS on single CD4 cells: manipulation and high-resolution
tracking .. 117
Figure 7.3 | Deciphering unbound, binding and bound cells from their xy-
trajectories and z-elevation ... 119
Figure 7.4 | CD4 cells adhere faster to fibronectin and get immobilized when
activated by IL7 ... 121
Figure 7.5 | CD4 rupture-force calibration and measurement 122
Figure 7.6 | CD4 rupture-force distribution, effect of IL7.................................. 123
Figure 9.1 | Calibration of acoustic forces acting on air-filled microspheres 150
Figure 9.2 | Measuring mechanical properties of surface-attached RBC using silica microspheres.. 154
Figure 9.3 | Cell-adhesion strength and migration measured at 37°C............ 157

List of supplementary figures

Supplementary figure 2.1 | Accuracy of tracking 4.5 μm diameter polystyrene microsphere... 29
Supplementary figure 2.2 | Picture of the AFS device... 29
Supplementary figure 2.3 | Histogram of the measured force distribution... 30
Supplementary figure 2.4 | The stability of the AFS setup...................................... 30
Supplementary figure 2.5 | Selection criteria for single tethers....................... 30
Supplementary figure 2.6 | Typical bond-rupture measurement 31
Supplementary figure 2.7 | Sample heating... 32
Supplementary figure 2.8 | Influence of layer thicknesses................................... 33
Supplementary figure 2.9 | Effect of blurring and aliasing................................. 34
Supplementary figure 3.1 | Picture of the custom-made transformer 54
Supplementary figure 3.2 | Accuracy of tracking at 60 Hz in x, y, and z of a 4.5 μm diameter polystyrene microsphere... 54
Supplementary figure 3.3 | Theoretically predicted resonance frequencies and corresponding force profiles of flow cell 1 with a 200 μm piezo...... 55
Supplementary figure 3.4 | 2 images showing the transparency of the piezo element... 55
Supplementary figure 3.5 | Combination of matching and fluid layer thickness, the piezo and capping layer thickness are set to 200 μm and 175 μm, respectively.. 56
Supplementary figure 3.6 | Time trace showing the z position of the microspheres together with the applied voltage on the piezo............. 56
Supplementary figure 3.7 | Underlying data of Figure 3.4b and c.......................... 57
Supplementary figure 5.1 | DNA binding properties of truncated VP1 pentamers measured with OT... 88
Supplementary figure 5.2 | AFM data of reassembly products of VP1 pentamers incubated with 16 μm lambda DNA... 89
Supplementary figure 5.3 | Artistic impression of the VLP .. 89
Supplementary figure 5.4 | Histogram of the contour length of the DNA incubated with VP1... 90
Supplementary figure 5.5 | Fluorescence data obtained with dual trap optical
Supplementary figure 6.1 | Synthesis of the DNA hairpin ... 110
Supplementary figure 6.2 | Tilting the free-energy landscape according to Bell-Evans theory .. 110
Supplementary figure 6.3 | Dependence of measured resonance frequency on temperature .. 111
Supplementary figure 6.4 | A digital camera image of the field of view 111
Supplementary figure 6.5 | Example force-extension curves of a CD4 unfolding and folding event ... 112
Supplementary figure 6.6 | Calculating the theoretical response time 112
Supplementary figure 7.1 | Description of the single-cell AFS system 131
Supplementary figure 7.2 | x, y and z tracking analysis and resolution 132
Supplementary figure 7.3 | CD4 adhesion kinetics to fibronectin induced assessed by scAFS .. 133
Supplementary figure 7.4 | CD4 adhesion to fibronectin is faster after IL7 activation ... 134
Supplementary figure 7.5 | The CD4 adhesion inhibited by RGD and GRGDS peptides ... 134
Supplementary figure 7.6 | Force exerted by acoustic waves on the CD4 as a function of z position .. 135
Supplementary figure 7.7 | Effect of acoustic forces on unbound and bound CD4 cells ... 136
Supplementary figure 7.8 | Investigating the strength of glass-adsorbed fibronectin ... 137
Supplementary figure 7.9 | CD4 rupture-force measurements shown in Figure 3e, for both donors separately .. 138
Supplementary figure 7.10 | Application of acoustic force ramp to assess cell-adhesion strength ... 139
Supplementary figure 7.11 | Extrapolation of the rupture force from the amplitude abscise value U8 when the cell center is elevated 8 μm above the base line .. 140

List of tables

Table 3.1 | Modeled and calibrated QN values ... 49
Table 6.1 | Fit results of the kinetic rates ... 105
Table 9.1 | Acoustic contrast factor (Φ) for different materials .. 152