Chapter 3 – Antimicrobial activity and carbohydrate metabolism in the bacterial metagenome of the soil-living invertebrate *Folsomia candida*

Agamennone V, LeNgoc G, van Straalen NM, Brouwer A, Roelofs D - submitted
3.1. Abstract

The microbiome associated with an animal’s gut and other organs is considered an integral part of its ecological functions and adaptive capacity. To better understand how microbial communities influence activities and capacities of the host, we need more information on the functions that are encoded in a microbiome. Until now, the information about soil invertebrate microbiomes is mostly based on taxonomic characterization, achieved through culturing and amplicon sequencing. Using shotgun sequencing and various bioinformatics approaches we explored functions in the bacterial metagenome associated with the soil invertebrate *Folsomia candida*, an established model organism in soil ecology with a fully sequenced, high-quality genome assembly. Our metagenome analysis revealed a remarkable diversity of genes associated with antimicrobial activity and carbohydrate metabolism. The microbiome also contains several homologs to *F. candida* genes that were previously identified as candidates for horizontal gene transfer (HGT). We suggest that the carbohydrate- and antimicrobial-related functions encoded by *Folsomia*’s metagenome play a role in the digestion of recalcitrant soil-born polysaccharides and the defense against pathogens, thereby significantly contributing to the adaptation of these animals to life in the soil. Furthermore, the transfer of genes from the microbiome may constitute an important source of new functions for the springtail.

3.2. Introduction

Microorganisms inhabit every type of environment, and many of them live in association with eukaryotic hosts. These microbes they can influence their host’s ecology and evolution by contributing to a variety of processes such as digestion, immunity, and protection from pathogens (Engel and Moran 2013). Hexapods are good models to study host-associated microorganisms: they constitute the most diverse and abundant group of eukaryotic organisms on earth, and in many cases the establishment of specific microbial symbioses may have provided the key for their evolutionary success. Some hexapods depend on microbial symbionts for nutritional or defensive purposes (Kroiss et al. 2010; Douglas 2016), suggesting that a good understanding of their biology should include the study of their associated microbes. This has been described as a “new imperative for the life sciences” (McFall-Ngai et al. 2013).

The majority of microorganisms is not accessible through traditional culturing techniques (Rappé and Giovannoni 2003), and metagenomic sequencing is an appropriate tool to study microbial diversity in different ecosystems (Streit and Schmitz 2004). Metagenomics of insect-associated microbial communities has provided important insights in the interactions between microorganisms and their hosts, including the discovery of metabolites that may find specific biotechnological
applications. For example, metagenomics of a termite’s gut microbiota has elucidated the mechanisms underlying wood degradation in this environment, while also identifying bacterial enzymes with interesting hydrolytic functions (Warnecke et al. 2007). Other studies have found that microbial symbionts of insects are important sources of novel antimicrobials (Wang et al. 2015).

The springtail *Folsomia candida* Willem 1902 (Hexapoda: Collembola) is a small invertebrate living in soil environments, where it feeds on fungal hyphae, decaying organic material and microorganisms. This springtail species has been used as a test organism in ecotoxicology and in ecogenomics for many years (Fountain and Hopkin 2005) and recently its genome and transcriptome have been sequenced (Faddeeva-Vakhrusheva et al. 2017). It is estimated that approximately 2.8% of the genes in the genome of *F. candida* are of foreign origin, having been acquired from bacteria and fungi through HGT (Faddeeva-Vakhrusheva et al. 2017). Many of these genes are involved in carbohydrate metabolism, specifically in cell wall degradation; these functions may aid the animal in extracting nutrients from polysaccharides resulting from the degradation of plant and fungal biomass in the soil. In addition, several foreign genes are involved in antibiotic biosynthesis (Roelofs et al. 2013; Suring et al. 2017). These genes are strongly induced by stress exposure (Nota et al. 2008; Suring et al. 2016), and, while their function still needs to be investigated, it is hypothesized that they may be involved in regulatory mechanisms determining the composition of gut microbial communities (Thimm et al. 1998), or in defense mechanisms protecting these animals from pathogens. Microbial pathogens are abundant in soil environments, and *F. candida* has been shown to be non-susceptible to such pathogens (Broza, Pereira and Stimac 2001; Dromph and Vestergaard 2002). Recently, we have shown that bacteria isolated from springtails are able to suppress a wide array of pathogens, indicating a potential for antimicrobial production (Agamennone et al. 2018). This suggests that gut bacteria may be an important factor interacting with *F. candida*, possibly providing physiological traits advantageous to thrive in a microbe-dominated environment such as the soil.

In this paper, we provide the first functional description of the gut bacterial community of a springtail based on a whole-metagenome sequencing approach. We observed a number of genes involved in carbohydrate metabolism, antibiotic resistance and secondary metabolite biosynthesis. These functions may constitute beneficial traits for an animal living in the soil environment, and may also represent good targets for drug discovery and for the development of biotechnological applications. We also performed a comparative analysis between genes of the gut microbiome and foreign genes in *F. candida*, to identify functions possibly assimilated by the host through HGT.
3.3. Materials and methods

Test organism

Folsomia candida were cultured in plastic boxes with a bottom of plaster of Paris and charcoal. Cultures were kept in climate rooms at 20°C temperature, 75% humidity and a 12 hour light-dark cycle. The springtails were fed dry baker’s yeast (Dr. Oetker, Bielefeld, Germany), and they were starved for 2 days prior to DNA isolation.

Sample preparation and DNA isolation

DNA was isolated from four different source samples. Two samples (Fc1 and Fc3) consisted of guts dissected from *F. candida* individuals; one sample (Fc4) consisted of whole springtails; one sample (Fc2) consisted of a mixture of whole animals and dissected guts. Dissected guts were rinsed in sterile PBS and whole springtails were rinsed three times in sterile water before processing. After the washing steps, DNA was directly isolated from two of the samples (Fc3 and Fc4) while additional steps were applied to prepare samples Fc1 and Fc2. For these two samples, we separated bacterial cells from *F. candida*’s cells by using the method described by Engel *et al.* (2012), with modifications. The samples were crushed in PBS in a 1.5 ml microcentrifuge tube, using a plastic pestle. The samples were then gently vortexed, to encourage separation of cells, before being passed through 20 µm and 8 µm filters in succession. The filtered samples were centrifuged at 10 000 g for 30 min to harvest cells, and the pellet was resuspended in 200 µl TE buffer. For sample Fc2, an additional step with a density gradient was applied. An 80% Percoll solution in 0.15 mol l⁻¹ NaCl was prepared. 1 ml of this solution was placed in a 2 ml microcentrifuge tube and spun at 20 000 g for 20 min to create a gradient. The 200 µl of TE buffer containing the cells was gently placed on top of the gradient, and the tube was centrifuged at 400 g for 20 min. Bacterial cells were then visible as a band and were collected using a pipette. The cells were centrifuged at max speed for 5 min and washed with TE buffer to remove residual Percoll solution. DNA was extracted from all samples using the PowerSoil DNA Isolation Kit (MOBIO Laboratories Inc., Carlsbad, CA, USA) and quantified using a Qubit 2.0 (Invitrogen, Carlsbad, CA, USA).

Library preparation and sequencing

Metagenomic libraries for the four samples were prepared using the TruSeq Nano DNA Library Preparation Kit (Illumina Inc., San Diego, CA, USA) with the following modifications. First, genomic DNA (250 ng) was sheared in a Covaris S2 (Covaris Inc., Woburn, MA, USA) with the following settings: duty cycle 10%, intensity 5.0, bursts per second 200, duration 300 s, mode frequency sweeping, power 23W, temperature 5.5°C to 6°C. Fragmented DNA was cleaned using Agencourt AMPure XP beads (Beckman Coulter Inc., Brea, CA, USA) to remove short fragments. After
end repair, cleaning was performed again to select the appropriate library size (180 bp). Then, 3’ end adenylation and adapter ligation were performed, and the ligated fragments were subjected to two rounds of clean-up. PCR was used to enrich the ligated DNA fragments. The PCR program started with 3 min at 98°C, followed by eight amplification cycles (20 s at 98°C, 15 s at 60°C and 30 s at 72°C) and a final extension step of 5 min at 72°C. The amplified library was cleaned and its quality was assessed with a Bioanalyzer on a DNA 7 500 chip (Agilent Technologies, Santa Clara, CA, USA). Finally, libraries were equimolarly combined and the concentration of the final pool was checked using a High Sensitivity DNA chip. 10 pmol of barcoded DNA was sequenced on an Illumina HiSeq 2 500 using 125 base, paired end run mode.

Data analysis

Raw reads of the four samples obtained from the sequencer were trimmed using Trimmomatic version 0.36 (Bolger, Lohse and Usadel 2014) to remove adapters and low quality reads, with the following options: ILLUMINACLIP:TruSeq3-PE.fa:2:30:10, LEADING:3, TRAILING:3, SLIDINGWINDOW:4:20, MINLEN:36. Metaphlan2 was used to characterize the taxonomic profile of the metagenome (Truong et al. 2015). Bowtie2 (Langmead and Salzberg 2012) was used to create reference genomes for Folsomia candida (BioProject accession: PRJNA299291) (Faddeeva-Vakhrusheva et al. 2017), Wolbachia pipientis (BioProject accession: PRJNA300838) (Faddeeva-Vakhrusheva et al. 2017), Saccharomyces cerevisiae (Assembly accession: ASM105121v1) and Homo sapiens (Assembly accession: GRCh38.p7), and to align and identify reads originating from these organisms in the metagenome. SAMtools was used to remove aligned reads from the metagenome. This program was also used to merge all the four sequencing samples together for comprehensive bioinformatic analysis (Li et al. 2009). Only paired ends were extracted with Bedtools (Quinlan and Hall 2010). FastQC (Andrews 2010) was used to check the quality of the reads at different processing stages. Assembly was done using SPAdes version 3.9.0 with the (--meta) setting for metagenomic and k-mer values 21, 41, 65, 75, 87, 91, 95. This range of K-mer was found to give the best assembly result (Bankevich et al. 2012). The quality of contigs was checked with Quast 4.2 (Gurevich et al. 2013). Prodigal (version 2.6.3) was used for genes prediction with the option -m -p meta for predicting metagenomic genes with no gaps (Hyatt et al. 2010). Taxonomic assignment was done using Metaphlan2. The predicted proteins were uploaded to GhostKOALA webservice for KEGG assignment (Kanehisa, Sato and Morishima 2016). For functional annotation, blastp was performed against the Swiss-Prot, refseq and NR databases, with a threshold e-value of 1e-6. InterProScan5 was used with the addition of panther database to identify protein domains using HMM model (Quevillon et al. 2005). Blast2GO was used to integrate the blastp and interproscan results for further improving functional
annotation (Götz et al. 2008). HMMER version 3.0 was used with CAZy database (version 6) using HMM model to identify carbohydrate-active genes (Lombard et al. 2014). These genes were subjected to filtering using an e-value threshold of 1e-5 for alignments over 80aa, and a threshold of 1e-3 for shorter alignments. The CARD database was used to identify resistance genes (Jia et al. 2017). All the amino acid sequences of anti-resistance proteins were merged and subjected to blastp with a threshold e-value of 1e-6. All the sequences with more than 60% identity with their top blast hit were collected. Descriptions of the ARO terms was obtained from the online database (https://card.mcmaster.ca/). The KEGG, Pfam and NR databases were used to confirm the accuracy of the functional annotations obtained with CAZY and CARD. Secondary metabolite biosynthetic gene clusters were identified for contigs larger than 3 000 bp using the antiSMASH2 program (Weber et al. 2015). To identify homologies and orthologies between the genome of F. candida and the metagenome, a reciprocal blast was performed. The metagenomic protein sequences were blasted against the host proteins, and vice versa. Sequences that were top hits of each other were extracted using a homemade script, and those matching F. candida's foreign genes were identified (Faddeeva-Vakhrusheva et al. 2017).

Data deposition
The raw sequencing data was deposited in NCBI's Sequence Read Archive (SRA) under accession number SRP149127. The Whole Genome Shotgun (WGS) project was deposited at DDBJ/ENA/GenBank under accession number QIRE0000000. The version described in this paper is version QIRE01000000.

3.4. Results
Sequencing results, assembly and annotation
Table 1 summarizes the sequencing results by indicating, for each sample, the preparation method used and the number of raw and filtered reads obtained. Approximately 90% of the reads passed the trimming step. Most of these reads (more than 97%) originated from the host Folsomia candida, and were removed during the next filtering step along with reads from Wolbachia pipiens, Saccharomyces cerevisiae and human DNA. The proportion of reads of prokaryotic origin was slightly higher in dissected gut samples compared to whole springtail samples (compare sample Fc3 to Fc4), and it was much higher in samples treated with the cell-separation method compared to untreated samples (compare sample Fc2 to Fc4, and Fc1 to Fc3). When combining dissection and cell-separation, the proportion of prokaryotic reads increased by a factor 5 (compare sample Fc1 to Fc4). The lowest proportion of Wolbachia was observed in the FC3 sample (untreated dissected guts).
Table 1. Preparation method and number of raw and filtered reads obtained for each sample.

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Sample type</th>
<th>Preparation method</th>
<th>Raw reads</th>
<th>Reads after trimming</th>
<th>Reads after bowtie</th>
<th>Filtered reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fc1</td>
<td>Dissected guts (~1 000)</td>
<td>Filter and DNA isolation</td>
<td>138 555 106</td>
<td>121 428 759 (87.6%)</td>
<td>3 605 008 (2.6%)</td>
<td>5 806 361 (1.23%)</td>
</tr>
<tr>
<td>Fc2</td>
<td>Whole springtails (300) and dissected guts (~400)</td>
<td>Filter + Percoll and DNA isolation</td>
<td>133 586 006</td>
<td>116 187 374 (87%)</td>
<td>1 811 553 (1.36%)</td>
<td></td>
</tr>
<tr>
<td>Fc3</td>
<td>Dissected guts (250)</td>
<td>Direct DNA isolation</td>
<td>103 864 717</td>
<td>93 503 412 (90%)</td>
<td>535 052 (0.52%)</td>
<td></td>
</tr>
<tr>
<td>Fc4</td>
<td>Whole springtails (60)</td>
<td>Direct DNA isolation</td>
<td>94 686 416</td>
<td>84 746 773 (89.5%)</td>
<td>372 193 (0.39%)</td>
<td></td>
</tr>
</tbody>
</table>

For each sample, the number of raw reads and the numbers of reads surviving each processing step is indicated. The percentages in bracket indicate the numbers of reads after each step relative to the number of raw reads.

A total of 5 806 361 high quality paired reads was used for assembly, which resulted in 107 138 contigs with a total length of 69 Mb (Table 2). Prodigal predicted 147 851 protein-coding sequences (CDSs), and 133 594 of these were annotated in Swiss-Prot (Supplementary File 1). 132 657 genes (99%) were of bacterial origin, 665 genes were annotated as Eukaryota, 209 as viruses, 33 as Archaea, 30 as vectors or uncultured microorganisms and 14 257 were unassigned. Supplementary Figure 1 shows the length distribution of the contigs. The 20 longest contigs (more than 100 000 bp each) were assigned either to either *Pseudomonas* or *Microbacterium*.

Table 2. Results of assembly and annotation

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of contigs</td>
<td>107 138</td>
</tr>
<tr>
<td>Largest contig (bp)</td>
<td>1 306 495</td>
</tr>
<tr>
<td>Total length (bp)</td>
<td>69 108 988</td>
</tr>
<tr>
<td>N50 (bp)</td>
<td>2 514</td>
</tr>
<tr>
<td>N75 (bp)</td>
<td>853</td>
</tr>
<tr>
<td>L50</td>
<td>1 835</td>
</tr>
<tr>
<td>L75</td>
<td>10 181</td>
</tr>
<tr>
<td>GC%</td>
<td>60.2%</td>
</tr>
<tr>
<td>Gene count</td>
<td>147 851</td>
</tr>
<tr>
<td>Genes with function prediction</td>
<td>133 500</td>
</tr>
</tbody>
</table>
Taxonomic classification

The dominant bacterial taxa in the metagenome of *F. candida* were Proteobacteria (50% of the reads), Actinobacteria (32%), Bacteroidetes (12%) and Firmicutes (6%) (Figure 1). These phyla constituted 99.5% of all the reads. 35 additional phyla were found in the remaining 0.5% of reads. 826 bacterial genera (excluding singletons) were identified. 23 of these genera covered 83% of the reads. The most abundant genus was *Microbacterium* (Actinobacteria, 13.1% of the reads), followed by *Paraburkholderia* (Betaproteobacteria, 7.2%), *Pseudomonas* (Gammaproteobacteria, 6.3%), *Staphylococcus* (Firmicutes, 5.6%), *Sphingopixis* (Alphaproteobacteria, 5.5%), *Stenotrophomonas* (Gammaproteobacteria, 5.4%), *Pseudoxanthomonas* (Gammaproteobacteria, 5.4%), *Gordonia* (Actinobacteria, 4.1%), *Burkholderia* (Betaproteobacteria, 3.4%) and 14 other genera each with a relative abundance higher than 1%. The overview of the identified taxonomic groups at the phylum, class and genus level is give in Supplementary Figure 2.

Figure 1. Phylogenetic distribution of the bacterial community in the metagenome of *F. candida*. The size of the circles is proportionate to the abundance of the taxa. The phylogeny was built based using Metaphlan on high quality raw reads.
The metagenome of *Folsomia candida*

Overall functional analysis

Comparison of the genes with the KEGG database recovered a number of functions. The most abundant functional categories were associated with membrane transport, signal transduction, carbohydrate and amino-acid metabolism, and the genetic information processes replication and repair and translation (Figure 2A).

Mapping of the functions on the phylogenetic tree shows that most predicted genes within any functional category are assigned to few bacterial species, namely the Proteobacteria *Acinetobacter johnsonii*, *A. lwoffii*, *Pseudomonas stutzeri*, *Paraburkholderia phytofirmans*, *Azoarcus toluclasticus*, *Sphingopixis alaskensis*, the Actinobacteria *Gordonia araii*, *Cutibacterium acnes* and three *Propionibacterium* species, and the Firmicutes *Staphylococcus equorum* (Figure 2B). The next sections present the functions related to carbohydrate metabolism, secondary metabolite production and antibiotic resistance identified in *F. candida*’s microbiome.
Carbohydrate metabolism was investigated by comparing predicted genes in *F. candida*’s microbiome with the carbohydrate-active enzymes (CAZY) database. 2004 genes were predicted to code for enzymes involved in carbohydrate metabolism. 1988 (99.2%) of these genes were of bacterial origin and they mostly originated from Proteobacteria (43%) and Actinobacteria (36%). The complete list of CAZymes is presented in Supplementary File 2, and an overview of the pathways involved in sucrose and starch metabolism is given in Figure 3.
The metagenome of *Folsomia candida*

Figure 3. Diagram of the pathways involved in starch and sucrose metabolism. Pink boxes indicate the genes identified in the microbiome.

The carbohydrate-related genes were assigned to five CAZy classes and three modules (Figure 4). 664 genes were identified as glycosyltransferases (GT, 33.1% of the total), 598 as glycoside hydrolases (GH, 30%), 420 as carbohydrate esterases (CE, 21%) and 206 as carbohydrate-binding modules (CBM, 10.1%). The GT, GH and CE CAZymes classes were overrepresented in the metagenome compared to the genome of *F. candida* (data not shown). Instead, enzymes with a carbohydrate-binding module (CBM) were more abundant in the genome of the host. 23 of the genes encoding carbohydrate-active enzymes had a best reciprocal blast hit against foreign genes in the genome of *F. candida*.

Figure 4. Column chart indicating the distribution of CAZy domains among the bacterial phyla retrieved in the metagenome. CBM: carbohydrate-binding module; CE: carbohydrate esterase; GH: glycoside hydrolase; GT: glycosyltransferase; AA: auxiliary activity; PL: polysaccharide lyase.
Secondary metabolites

We screened the gut microbiome for the presence of secondary metabolite biosynthesis pathways related to antimicrobial activity. In total, 166 pathways were identified, 96 of which are putatively involved in the production of an unknown type of secondary metabolite (Table 3). 32 pathways are related to saccharide or fatty acid containing metabolites, while one cluster showed similarity to metabolites with both a saccharide and fatty acid component. Thirteen clusters are represented by non-ribosomal protein synthases (NRPS), which encode multi-domain and multifunctional enzymes involved in the biosynthesis of a large class of biologically active natural products. Another group of ribosomally-synthesized antimicrobial peptides, bacteriocins, are represented by four biosynthetic clusters. We also identified known antibiotics classes among the antismash clusters, namely rifamycin, spectinomycin, chalcomycin, and the antifungal antibiotic bacillomycin.

Table 3. Summary of antiSMASH results

<table>
<thead>
<tr>
<th>Cluster type</th>
<th>Number of contigs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arylpolyene</td>
<td>1</td>
</tr>
<tr>
<td>Bacteriocin</td>
<td>4</td>
</tr>
<tr>
<td>Cf_fatty_acid</td>
<td>14</td>
</tr>
<tr>
<td>Cf_fatty_acid-Cf_saccharide</td>
<td>1</td>
</tr>
<tr>
<td>Cf_putative</td>
<td>96</td>
</tr>
<tr>
<td>Cf_saccharide</td>
<td>18</td>
</tr>
<tr>
<td>Cf_saccharide-Cf_fatty_acid</td>
<td>1</td>
</tr>
<tr>
<td>Ectoine</td>
<td>1</td>
</tr>
<tr>
<td>Hserlactone</td>
<td>3</td>
</tr>
<tr>
<td>Nrps</td>
<td>13</td>
</tr>
<tr>
<td>Nrps-Arylpolyene</td>
<td>1</td>
</tr>
<tr>
<td>Other</td>
<td>2</td>
</tr>
<tr>
<td>Siderophore</td>
<td>2</td>
</tr>
<tr>
<td>T1pks</td>
<td>1</td>
</tr>
<tr>
<td>T1pks-Nrps</td>
<td>1</td>
</tr>
<tr>
<td>T3pks</td>
<td>1</td>
</tr>
<tr>
<td>T3pks-Cf_saccharide</td>
<td>1</td>
</tr>
<tr>
<td>Terpene</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL</td>
<td>166</td>
</tr>
</tbody>
</table>

For each type of secondary metabolite cluster, the number of contigs in which the cluster was detected is indicated. The complete output of the antiSMASH analysis is give in Supplementary File 3.
Antibiotic resistance

Predicted genes were mapped against the CARD database to determine the occurrence of antibiotic resistance genes (ARGs) in the gut microbiome of *F. candida* (Jia *et al.* 2017). The analysis recovered 811 genes, corresponding to 209 unique terms in the CARD database. Figure 5 provides an overview of the identified antibiotic resistance mechanisms and of the drug classes to which resistance is conferred. The complete list of genes with accession and classification in CARD is provided in Supplementary File 4. Most antibiotic resistance mechanisms retrieved involved antibiotic target alteration (52%), followed by efflux processes (33%) and antibiotic target replacement (8%). The most abundant class of antibiotics associated with resistance was that of fluoroquinolones (16%), followed by aminocoumarins (10%), peptide antibiotics, lipopeptide antibiotics and tetracyclines (9% each), macrolides, beta-lactams and rifamycin (5% each). Several classes of ARGs involved in resistance to clinically relevant antibiotics, such as β-lactams and tetracycline, were identified (Figures 5 and 6).

Figure 5. Overview of the drug mechanisms (left) and classes (right) associated with antibiotic resistance recovered in the metagenome of *F. candida*. The data was obtained by mapping predicted genes against the CARD database and by extracting the “resistance mechanism” and “drug class” categories from the results.
Figure 6. Genes from the *F. candida*’s metagenome predicted to be involved in β-lactam resistance are represented as colored items in KEGG’s β-lactam resistance pathway.

Host-microbiome interaction and horizontal gene transfer

A reciprocal blast was performed between the *F. candida* genome and the metagenome, to identify homologies between the springtails’ genome and metagenome. The list of best reciprocal blast hits was then compared with the list of 809 foreign genes in the genome of *F. candida*, to identify genes that may have undergone HGT from the gut microbiome into the host genome.

1 204 genes in the microbiome had a best reciprocal blast hits in the host genome. Most of these genes are involved in basic metabolic functions that are highly conserved across most life forms, such as transcription, translation, fatty acid metabolism, chaperone activity, amino acid biosynthesis, nucleic acid biosynthesis and ATP biosynthesis. Of these 1 204 genes, 113 had a best reciprocal blast hit against one of the 809 foreign genes in *F. candida* (Figure 7). The complete list of these 113 genes is given in Supplementary File 5. Taxonomic and functional annotation suggests that *Pseudomonas*, *Microbacterium* and *Gordonia* may be the potential donors of 26, 12 and 9 genes respectively, accounting for almost 50% of them (Supplementary File 5). 23 of the 113 genes are CAZymes. Furthermore, we
identified a non-ribosomal peptide synthase potentially involved in bacteriocin synthesis, a polyketide synthase and several enzymes associated with detoxification, such as monooxygenases ABC transporters, glutathione-S-transferases, and copper oxidase. Most of the 71 remaining annotated genes are related to basic metabolic processes.

Figure 7. Venn diagram showing overlap (best-reciprocal blast hits) between proteins from F. candida’s genome (light-blue) and proteins from its gut microbiome (green). The red circle contains the horizontally transferred genes, and the number in red indicates the overlap with the gut microbiome.

3.5. Discussion

Sequencing results, assembly and annotation

In this study, we applied both dissection and a cell separation method to enrich the bacterial component of springtail samples, with the aim of increasing the proportion of bacterial reads after sequencing. The cell separation method was developed by Engel et al. (2012) to enrich the bacterial fraction of a sample, and it was more effective than dissection when applied to F. candida. Although dissection normally helps to effectively target the microbial component (Gontang et al. 2017), this may be more complicated in microarthropods such as springtails because of their small size. A combination of dissection and cell separation method proved to be most effective in increasing the proportion of prokaryotic reads. Still, more than 97% of the reads in any sample belonged to the host Folsomia candida, which is probably not surprising: recovery of genetic material from symbiotic microorganisms can be problematic in microhabitats such as insect guts, due to the much higher abundance of host DNA (Paula et al. 2016).

Cell separation was also expected to reduce the amount of Wolbachia DNA in the samples. Wolbachia is an endosymbiont that dominates the bacterial population in F. candida (Agamennone et al. 2015). Because of the intracellular location of Wolbachia (gut epithelium, ovaries and brain), a method that separates the eukaryotic cells from the prokaryotic ones without lysing them should be effective in
reducing the amount of host and *Wolbachia* DNA in the same step. However, in this study dissection was more effective than cell separation in reducing the occurrence of the endosymbiont in the samples, probably because it allowed to discard organs containing high amounts of *Wolbachia*.

The number of contig and total length after assembly are comparable to other soil invertebrate-associated metagenomes (Suen et al. 2010; Cheng et al. 2013; He et al. 2013). Although this was not attempted here, it may be possible to recover the genome of one or more species using the data collected in this study (Sangwan, Xia and Gilbert 2016).

Taxonomic classification

With 826 bacterial genera identified, the level of diversity in *F. candida* approaches that described in the hindgut of termites, wood-feeding insects that have one of the most complex microbiota of any animal group (Bourguignon et al. 2018). Other soil invertebrates are characterized by comparable or even higher levels of microbial diversity. For example, Pass et al (2015), studied the microbiome of the earthworm *Lumbricus rubellus* and found no less than 9 120 host-specific OTUs. This very diverse community was dominated by Proteobacteria and Actinobacteria, totalling 80% of all OTUs, very similar to the situation in *F. candida*. High diversity was also observed in the gut of two cockroach species, with approximately 1 000 OTUs (Berlanga et al. 2016), whereas slightly lower counts were detected in the ant *Cephalotes varians* (445 OTUs), in the compost worm *Eisenia fetida* (338 OTUs) and in the isopod *Armadillidium vulgare* (153 OTUs) (Kautz et al. 2013; Dittmer et al. 2016; Liu et al. 2018).

The bacterial community in *F. candida* was dominated by species belonging to the phylum Proteobacteria, and within this group members of the Gammaproteobacteria were particularly abundant (21% of the reads). Proteobacteria, a large taxon of functionally diverse bacteria, dominate the microbiome of terrestrial insects and other soil invertebrates such as earthworms, nematodes and isopods (Yun et al. 2014; Pass et al. 2015; Berg et al. 2016; Bouchon, Zimmer and Dittmer 2016; Esposti and Romero 2017). *Pseudomonas*, one of the most abundant bacteria detected in *F. candida*, is commonly found in the microbiome of soil arthropods like termites, ants and beetles and in their environment (Aylward et al. 2014; Esposti and Romero 2017), and was also identified in isopods and nematodes (Dittmer et al. 2016; Liu et al. 2018). *Pseudomonas*, together with *Rickettsia* and *Chryseobacterium*, was also the most abundant OTUs in the microbiome of the springtail *Orchesella cincta* (Bahrndorff et al. 2018). Another abundant bacterium in *F. candida* was *Paraburkholderia*. This genus includes many soil species, a few of which are used as plant probiotics thanks to their growth-promiting and possibly defensive properties (Rahman et al. 2018). Other members of the Proteobacteria identified in *F. candida*’s microbiota were
The metagenome of *Folsomia candida*

Sphingopixis, Stenotrophomonas, Pseudoxanthomonas, Burkholderia, all of which were detected in soil invertebrates (worms, cockroaches, termites, ants and beetles) (Esposti and Romero 2017). The most abundant bacterium in *F. candida* was *Microbacterium*. Members of the Microbacteriaceae have been previously identified in different species of beetles (Kelley and Dobler 2011; Scully *et al.* 2013), and Actinobacteria in general (although in low amounts) have been found in cockroaches (Gontang *et al.* 2017) and in a few species of insects (ants, beetles and termites) characterized by nutritional symbioses with fungi (Kautz *et al.* 2013; Aylward *et al.* 2014). Actinobacteria are also one of the dominant bacterial groups in other soil invertebrates such as earthworms (Pass *et al.* 2015; Ma *et al.* 2017; Liu *et al.* 2018).

The observed bacterial diversity in *F. candida* is comparable to that previously detected by 16S high-throughput sequencing in the same lab-reared population of springtails (Agamennone *et al.* 2015). However, the taxonomic distribution between the two studies is very different. Based on 16S sequencing, *Pseudomonas* was the most abundant bacterial genus with 42% of the reads (Agamennone *et al.* 2015). Nine other dominant OTUs were identified, including *Bacillus* (19% of the reads), a member of the Actinomycetales (9%), *Escherichia sp.* (4%), and *Ochrobactrum sp.* (3%). *Microbacterium* accounted only for 0.3% of the read, and *Paraburkholderia* was not identified. This discrepancy can be explained by the difference in sequencing methods applied. High-throughput amplicon sequencing is subjected to PCR bias, with differences in the amplification efficiency of DNA from different bacterial species; in shotgun metagenomic sequencing, on the other hand, biases can be caused by using all genes, rather than only markers genes, for taxonomic assignment, possibly leading to misidentifications (Tessler *et al.* 2017).

Overall functional analysis

The majority of reads in *F. candida*’s metagenome originated from pathways involved in membrane transport, carbohydrate and amino acid metabolism, replication, translation and repair. The abundance of genes involved in carbohydrate and amino acid metabolism may suggest a nutritional role of the microbiota. Carbohydrate-related functions are often enriched in the gut microbiome of soil invertebrates like beetles, nematodes and isopods (Cheng *et al.* 2013; Scully *et al.* 2013; Brune and Dietrich 2015; Bouchon, Zimmer and Dittmer 2016; Smith *et al.* 2017), some of which rely on symbiotic microbes for the breakdown of long polymers such as lignin, cellulose and other plant-derived products (Cheng *et al.* 2013; Brune and Dietrich 2015). *F. candida* is an euedaphic springtail species whose diet includes decaying plant material, and it could benefit from the presence of such catalytic functions in its microbiome. Recently, the microbiota of another springtail species, the epiedaphic *Orchesella cincta*, was studied, and some of the main functions predicted based on the microbial community structure were related to the breakdown of dietary components and of plant secondary metabolites (Bahrndorff...
et al. 2018). Amino acid-related functions may also be beneficial for the host. Some intracellular endosymbionts biosynthesize essential amino acids that are lacking in their diet of their host (Douglas 2016), and gut bacteria may exert similar functions (Leitão-Gonçalves et al. 2017). A contribution to the host’s nutrition may also explain the abundance of functions related to membrane transport in F. candida. Transport allows host-symbiont exchanges and therefore it constitutes one of the most important functions in the maintenance of the symbiosis with bacteria providing nutrients (Charles et al. 2011).

In accordance with the taxonomic assignment, most genes in the above discussed categories were predicted to belong to Proteobacteria and Actinobacteria species. Many genes were annotated to Acinetobacter johnsonii, a member of the Gammaproteobacteria that has been described as an opportunistic pathogens for animals as well as a possible reservoir of antibiotic resistance genes (Montaña et al. 2016; Tian et al. 2016). Acinetobacter was also a dominant genus in the microbiome of the earthworm Eisenia fetida (Liu et al. 2018), and it was identified in other soil invertebrates such as the Longitarsus beetle and the isopod Armadillidium vulgare (Kelley and Dobler 2011; Dittmer et al. 2016). Many functions were also assigned to the genus Propionibacterium. This group of Actinobacteria it includes species with good probiotic potential due to their capacity to modulate microbiota, gut metabolic activity and the immune system (Cousin et al. 2010). Interestingly, the immunomodulatory and anti-inflammatory properties of Propionibacterium have been observed not only in human and mouse models (Cousin et al. 2010), but also in soil invertebrates (Kwon, Lee and Lim 2016). An abundance of genes was taxonomically assigned to a few other groups, among which Gordonia, a genus of Actinomycetes including many symbionts of terrestrial invertebrates (Sowani, Kulkarni and Zinjarde 2018), and Pseudomonas, commonly found in soils and in soil invertebrates (Esposti and Romero 2017).

Carbohydrate metabolism

Carbohydrate-degrading enzymes are commonly found in the digestive tract of these organisms, for example in the bovine rumen (Jose et al. 2017), in the gut of woodfeeding insects such as termites and woodwasps (Warnecke et al. 2007; Adams et al. 2011) and in the microbial community of fungus gardens associated with leaf-cutter ants (Aylward et al. 2012). These enzymes are often of microbial origin, suggesting that herbivorous animals can exploit the catalytic activities of microbial symbionts to access nutrients stored in plant biomass (Suen et al. 2010). In termites, the symbiotic relationship with a complex community of bacteria, archaea and protists in the gut enables the digestion of lignocellulose, conferring these insects a unique ecological position in tropical and subtropical ecosystems (Brune and Dietrich 2015). Whether similar relationships between Collembola and their microbiome exist is unknown at the moment, but microbial functions related to carbohydrate
metabolism are likely to significantly contribute to the ecological role of springtails as members of the soil decomposer community.

Warnecke et al. found 700 glycoside hydrolase (GH) catalytic domains found corresponding to 45 CAZY families (Warnecke et al. 2007). In the microbiome of F. candida, we identified a comparable number of genes encoding for enzymes with a capacity to break down long chain carbohydrates such as starch, lignin and cellulose. In nature, these enzymes may aid F. candida in extracting nutrients from the plant biomass that constitutes part of its diet, as was suggested for the springtail O. cincta (Bahrndorff et al. 2018).

A large number of glycoside hydrolases was also observed among F. candida foreign genes (Faddeeva-Vakhrusheva et al. 2017). Interestingly, some of the foreign genes that were also best reciprocal hits between the genome and the metagenome of F. candida were identified as CAZymes (Supplementary File 2). HGT of cellulose-degrading enzymes has been previously observed in plant-feeding insects (Pauchet and Heckel 2013) and may be an important mechanism providing soil invertebrates with advantageous traits for living in the soil (Eyun et al. 2014).

Secondary metabolites

The microbiome of F. candida contained several pathways responsible for the biosynthesis of secondary metabolites. This is a class of compounds that are often involved in competition and interaction between species and that may find applications in the biotechnological and medical sector. The main contributors to the identified pathways seem to be Gordonia, Pseudomonas fluorescens, Bacillus and Streptomyces.

A few of the identified pathways were represented by NRPSs, a class of enzymes responsible for the biosynthesis of natural products with a broad range of biological activities and pharmaceutical properties. Cluster 10 and 28 show resemblance with an NRPS producing pyoverdines, siderophores well known for their high affinity for Fe^{3+} under low iron availability (Schalk and Guillon 2013). Another NRPS involved in the biosynthesis of the siderophore nocobactin was identified in antismash cluster 95. Three clusters show homology to NRPSs involved in antibacterial and antifungal activity. Cluster 31 shows substantial similarity (47%) to an NRPS producing orfamide, a compound of bacterial origin with antifungal properties and with good potential as biocontrol agent against fungal pathogens (Ma et al. 2016). Cluster 130 represents an NRPS involved in microsclerodermin biosynthesis, an antifungal compound produced by a marine sponge (Zhang et al. 2012). A recent study also showed that this compound has properties of pharmaceutical relevance, as it can inhibit NF\kappaB transcription in a human pancreatic cell line leading to apoptosis (Guzmán et al. 2015). Finally, the NRPS identified in cluster 48 showed similarity to the NRPS involved in biosynthesis of the antibiotic caryoyencin, a compound
originally isolated from a plant pathogen. Very recently it has been shown that this compound is produced by a symbiont of a herbivorous beetle, protecting its eggs against detrimental microbes (Flórez et al. 2017).

We also identified a number of bacteriocins, a class of compounds with potential as natural food preservative (Gálvez et al. 2007). Many bacteriocins are biosynthesized by lactic acid bacteria, and in Folsomia’s gut microbiome these clusters are homologous to Pseudomonas fluorescens and Gordonia effusa.

Several other interesting biosynthesis clusters with functions related to medical applications were found, such as lymphostin, a known immunosuppressant isolated from Streptomyces (Aotani, Nagata and Yoshida 1997), and chartreusin, that exerts strong chemotherapeutic activity against various tumor cell lines (Xu et al. 2005). We also identified a mangotoxin biosynthesis cluster. Mangotoxin causes apical necrosis of plant tissue, which may aid in food processing and digestion by the host (Arrebola et al. 2003). Biosynthesis of the volatile compound homoserine lactone (hserlactone) may be related to communication between fungi and bacteria (Shiner, Rumbaugh and Williams 2005), while ectoine may serve as osmolyte conferring resistance to salt, dessication and temperature stress (Mosier et al. 2013).

Antibiotic resistance

The distribution of antibiotic resistance genes (ARGs) in microbiomes sampled across environments and organisms is still not well understood. A large-scale metagenomics study conducted by Nesme et al. (2014) indicated that soils harbor most classes of ARGs. In the gut microbiome of F. candida, we identified over 200 unique terms associated with antibiotic resistance distributed over more than 800 genes, more than twice the amount detected in human microbiomes and almost eight times the amount detected in the giant African snail Achatina (Fitzpatrick and Walsh 2016). This might be explained by the intimate association between the springtail and the soil ecosystem.

The presence of ARGs does not indicate whether Folsomia’s gut is a source or a sink of antibiotic resistance. Instead, it is more informative to investigate ecological connectivity with antibiotic biosynthesizing bacteria. Such connectivity may be very important in shaping a balanced gut microbiome community structure supporting host health. In this context, it is noteworthy that we identified a substantial amount of β-lactamases, probably resulting from the selective pressure caused by β-lactam production by the host itself (Suring et al. 2017). For example, Bacillus toyonensis, a member of F. candida’s microbiota, is highly resistant to β-lactams (Janssens et al. 2017). Furthermore, interactions between bacterial communities with antibiotic biosynthesis capacity and communities showing resistance to such antibiotics can also be expected. Observations from this and other studies indicate a potential for Pseudomonas, Streptomyces and Gordonia strains isolated from F. candida to
the metagenome of *Folsomia candida*

synthesize antibiotics (see section above, Supplementary File 3 and Agamennone et al. 2018), while *Streptomyces, Enterococcus* and *Staphylococcus* are abundant among ARG-containing bacterial strains in *Folsomia’s* gut (Supplementary File 4). This supports the notion that antibiotics regulate the homeostasis of microbial communities, and may even be beneficial for commensal bacteria in environments such as the animal gut (Linares et al. 2006). Finally, Engel & Moran (2013) suggested that this balance may be important in facilitating colonization resistance against parasites and bacteria pathogenic to the host. The data provided in this study will be highly relevant in formulating concrete hypotheses to investigate the ecological connectivity of antibiotic-biosynthetic and ARG-containing bacteria in gut microbiomes.

Host-microbiome interaction and horizontal gene transfer

A previous study had identified 809 foreign genes in *F. candida’s* genome (Faddeeva-Vakhruhseva et al. 2017). We found 113 best reciprocal blast hits to these genes within the gut microbiome of the springtail, possibly indicating HGT from the gut microbiome to the host genome. The foreign genes without a best reciprocal blast hit within the gut microbiome may have been transferred from other microbial sources, for example the over 30% of foreign genes that had a top blast hit with fungal donors (Faddeeva-Vakhruhseva et al. 2017). Alternatively, other genes may have been transferred to the host genome early in the evolution of *F candida*. In that case, the accumulation of mutations over time would lead to low similarity with members of the microbiome, preventing the identification of the possible source of these genes. A number of foreign genes with best reciprocal blast hit with genes in the microbiome were CAZymes, involved in the degradation of polymers such as cell wall components. Gene transfer of carbohydrate-active enzymes may increase the capacity of *F. candida* and other soil invertebrates to extract nutrients from their diet (Faddeeva-Vakhruhseva et al. 2016), thereby contributing to their adaptation to life in the soil.

Horizontal gene transfer from prokaryotes to eukaryotic host genomes has become a highly controversial topic. There are claims that gene transfer only occurs between hosts and mitochondria, plastids and endosymbionts, and that other HGT cases are the result of differential loss of ancestral genes, that originated prior to the last eukaryotic common ancestor (Martin 2017). However, this hypothesis overestimates gene contents of ancestral genomes, and is therefore unlikely (Leger et al. 2018). The foreign genes in *Folsomia’s* genome are most likely acquired via horizontal gene transfer (Faddeeva-Vakhruhseva et al. 2017). Here, we suggest that part of these HGT events could have taken place by interaction with the gut microbiota. In the gut environment host and microorganisms maintain an intimate physical association with many opportunities for interaction, thus increasing chances for gene transfer to occur (Huang 2013). Two recent studies provide evidence for bacterial DNA transfer...
into somatic human cells (Schroder et al. 2011; Riley et al. 2013) through bacterial type IV secretion system (T4SS). This system is known to mediate interbacterial conjugative DNA transfer and transkingdom protein transfer into eukaryotic host cells during bacterial pathogenesis. Schroder et al. showed that T4SS-dependent DNA transfer into host cells may occur naturally during human infection with Bartonella (Schroder et al. 2011). Furthermore, Ridley et al. identified a Pseudomonas strain as a donor of foreign DNA detected in human stomach carcinomas (Riley et al. 2013). It is still unclear why functions that can be provided by the microbiome would be incorporated and maintained in F. candida’s genome. In the case of foreign genes involved in lignocellulose breakdown, we speculate that such functions, when controlled by the host, could provide fitness advantage in terms of energy balance and nutrient acquisition. Similarly, transferred genes involved in detoxification may protect the host for natural toxins that are quite common in the soil. These and other hypotheses should be tested by conducting gene knockdown and other experiments.

We have provided an insight in the functional metagenome of a Collembolan species, F. candida. More than 99% of the biodiversity is attributed to four phyla, that are also representative for soil microbial ecosystems. This confirms the interaction of F. candida with its surrounding soil ecosystem. A broad spectrum of gene functions was identified through several annotation approaches, most notably related to carbohydrate metabolism, antibiotic resistance and secondary metabolite production. These functions were presented and discussed in the context of their ecological relevance and in the light of potential biotechnological applications. Finally, we presented data suggesting that the gut microbiome may have been a source of genes acquired by the host through HGT. These genes may have conferred a fitness advantage to the springtail, probably during adaptive evolution in the soil ecosystem.
Supplementary Information

Supplementary Figure 1: Contig length distribution

Supplementary Figure 2: Identified taxonomic groups

Supplementary File 1: List of all the predicted genes, including taxonomies and functional annotations*

Supplementary File 2: Complete list of the genes involved in carbohydrate metabolism*

Supplementary File 3: Complete list of antiSMASH results*

Supplementary File 4: Complete list of the predicted antibiotic resistance genes*

Supplementary File 5: Complete list of best reciprocal hits between *Folsomia candida*’s genome and metagenome that are also HGT*

* available online at the VU University Library: www.ub.vu.nl
Supplementary Figure 1. Contig length distribution.
The metagenome of *Folsomia candida*

Supplementary Figure 2. Identified taxonomic groups at the phylum, class and genus level.