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1

G E N E R A L I N T R O D U C T I O N

1.1 neurons , spikes and spike trains

No! Try not. Do! Or do not. There is no try.
Yoda, -Star Wars Episode V

This seems an odd thing to say. One often fails when doing something
for the very first time. Would that be counted as trying to do it? How
I understand it is that one should always approach every new thing
with self confidence or it is doomed to fail. While the quote has to be
interpreted in some meaningful way for us to make sense of it, the basic
unit of our brain, the neuron, actually functions with absolutes. A brain
consists of potentially billions (1) of neurons and equally many or more
other cells. Whenever enough input is presented to a neuron they fire
an action potential and if not they will remain silent (2). They do. Or do
not.

A single action potential lasts in the time range of 2− 5ms depending
on how it is defined. For this thesis the exact way spikes are produced
is not very relevant, but for understanding how neurons work I will
give a very short introduction to spike generation in neurons. Action
potentials are based on difference in charged ion concentrations over the
cell membrane of the neuron. The membrane has non-Ohmic resistance
due to non-linear permeabilities for the different ions. A neuron fires
an action potential when an area of the neuronal membrane reaches a
threshold voltage. When this happens, the neuron’s cell membrane is po-
larized very fast. The increase in voltage also causes another mechanism
to drive the membrane potential down again but this happens slightly
slower, however, and the membrane voltage has already got up by the
time this happens. For a short moment both are in effect and during
this time the neuron cannot fire another action potential. Once the refrac-
tory period is over and everything returns to normal, the neuron is ready
to fire again given enough stimulation for the membrane to reach the
threshold again.(2)

5



6 general introduction

The action potential is initiated in the neuron at a place called axon
hillock. Once the area fires an action potential, it also depolarizes the
membrane nearby. This way the depolarization wave moves along the
cell membrane. Most neurons have a long projection starting from the
axon hillock called axon. You can think the cell membrane of an axon a
as a water hose. Once the depolarization threshold is reached locally at
one point, the depolarization effect progresses to polarize the membrane
close by and the wave rapidly goes around the membrane and meets on
the other side of the ”hose”. Once that happens, the depolarization wave
starts moving along the hose until the end. In neurons the axons often
diverge into multiple directions and have many endings. These end-
ings are formed near the membrane of another neurons and are called
synapses. At the synapses there is a different chemical machinery making
use of the polarized membrane potential, which releases neurotransmit-
ter molecules into the synapse. The released transmitters have an effect
on the polarization of the next neuron either by exiting or inhibiting the
increase of membrane potential at the axon hillock of the next neuron.
Adding more neurons and connecting them with synapses we get what
is called neuronal network.

There needs to be enough stimulation from the downstream neurons
in order to invoke an action potential. Since neurons integrate effects of
synapses from up to hundreds of thousands of other neurons, the timing
of the action potentials in relation to each other is essential. While this
often requires coordination of excitatory signals from multiple down-
stream neurons, the neuron itself does not discriminate which ones of
the neurons connected to it actually caused the stimulation. For data-
analysis purposes it is often enough to consider the times of the action
potentials at the peak of the membrane potential due to the all-or-none
paradigm of the neuron. The time discrete representation of an action
potential is called a spike and series of spikes fired by the same neuron
over time spike trains.

A lot of neuroscience research is concentrated on finding response
patterns in spike trains of neurons. For a given stimulus a neuron that
codes for something in the stimulus is expected to elicit similar response
each time that differs for each stimulus coded. As if you put your finger
on a hot cooking plate it will hurt every time. The same response is sent
from your fingertip to your brain and each time the brain interprets the
stimulus as pain. This is called reliability of response. However, defining
when a response pattern is reliable, or in other words, similar to the
response of another representation of the same stimulus, is not a simple
task. The main issue is that similarity is not a well defined concept (See
Fig. 1.1). It comes down to what are the properties considered in the
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Figure 1.1: Visual example on importance of similarity description. A blue ball
is similar to a white ball based on shape, but also to a blue cube
based on color, while a white ball is not similar to the blue cube by
either description.

similarity description and our selection will have an effect on the results
obtained. The properties considered for assessing similarity of responses
of neurons must come from the way the neurons transmit information
or code.

1.2 neuronal coding

There are two main approaches to neuronal coding. Since the neuron
does not care where the stimulation actually came from, it is reasonable
to assume that sufficiently high firing rate in the downstream neurons
will eventually build up and elicit spikes in the next one. This assump-
tion is called rate coding. Another approach considers a more compact
coding, where each neuron time its spikes in order to achieve a spike up-
stream at the desired moment. This is called time coding. Both assump-
tions are perfectly reasonable, yet exclusive from the neuron’s point of
view.

The key to understanding neuronal coding is in the similarity of re-
sponses. The similarity can be self-similarity in response to the same
stimulus at different times, or it can be similarity between responses of
two different neurons. There are many ways for assessing if spike pat-
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terns are similar or nots. One common way is to assume rate coding
and count spikes in a predefined window or bin (one obtains rate by
normalizing the spike count to the window length). This approach has
two major problems. The first is that the definitions for the start and end
times of the window are more or less arbitrary. The second problem is
selecting appropriate time scale of and it relates to the first one, since rate
is an average quantity over time. Considering rate as spikes over time
does not take into account where in the window the spikes occurred and
for different start and end times one might get very different results. For
example, two spike trains would be deemed similar if they had 5 spikes
each even if one has all spikes at the beginning and one at the end, but
shortening the window so that the last spikes of the second spike train
are outside of the window makes them dissimilar. Some methods use
multiple adjacent or overlapping windows and counting spikes in each
window. However, defining proper window length and starting position
for the windows remains problematic. Additionally, this is no longer
purely a rate based assessment, since it assumes that timing of spikes
(bins) matters. Moreover, the length of the windows used defines the
temporal resolution of the method.

An alternative to binning is to use binless spike train distances, which
deal with just the time stamps of the spikes in order to determine sim-
ilarity. ISI-distance (3, 4), SPIKE-distance (5, 6) and SPIKE-synchroniza-
tion (7) use local rate estimates derived from the distance between two
consecutive spikes called the interspike interval (ISI). This makes them in-
dependent from the rigid notion of bin size and allows for time scale
independent assessments. This means that stretching and compressing a
spike train will have no effect on the end result, while if one did that with
a binning method, the bin size would have to be adjusted accordingly.

1.3 structure of the thesis

The main Chapters of this thesis are based on the following four publi-
cations:

• Chapter 2: Measures of spike train synchrony for data with multiple time
scales (8), Journal of Neuroscience Methods, Volume 287, 1 August
2017, Pages 25-38

• Chapter 3 adapted from: Leaders and followers: quantifying consis-
tency in spatio-temporal propagation patterns (9), New Journal of Phy-
sics, Volume 19, April 2017, Pages 043028
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• Chapter 4: Which spike train distance is most suitable for distinguishing
rate and temporal coding? (10), Journal of Neuroscience Methods,
Volume 299, 1 April 2018, Pages 22-33

• Chapter 5: Using spike train distances to identify the most discriminative
neuronal subpopulation Journal of Neuroscience Methods, Septem-
ber 2018, In press (11)

The Chapters above have been modified from the original open access
publications but are not presented in chronological order. Especially,
Chapter 3 has been shortened considerably from the original, since only
part of the publication is about neuroscience.

1.3.1 Chapter 2

While time scale independence of ISI-distance and SPIKE-distance, and
SPIKE-synchronization provide an effective way of assessing time local
information in spike trains, in some cases it may be problematic when
there are multiple time scales in the data. While it makes sense that
spike trains that look similar at different time scales are assessed in the
same way, there is a limit to when this should be done. For example if
two neurons fire in perfectly opposite phases for a short period of time
while being silent otherwise, it appears that the neurons are responding
similarly when looking at the spike trains. However, since the methods
do all assessment of similarity in relation to local rate estimated by ISIs,
the moment when they fire is considered to be maximally different even
when in the global scale this is not the case.

In Chapter 2, I explain a generalization to ISI-distance, SPIKE-distance,
and SPIKE-synchronization to account for multiple time scales in the
spike trains. The limitation of these generalizations is that they need a
time scale parameter indicating what is a ”too small” ISI, or reversely
a too high rate, to be assessed in the local context and when should a
global context be used instead. I also introduce a mathematical way to
extract an estimate for an appropriate parameter from the ISI distribution
of data. Only when using the estimate, the time scale free behaviour is
maintained and if one uses a fixed parameter it is lost.

1.3.2 Chapter 3

A complementary approach to estimating similarity between spike trains
is to take a set of simultaneous recordings from multiple sources and try
to find if some units tend to fire before the others in a consistent way. In
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Chapter 3, I explain how the spike trains can be sorted from leader to
follower using methods extended from SPIKE-synchronization. They are
called SPIKE-Order and Spike Train Order. Both provide complementary
information that can be used to sort spike trains from leader to follower
i.e. the one that tends to fire first to the one that tends to fire last and to
test the statistical significance of the order found. This assumes reliable
time coding and does not work for rate coding.

1.3.3 Chapter 4

Two of the most established spike train distances are Victor-Purpura dis-
tance (12) and the van Rossum distance (13). These measures contain
parameters, which indicate time scale, and are loosely related to the win-
dow size used in binning methods. For one extreme of the parameter
for each spike the methods search for an exact time matching pair in the
other spike train and at the other extreme only the number of spikes in
the entire window counts. It has been widely accepted that one end of
the scale measures time coding and the other rate coding, and in between
there is a tradeoff between the two.

The major difference between Victor-Purpura distance and van Rossum
distance compared to the ISI-distance and the SPIKE-distance is not the
parameter, but the way they approach similarity. The first two do com-
parisons solely between spike times of closest spikes in the other spike
train, while the ISI-distance and the SPIKE-distance span a profile over
time based on spike timing relative to the spike times in the other spike
train over recording window. Thus, I refer to the first group as spike-
resolved and the second one as time-resolved. There is a considerable
difference in how these two types of measures consider some fundamen-
tal concepts of similarity between spike trains. In Chapter 4, I examine
this, while also assessing the pitfalls of these measures.

1.3.4 Chapter 5

The Victor-Purpura distance and the van Rossum distance have been ex-
tended to deal with the important problem of population coding. Both
extensions contain an additional parameter that indicates relative impor-
tance of a spike being fired by the same neuron in a population. Both
extremes of the second parameter are easy enough to understand. Ei-
ther all the spike patterns for repeated representations of a stimulus are
compared against the responses of the same neuron each time, called
labelled line (LL), or it does not matter at all which neuron fired the
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spike and thus all spikes of the population are pooled for comparison,
called summed population (SP). However, all the parameter values in
between are difficult to interpret. In Chapter 5 I introduce a comple-
mentary approach for assessing if there is similarity in firing patterns of
the population and for finding the subpopulation that is most effective
at discriminating between different stimuli. I use different approaches
to identify the subpopulations following either the LL or the SP coding
assumptions.

1.4 cspike software

During my studies, I wrote a freely available spike train analysis pro-
gram called cSPIKE1. This software is used for doing all the spike train
analysis concerning ISI-distance, SPIKE-distance and SPIKE-synchroniza-
tion and their variants. All in all it includes over 40 functions for calcu-
lating different kinds of distances between spike trains.

The distance measures have been implemented before in a Matlab GUI
package SPIKY (7) as well as in a Python package PySpike (14). Unlike
the previous user friendly graphical user interface SPIKY, cSPIKE uses
command line interface and is intended to be used by those, who are
more familiar with Matlab coding. cSPIKE differs from the PySpike
mainly by the implementation platform. Both use C++ for speed and
run from command line interface. Additionally, the reduction of output
data required for running cSPIKE when compared to SPIKY GUI allows
the computation to be performed considerably faster.

1 http://www.fi.isc.cnr.it/users/thomas.kreuz/Source-Code/cSPIKE.html
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E X T E N D I N G M E A S U R E S O F S P I K E T R A I N
S Y N C H R O N Y

Background: Measures of spike train synchrony are widely used in both
experimental and computational neuroscience. Time-scale independent
and parameter-free measures, such as the ISI-distance, the SPIKE-distance
and SPIKE-synchronization, are preferable to time scale parametric mea-
sures, since by adapting to the local firing rate they take into account all
the time scales of a given dataset.
New Method: In data containing multiple time scales (e.g. regular spik-
ing and bursts) one is typically less interested in the smallest time scales
and a more adaptive approach is needed. Here we propose the A-
ISI-distance, the A-SPIKE-distance and A-SPIKE-synchronization, which
generalize the original measures by considering the local relative to the
global time scales. For the A-SPIKE-distance we also introduce a rate-
independent extension called the RIA-SPIKE-distance, which focuses spe-
cifically on spike timing.
Results: The adaptive generalizations A-ISI-distance and A-SPIKE-dis-
tance allow to disregard spike time differences that are not relevant on
a more global scale. A-SPIKE-synchronization does not any longer de-
mand an unreasonably high accuracy for spike doublets and coinciding
bursts. Finally, the RIA-SPIKE-distance proves to be independent of rate
ratios between spike trains.
Comparison with Existing Methods: We find that compared to the origi-
nal versions the A-ISI-distance and the A-SPIKE-distance yield improve-
ments for spike trains containing different time scales without exhibiting
any unwanted side effects in other examples. A-SPIKE-synchronization
matches spikes more efficiently than SPIKE-Synchronization.
Conclusions: With these proposals we have completed the picture, since
we now provide adaptive generalized measures that are sensitive to fir-
ing rate only (A-ISI-distance), to timing only (ARI-SPIKE-distance), and
to both at the same time (A-SPIKE-distance).

Adapted from: Measures of spike train synchrony for data with multiple time scales (8)

13



14 extending measures of spike train synchrony

2.1 introduction

In neuroscience the neuronal action potential and its complex molecular
behavior (2) is often reduced to time-discrete events called spikes. Due
to the all-or-nothing paradigm of neurons together with the long silent
periods, the time stamps of the spike events are considered to be an accu-
rate enough description of the neuronal membrane potential (15). These
sequences of consecutive spikes are called spike trains. While spike trains
do not directly provide information about the connections between neu-
rons, some form of link between two neurons is often inferred by the
similarity of their spike trains. There are also other analysis methods
apart from spike train distances for inferring the linkage (see e.g. (16)) A
spike train distance does not take into account the specific type of link-
age, but simply quantifies how (dis)similar the two spike trains are. This
makes spike train distances universal and as such they can be applied
to all systems that can be reduced to point processes. In addition to the
obvious neuroscience applications, they have already been used to study
inter-personal coordination (17) and social cognition (18) among many
other fields.

Over the years many different measures have been developed in or-
der to quantify similarities between two or more spike trains (see (19),
(20) and (21) for an overview). The two most known time scale paramet-
ric measures, the Victor-Purpura (12) and the van Rossum distance (13),
describe spike train (dis)similarity based on user-defined time scales to
which the measures are mainly sensitive. One drawback of these mea-
sures is the fixed time scale, since it sets a boundary between rate and
time coding for the whole recording. However, for real data which typi-
cally contain many time scales (such as regular spiking and bursts), this
is difficult to detect with a measure that is mainly sensitive to only one
of them (22).

The problem of having to choose one time scale has been eliminated
in the three time-resolved and time scale independent measures ISI-dis-
tance (3, 4), SPIKE-distance (5, 6) and SPIKE-synchronization (7). The ISI-
distance (3) is a measure of instantaneous rate dissimilarity. It uses the
interspike intervals (ISIs) to estimate the local firing rate of spike trains
and quantifies their differences in a time-resolved manner. The SPIKE-
distance (5) compares the spike time accuracy between spike trains and
uses instantaneous firing rates to adapt to the local time scale. Finally,
SPIKE-synchronization (7) is a discrete time-resolved measure of similar-
ity based on ISI-derived coincidence windows that are used to determine
if two spikes from different spike trains are coincident or not. These mea-
sures have already been successfully applied in many different contexts;
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for example they have been used to detect determinism in point pro-
cesses (23), to find correlations between spike trains and behaviour in an
inverse neurocontroller (24) and to evaluate a bio-inspired locomotion
system in robotics (25).

Since they always adapt to the local firing rate, all three of these mea-
sures are time scale free. While they correctly identify the relative firing
rate differences, they have no concept of actual time scales and treat all
time scales as equally important. This has the consequence that for very
small time scales even minor deviations from perfect synchrony lead to
very high values of dissimilarity. However, for real data the smallest
time scales are often not very relevant and any dissimilarities there can
mostly be disregarded. Thus in this case the measures’ focus on the local
time scales results in a (spurious) amplification of dissimilarities which
compared to the global time scales are rather negligible.

Here we address this problem by proposing generalizations to the
three measures called adaptive ISI-distance (A-ISI-distance), adaptive
SPIKE-distance (A-SPIKE-distance) and adaptive SPIKE-synchronization
(A-SPIKE-synchronization). These generalized definitions add a notion
of the relative importance of local differences compared to the global
time scales. In particular, they start to gradually ignore differences be-
tween spike trains for ISIs that are smaller than a minimum relevant
time scale (MRTS). The MRTS is implemented by an additional variable
T which can either be defined as a parameter or estimated directly from
the data.

In some neuroscience applications only the similarity of spike timing
is important and rate differentiation is not a desired property. While the
A-ISI-distance is sensitive to firing rate alone and the A-SPIKE-distance
responds to differences in both rate and timing, there is currently no mea-
sure that focuses only on spike timing. Therefore, in a second step we ex-
tend the A-SPIKE-distance into the rate-independent adaptive SPIKE-dis-
tance (RIA-SPIKE-distance) which still identifies spike time differences
but ignores any rate deviations between the spike trains.

The remainder of this paper is organized as follows. In Section 2.2
we describe the generalized definitions of the three measures, the A-
ISI-distance (Section 2.2.1), the A-SPIKE-distance (Section 2.2.2), and A-
SPIKE-synchronization (Section 2.2.3). In Section 2.2.4 we introduce a
way to estimate the threshold value directly from the data. We then inves-
tigate using both simulated and real data how both the original measures
and the adaptive generalizations deal with multiple time scales (Section
2.2.5). In Section 2.3 we add a rate-independent extension to A-SPIKE-
distance (Section 2.3.1) and afterwards study the effects of the extension
(Section 2.3.2). The implications of the extensions are discussed in Sec-
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tion 2.4. Finally, in the 2.5.1 we cover some non-trivial subtleties of the
definitions for all three measures. First we provide the definitions for the
periods before the first and after the last spike in a spike train (where the
interspike interval is not defined), and then we deal with the two special
cases of empty spike trains and spike trains with only one spike. The
two experimental datasets used in Section 2.2.5 are described in 2.5.2.

2.2 adaptive generalizations

In this Section we introduce the adaptive generalizations of the estab-
lished measures ISI-distance (3), SPIKE-distance (5) and SPIKE-synchro-
nization (7), which we will call A-ISI-distance, A-SPIKE-distance, and
A-SPIKE-synchronization. All three generalizations are built on a mini-
mum relevant time scale (MRTS) which is implemented via the threshold
parameter T . This threshold is used to determine if a difference between
the spike trains should be assessed in a local context or in relation to the
global time scales. This threshold is used for all three measures, but the
way it is applied varies. The generalized measures fall back on the orig-
inal definitions when T = 0. In the following this is what we refer to
whenever we talk of the original measures. In this case even the smallest
time scales matter and all differences are assessed in relation to the local
context only.

Note that the upcoming definitions only apply to the interval between
the first and the last spike. In 2.5.1.1 and 2.5.1.2 they will be completed
to range from the start of the recording ts to the end of the recording te

. Equally, some of the following equations are ill-defined when there are
less than two spikes in a spike train. These special cases will be handled
in 2.5.1.3 and 2.5.1.4.

Throughout the paper we denote the number of spike trains by N,
indices of spike trains by n and m, spike indices by i and j and the
number of spikes in spike train n by Mn. The spike times of spike train
n are denoted by {t(n)i } with i = 1, . . . , Mn.

2.2.1 Adaptive ISI-distance

The A-ISI-distance measures the instantaneous rate difference between
spike trains (see Fig. 2.1A). It relies on a time-resolved profile, meaning
that a dissimilarity value is defined for each time instant. To obtain the
profile, we assign to each time instant t the time of the previous spike

t(n)P (t) = max
{

t(n)i |t
(n)
i ≤ t

}
for t(n)1 6 t 6 t(n)Mn

(2.1)
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Figure 2.1: Schematic drawing for all three measures. (A) Illustration of the
variables that define the ISI-distance. The instantaneous interspike
intervals x(n)ISI(t) are used as estimates of the local firing rate. (B)
Additional variables employed in the definition of the SPIKE-dis-
tance. (C) Coincidence criterion for SPIKE-synchronization. The
coincidence window of each spike is derived from its two surround-
ing interspike intervals. Here we illustrate two different examples.
The two spikes on the left side are considered coincident since both
lie in each other’s coincidence windows. On the right there is no
coincidence since the spike from the second spike train is outside of
the coincidence window from the spike of the first spike train.

and the time of the following spike

t(n)F (t) = min
{

t(n)i |t
(n)
i > t

}
for t(n)1 6 t 6 t(n)Mn

. (2.2)

From this for each spike train n an instantaneous ISI can be calculated
as

x(n)ISI (t) = t(n)F (t)− t(n)P (t). (2.3)
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For the A-ISI-distance we define the MRTS such that when the ISIs of
both spike trains are smaller than a threshold value T , this value is used
instead. The pairwise A-ISI-profile is then defined as

IA
n,m(t) =

|x(n)ISI (t)− x(m)
ISI (t)|

max
{

x(n)ISI (t), x(m)
ISI (t), T

} . (2.4)

The multivariate A-ISI-profile is obtained by averaging over all pairwise
A-ISI-profiles

IA(t) =
2

N(N − 1)

N−1

∑
n=1

N

∑
m=n+1

IA
n,m(t). (2.5)

This is a non-continuous piecewise constant profile and a final integra-
tion over time gives the A-ISI-distance

DA
I =

1
te − ts

∫ te

ts

IA(t)dt. (2.6)

If the threshold T is set to zero, the generalized ISI-distance DA
I falls

back to the original ISI-distance DI .

2.2.2 Adaptive SPIKE-distance

The A-SPIKE-distance measures the accuracy of spike times between
spike trains relative to local firing rates (see Fig. 2.1B). In order to as-
sess the accuracy of spike events, each spike is assigned the distance to
its nearest neighbor in the other spike train

∆t(n)i = min
j

(
|t(n)i − t(m)

j |
)

. (2.7)

These distances are then interpolated between spikes using for all times
t the time differences to the previous spike

x(n)P (t) = t− t(n)i for t(n)i 6 t 6 t(n)i+1, (2.8)

and to the following spike

x(n)F (t) = t(n)i+1 − t for t(n)i 6 t 6 t(n)i+1. (2.9)

These two quantities define a time-resolved dissimilarity profile from dis-
crete values the same way as Eqs. 2.1 and 2.2 did for the A-ISI-distance.
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The instantaneous weighted spike time difference for a spike train can
then be calculated as the interpolation from one difference to the next

Sn(t) =
∆t(n)i (t)x(n)F (t) + ∆t(n)i+1(t)x(n)P (t)

x(n)ISI (t)
, t(n)i 6 t 6 t(n)i+1. (2.10)

This function is analogous to the term x(n)ISI for the ISI-distance, with the
only difference that it is piecewise linear instead of piecewise constant.
It is also continuous.

The pairwise A-SPIKE-distance profile is obtained by averaging the
weighted spike time differences, normalizing to the local firing rate aver-
age and, finally, weighting each profile by the instantaneous firing rates
of the two spike trains

SA
m,n(t) =

Snxm
ISI(t) + Smxn

ISI(t)
2
〈

xn,m
ISI (t)

〉
max

{〈
xn,m

ISI (t)
〉

, T
} . (2.11)

We define the MRTS by using a threshold, that replaces the denomina-
tor of weighting to spike time differences if the mean is smaller than
the threshold T . This profile is analogous to the pairwise A-ISI-profile
IA
n,m(t), but again it is piecewise linear, not piecewise constant. Unlike

Sn(t) it is not continuous, since typically it exhibits instantaneous jumps
at the times of the spikes. The multivariate A-SPIKE-profile is obtained
the same way as the multivariate A-ISI-profile, by averaging over all pair-
wise profiles

SA(t) =
2

N(N − 1)

N−1

∑
n=1

N

∑
m=n+1

SA
m,n(t). (2.12)

Finally, also the A-SPIKE-distance is calculated as the time integral over
the multivariate profile

DA
S =

1
te − ts

∫ te

ts

SA(t)dt. (2.13)

For T = 0 also the A-SPIKE-distance falls back to the SPIKE-distance.
The effect of applying the threshold can be seen in Fig. 2.2. The

first event of five spikes is compressed more and more until it becomes
a single burst in the fourth event. The original SPIKE-distance profile
S(T) has the same proportions of dissimilarity for all events, since it
uses local context only and thus considers all time scales as equal, while
the A-SPIKE-distance profile SA(t) is scaled down when the differences
become small compared to the global time scales.
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Figure 2.2: An example spike train pair and its SPIKE-distance and A-SPIKE-
distance profiles. (A) Two spike trains consisting of four events with
five spikes each. The sequence is the same for all four events, only
the time scale is getting shorter and shorter. From a global perspec-
tive the first event consists of non-synchronous individual spikes,
while the last event consists of coincident bursts. The two events in
the middle are intermediates. (B) The SPIKE-distance considers only
the local context and thus the profile shape is the same for all four
events. (C) The A-SPIKE-distance takes into account also the global
time scales. Like the SPIKE-distance it judges the first event as very
dissimilar, but in contrast to the the SPIKE-distance it scales down
the small spike time differences in the bursts and thus considers the
coincident burst in the last event as very similar.

2.2.3 Adaptive SPIKE-synchronization

A-SPIKE-synchronization quantifies how many of the possible spike co-
incidences in a dataset are actually occurring (Fig. 2.1C). While the A-ISI-
distance and the A-SPIKE-distance are measures of dissimilarity which
obtain low values for similar spike trains, A-SPIKE-synchronization mea-
sures similarity. If all the spikes are coincident with a spike in all the
other spike trains, its value will be one. In contrast, if none of the spikes
are coincident, it will be zero.

The original SPIKE-synchronization (7) is parameter- and time scale-
free, since it uses the adaptive coincidence detection first proposed for
the measure event synchronization (26). The coincidence window, i.e.,
the time lag below which two spikes from two different spike trains,
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t(n)i and t(m)
j , are considered to be coincident, is adapted to the local

firing rate. Spikes are coincident only if they both lie in each other’s
coincidence windows.

For A-SPIKE-synchronization we generalize the definition by introduc-
ing a threshold, which decides if the window is determined locally or if
the global time scales should be taken into account. As a first step, we
define the ISI before the spike as

x(n)iP = lim
t→ti−

x(n)ISI (t) (2.14)

and the ISI after the spike as

x(n)iF = lim
t→ti+

x(n)ISI (t). (2.15)

The coincidence window for spike i of spike train n is defined by deter-
mining the minimum coincidence window size for a spike as half the
length of the two ISIs adjacent to the spike

τ
(n)
i = 1

2 min
{

x(n)iP , x(n)iF

}
, (2.16)

and allowing asymmetric coincidence windows based on MRTS. This is
done by replacing τ

(n)
i with the threshold value T , if it is the smaller

of the two. Since the threshold value is derived from ISIs and the
coincidence window spans both sides of the spike, only half of the
threshold spans each side. For the A-ISI- and the A-SPIKE-distance the
changes induced by the threshold appear gradually, but for A-SPIKE-
synchronization they occur as an abrupt jump from 0 to 1. Therefore,
to compensate for the binary nature of A-SPIKE-synchronization, the
threshold is divided by two, resulting in an overall factor of 1/4. The
coincidence windows of neighboring spikes are not allowed to overlap,
and thus each side is limited to half the ISI even if the threshold is larger.
Thus, the coincidence window before the spike is determined as

τ
(n)
iP = min

{
max( 1

4T , τ
(n)
i ),

1
2

x(n)iP

}
(2.17)

and the coincidence window after the spike as

τ
(n)
iF = min

{
max( 1

4T , τ
(n)
i ),

1
2

x(n)iF

}
. (2.18)

The combined coincidence window for spikes i and j is then defined as

τ
(n,m)
ij =

min
{

τ
(n)
iF , τ

(m)
jP

}
if ti 6 tj

min
{

τ
(n)
iP , τ

(m)
jF

}
otherwise

. (2.19)
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Figure 2.3: SPIKE-synchronization (A), A-SPIKE-synchronization (B) and their
difference (C) illustrated using five spike trains with four simple
events. For the original measure (A) the small interspike intervals of
spike doublets (first and second event) or bursts (third event) result
in an unreasonably high demand for spike timing accuracy. With
the adaptive generalization (B) for all these cases the likelihood in-
creases that at least one of the spikes is part of a coincidence. On the
other hand, if there are no doublets or bursts (last event), nothing
changes (best seen in C). Note that the color scales differ, for better
visibility we use grey-black in A and B but white-black in C.

The coincidence criterion can be quantified by means of a coincidence
indicator

C(n,m)
i =

1 if minj

{
|t(n)i − t(m)

j |
}
< τ

(n,m)
ij

0 otherwise
. (2.20)

This definition ensures that each spike can only be coincident with at
most one spike in the other spike train. The coincidence criterion assigns
either a one or a zero to each spike depending on whether it is part of
a coincidence or not. For each spike of every spike train, a normalized
coincidence counter

C(n)
i =

1
N − 1 ∑

m 6=n
C(n,m)

i (2.21)
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is obtained by averaging over all N − 1 bivariate coincidence indicators
involving the spike i in spike train n.

This way we have defined a coincidence indicator for each individual
spike in the spike trains. In order to obtain one combined similarity
profile, we pool the spikes of the spike trains as well as their coinci-
dence indicators by introducing one overall spike index k. This yields
one pooled set of coincidence indicators

{Ck} =
⋃
n

{
C(n)

i

}
(2.22)

from which the A-SPIKE-synchronization profile CA(tk) can be obtained
via CA(tk) = C(k). Finally, A-SPIKE-synchronization is defined as the
average value of this discrete profile

SA
C =

1
M

M

∑
k=1

CA(tk), (2.23)

where M is the overall number of spikes. In Fig. 2.3 we illustrate how
the asymmetric coincidence windows of A-SPIKE-synchronization allow
for a better coverage of burst events which makes it easier to match
spikes when compared to the original SPIKE-synchronization (A-SPIKE-
synchronization with T = 0). It is important to note that reducing differ-
ences below threshold adds coincidences and thus, since it is a measure
of similarity, A-SPIKE-synchronization can only increase.

2.2.4 Selecting the threshold value

In neuroscience typical time scales are in the range of milliseconds or
sometimes seconds and any time scales below this will not be considered
relevant. In fields such as meteorology the respective time scales could
be hours and days or even months and years. The relevant time scales
clearly depend on the system under consideration. Setting the minimum
relevant time scale (MRTS) for a given dataset might not be a simple task.
To address this, we propose a method to extract a threshold value from
the spike trains, that is based on the proportions of the different time
scales present in the data.

It is important to note that the selected MRTS is not an indicator of a
time scale of the system; it just determines the outcome of the adaptive
generalizations. It is also not a hard set limiter neglecting everything
below the threshold, but rather it marks the time scale from which on
differences are considered in the global instead of the local context. Thus
from this time scale on deviations from synchrony are treated as less and
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less relevant the smaller they get, even if they are large in relation to the
local time scales.

The purpose of the threshold is to act as an indicator of what globally
is a high rate or inversely a small ISI. The original normalizations are
based on the ISIs, so it is reasonable to determine the threshold from the
pooled ISI-distribution. We use the ISIs after the edge effect has been cor-
rected (see 2.5.1.1). The threshold should fulfill two main criteria. First,
it needs to decrease proportionally to the spike count, so that increas-
ing rates (or longer recordings with the same rate) do not change the
threshold. Second, the threshold should respond to changes in the ISI-
distribution so that it is able to adapt between single and multiple time
scale data sets. In Fig. 2.4 we use a simple spike train motive of just four
spikes to illustrate these two criteria.

The most straightforward threshold would be the mean length of the
ISIs

〈LISI〉 =
∑G

g=1 Lg
ISI

MISI
=

L
MISI

. (2.24)

Here Lg
ISI denotes the ISI-length and MISI is the total number of ISIs in

the pooled ISI-distribution. In the numerator the sum of the lengths of
all ISI equals the overall length L of the pooled ISIs. Apart from edge
effect corrections this is equal to the product of recording length and
number of spike trains which is a constant. Thus while the mean of ISIs
depends on the number of spikes (Fig. 2.4A), for a given number of
spikes (number of ISIs) it is completely independent of how the ISIs are
distributed around the mean (Fig. 2.4B). It adapts to the spike count but
not to the proportions in which the ISIs appear in the data thus fulfilling
the first but not the second criterion.

To fulfill both criteria one needs to not just count the interspike inter-
vals but weight them by their length. This reduces the importance of
short ISIs and allows the long ISIs to influence the threshold according
to their contribution and not just number. It is equivalent to taking the
mean of the second moments of the ISIs

T =
√〈

L2
ISI

〉
=

√√√√∑G
g=1 Lg

ISI
2

MISI
. (2.25)

Note that in order to obtain a value with the right dimension the square
root of the average must be taken. This threshold value has roughly the
same dependence on the number of spikes as the mean value (Fig. 2.4A),
however, in contrast to the mean it is also sensitive to changes in the
ISI-distribution. In summary, using T as the MRTS fulfills both criteria
set for the threshold.
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Figure 2.4: Threshold value vs. the mean of the ISI-distribution. (A) Depen-
dence on the number of spikes (first criterion). In each iteration
the number of spikes is increased by concatenating two half-length
copies of the previous iteration. Both the mean and the threshold
decrease with spike count. (B) Dependence on the ISI-distribution
(second criterion). From iteration to iteration the ISI-distribution is
changed by halving the three short ISIs and prolonging the long ISI
accordingly. Since the spike count (and thus the number of ISIs) is
kept constant, the mean does not respond to this change. However,
the threshold correctly increases with the heightened importance of
the long ISI.

2.2.5 Results

In this Section we investigate how both the adaptive generalizations
(with automated thresholding) and the original measures deal with mul-
tiple time scales. For the A-ISI-distance and the A-SPIKE-distance we
use a test spike train set consisting of simulated and real spike trains
to study the effect of the generalized versions (Section 2.2.5.1). After
that, in Section 2.2.5.2, we study on real MEA recordings how A-SPIKE-
synchronization differs from SPIKE-synchronization. In Section 2.2.5.3
we systematically test the influence of the amount of bursts on the differ-
ence between adaptive and original measures. Finally, in Section 2.2.5.4
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we investigate how the adaptive versions change the analysis of neuronal
reliability in an experimental dataset.

2.2.5.1 Adaptive ISI-distance and adaptive SPIKE-distance

We address two points. First, we look at the sensitivity of the adaptive
generalizations and verify that in the presence of bursts they perform
better than the original measures. Second, we also make sure that the
changes are specific, e.g., we confirm that in all other cases and espe-
cially if there are no bursts, the adaptive generalizations do not exhibit
unwanted side effects.

To this aim, we use a test set composed of both artificial and real
spike trains (Fig. 2.5) to compare A-ISI-distance to ISI-distance and A-
SPIKE-distance to SPIKE-distance. We use two models to generate our
samples. For the spike trains with perfect periodicity we use a time
varying steady rate (fixed ISI) model. For samples with more variability
in spike timing we used a Poisson spiking model, where the rate is fixed
for a certain window at a time. In some cases we add small jitter noise
to both models. The artificial spike trains 1-25 are designed to exhibit
a variety of stereotypical spiking behaviours including both single and
multiple time scales. The experimental spike trains 26-30 consist of short
recordings from neuronal cultures on microelectrode arrays (see 2.5.2.1
for details). For the adaptive versions the threshold is estimated from
the data (see Section 2.2.4) for each pair separately.

In the analysis every spike train is paired with all the others. Be-
cause for both the A-ISI-distance and the A-SPIKE-distance the MRTS
T can only reduce but never increase the dissimilarity value, all pairs
are found in the lower half of the scatter plot (Fig. 2.6). Furthermore,
all values between pairs of spike trains are close to or on the diago-
nal, which means that both versions attain very similar values or even
the same value. The differences between the two SPIKE-distances are
slightly more pronounced than the differences between the two ISI-dis-
tances. Such seemingly small differences can still be of high significance
since in a typical experimental setup it is rarely the absolute value of sim-
ilarity that matters but rather the relative order of similarity for different
conditions. Moreover, in real data the range of similarity values obtained
is usually quite small which further increases the relative importance of
small changes in similarity.

For one spike train at a time we then look at all its pairings and sort
the results in ascending order according to the original versions. The
results from the adaptive versions are arranged in the same order. If the
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Figure 2.5: Spike train test set used to compare the generalized versus the orig-
inal measures of spike train synchrony. Spike trains 1-25 are arti-
ficially constructed examples which cover a range of archetypical
spiking patterns, whereas spike trains 26-30 are selected examples
of neuronal spiking data from a neuronal culture recorded on a mi-
cro electrode array (see 2.5.2.1). All spike trains are normalized by
their total length.

order of the spike train pairs does not match, there is a clear difference
in the way the two measures consider spike train similarity.

We now investigate in more detail not only the largest absolute, but
also the largest relative changes observed in Fig. 2.7. First, the largest
absolute changes are identified by calculating the Euclidean distances
between the results for the two spike train pairs. They typically take
place for pairs of spike trains with large distances. Next, since deviations
from near perfect synchrony are more prominent and easier to detect
than differences between various levels of high dissimilarity, we also look
at relative changes. These can be found by dividing each distance by its
corresponding ISI- and A-ISI-distance or SPIKE- and A-SPIKE-distance
average. For both distances they mostly occur for pairs of very similar
spike trains.

For the A-ISI-distance, the spike train pairs showing the largest abso-
lute change compared to the ISI-distance can be seen in Fig. 2.7A. The
two measures show a different order of similarity; while the ISI-distance
increases, the A-ISI-distance decreases from the first to the second pair.
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Figure 2.6: Scatter plots showing the A-ISI-distance between all pairs of spike
trains versus the original ISI-distance (A) and the A-SPIKE-distance
versus the SPIKE-distance (B). The diagonal line marks where the
measures would show equal distance. The pairs were sorted ac-
cording to rising order of the original distances- Thus, if the order
changed for adaptive extension, there is a negative slope in a line
connecting all the pairs. For each line with a negative slope we
calculated its length using the Euclidean distance. The five largest
absolute changes are indicated in magenta, the five largest relative
changes in cyan. In addition, a magenta (cyan) arrow points to the
very largest absolute (relative) change. Overall, while the changes
are seemingly small on an absolute scale, the relative changes can
be very significant.
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Figure 2.7: Largest absolute and largest relative change between ISI-distance
and A-ISI-distance (A,B) as well as SPIKE distance and A-SPIKE-
distance (C,D) for the spike train set shown in Fig. 2.5. In both cases
the two measures show a different order of similarity. The original
distances increase from the first to the second pair, while the adap-
tive extensions decrease. The first pairs attains distance values in
between the second pairs, which results in a different order of sim-
ilarity between the measures (see Fig. 2.6). Upper subplots: The
spike train pairs with the largest changes. Lower subplots: Respec-
tive original distance vs. adaptive version profiles with the differ-
ence between the two profiles emphasized. The distance values for
the first (second) pair are shown on top (at the bottom). They are
also marked by a dashed line for the original distance and by a solid
line for the adaptive distance.



30 extending measures of spike train synchrony

Spike trains 27 and 30 in the first pair are seen very similarly (deviation
< 1%) by both measures. However, when spike train 27 is paired with
spike train 9, the ISI-distance considers the local time scale only and thus
has unreasonably high demands on the spikes of the burst in spike train
27 which leads to large fluctuations in similarity. For the A-ISI-distance
on the other hand the burst matches another event with relatively high
rate and treats this event as a coinciding burst. Outside of the burst the
two measures agree that the spike trains are very dissimilar.

Fig. 2.7B depicts the two spike train pairs exhibiting the largest relative
change between the two ISI-distances. While the first pair is seen as
relatively similarly (deviation < 5%), the main difference is found for
the second spike train pair. Here the ISI-distance looks at the detailed
structure and judges the interspike intervals within the bursts as very
dissimilar, whereas the A-ISI-distance sees simply matching bursts and
attains a considerably lower distance value than the ISI-distance (0.100

vs 0.129).

For the A-SPIKE-distance, the pairs of spike trains showing the largest
absolute change compared to the SPIKE-distance are depicted in Fig.
2.7C. As there are no bursts in either of the two spike trains, both mea-
sures attain exactly the same value for the first spike train pair. This is
a very good example for the specificity of the generalized version. On
the other hand, the original distance considers the second spike train
pair (periodic spiking versus periodic bursts) as much more dissimilar
(increase > 10%). In contrast to the SPIKE-distance, it rightly considers
the spike time differences in the middle of two bursts as larger than the
differences in the middle of the burst.

Finally, the largest relative change between the two SPIKE-distances is
shown in Fig. 2.7D. Again, there is not much difference between the two
distances for the first spike train pair. However, the SPIKE-distance con-
siders the second spike train pair much more dissimilar (> 62% higher)
due to the large relative deviations in spike timing within their coincid-
ing bursts. In contrast, the A-SPIKE-distance puts much less weight on
the differences within bursts, but still reacts to the spikes outside of the
bursts. This is an example of the sensitivity of A-SPIKE-distance.

All these results show that the effect of both generalized versions is
strongest in situations with multiple time scales in the spike trains. A
prominent example are bursts embedded in long silent periods. In this
case the long ISIs (of the silent periods) strongly influence the global
time scales such that deviations of synchrony on the smallest time scales
(within the bursts) are weighted less.
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2.2.5.2 Adaptive SPIKE-synchronization

A-SPIKE-synchronization can not be meaningfully tested by using the
spike train set of Fig. 2.5. The perfect periodicity in many spike trains
makes analysis of the A-ISI-distance and the A-SPIKE-distance simple,
but causes very abrupt changes in A-SPIKE-synchronization due to its
binary nature. The values can be computed, but the largest differences
are not meaningful with this data set, since many spike trains with bursts
jump from zero to a large value and there is no way of ordering different
pairs having zeros in the original measure. Thus, we here use a qualita-
tive approach together with insights from the analysis of A-ISI-distance
and A-SPIKE-distance.

As a side effect of being time scale adaptive, SPIKE-synchronization
demands very high spike timing accuracy during fast firing. This leads
to situations such as the one shown in Fig. 2.3 (Section 2.2.3). For spike
trains 3 and 4 the spikes in the first event are considered coincident, but
the doublet in between them in spike train 2 is not judged as coincident
with either of them. In contrast, for A-SPIKE-synchronization the coin-
cidence windows are adapted to the distribution of all ISIs in the data
set and the two sides of the coincidence window are allowed to be of
different length. With this change each of the spikes in the doublet be-
comes coincident with one of the spikes (the respective closest one) in
spike trains 3 and 4.

As a by-product of the adaptation, A-SPIKE-synchronization also in-
creases the coincidence window coverage within and at the edges of
a burst and thus matches as many spikes as possible. For SPIKE-syn-
chronization many of these spikes would be ignored due to the unrea-
sonably small coincidence windows. This phenomenon occurs very of-
ten with real data. An example containing two small and one large
burst event is shown in Fig. 2.8. In the first two events A-SPIKE-
synchronization is able to detect a few additional coincidences compared
to SPIKE-synchronization. The difference is much more pronounced for
the third and largest event. Here for SPIKE-synchronization many po-
tential matches are left out and this leads to a rather low overall value of
0.238. Instead, when A-SPIKE-synchronization is used, there are almost
45% more matched spikes within the burst and this strongly increases
the overall synchronization value to 0.345.

Fig. 2.8C clearly shows that the additional spike matching of A-SPIKE-
synchronization only occurs in the high frequency events for which small
differences in the ISIs cause gaps between the coincidence windows of
adjacent spikes. Coincidences outside of these high frequency events are
not affected.
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Figure 2.8: Real data example from MEA recordings (see 2.5.2.1 for more de-
tails). Ten spike trains from the data set are plotted and their
coincidence windows are drawn as obtained by SPIKE-synchro-
nization (A) and A-SPIKE-synchronization (B). The difference is
plotted in C. Due to the adaptive coincidence windows, A-SPIKE-
synchronization is able to match around 45% more spikes between
bursting spike trains than SPIKE-synchronization. As in Fig. 2.3, the
color scale is grey-black in A and B and white-black in C.

2.2.5.3 Systematic evaluation of the influence of bursts

Next we test how the effect of the automated threshold changes when
spikes are forming tighter bursts (Fig. 2.9). To do this we first create
two Poisson spike trains which are divided into four equally long seg-
ments. These segments are then increasingly compressed which pro-
longs the ISIs between them such that the total length remains constant
(Fig. 2.9A). We use the relative length of the interburst intervals R as a
parameter and track the difference between the adaptive and the origi-
nal versions. The results for the ISI-distance and the SPIKE-distance are
very similar and we only show the latter. From Fig. 2.9B we can see that
the SPIKE-distance decreases almost linearly with R since the relative
importance of the common silence in the interburst intervals increases.
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Figure 2.9: Effect of bursts on the adaptive versions evaluated by using the rel-
ative length R of interburst intervals. The values are averages over
10 realizations. (A) Five spike train pairs with increasing levels of
burstiness for one example realization. (B) Effect of burstiness on
the difference between A-SPIKE-distance and SPIKE-distance. The
graph for the ISI-distance looks very similar and is thus omitted. (C)
Equivalent results for A-SPIKE-synchronization. The R-values of the
examples in (A) are marked in (B) and (C) as dotted vertical lines.

The adaptive version decreases sub-linearly with the largest absolute dif-
ference between the two measures occurring around R = 0.4. For higher
R-values the reduction of the burst length overshadows the increases in
similarity at burst times and the difference increases up to a point and
then starts to decrease. The relative difference increases over the whole
interval (data not shown, but can be appreciated by observing the differ-
ence approaching the SPIKE-distance value towards R = 1).

While for the SPIKE-distance the interburst intervals have an effect on
the overall value, SPIKE-synchronization is sensitive to the matching of
spikes only and is based on one coincidence indicator value per spike.
Thus, the effect is increasing only until all possible spike pairs within
the bursts are matched. For our example the increase saturates at R =

0.4 (Fig. 2.9C) at which point all possible spike pairings (encompassing
roughly half of the spikes) have been identified. This is in agreement
with what we demand from a distance sensitive to bursting structure
for a systematic increase of the ratio between interbursts intervals and
synchronous bursts.
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Figure 2.10: Analysis of neuronal responses to multiple presentations of frozen
noise for four different levels of the membrane potential. (A) Spike
train responses (top) to two of the three noise presentations for a
membrane potential of −80mV and corresponding profiles for both
A-SPIKE-distance and SPIKE-distance (bottom). The difference be-
tween the two profiles is marked in red. (B) Same as in (A) but
for a membrane potential of −50mV. Results of the original and
the adaptive measures for spike train sets of all three trials at four
different voltage levels for the ISI-distance (C), the SPIKE-distance
(D) and SPIKE-synchronization (E).

2.2.5.4 Application to real data: Reliability of neurons

In order to demonstrate the effects of the adaptive generalization in a
more realistic scenario, we re-analyze data previously used to study the
effect of membrane potential resting state on neuronal reliability ((27),
see 2.5.2.2 for details on the recordings). When in the original study
frozen noise was injected into thalamocortical relay cells of rats, it was
found that the reliability of the cell response increases with depolariza-
tion (27).

Here we use both the original versions and the adaptive generaliza-
tions of all three measures to assess the reliability of the responses from
the two neurons for which all four levels of membrane potential were
recorded. The adaptive versions use a threshold obtained from the data
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Figure 2.11: Rate-independent RIA-SPIKE-distance vs. A-SPIKE-distance and
A-ISI- distance for Poisson (A) and steady-rate spike trains (B).
(A) Distances for two Poisson spike trains with varying rate ratios.
The overall number of spikes in the two spike trains is kept con-
stant. Each data point is an average over 100 trials. In contrast to
the clearly rate-dependent A-ISI- and A-SPIKE-distances, the rate-
independent RIA-SPIKE-distance exhibits an almost constant curve.
(B) For the steady-rate spike train curves each data point is an aver-
age over 100 trials with random phase shifts between the two spike
trains. In this case the line for the RIA-SPIKE-distance is indeed
constant.

by pooling all spike trains of each level and trial together. In Fig. 2.10 we
show the results of the cell with the more prominent effect but we get
similar results for the other cell as well. The cells analyzed were recorded
three times for each holding membrane potential and reliability was as-
sessed by trial to trial variations. For the highest hyperpolarization (Fig.
2.10A) the original SPIKE-distance yields spuriously high values for the
local dissimilarity during the bursts, since it only evaluates the local
context. Even when the A-SPIKE-distance takes the global context into
account, both measures agree that there are large dissimilarities in the
spike trains.

For the most depolarized state (Fig. 2.10B) the membrane potential is
considerably closer to the action potential threshold. The patterns are
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closely matching the burst positions of Fig. 2.10A, but also additional
events appear. The neuron no longer responds in clearly distinguished
bursts and it is considerably more difficult to determine where a burst
begins or ends. Since the generalized version adapts to time scales found
in all the spike trains, it is able to distinguish when a burst-like pattern
emerges and considers them as more similar.

As can be seen in Figs. 2.10C and 2.10D, the original versions, without
adaptation and only using the local context, attain a higher level of sim-
ilarity for -60mV than for -50mV, which contradicts both the results in
the original study and the results for SPIKE-synchronization (Fig. 2.10E).
Since the adaptive versions are able to make use of the global context
of all the spike trains, they attain results without this spurious dissimi-
larity and thus for higher membrane potentials the similarity increases
monotonously.

A-SPIKE-synchronization works slightly differently (Fig. 2.10E). Due
to the tight bursts that cause excessively small coincidence windows, the
largest difference occurs for the hyperpolarized states. However, both
versions agree that the reliability as quantified by spike to spike match-
ing in the response patterns clearly show a monotonous increase over the
baseline membrane potential. In summary, the results obtained by the
A-SPIKE-distance and A-ISI-distance seem to be appropriate and more
in line with the original results.

2.3 rate-independent extension

Sometimes in neuroscience one is interested in the pure similarity of
spike timing, independent of any differences in spike rates. Thus there is
the need for a measure which can identify differences in spike timing but
is able to ignore any differences in rate between the spike trains. Here we
propose such a rate-independent extension for the A-SPIKE-distance.1

2.3.1 RIA-SPIKE-distance

In order to understand how rate-independence for A-SPIKE-distance is
achieved, we need to separate Eq. 2.11 (Section 2.2.2) for the pairwise
A-SPIKE-distance profile into its three components.

1 The A-ISI-distance is a measure of instantaneous rate difference and a rate-independent
measure of rate difference makes little sense. A-SPIKE-synchronization is rate-
dependent by definition, since it is calculated as the average value of spike-based co-
incidence indicators (Eqs. 2.20 and 2.23).
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The first two components are the mean of spike time dissimilarity and
the normalization to firing rate

Sm,n(t) =
Sn(t) + Sm(t)

2
· 1

max
{〈

xn,m
ISI (t)

〉
, T
} , (2.26)

where Sn(t) and Sm(t) are the weighted spike time differences for spike
trains n and m defined by Eq. 2.10. The third component is a weighting
of the spike time dissimilarity according to the firing rate difference that
is applied to the first component

Sn(t)xm
ISI(t) + Sm(t)xn

ISI(t)〈
xn,m

ISI (t)
〉 . (2.27)

The rate-independent adaptive SPIKE-distance (RIA-SPIKE-distance) sim-
ply leaves out this last weighting and can thus be written as

SRIA
m,n (t) =

Sn(t) + Sm(t)
2 max

(〈
xn,m

ISI (t)
〉

, T
) . (2.28)

The RIA-SPIKE-distance shares all the properties of A-SPIKE-distance,
but it only evaluates normalized spike timing differences, whereas the
A-SPIKE-distance additionally uses differences in rate to determine sim-
ilarity.

2.3.2 Results

In this Section we compare the RIA-SPIKE-distance to the regular A-
SPIKE-distance regarding their response to differences in rate. First, in
Fig. 2.11A we look at Poisson spike trains with different rate ratios.
The regular A-SPIKE-distance exhibits a clear rate dependency obtain-
ing its lowest value for spike trains with identical rates and increasing
for higher rate differences. The RIA-SPIKE-distance on the other hand
starts near 0.25 and remains relatively constant for all rate ratios. These
deviations from perfect rate-independence occur because of the irregular-
ities of the Poisson spike trains. When we repeat the same analysis with
steady rate instead of Poisson spike trains (Fig. 2.11B), thereby remov-
ing the effects of the Poisson statistics, the RIA-SPIKE-distance exhibits
indeed perfect rate-independence.

Regarding the original distances, in Fig. 2.11A they would show very
similar behavior to the adaptive generalizations. Only for rate ratios
close to 1 there would be a small increase due to coincident burst-like
events within the Poisson spike trains. In Fig. 2.11B the curves would
overlap perfectly since there is only one time scale in steady rate spike
trains (both results not shown).
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2.4 discussion

In this manuscript we introduce adaptive generalizations to the three
existing measures ISI-distance, SPIKE-distance and SPIKE-synchroniza-
tion as well as a rate-independent extension to the generalized SPIKE-
distance. These new measures address two distinct problems.

The adaptive generalizations allow to disregard spike time differences
that are not relevant on a more global scale. By means of a specifically
constructed library of both stereotypical and real data spike trains, we
can show that both A-ISI-distance and A-SPIKE-distance indeed yield
improvements for pairs of spike trains containing different time scales
without exhibiting any unwanted side effects in other examples. Thus
the changes are both sensitive and specific. Regarding the size of the
changes, even if they are seemingly small on an absolute scale, the rela-
tive changes can be very significant. For our test set the largest relative
change reaches 29% for the A-ISI-distance and even up to 62% for the A-
SPIKE-distance. With a more qualitative approach we then show that
A-SPIKE-synchronization fixes the problem of SPIKE-synchronization
which demands an unreasonably high accuracy for spike doublets and
coinciding bursts. By introducing a global reference frame, it manages
to match spikes more efficiently (for our test data we found an increase
of 45%).

In order to test the adaptive measures methodologically we tested
them in a controlled environment where two Poisson spike trains were
split into bursts using increasingly large interburst intervals. We de-
signed the adaptive extension to be sensitive to bursting structure, there-
fore for increasing relative length of interburst intervals we expect a
larger difference between the original and the adaptive versions. We
show that the relative difference indeed increases monotonously with an
increase in the ratio between interbursts interval and bursts.

The absolute difference obtains its maximal value when the differences
ignored in the bursts are large and the bursts are long enough in compar-
ison to the total length of the recording. When very similar spike trains
are compared their relative difference becomes dominant and internal
structures of coinciding bursts become less relevant.

Additionally, we apply the measures to a dataset previously analyzed
for reliability and find that the adaptive methods agree with the pre-
vious results better than the original versions. The A-ISI-distance and
the A-SPIKE-distance seem to yield more reasonable results than the
ISI-distance and the SPIKE-distance. On the other hand when the coin-
cidence windows of the original version get spuriously small, A-SPIKE-
synchronization can match spikes much more efficiently. The effect can
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be especially meaningful in applications in which leader-follower rela-
tionships based on the temporal order of spikes are determined (28).

The rate-independent extension on the other hand focuses on spike
time accuracy while disregarding rate differences in the two spike trains.
The original SPIKE-distance considers spike time differences but also has
a feature that takes into account the firing rate difference between the
spike trains. However, sometimes only the spike time accuracy is of in-
terest and for that purpose the RIA-SPIKE-distance disregards any devi-
ations in firing rate. We can show that the RIA-SPIKE-distance is approx-
imately rate-independent for Poisson spike trains (apart from minor sta-
tistical effects) and perfectly rate-independent for strictly periodic spike
trains. With this final addition we have completed the picture, since
we now have measures that are sensitive to rate only (A-ISI-distance),
to timing only (ARI-SPIKE-distance), and to both at the same time (A-
SPIKE-distance).

The adaptive generalizations are implemented for cases where we
have prior knowledge of the system or where we want to reduce the
importance of very small details. However, one has to be careful with
this method. If the threshold parameter that defines the minimum rele-
vant time scale (MRTS) is chosen too high, this can introduce spurious
synchrony. To facilitate the selection, we introduce a method for auto-
matically extracting the threshold from the spike train data. This is done
by using the second moment the ISI-distribution of the whole dataset,
thereby giving more weight to longer ISIs.

Here it is important to note that while this automated estimation of
MRTS gives us a threshold value for each dataset, one has to be very
careful when comparing results obtained with different threshold val-
ues. Thus, one cannot use the adaptive version for two recordings from
the same source without using the same threshold for both recordings,
even if the ISI-distributions differ. In such cases, the preferable option
would be to combine the ISI-distributions before calculating the thresh-
old and to use the resulting value for both recordings. However, this
might not work in all cases. For example, recordings before and during
an epileptic seizure can have very different ISI-distributions. This means
that a globally meaningful threshold can not be extracted due to a very
bi-modal distribution of all the ISIs from the whole recording. The result-
ing threshold would be in between the two modes which would cause
the adaptive measures to basically consider one of the recordings as a
long burst and the other as an almost silent period. Thus, in cases where
a suitable threshold can not be found, it is preferable to just set it to
zero and consider only local information. This is equivalent to using the
original versions.
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Many time scale parametric measures like the Victor-Purpura and the
van Rossum distance use a parameter to define the time scale of the
system. The threshold set for the adaptive versions is philosophically
different in the sense that it does not define a single time scale, but sets
a line below which the effects of the smaller time scales are being toned
down. All different time scales are still considered at the same time, but
weighted differently depending on how they compare to the threshold.

Other measures that deal with multiple time scales exist. For example,
Lyttle and Fellous have proposed a metric to specifically assess the sim-
ilarity of spike trains with bursts or common silent periods (29). While
in the proposed adaptive measures the time scale parameter is limiting
full time scale independence of the original measures, in many measures
the time scale is a fixed value. With the method proposed by Lyttle and
Fellous they can detect bursts as well as silent periods. However, this
comes with a cost, since the method requires two time scale parame-
ters and three additional parameters; length of minimum silent period,
length of burst ISI, minimum number of spikes in a burst, scaling factor
to decide how important bursts are in comparison to single spikes, and
another factor to decide between importance of burst and silent period
detection. While the large array of options gives the experimenter a pow-
erful tool and provides more control over the analysis, it also increases
the complexity of the overall experiment. This may cause problems, in
particular when the data has many dimensions. Similarly, Rusu and Flo-
rian have introduced a new class of metrics (30). The max-metric and the
modulus-metric are well suited for measuring distances between spike
trains where information is encoded in bursts but single spike accuracy
within burst is not relevant. The max-metric depends on the kernel cho-
sen and a time scale parameter deciding its size. The modulus-metric is
parameter free like the ISI-distance, the SPIKE-distance, and the SPIKE-
synchronization. This is achieved by using a very simplified kernel.
However, the results obtained with both methods are not normalized.
Thus based on the dissimilarity value alone it is not possible to say any-
thing about the similarity of the two spike trains, but only about the
order of different pairs.

Another often used alternative to spike train distances are correlation
measures (see e.g. (31)). However, these measures traditionally require
windowing or binning and this creates the problem that their perfor-
mance can depend crucially on the window length or bin size and also
on the starting points and the overlap of the windows which clearly re-
duces the objectivity of the results.

The results confirmed our initial expectation that the main differences
between the adaptive generalizations and the original measures is in
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their assessment of the similarity of bursty data. Since bursts are ubiq-
uitous and have been identified as an important area of neuroscience
research (see e.g. (32, 33)), there is a strong need for this kind of similar-
ity measurement. For the ISI-distance, a method has been proposed for
evaluating the similarity of bursty data by identifying bursts and assign-
ing spikes at the beginning of the bursts (34). However, burst detection
is a notoriously difficult problem for which rather complicated methods
have been developed (see for example (35)). Thus, a measure based on
assigning spikes to bursts inherits the problems of burst detection. An-
other problem with the measure proposed in (34) is that it disregards
differences in spiking behavior within the bursts. In contrast, our adap-
tive versions do not detect bursts at all, but automatically adapt their
behavior whenever there are burst-like features in the data.

All the measures presented here are symmetric and thus invariant to
the order of the spike trains. Recently we have developed a complemen-
tary directional approach consisting of two new measures called SPIKE-
Order and Spike Train Order (28). This approach utilizes the adaptive co-
incidence detection of SPIKE-synchronization to first sort multiple spike
trains from leader to follower and then to quantify the consistency of
the spatio-temporal propagation patterns. A natural continuation of the
work presented in this article would be to use the adaptive measures for
this new approach as well.
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2.5 appendix

2.5.1 Edge effect correction and treatment of special cases

Here, we deal with some subtle details in the definitions of all three
measures A-ISI-distance, A-SPIKE-distance and A-SPIKE-synchroniza-
tion. First, in 2.5.1.1 and 2.5.1.2, we correct the edge effect by provid-
ing definitions for the periods before the first and after the last spike in
a spike train (for which the interspike interval is not defined). This is
necessary to guarantee that all measures are well-defined for the whole
recording interval. Subsequently, in 2.5.1.3 and 2.5.1.4, we deal with the
two special cases of empty spike trains and spike trains with only one
spike. Even if some spike trains are empty or very sparse, all measures
should still be defined in a way which is consistent with the regular
definitions.

2.5.1.1 Edge effect correction for A-ISI- and A-SPIKE-distance

Since the A-ISI- and the A-SPIKE-distance are time-resolved and are
based on ISIs defined by Eq. 2.3, there is ambiguity at the edges be-
fore the first spike and after the last spike. To resolve this ambiguity we
need to add auxiliary spikes. For the beginning of the spike train, we
assign an auxiliary spike at the maximum of the distance between the
start of the observation interval and the first spike, and the first known
ISI

t(n)saux = t(n)1 −max
{

t(n)1 − ts, t(n)2 − t(n)1

}
. (2.29)

This definition assumes that the rate stays the same at both sides of the
spike unless the edge is too far away for this to be true, in which case
the auxiliary spike is assigned at the edge. Analogously, the time of the
auxiliary spike at the end is

t(n)eaux = t(n)M + max
{

te − t(n)M , t(n)M − t(n)M−1

}
. (2.30)

If the first or last spike is at the edge, no edge correction is necessary at
that end. This defines the ISI which is then used not only for the ISI-dis-
tance but also for the A-SPIKE-distance and A-SPIKE-synchronization.

An auxiliary spike used for the edge effect correction is basically treated
as any other spike, for example they can be the nearest neighbor to a real
spike. But there is one exception: In order to avoid artificial synchrony
at the edges in the A-SPIKE-distance, they use the distance to the nearest
neighbor from the first/last real spike

∆t(n)saux = ∆t(n)1 and ∆t(n)eaux = ∆t(n)Mn
. (2.31)
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2.5.1.2 Edge effect correction for A-SPIKE-synchronization

For the A-SPIKE-synchronization profile we first apply the edge effect
correction described above and then calculate the coincidence windows
following Eqs. 2.14 and 2.15.

For cases when there is a spike right at the edge, we use the one ISI
that exists for setting the coincidence window of the spike to

τ
(n)
1 = 1

2 x(n)1F and τ
(n)
M = 1

2 x(n)MP. (2.32)

We also determine that an auxiliary spike can under no circumstance be
part of a coincidence nor can it have a coincidence counter. Finally, an
auxiliary spike does not count as a spike in the normalization.

2.5.1.3 Special cases for A-ISI- and A-SPIKE-distance

Empty spike trains and spike trains with only one spike do not provide
the ingredients needed to apply Eq. 2.29 and 2.30.

In order to define the ISI of an empty spike train without any spikes,
we assign auxiliary spikes to its edges, the beginning and the end of the
recording interval. This is the only interval for which we can guarantee
that there were no spikes.

However, while we can now use Eq. 2.3, Eq. 2.31 for the distance to the
nearest neighbour of the auxiliary spikes is still ill-defined, since there
are no real spikes. In this case a value is assigned exactly as in Eq. 2.7
and the nearest neighbor can either be a real or another auxiliary spike.
A very reasonable implication of this definition is that two empty spike
trains will be considered equal by both measures.

Similarly, it is not possible to assess the rate at either side of a single
spike. The most reasonable auxiliary spike location is again at the edge
of the recording. Thus for both cases, the auxiliary spikes are assigned
at the edges as

t(n)saux = ts and t(n)eaux = te (2.33)

and this completes the definitions for the A-ISI- and the A-SPIKE-distance.

2.5.1.4 Special cases for A-SPIKE-synchronization

For A-SPIKE-synchronization the situation is slightly different, since it is
not continuous but only defined at the times of the spikes. This means
that by definition an empty spike train cannot have synchronous spikes
and thus has no value. In case all spike trains are empty, we set A-SPIKE-
synchronization to SA

C = 1, i.e. empty spike trains are considered to be
perfectly synchronous. If a spike train contains only a single spike, we
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use half the spike train length to define the coincidence window for the
spike as

τ
(n)
1 = 1

2 (te − ts). (2.34)

These special cases complete the definition of A-SPIKE-synchronization.

2.5.2 Experimental recordings

2.5.2.1 Microelectrode array recordings from mouse cortical cells

The electrophysiological data analyzed in Sections 2.2.5.1 and 2.2.5.2
were recorded in the group of Prof. Jari Hyttinen at Tampere University
of Technology / BioMediTech, Tampere, Finland. These recordings were
performed prior to and independently from the design of this study.

Between 5,000 and 25,0000 commercially available primary mouse cor-
tical cells (A15586, Gibco, Thermo Fisher) were plated on five microelec-
trode arrays (MEAs; four 60MEA200/30iR and one 60HDMEA30/10iR,
all purchased from Multi Channel Systems, Reutlingen, Germany) fol-
lowing the protocol of Hales, Rolston, and Potter (36). The dishes were
coated with poly-L-lysine (Sigma-Aldrich, St. Louis, MO, USA) and
laminin (L2020-1MG, Sigma-Aldrich). The medium for the MEA cul-
tures was replaced three times a week. All MEAs with cells were kept in
an incubator (+37

◦C, 5% CO2, 95% air) prior to and between recordings.
Data were recorded three times a week between the 4th and the 35th day
in vitro. Every recording lasted five minutes and was performed with
25 kHz sampling rate. Spike detection was carried out by setting an am-
plitude threshold at five times the standard deviation of the signal-noise
level and the spike time stamps were stored with the Neuroshare Library
for MATLAB (Multi Channel Systems). We used two recordings for our
examples and test sets.

The five real data spike trains used in the test set (spike trains 26 to 30

in Fig. 2.5) were selected from these data by hand to represent different
time scales but chosen such that spike numbers were quite constant and
comparable to the artificial examples.

2.5.2.2 Patch clamp recordings of rat thalamocortical relay cells

The electrophysiological data analyzed in Section 2.2.5.4 were recorded
at the Swammerdam Institute for Life Sciences, University of Amster-
dam, the Netherlands. Again, these recordings were performed prior
to and independently from the design of this study. The experiments
carried out on brain slices from Wistar rats (Harlan, Netherlands; post-



2.5 appendix 45

natal days 12-16) were approved by the animal welfare committee of the
University of Amsterdam.

For details on the animals, slice preparation and electrophysiological
recordings, see (27). In the current-clamp measurements the cell was
injected with current that consisted of a DC component with superim-
posed noise: a computer generated (MATLAB) time series of Gaussian
distributed random numbers of a length of 300 s, filtered by an expo-
nential filter with a time constant τ = 10 ms and a standard deviation
of σ = 100 pA. A slow feedback system controlled the background DC
current to stabilize the membrane voltage at one of the specified values
(-80 mV, -70 mV, -60 mV or -50 mV) before the actual recording started;
after the start this DC current component was fixed. The same frozen
(= an exactly reproduced computer generated) noise train was injected
into the soma of the TCR neuron for every repetition of the experiment.
Signals were filtered at 510 kHz and sampled at 1020 kHz.

The recordings consisted of trials from five different cells of which
only two included trials for all four levels of membrane potential. The
cells analyzed were recorded three times and reliability was assessed by
trial to trial variations.
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S P I K E T R A I N O R D E R

Repetitive spatio-temporal propagation patterns are encountered in fields
as wide-ranging as climatology, social communication and network sci-
ence. In neuroscience, perfectly consistent repetitions of the same global
propagation pattern are called a synfire pattern. For any recording of se-
quences of discrete events (in neuroscience terminology: sets of spike
trains) the questions arise how closely it resembles such a synfire pat-
tern and which are the spike trains that lead/follow. Here we address
these questions and introduce an algorithm built on two new indicators,
termed SPIKE-Order and Spike Train Order, that define the Synfire Indi-
cator value, which allows to sort multiple spike trains from leader to
follower and to quantify the consistency of the temporal leader-follower
relationships for both the original and the optimized sorting. We demon-
strate our new approach using artificially generated datasets before we
apply it to analyze the consistency of propagation patterns in two real
datasets from neuroscience (Giant Depolarized Potentials in mice slices)
and climatology (El Niño sea surface temperature recordings). The new
algorithm is distinguished by conceptual and practical simplicity, low
computational cost, as well as flexibility and universality.

Adapted from: Leaders and followers: quantifying consistency in spatio-temporal propagation
patterns (9)

47
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3.1 introduction

Recordings of spatio-temporal activity are ubiquitous in many scientific
disciplines. Among the most prominent examples are large-scale elec-
trophysiological measurements of neuronal firing patterns in experimen-
tal neuroscience (37, 38) and sensor data acquisition in seismology (39),
oceanography (40), meteorology (41), or climatology (42). Other exam-
ples include interaction protocols in social communication (43, 44) or
monitoring single-node dynamics in network science (45).

In all of these fields recordings often exhibit well-defined patterns
of spatio-temporal propagation where some prominent feature first ap-
pears at a specific location and then spreads to other areas until poten-
tially becoming a global event. A propagation pattern can also be seen
as a recurring spike pattern or ”unitary events”, where the same spike
pattern is repeated by the same neurons (16). However, in our work we
do not expect repetitions of same event, but rather just look at the tempo-
ral order of all spikes. Such characteristic propagation patterns occur in
phenomena such as avalanches (46), tsunamis (47), chemical waves and
diffusion processes (48), and epileptic seizures (49). Further examples
are the epidemic transmission of diseases (50), and, more recently, the
spreading of memes on social networks (51) or in science (52).

In many cases spatio-temporal recordings can be represented as a two-
dimensional plot where for each recording site the occurrence of certain
discrete events (often obtained from threshold crossings in continuous
data) are indicated by time markers. In neuroscience such a plot is
known as a raster plot. A sequence of stereotypical neuronal action
potentials (spikes, (53)) is a spike train and a set of spike trains exhibiting
perfectly consistent repetitions of the same global propagation pattern is
called a synfire pattern. In this paper we adapt this terminology and use
all of these expressions not only in the context of neuronal spikes but
also for any other kind of discrete events. However, note that our use
of the term ‘synfire pattern’ differs slightly from the literature (see e.g.
(54)). Here we define a synfire pattern as a sequence of global events
in which all neurons fire in consistent order and the interval between
successive events is at least twice as large as the propagation time within
an event. An example of a rasterplot with spike trains forming a perfect
synfire pattern is shown in Fig. 3.1a.

For any spike train set exhibiting propagation patterns the questions
arise naturally whether these patterns show any consistency, i.e., to what
extent do the spike trains resemble a synfire pattern, are there spike
trains that consistently lead global events and are there other spike trains
that invariably follow these leaders?
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Figure 3.1: Motivation for SPIKE-Order and Spike Train Order. (a) Perfect syn-
fire pattern. (b) Unsorted set of spike trains. (c) The same spike
trains as in B but now sorted from leader to follower.
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In this study we introduce a framework consisting of two directional
measures (SPIKE-Order and Spike Train Order) that allows to define a
value termed Synfire Indicator which quantifies the consistency of the
leader-follower relationships in a rigorous and automated manner. This
Synfire Indicator attains its maximal value of 1 for a perfect synfire pat-
tern in which all neurons fire repeatedly in a consistent order from leader
to follower (Fig. 3.1a).

The same framework also allows to sort multiple spike trains from
leader to follower, as illustrated in Figs. 3.1b and 3.1c. This is meant
purely in the sense of temporal sequence. Whereas Fig. 3.1b shows an
artificially created but rather realistic spike train set, in Fig. 3.1c the same
spike trains have been sorted to become as close as possible to a synfire
pattern. Now the spike trains that tend to fire first are on top whereas
spike trains with predominantly trailing spikes are at the bottom.

We demonstrate the new approach using artificially generated datasets
before we apply it to analyze the consistency of propagation patterns in
real dataset. The neurophysiological dataset consists of neuronal activity
recorded from mice brain slices. These recordings typically exhibit a
sequence of global events termed Giant Depolarized Potentials (GDPs)
and one of the main questions we investigate is whether it is possible
to identify neurons that consistently lead these events (potential hub
neurons, see (55)).

The remainder of the article is organized as follows: In the Methods
(Section 3.2) we first describe the coincidence detection (Section 3.2.1)
and the symmetric measure SPIKE-Synchronization (Section 3.2.2). Sub-
sequently, we introduce the new directionality approach consisting of
the two measures SPIKE-Order and Spike Train Order (Section 3.2.3) as
well as the Synfire Indicator (Section 3.2.4) before we discuss the use
of SPIKE-Order surrogates to evaluate the statistical significance of the
results in Section 3.2.5. The Results Section 5.5 consists of two Subsec-
tions detailing applications of the new approach to artificially generated
datasets (Section 3.3.1) and neurophysiological data (Section 3.3.2). Con-
clusions are drawn in Section 3.4. Finally, both real dataset is described
in the Appendix.

3.2 measures

Analyzing leader-follower relationships in a spike train set requires a
criterion that determines which spikes should be compared against each
other. What is needed is a match maker, a method which pairs spikes
in such a way that each spike is matched with at most one spike in each
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of the other spike trains. This match maker already exists. It is the
adaptive coincidence detection first used as the fundamental ingredient
for the bivariate measure event synchronization (26, 56).

Event synchronization itself is symmetric and quantifies the overall
level of synchrony from the number of quasi-simultaneous appearances
of spikes. It was proposed along with an asymmetric measure termed
delay asymmetry which evaluates the temporal order among matching
spikes in the two spike trains.

However, unfortunately both event synchronization and delay asym-
metry are defined for the bivariate case of two spike trains only, rely on
sampled time profiles, and have a very non-intuitive normalization. For
the symmetric variant we have already addressed these issues by propos-
ing SPIKE-Synchronization (7), a renormalized multivariate extension of
event synchronization.

The two new measures SPIKE-Order and Spike Train Order proposed
here improve and extend the asymmetric measure delay asymmetry in
the same way. In particular, instead of just quantifying bivariate direc-
tionality they open up a completely new application, since they allow
us to sort the spike trains according to the typical relative order of their
spikes and to quantify the consistency of this order using the Synfire
Indicator.

All four approaches (bivariate/multivariate, symmetric/asymmetric)
are time-resolved as well as parameter- and scale-free. Their calcula-
tion consists of two steps, adaptive coincidence detection followed by a
combination of normalization and windowing. The first step, adaptive
coincidence detection, is the same for all of these measures.

3.2.1 Adaptive Coincidence Detection

Most coincidence detectors rely on a coincidence window of fixed size
τ (57, 20). However, since in many cases it is very difficult to judge
whether two spikes are coincident or not without taking the local context
into account (see Fig. 3.2a for an example), Quiroga et al. proposed a
more flexible coincidence detection. This coincidence detection is scale-
and thus parameter-free since the minimum time lag τ

(1,2)
ij at which two

spikes t(1)i and t(2)j of spike trains (1) and (2) are no longer considered
to be synchronous is adapted to the local firing rates according to

τ
(1,2)
ij = 1

2 min
{

t(1)i+1 − t(1)i , t(1)i − t(1)i−1, t(2)j+1 − t(2)j , t(2)j − t(2)j−1

}
. (3.1)

For some applications it might be appropriate to additionally intro-
duce a maximum coincidence window τmax as a parameter. This way
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additional knowledge about the data (such as typical propagation speed)
can be taken into account in order to guarantee that two coincident
spikes are really part of the same propagation front.

3.2.2 SPIKE-Synchronization

In normalization and windowing SPIKE-Synchronization (7) has evolved
so substantially from event synchronization that here we refrain from go-
ing into any detail on the original measure, but rather just mention the
main improvements. For a thorough introduction to event synchroniza-
tion please refer to the original paper (26), a more detailed comparison
of the two measures can be found in (7).

The main difference is that SPIKE-Synchronization (7) results in a dis-
crete, not a continuous, spike-timing based profile. The coincidence cri-
terion is quantified by means of a coincidence indicator

C(1,2)
i =

1 if minj

(
|t(1)i − t(2)j |

)
< τ

(1,2)
ij

0 otherwise
(3.2)

which assigns to each spike either a one or a zero depending on whether
this spike is part of a coincidence or not. Note that here, unlike for event
synchronization, the minimum function and the ’<’ guarantee that a
spike can at most be coincident with one spike (the nearest one) in the
other spike train. In case a spike is right in the middle between two
spikes from the other spike train there is no ambiguity since this spike is
not coincident with either one of them.

This unambiguity, illustrated in Fig. 3.2b, is the essential property
which allows the adaptive coincidence detection to act as a match-maker
for the subsequent application of SPIKE-Synchronization. Fig. 3.2c shows
examples, one with two coincident and one with two non-coincident
spikes.

A multivariate version of SPIKE-Synchronization can be defined by
generalizing the bivariate coincidence detection of Eq. 3.2 to all pairs of
spike trains (n, m) with n, m = 1, ..., N and N denoting the number of
spike trains:

C(n,m)
i =

1 if minj

(
|t(n)i − t(m)

j |
)
< τ

(n,m)
ij

0 otherwise.
(3.3)
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Figure 3.2: (a) This example demonstrates the usefulness of an adaptive co-
incidence detection. Depending on context the same two spikes
(left) can appear as coincident (right, top) or as non-coincident
(right, bottom). (b) Illustration of the adaptive coincidence detec-
tion. For clarity spikes and their coincidence windows are shown
alternatively in bright and dark color. The first step assigns to
each spike t(1)i of the first spike train a potential coincidence win-
dow which does not overlap with any other coincidence window:
τ
(1)
i = min{t(1)i+1 − t(1)i , t(1)i − t(1)i−1}/2. Thus any spike from the sec-

ond spike train can at most be coincident with one spike from the
first spike train. Small vertical lines mark the times right in the
middle between two spikes, and a line is dashed when it does not
mark the edge of a coincidence window. (c) In the same way a co-
incidence window τ

(2)
j = min{t(2)j+1 − t(2)j , t(2)j − t(2)j−1}/2 is defined

for spike t(2)j from the second spike train. For two spikes to be co-
incident they both have to lie in each other’s coincidence window
which means that their absolute time difference has to be smaller
than τij = min{τ(1)

i , τ
(2)
j } (which is equivalent to the shorter defini-

tion found in Eq. 3.1). For the two spikes t(1)i and t(2)j on the left
side this is the case, whereas the spikes on the right side are not
coincident.
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Figure 3.3: SPIKE-Synchronization. Note that the profile C(tk) is defined only
at the times of the spikes but a better visualization is achieved by
connecting the individual dots. By construction the pooled spike
train of these examples is identical consisting of 10 evenly spaced
bursts. The only difference is the distribution of the spikes among
the individual spike trains which varies from maximum to mini-
mum via intermediate synchrony. SPIKE-Synchronization correctly
indicates these changes. (a) Maximum reliability results in the value
one over the whole time interval. Each spike train contains one spike
per firing event. (b) Synfire pattern of bursts resulting in minimum
reliability corresponding to the value zero for the whole time inter-
val. (c) A random distribution of spikes among spike trains yields
intermediate values.
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Here τ
(n,m)
ij is defined equivalent to Eq. 3.1. Subsequently, for each spike

of every spike train a normalized coincidence counter

C(n)
i =

1
N − 1 ∑

m 6=n
C(n,m)

i (3.4)

is obtained by averaging over all N − 1 bivariate coincidence indicators
involving the spike train n.

In order to obtain a single multivariate similarity profile we pool the
spikes of all the spike trains as well as their coincidence counters:

{Ck} =
⋃
n

{
C(n(k))

i(k)

}
, (3.5)

where we map the spike train indices n and the spike indices i into a
global spike index k denoted by the mapping i(k) and n(k).

Note that in case there exist perfectly coincident spikes, k counts over
all of these spikes. From this discrete set of coincidence counters Ck the
SPIKE-Synchronization profile C(tk) is obtained via C(tk) = Ck. Finally,
SPIKE-Synchronization is defined as the average value of this profile

SC =

{
1
M ∑M

k=1 C(tk) if M > 0

1 otherwise
(3.6)

with M = ∑N
n=1 M(n) denoting the total number of spikes in the pooled

spike train.
This way we have used the same consistent framework for both the

bivariate and the multivariate case. The former is just a special case of
the latter. The interpretation is very intuitive: SPIKE-Synchronization
quantifies the overall fraction of coincidences. It reaches one if and only
if each spike in every spike train has one matching spike in all the other
spike trains (or if there are no spikes at all), and it attains the value zero
if and only if the spike trains do not contain any coincidences. Examples
for both of these extreme cases can be found in Fig. 3.3a and 3.3b and
one intermediate example (random distribution of spikes among spike
trains) is shown in Fig. 3.3c. For a derivation of the expectation value for
Poisson spike trains please refer to (58).

In the multivariate analysis proposed in this paper, SPIKE-Synchro-
nization can be used to filter the input to the algorithm. In order to
focus on propagation patterns within truly global events it is possible
to set a threshold value Cthr for the SPIKE-Synchronization profile C(tk).
This way only spikes with a coincidence value higher than this param-
eter Cthr are taken into account, all the other noisy background spikes
are simply ignored. This kind of filter will be used in the analysis of the
neurophysiological datasets in Section 3.3.2.
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3.2.3 SPIKE-Order and Spike Train Order

SPIKE-Synchronization assigns to each spike of a given spike train pair
a bivariate coincidence indicator. These coincidence indicators C(n,m)

i ,
which are either 0 or 1, are then averaged over spike train pairs and
converted into one overall profile C(tk) normalized between 0 and 1. In
exactly the same manner SPIKE-Order and Spike Train Order assign bi-
variate order indicators to spikes. Also these two order indicators, the
asymmetric D(n,m)

i and the symmetric E(n,m)
i , which both can take the val-

ues −1, 0, or +1, are averaged over spike train pairs and converted into
two overall profiles D(tk) and E(tk) which are normalized between −1
and 1. The SPIKE-Order profile D(tk) distinguishes leading and follow-
ing spikes, whereas the Spike Train Order profile E(tk) provides infor-
mation about the order of spike trains, i.e. it allows to sort spike trains
from leaders to followers.

First of all, similar to the transition from the symmetric event synchro-
nization to delay asymmetry, the symmetric coincidence indicator C(n,m)

i
of SPIKE-Synchronization (Eq. 3.3) is replaced by the asymmetric SPIKE-
Order indicator

D(n,m)
i = C(n,m)

i · sign
(

t(m)
j′ − t(n)i

)
, (3.7)

where the index j′ is defined from the minimum in Eq. 3.2 as j′ =
arg minj(|t(1)i − t(2)j |).

The corresponding value D(m,n)
j′ is obtained in an antisymmetric man-

ner as
D(m,n)

j′ = C(m,n)
j′ · sign

(
t(n)i − t(m)

j′

)
= −D(n,m)

i . (3.8)

Therefore, this indicator assigns to each spike either a 1 or a −1 de-
pending on whether the respective spike is leading or following a coin-
cident spike from the other spike train. The value 0 is obtained for cases
in which there is no coincident spike in the other spike train (C(n,m)

i = 0),
but also in cases in which the times of the two coincident spikes are
absolutely identical (t(m)

j′ = t(n)i ).
The multivariate profile D(tk) obtained analogously to Eq. 3.5 is nor-

malized between 1 and −1 and the extreme values are obtained if a spike
is either leading (+1) or following (−1) coincident spikes in all other
spike trains. It can be 0 either if a spike is not part of any coincidences
or if it leads exactly as many spikes from other spike trains in coinci-
dences as it follows. From the definition in Eqs. 3.7 and 3.8 it follows
immediately that Ck is an upper bound for the absolute value |Dk|.
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Figure 3.4: SPIKE-Order profile D(tk) and Spike Train Order profile E(tk) for an
artificially created example dataset. (a) The rasterplot shows 6 spike
trains which emit spikes in nine reliable events. For the first two
events spikes fire in order, for the next three events the order is ran-
dom whereas for the last four events the order is inverted. In the last
event there is one spike missing. Spike thickness decodes the SPIKE-
Synchronization value C(tk) (here almost constant), spike color the
SPIKE-Order value D(tk). (b,c) The SPIKE-Synchronization profile
C(tk) and its mirror profile (dashed black lines) act as envelope for
both the SPIKE-Order profile D(tk) (b, red) and the Spike Train Or-
der profile E(tk) (c, black). (b) The SPIKE-Order profile can not dis-
tinguish events with different firing order and by construction the
average value is always D = 0. (c) On the other hand, in the Spike
Train Order profile events with different firing order can clearly be
distinguished. For the first two correctly ordered events the value 1
is obtained. The next three events exhibit random order and corre-
spondingly the profile fluctuates rather wildly. Finally, the last four
inversely ordered yield the value −1 except for the last event for
which the absolute minimum value can not be obtained since one
spike is missing. The average value, the Synfire Indicator F, is not 0
but negative which reflects the dominance of the inversely ordered
events.
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While the SPIKE-Order profile can be very useful for color-coding and
visualizing local spike leaders and followers (Fig. 3.4a), it is not useful
as an overall indicator of Spike Train Order (Fig. 3.4b). The profile is
invariant under exchange of spike trains, i.e. it looks the same for all
events no matter what the order of the firing is (in our example only the
last event looks slightly different since one spike is missing). Moreover,
summing over all profile values, which is equivalent to summing over all
coincidences, necessarily leads to an average value of 0, since for every
leading spike (+1) there has to be a following spike (−1).

So in order to quantify any kind of leader-follower information be-
tween spike trains we need a second kind of order indicator. The Spike
Train Order indicator is similar to the SPIKE-Order indicator defined in
Eqs. 3.7 and 3.8 but with two important differences. Both spikes are
assigned the same value and this value now depends on the order of the
spike trains:

E(n,m)
i = C(n,m)

i ·

sign
(

t(m)
j′ − t(n)i

)
if n < m

sign
(

t(n)i − t(m)
j′

)
if n > m

(3.9)

and

E(m,n)
j′ = E(n,m)

i . (3.10)

This symmetric indicator assigns to both spikes a +1 in case the two
spikes are in the correct order, i.e. the spike from the spike train with
the lower spike train index is leading the coincidence, and a −1 in the
opposite case. Once more the value 0 is obtained when there is no coin-
cident spike in the other spike train or when the two coincident spikes
are absolutely identical.

The multivariate profile E(tk), again obtained similarly to Eq. 3.5, is
also normalized between 1 and −1 and the extreme values are obtained
for a coincident event covering all spike trains with all spikes emitted in
the order from first (last) to last (first) spike train, respectively (see the
first two and the last four events in Fig. 3.4). It can be 0 either if a spike
is not a part of any coincidences or if the order is such that correctly and
incorrectly ordered spike train pairs cancel each other. Again, Ck is an
upper bound for the absolute value of Ek.
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Figure 3.5: Pairwise cumulative SPIKE-Order matrix D before (left) and after
(right) sorting for the example dataset from Fig. 3.4. The upper
triangular matrix D(n<m), marked in black, is used to calculate the
Synfire Indicator F, for both the unsorted spike trains (Fu, left) and
the sorted spike trains (Fs, right). The thick black arrow in between
the two matrices indicates the sorting process.

3.2.4 Synfire Indicator

In contrast to the SPIKE-Order profile Dk, for the Spike Train Order pro-
file Ek it does make sense to define an average value, which we term the
Synfire Indicator:

F =
1
M

M

∑
k=1

E(tk). (3.11)

The interpretation is very intuitive. The Synfire Indicator F quantifies
to what degree the spike trains in their current order resemble a perfect
synfire pattern. It is normalized between 1 and −1 and attains the value
1 (−1) if the spike trains in their current order form a perfect (inverse)
synfire pattern. This means that all spikes are coincident with spikes
in all other spike trains and that all orders from leading (following) to
following (leading) spike consistently reflect the order of the spike trains.

It is 0 either if the spike trains do not contain any coincidences at all or
if among all spike trains there is a complete symmetry between leading
and following spikes.

The Spike Train Order profile E(tk) for our example is shown in Fig.
3.4c. In this case the order of spikes within an event clearly matters. The
Synfire Indicator F is slightly negative indicating that the current order
of the spike trains is actually closer to an inverse synfire pattern.

Given a set of spike trains we now would like to sort the spike trains
from leader to follower such that the set comes as close as possible to
a synfire pattern. To do so we have to maximize the overall number of
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correctly ordered coincidences and this is equivalent to maximizing the
Synfire Indicator F. However, it would be very difficult to achieve this
maximization by means of the multivariate profile E(tk). Clearly, it is
more efficient to sort the spike trains based on a pairwise analysis of
the spike trains. The most intuitive way is to use the anti-symmetric
cumulative SPIKE-Order matrix

D(n,m) = ∑
i

D(n,m)
i (3.12)

which sums up orders of coincidences from the respective pair of spike
trains only and quantifies how much spike train n is leading spike train
m (Fig. 3.5).

Hence if D(n,m) > 0 spike train n is leading m, while D(n,m) < 0 means
m is leading n. If the current Spike Train Order is consistent with the
synfire property, we thus expect that D(n,m) > 0 for n < m and D(n,m) < 0
for n > m. Therefore, we construct the overall SPIKE-Order as

D< = ∑
n<m

D(n,m), (3.13)

i.e. the sum over the upper right tridiagonal part of the matrix D(n,m).
After normalizing by the overall number of possible coincidences, we

arrive at a second more practical definition of the Synfire Indicator:

F =
2D<

(N − 1)M
. (3.14)

The value is identical to the one of Eq. 3.11, only the temporal and the
spatial summation of coincidences (i.e., over the profile and over spike
train pairs) are performed in the opposite order.

Having such a quantification depending on the order of spike trains,
we can introduce a new ordering in terms of the spike train index per-
mutation ϕ(n). The overall Synfire Indicator for this permutation is then
denoted as Fϕ. Accordingly, for the initial (unsorted) order of spike trains
ϕu the Synfire Indicator is denoted as Fu = Fϕu .

The aim of the analysis is now to find the optimal (sorted) order ϕs as
the one resulting in the maximal overall Synfire Indicator Fs = Fϕs :

ϕs : Fϕs = max
ϕ
{Fϕ} = Fs. (3.15)

This Synfire Indicator for the sorted spike trains quantifies how close
spike trains can be sorted to resemble a synfire pattern, i.e., to what
extent coinciding spike pairs with correct order prevail over coinciding
spike pairs with incorrect order. Unlike the Synfire Indicator for the
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unsorted spike trains Fu, the optimized Synfire Indicator Fs can only
attain values between 0 and 1 (any order that yields a negative result
could simply be reversed in order to obtain the same positive value). For
a perfect synfire pattern we obtain Fs = 1, while sufficiently long Poisson
spike trains without any synfire structure yield Fs ≈ 0.

The complexity of the problem to find the optimal Spike Train Order
is similar to the well-known travelling salesman problem (59). For N
spike trains there are N! permutations ϕ, so for large numbers of spike
trains finding the optimal Spike Train Order ϕs is a non-trivial problem
and brute-force methods such as calculating the Fϕ-value for all possible
permutations are not feasible. Instead, one has to make use of methods
such as parallel tempering (60) or simulated annealing (61) to search for
the optimal order. Here we choose simulated annealing, a probabilistic
technique which approximates the global optimum of a given function
in a large search space. In our case this function is the Synfire Indicator
Fϕ (which we would like to maximize) and the search space is the per-
mutation space of all spike trains. We start with the Fu-value from the
unsorted permutation and then visit nearby permutations using the fun-
damental move of exchanging two neighboring spike trains within the
current permutation. The update of the Synfire Indicator when exchang-
ing the spike trains k and k + 1 is simply given by ∆F = −2D(k,k+1). All
moves with positive ∆F are accepted while the likelihood of accepting
moves with negative ∆F is decreased along the way according to a stan-
dard slow cooling scheme. The procedure is repeated iteratively until
the order of the spike trains no longer changes or until a predefined end
temperature is reached.

In Fig. 3.6 we show the complete SPIKE-Order analysis including the
results for the sorted spike trains. The sorting of the spike trains max-
imizes the Synfire Indicator as reflected by both the normalized sum
of the upper right half of the pairwise cumulative SPIKE-Order matrix
(Eq.3.14, Fig. 3.6c) and the average value of the Spike Train Order profile
E(tk) (Eq.3.11, Fig. 3.6d). Finally, the sorted spike trains in Fig. 3.6e
are now ordered such that the first spike trains have predominantly high
values (red) and the last spike trains predominantly low values (blue) of
D(tk).

The complete analysis returns results consisting of several levels of
information. Time-resolved (local) information is represented in the
spike-coloring and in the profiles D and E. The pairwise information
in the SPIKE-Order matrix reflects the leader-follower relationship be-
tween two spike trains at a time. The Synfire Indicator F characterizes
the closeness of the dataset as a whole to a synfire pattern, both for the
unsorted (Fu) and for the sorted (Fs) spike trains. Finally, the sorted order
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Figure 3.6: Complete illustration of SPIKE-Order using our example dataset
from Fig. 3.4. (a) Unsorted spike trains with the spikes color-coded
according to the value of the SPIKE-Order D(tk). (b) Spike Train
Order profile E(tk). The Synfire Indicator Fu for the unsorted spike
trains is slightly negative. (c) Pairwise SPIKE-Order matrix D before
and after sorting. The optimal order maximizes the upper triangu-
lar matrix. (d) Spike Train Order profile E(tk) and its average values,
the Synfire Indicator Fs for the sorted spike trains. (e) Sorted spike
trains.
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of the spike trains is a very important result in itself since it identifies
the leading and the following spike trains.

3.2.5 Statistical significance

As a last step in the analysis we evaluate the statistical significance of
the optimized Synfire Indicator Fs. What we would like to estimate is
the likelihood that for the given total number of coincidences the preva-
lence of correctly ordered spike pairs (as quantified by the optimized
Synfire Indicator) could have been obtained by chance. If all coincident
spike pairs would be independent, the probability distribution would
be strictly binomial and we could calculate this likelihood analytically.
However, the pairwise spike orders in coincident events involving multi-
ple spike trains are not independent from each other, and so instead we
estimate the likelihood numerically using a set of carefully constructed
spike order surrogates.

For each surrogate (Fig. 3.7a) we maintain the coincidence structure
of the original spike trains by preserving the SPIKE-Synchronization val-
ues of every individual spike. However, we destroy the spike order pat-
terns by swapping the order of the two spikes in a sufficient number of
randomly selected coincident spike pairs. Note that the generation of
surrogates takes place not on the level of spike times but on the level of
order values (the x-axis in Fig. 3.7a is labeled ’time index’, not ’time’).
Spike trains with swapped spike times would have different interspike
intervals, and this would alter the results of the coincidence criterion in
Eq. 3.1 and change the value of SPIKE-Synchronization. This in turn
would make the desired evaluation of pure spike order effects difficult.

In the implementation, from one spike order surrogate to the next the
number of spike order swaps is set to the number of coincident spikes
in the spike train set, such that all possible spike order patterns can be
reached. Only for the first surrogate, since it starts from the original
spike trains, we swap twice as many coincidences in order to account
for transients. After each swap we take extra care that all other spike
orders that are affected by the swap are updated as well. For example,
if a swap changes the order between the first and the third spike in an
ordered sequence of three spikes, we also swap both the order between
the first and the second as well as the order between the second and the
third spike.

For each spike train surrogate we repeat exactly the same optimiza-
tion procedure in the spike train permutation space that is done for the
original dataset. The original Synfire Indicator is deemed significant if
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Figure 3.7: Statistical significance: Surrogate analysis for the example dataset
from Fig. 3.4. (a) Spike order patterns for original (black) and one
randomized surrogate (red). For clarity only the first four events
are shown. For the first two events the synfire-order of the original
is destroyed in the surrogates whereas for the next two events both
sequences are equally unordered. (b) Histogram for 19 surrogates.
Thick lines denote mean and standard deviation. Since the value for
the original dataset (black) is not maximum, the optimally sorted
spike trains do not exhibit a statistically significant synfire pattern.

it is higher than the Synfire Indicator obtained for all of the surrogate
datasets (this case will be marked by two asterisks). Here we use s = 19
surrogates for a significance level of p∗ = 1/(s + 1) = 0.05. As a second
indicator we state the z-score, e.g., the deviation of the original value x
from the mean µ of the surrogates in units of their standard deviation σ:

z =
x− µ

σ
. (3.16)

Results of the significance analysis for our standard example are shown
in the histogram in Fig. 3.7b. In this case the absolute value of the z-score
is smaller than one and the p-value is larger than p∗ and the result is thus
judged as statistically non-significant.

In case the initial sorting of the spike trains is used to test a specific
hypothesis there also exists a straightforward procedure to test the sta-
tistical significance of the Synfire Indicator Fu for the unsorted spike
trains. In this case no optimization of the Synfire Indicator is required,
rather the Synfire Indicator Fu for the initial sorting is compared against
Synfire Indicators obtained for random permutations of the spike trains.
This kind of significance test will be used in Section 3.3.2.
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3.3 results

In the following we apply our new algorithm to artificially generated
datasets (Section 3.3.1)and neurophysiological data (Section 3.3.2). For
the Figures we use the same full layout introduced in Fig. 3.6 to which
we add the significance analysis of Fig. 3.7b.

3.3.1 Application to artificially generated data

We start with examples covering the two extreme cases of a perfect syn-
fire pattern and a completely random spike train set. First, in Fig. 3.8
we apply the algorithm to a perfect inverse synfire pattern for which the
spike trains are initially sorted from follower to leader. Therefore, the
Synfire Indicator of the unsorted spike trains yields its minimum value
of Fu = −1. Sorting just reverses the order of the spike trains and in
consequence the maximum value of Fs = 1 is obtained. Any shuffling
of spike orders necessarily destroys the synfire pattern and thus leads
to much lower values of the Synfire Indicator. Accordingly, the surro-
gate test (Fig. 3.8f) shows that the statistical significance of the original
Synfire Indicator is very high.

The other extreme case is Poisson spike trains (Fig. 3.9) for which the
arrival times of spikes are completely random and without any preferred
order. For this realization the Synfire Indicator Fu for the unsorted spike
trains happens to be slightly negative indicating that the spike trains are
closer to an inverse synfire pattern than to a synfire pattern. The abso-
lute value Fs after sorting is higher. The fact that both of these values
are non-zero is due to the finite size effect caused by the limited number
of spikes. For more and more spike trains and/or spikes the expecta-
tion value even for the sorted case would converge towards zero. As
expected, the surrogate test shows that the order for the original spike
trains is not statistically distinct from the order of the surrogate spike
trains (there is no preferred order that can be destroyed by the shuffling)
and, accordingly, the value of the original Synfire Indicator is revealed
to be clearly non-significant.

The third example in Fig. 3.10 shows a mixture of these two extremes,
Poisson spike train interspersed with spike trains that contain a perfect
inverse synfire pattern (plus random spikes). Sorting the spike trains
restores the correct order of the synfire pattern spike trains within the
Poisson spike train. The Synfire Indicator for the sorted spike trains Fs

for this mixed example is actually almost identical to the value obtained
for the Poisson spike trains in Fig. 3.9, but this time the surrogate test
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Figure 3.8: SPIKE- and Spike Train Order analysis for a perfect inverse synfire
pattern. The plot follows the layout of Fig. 3.6 with the histogram of
the surrogate test (see Fig. 3.7b) for statistical significance added as
subplot f. For the unsorted spike trains a minimal Synfire Indicator
of Fu = −1 is obtained, while sorting results in the maximum value
of Fs = 1. According to the surrogate test the statistical significance
of the result is very high.
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Figure 3.9: SPIKE- and Spike Train Order analysis for 20 Poisson spike trains.
Since the number of spike trains is too large to label the spike trains
in the top and in the bottom subplot with numbers we use color
coding at the left side to label them. Both before and after sorting
the Synfire Indicator is very close to zero. The surrogate analysis
reveals the result to be non-significant.
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Figure 3.10: SPIKE- and Spike Train Order analysis for Poisson spike train in-
terspersed with spike trains that contain random spikes but also
a perfect inverse synfire pattern. The order contained within the
synfire pattern spike train is distinct enough to make the Synfire
Indicator for the sorted spike trains statistically significant.
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reveals the value to be highly significant. These two examples combined
illustrate nicely that the Synfire Indicator and the surrogate analysis pro-
vide complementary information. In the mixture example of Fig. 3.10

there are many more random Poisson spikes than ordered synfire pat-
tern spikes. According to the Synfire Indicator, these two types of spikes
together appear to be as ordered as the spikes of the shorter but purely
random Poisson spike trains in Fig. 3.9. However, the Synfire Indicator is
strongly influenced by the statistics of the dataset and thus is in itself not
sufficient to reliably compare two datasets with widely different number
of spike trains and spikes. The surrogate analysis, on the other hand,
can be used to compare datasets of different size since by preserving the
spike numbers in the surrogates it explicitly takes the statistics of each
dataset into account.

3.3.2 Application to real data

In order to apply the Spike Train Order algorithm to real neurophysi-
ological data, we analyzed data recorded via fast multicellular calcium
imaging in acute CA3 hippocampal brain slices from juvenile mice. In
the juvenile hippocampus, the CA3 region is the origin of a stereotypical
network phenomenon of wavelike propagating activity termed giant de-
polarizing potentials (GDPs (62)). In previous studies, GDPs have been
used to investigate the topology of networks and the role of hub cells (55)
as well as to reveal the deterministic and stochastic processes underlying
spontaneous, synchronous network bursts (63). Due to the distinct archi-
tecture and the repetitive nature of the GDPs this experimental setup
offers a very suitable test case for our synfire pattern analysis (for more
background and a detailed description of the experimental methods re-
fer to Appendix 3.5.1).

The first dataset analyzed in Fig. 3.11 includes 13 GDPs over a bit
more than 6 minutes. Almost all GDPs involve the whole network. Here
as for all other neurophysiological datasets analyzed initially the spike
trains are sorted according to their firing rate such that the sparsely spik-
ing neurons are on top and the most active neurons at the bottom (Fig.
3.11a). This specific sorting allows us to test the hypothesis that the neu-
rons which fire almost exclusively within the GDPs and are very sparse
on background activity might have a stronger role in initiating GDPs and
tend to lead, whereas the more regularly spiking neurons might tend to
follow. If this would be the case one would expect a very high value
for the initial Synfire Indicator Fu. However, according to Fig. 3.11b the
actual value is very close to zero and actually slightly negative. A sta-
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Figure 3.11: SPIKE-Order for real data recorded in an acute hippocampal slice
from a juvenile mouse. Note how the color-coding of the spikes
according to their SPIKE-Order D helps to overcome the low tem-
poral resolution of the Figure and to resolve the spike order within
the GDPs. (a) Initially the spike trains are sorted according to
their firing rate starting with the most sparse spike trains. The
messy color-patterns reveal that this is completely uncorrelated to
the spike order within the GDPs. (f) After sorting, there is a fairly
consistent transition from spike trains with predominantly leading
spikes (red) in the GDPs to spike trains with predominantly follow-
ing spikes (blue).
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tistical significance test using random permutations of spike trains (see
Section 3.2.5) indeed proves the Synfire Indicator of the unsorted spike
trains Fu to be non-significant (result not shown). A further indicator for
this is the fact that the order of the sorted spike trains is very different
from the initial order, as can be seen by comparing the color bars on the
left of Fig. 3.11a and Fig. 3.11e. The color-coding of the GDPs exhibits
typically a slightly noisy transition from leader (red) to follower (blue).
The Synfire Indicator for the sorted spike trains Fs is also much higher
(Fig. 3.11d). Finally, the surrogate analysis (Fig. 3.11f) shows this result
to be highly significant.

However, the spiking in Fig. 3.11 consists not only of the GDPs. Most
neurons exhibit at least to some extent spontaneous background activity,
the ones at the top of the initial sorting less than the ones at the bottom.
The spikes in this background activity are typically coincident with only
few other spikes and do not take part in any propagation patterns (note
their green color which indicates SPIKE-Order values close to zero). So
in the context of our synfire pattern analysis this is just noise that leads
to a decrease of the Synfire Indicator. There is a straightforward way to
disregard these background spikes by setting a threshold value Cthr for
the SPIKE-Synchronization profile C(tk). Only spikes with a coincidence
value higher than Cthr are taken into account, all other spikes are simply
ignored. The result of this background correction can be seen in Fig. 3.12

for the same dataset already used in Fig. 3.11. Focusing the analysis on
the reliable GDPs leads to an increase of the Synfire Indicator from 0.284
to 0.438.

As already mentioned before, one of the main results of our analysis
is the sorted order of the spike trains itself. For these neurophysiological
data it allows to identify the leading and the following neurons in the
network and to project this information back on the recording setup.
This is shown in Fig. 3.13 where we have color-coded the optimized
Spike Train Order obtained in Fig. 3.12 within a 2D-plot of the neurons
recorded from the hippocampal slice. For this example there appears
to be a clear overall propagation from right to left but there is also a
considerable degree of variability which might be due to a non-trivial
connectivity within the network.

In Fig. 3.14 we apply the SPIKE-Order analysis to a second dataset
recorded from a different slice, again focusing on the order within the
global events only. Here we also added one new feature, the mean value
of the Spike Train Order E(tk) for each global event (we use the maxima
and minima of the SPIKE order profile D(tk) to delineate the GDPs).
This again emphasizes the time-resolved nature of the SPIKE order and
the Spike Train Order indicators.
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Figure 3.12: SPIKE-Order for the real data already analyzed in Fig. 3.11 but
this time the analysis of SPIKE-Order was restricted to spikes with
a SPIKE-Synchronization value of at least 0.7. This simple thresh-
olding allows to focus the analysis on the reliable events and to
disregard all spikes between the events (these are not colored and
thus remain black). This results in an increase of the overall value
of SPIKE-Order from 0.284 to 0.438.



3.3 results 73

Figure 3.13: Projection of the optimized Spike Train Order on the 2D-photo of
the hippocampal slice. The Regions of Interest (ROIs) which de-
note filled and identified cells in the CA3 region are color-coded
from leader (index 1, red) to follower (index 163, blue) using the
optimized Spike Train Order of Fig. 3.12. The very first leader
(lower right) and the very last follower (upper left) are marked by
filled contours.

Overall, we have analyzed neurophysiological datasets from four hip-
pocampal slices exhibiting an average of 7.75 GDPs. We obtained an aver-
age value for SPIKE-Synchronization of 0.59 before focusing on the GDPs
(as in Fig. 3.11) and 0.92 after (as in Fig. 3.12). With or without this focus
the Synfire Indicator for the initial spike train sorting Fu was very close
to zero and in all cases proved to be non-significant when tested against
Synfire Indicators obtained for random permutations of the Spike Train
Order. Since the initial sorting was based on overall firing rate of the
neurons, this signifies that the hypothesis that the low-firing neurons
which are basically only active during the GDPs might have a stronger
role in initiating GDPs can be rejected. For the sorted spike trains the
Synfire Indicator Fs was 0.20 for all spikes and 0.42 for the spikes within
the GDPs only. Suppressing the effect of the noisy background spikes
in the analysis thus leads to an average increase of the Synfire Indicator
by about 110%. Finally, according to the surrogate analysis described in
Section 3.2.5 the Synfire Indicator for the sorted spike trains Fs yielded a
statistically significant result for all datasets analyzed.

So overall we can conclude that the GDPs recorded in brain slices
from juvenile mice are distinguished by a very high consistency of their
spatio-temporal propagation patterns. However, it is interesting to note
that this consistency does not hold when comparing different slices. In
the datasets analyzed in this paper we find examples of both propagation
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Figure 3.14: SPIKE-Order for a second dataset for which again the analysis of
SPIKE-Order was restricted to spikes with a SPIKE-Synchroniza-
tion value of at least 0.7. In this case the focus on the GDPs let the
Synfire Indicator increase from 0.296 (result not shown) to 0.389.
In addition, here we also calculated one average Spike Train Or-
der value per GDP (green points) which illustrates once more the
time-resolved nature of the method.
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in the direction of CA2 as well as propagation towards the dentate gyrus.
This is consistent with results reported in (63).

3.4 discussion

Over the last years a wide variety of measures to quantify the synchrony
between spike trains have been introduced. Three recent proposals, ISI-
distance (64, 4), SPIKE-distance (5, 6), and SPIKE-Synchronization (7, 58),
share the desirable property of being time-resolved and parameter-free
(time scale independent). However, their bivariate versions are sym-
metric and in consequence their multivariate versions are invariant to
changes in the order of spike trains. None of these measures is designed
to provide information about the directionality of the propagation pat-
terns.

In the present study we address this issue. First we use an adaptive
coincidence detection as match maker in order to identify pairs of coinci-
dent spikes. Then we define two measures, the asymmetric SPIKE-Order
D and the symmetric Spike Train Order E, which are particularly useful in
a bivariate representation (pairwise matrix) and as a time-resolved mul-
tivariate profile, respectively. From these two measures we can derive
the Synfire Indicator F, a condensed scalar value that quantifies the over-
all consistency of the spatio-temporal propagation patterns in a rigorous
and automated way. Its maximization allows to sort multiple spike trains
from leader to follower. This is meant purely in the sense of temporal
sequence of the spikes. The question asked is: For which spike trains do
spikes tend to occur first and for which do they tend to occur last? We
use simulated annealing to search among all permutations of spike trains
for the sorting that resembles as closely as possible a synfire pattern, a
perfectly consistent repetition of the same global propagation pattern.
In a final step we evaluate the statistical significance of the optimized
permutation using a set of carefully constructed spike train surrogates.

We first illustrate the merits of our new approach using artificially
generated datasets and then apply it to real dataset.

The new algorithm is conceptually simple, of low computational cost
and comes with an intuitive and straightforward visualization, including
a color-coded rasterplot. It substantially improves on all the bivariate
functionalities of its predecessor directional measure delay asymmetry (no
need for sampled profiles, more intuitive normalization etc.) and could
thus also be used in the context of the pairwise matrices, both normal-
ized or cumulative, used in complex network theory (65, 66). However,
one of the main advantages of the new algorithm is its multivariate na-
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ture which opens up completely new kinds of application such as spike
train sorting.

One important advantage that the method shares with other tech-
niques of spike train analysis is the high flexibility in the definition of
events. For example, when looking at the synchronization of neuronal
bursts instead of individual spikes one can define the events as the onset,
the center or the offset of the activity (e.g., the first, the middle or the
last spike of each burst). In cases in which a burst of spikes is consid-
ered to be equivalent to a single spike one could introduce some kind of
meta-events and then look at coincidences between these meta-events.

The application of our measures is also not restricted to truly discrete
data. Continuously sampled data can be reduced to a spike train where
the only information maintained is the timing of the individual events.
Often these event times are obtained in a manner similar to how the neu-
ronal spike times are extracted from recordings of neuronal membrane
potentials (usually done via some kind of thresholding). Examples of
sampled data to which measures of spike train synchrony have been ap-
plied include EEG data (26, 6, 67) and, outside of neuroscience, stock
market velocity (68) - and rainfall events (65).

The algorithm is particularly suited for datasets with a high value of
SPIKE-Synchronization. According to the coincidence criterion (Eq. 3.1)
these are spike trains that include sequences of global events for which
the interval between successive events is at least twice as large as the
propagation time within an event. For these datasets the Synfire Indi-
cator evaluates the consistency of the order within these well separated
global events. The universality of the phenomenon, repetitive propaga-
tion patterns, makes our new algorithm applicable in a wide array of
fields such as medical sciences, seismology, oceanography, meteorology
or climatology. For example, the duration of an epileptic seizure is typ-
ically much shorter than the interval between two successive seizures.
Also the time it takes a storm front to cross a specific region is typi-
cally much smaller than the time to the next storm. Many other repeti-
tive propagation phenomena exhibit similar ratios of characteristic time
scales.

In order to understand the scope of our proposed algorithm it is impor-
tant to understand what it is not designed to achieve. The method deals
purely with relative order, it does not consider the length of absolute
delays. Moreover, while the instantaneous coincidence criterion makes
the method time scale independent, parameter-free and easy to use, it
also renders it insensitive to patterns involving spikes that are not imme-
diately adjacent. Many other, typically more complicated, methods have
been designed to characterize the detailed spatio-temporal structure in
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large neuronal networks (69, 70) or to detect hierarchically structured
spike-train communities (71, 72). The method is also not designed to de-
tect neuronal synfire chains (in the strict sense of the word) in massively
parallel data. For this task other statistical methods based on some forms
of pattern detection have been developed (73, 74).

Another caveat concerns causality. While a significant value of the
Synfire Indicator Fs in our algorithm clearly shows the presence of a
preferred temporal order of some signals with respect to others, it does
not necessarily prove a driver-responder relationship. There are other
methods that have been developed for this kind of system dynamics
analysis (e.g., (75)). But even for such methods causality is always a
strong claim. In fact, the two signals might be driven by a common
hidden source and a consistent leader (follower) could just indicate a
drive with a smaller (larger) delay. Similarly, internal delay loops in one
of the two systems can also fool the interpretation.

There are a number of possible directions for future research, both
from a methods and from a data point of view. Regarding the algorithm,
for the coincidence detection it would be straightforward to limit the
range of allowed time lags by incorporating information about the ex-
pected speed of propagation (65). One could introduce a minimum time
lag in order to ensure causality and/or limit the maximally allowed time
lag in order to focus on meaningful propagation of activity. In princi-
ple the range of allowed time lags could even be selected individually
for each pair of spike trains depending on the known properties of the
connectivity between the respective two neurons. Importantly, even with
such type of time lag restrictions in place, it has still to be guaranteed
that each spike can be part of at most one coincidence.

A follow-up task for our neurophysiological data would be to inves-
tigate to what extent the neurons that are identified as leading by our
analysis are identical to the so-called hub neurons (55), i.e. neurons with
a much higher than average degree of connectivity within the network.
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3.5 appendix

3.5.1 Neurophysiological dataset

The neurophysiological data analyzed in Section 3.3.2 were recorded via
fast multicellular calcium imaging in acute CA3 hippocampal slices from
juvenile mice. The CA3 region has a strong recurrent excitatory connec-
tivity (76). This distinct feature is suggested to be crucial for memory
encoding and pattern completion and thus memory retrieval (77). Dur-
ing memory retrieval in rodents, population bursts of the CA3 lead to
high frequency stimulation of the efferent regions, so called sharp wave
ripples (78). In the juvenile hippocampus, due to a higher chloride re-
versal potential in the CA3 pyramidal cells, the GABA-ergic system is
excitatory (62). GABA-ergic interneurons have been shown to serve as
so called hub neurons that trigger the GDPs (55).

The recordings were performed by the group of Heinz Beck at the De-
partment of Epileptology, University of Bonn, Germany, prior to and in-
dependently from the design of this study. Transversal acute brain slices
(300µm thick) were prepared from 5 to 10-day-old (P5-P10) C57BL/6

mice (Charles River, n = 19 slices). Slice preparation, calcium imaging
and data analysis were performed as previously described in (79). For
AM-loading of brain slices with OGB1-AM we used a protocol modi-
fied from (80). Multicellular calcium imaging was done using a home-
made single planar illumination microscope (SPIM) modified from (81).
Movies were recorded at a frame rate of 200 Hz over a minimal length of
5 min up to 30 min to record a sufficient amount of spontaneous activity.
Time points of cell activity from the imaging data were defined as the
onsets of Ca2 events in fluorescence traces of all individual cells using
the maximum of the second derivative of each event (82).

In order to test the Spike Train Order algorithm, datasets were chosen
that exhibited at least three global GDPs during the recording (n = 5).
For one dataset the surrogate analysis described in Section 3.2.5 proved
to be unfeasible due to its excessive density of spontaneous activity.
Therefore this dataset was discarded from further analysis, so the final
number of datasets analyzed was n = 4.
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4

R AT E A N D T E M P O R A L C O D I N G I N S P I K E T R A I N
D I S TA N C E S

Background: It is commonly assumed in neuronal coding that repeated
presentations of a stimulus to a coding neuron elicit similar responses.
One common way to assess similarity are spike train distances. These
can be divided into spike-resolved, such as the Victor-Purpura and the
van Rossum distance, and time-resolved, e.g. the ISI-, the SPIKE- and
the RI-SPIKE-distance.
New Method: We use independent steady-rate Poisson processes as sur-
rogates for spike trains with fixed rate and no timing information to
address two basic questions: How does the sensitivity of the different
spike train distances to temporal coding depend on the rates of the two
processes and how do the distances deal with very low rates?
Results: Spike-resolved distances always contain rate information even
for parameters indicating time coding. This is an issue for reasonably
high rates but beneficial for very low rates. In contrast, the operational
range for detecting time coding of time-resolved distances is superior
at normal rates, but these measures produce artefacts at very low rates.
The RI-SPIKE-distance is the only measure that is sensitive to timing
information only.
Comparison with Existing Methods: While our results on rate-dependent
expectation values for the spike-resolved distances agree with (22), we
here go one step further and specifically investigate applicability for very
low rates.
Conclusions: The most appropriate measure depends on the rates of the
data being analysed. Accordingly, we summarize our results in one table
that allows an easy selection of the preferred measure for any kind of
data.

Adapted from: Which spike train distance is most suitable for distinguishing rate and temporal
coding? (10)

81
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4.1 introduction

Neurons respond to stimulation with discrete events called spikes and
a consecutive sequence of such spikes over time form a spike train (53).
The effect of a spike is to release neuronal transmitters at synapses, and
with enough input from the other neurons a downstream neuron fires a
spike (2).

Neurons can code information in the rate and/or in the timing of the
spikes (15). Neuronal information whether coded in spike rate or in
spike timing is linked to the length of the encoding window. The rate
at which a relevant property of the neural code can change, and the
maximum rate at which changes in the stimulus can be represented, is
the rate at which the neural code can adjust to the new representation.
A definition for rate and time coding schemes has been provided by (83)
as follows:

• ”It is generally accepted that a rate encoding scheme is one in which
the relevant information encoded about the stimulus is correlated only
with the number of elicited spikes within the encoding window and is not
correlated with any aspect of the temporal pattern of the spikes within the
encoding window.”

• ”In a temporal encoding scheme, the relevant information is correlated
with the timing of the spikes within the encoding window, over and above
any information that might be correlated with the number of spikes within
the window.”

It is important to note that this definition of temporal coding does not
require rate correlation actually to be present. Also it is not limited to
single spike correlations but applies to any correlations in spike patterns
that would not be expected due to rate alone.

There is plenty of evidence suggesting that information is coded in
rate averaged over short periods of time. An example is rate coding in
directional tuning within the motor cortex (84). However, another view
is that for very fast reaction sensory and motor systems this kind of
temporal averaging is too slow (85). When the organism needs to make
decisions based on sensory stimuli in time scales of hundreds of millisec-
onds it is not possible to average over time at every stage of the pathway
from stimulus detection to reaction. Thus it has been proposed that for
each neuron first the spike latency of a response could code for intensi-
ties of a stimulus forming tuning curves similar to those of rate (85). The
problem is that there is no specific trigger instant from when to calculate
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time delays. However, spike time coding has been shown to be very gen-
erally used in relaying among others gustatory, somatosensory, olfactory,
auditory, and visual information (86, 87, 88, 89, 90) at least as long as
relevant timing signals are available to the experimenter (85). Using a
simulation of ganglion cells it could be demonstrated that information
transfer from multiple cells firing only one single spike can exceed that
of pure rate coding (91).

Whichever coding type is used, the main assumption behind all neu-
ronal coding research is that repeated presentations of the same stim-
ulus result in a similar spike train responses, whereas presentations of
different stimuli typically yield very dissimilar responses. One very com-
mon approach to measure such similarity are spike train distances (see
e.g. (92, 19)), which are designed to assess similarity based on rate and
timing within spike trains. In this paper we deal with four commonly
used as well as the more recent spike train distances. The spike-resolved
Victor-Purpura distance (12, 93), and the van Rossum distance (13) are
defined by using spikes as the main elements of the measures while the
time-resolved ISI-distance (3, 4), the SPIKE-distance (5, 6), and the RI-
SPIKE-distance (8) are based on time.

The Victor-Purpura distance (12, 93) and the van Rossum distance (13)
utilize time scale parameters q and τ respectively. For the extreme time
scale parameter values q = 0 and τ approaching infinity, respectively, the
distances evaluate spike count as an indicator of rate. While this works
in some cases, it ignores any temporal correlations in spike timing within
the counting window. In order to be more and more sensitive not only
to rate but also to timing information, the time scale parameter has to be
moved towards the opposite side of the parameter range. For this reason,
these parameters are often taken as deciding between rate or time coding
(94). Spike-resolved spike train distances have been applied to identify
rate and time coding in recordings e.g. from the auditory system (in
songbirds, (95, 96)) or the visual system (salamander retinas, (97), or
visual cortex of cats, (98)). On the other hand, the time-resolved ISI-
distance (3, 4), SPIKE-distance (5, 6), and RI-SPIKE-distance (8), are time
scale free and thus do not require a parameter, but they assess timing
information in the data in relation to the local time scale.

The existence of rate and time coding in neural representations within
the brain (or even their coexistence in different brain regions) is a very
important field of investigation. Since spike train distances are used
to quantify the (dis)similarity of spike trains are thus one of the most
used tools to tackle this issue, it is equally important to understand their
definitions of similarity. Therefore, in the first part of this study we
investigate the specific sensitivities of the measures to rate and time cod-
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ing. Any distance responding to rate difference between the spike trains
is sensitive to rate coding. If a distance is sensitive to spike timing, it
causes deviations from the distance obtained for pure rate coding (rate
difference) if such can be defined for the measure. This definition also
implies that if a timing responsive distance is not sensitive to rate dif-
ference, it assesses purely timing information. These distinctions allow
us to quantify the operational ranges of the distances for detecting time
coding using pairs of independent steady rate Poisson spike trains (with
reasonably high rates) as surrogates for random spike trains with no
timing information.

In the second part of this study we look at limitations of the different
spike train distances regarding their ability to deal with very low spike
rates in the data. Neuronal spike trains have a very strong restriction
regarding the information they can convey over the spike generating
process that is called the floor effect. This is because they are discrete
samples from a distribution and the smallest units measurable is a sin-
gle spike. As an example one might have a neuron firing at 1Hz for a 1s
recording and the spike count distribution consists mostly of values 0, 1,
or 2 spikes. Equally, if a neuron fires at 2Hz, it still exhibits a consider-
able amounts of spike trains with 0, 1 or 2 spikes, even if it is more likely
to also produce spike trains with 4 or 5 spikes. Since differences between
10Hz and 20Hz are more visible from fewer recordings, this floor effect
only affects the low end of the rate scale. Here, due to the insufficient
sampling it is not possible to carry out a meaningful statistical analy-
sis of the spike train distances based on the number of spikes. Instead,
in this part of the study we use sampling over multiple realizations of
steady rate Poisson processes to estimate the minimal rate that is needed
in order to still obtain reliable estimates of timings in the data.

The remainder of the paper is organized as follows. In the Methods
(Sec. 4.2) we introduce the spike train distances used in this study and
introduce the statistical method used. The Results (Sec. 4.3) are divided
into three parts. In the first part we analyze both the spike-resolved and
the time-resolved distances for the normal case where the total rate of
the processes is reasonably high and thus far from exhibiting the floor
effect. In the second part we examine the functionality of both types of
distances for rates so very low that the floor effect takes place. A series of
simple examples specifically constructed to illustrate the most important
implications of the results obtained is presented in the third part. Finally,
in Sec. 4.4 we discuss the results and present our conclusions.
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4.2 methods

There are many different ways to quantify similarity in spike trains. In
this Section we qualitatively describe four established and one recently
proposed spike train distances. These spike train distances can be di-
vided into two main categories. The first category (Sec. 4.2.1) contains
measures where spikes are the main element for constructing the dis-
tance. For the second category (Sec. 4.2.2) the main unit of the analysis
is time since the values are assigned over time rather than over spikes.
The mathematical definitions for the spike-resolved and time-resolved
spike train distances can be found in 4.5.1 and 4.5.2, respectively. Finally,
in Sec. 4.2.3 we summarize the analysis and the statistical methods used
in this study.

4.2.1 Spike-resolved spike train distances

The spike-resolved distances are based on the idea that for each spike
there should be a matching spike in the other spike train. Thus even if
not defined exactly in this manner, they will try finding pairs for spikes
and consider unpaired spikes as rate difference. Thus, they consider rate
first and timing second, since any excess spikes are always considered in
the distance and only after that the timing differences are added.

Here we describe the two spike-resolved distances proposed by Victor
and Purpura and by van Rossum which so far have been most commonly
used in the context of neuronal coding. Other spike-resolved measures
such as SPIKE-synchronization (7) are not considered in the scope of this
study.

4.2.1.1 Victor-Purpura distance

The Victor-Purpura distance (12, 93) is based on finding the minimal cost
for transforming one spike train into the other using the three elementary
operations of deleting, inserting and shifting spikes. While both deletion
and insertion carry a cost of 1, the parameter q is used to evaluate the cost
of shifting a spike. The theoretical range of values the Victor-Purpura
distance can obtain for a pair of spike trains will always fall in range
of [n2 − n1, n2 + n1], where n1 and n2 are the spike counts of the two
spike trains. With a q-value of zero, shifting spikes to coincide costs
nothing and in this case the total distance between spike trains is just the
difference in spike count (n2−n1), since the extra spikes in the spike train
with the higher rate need just to be deleted to convert one to another. On
the other hand, very high q values require more timing accuracy between
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Distance Reasonably high rates Very low rates
Timing Rate Synchrony Timing Rate Synchrony

Victor-Purpura x (X*) XX x (X*) X X X
van Rossum x (X*) X x (X*) X X X

ISI X X XX x x x
SPIKE X X XX x x x

RI-SPIKE XX x X x x x
XX: very well suited
X: can perform
x: avoid using
*: timing information available only for near equal rates

Table 4.1: An overview of all spike train distances. Reasonably high rates de-
notes the normal case of rates that are high enough to avoid any floor
effect (more than 4 spikes overall), whereas very low rates refers to
rates so low that the floor effect takes place (total number of spikes
equal to or lower than 4). Timing means pure spike timing infor-
mation, rate pure spike count difference, and synchrony taking into
account time local similarities in both rate and spike timing.

spikes, since the distance is the sum of all spikes in the spike trains that
do not exactly match a spike in the other spike train (up to n2 + n1). Thus
the parameter q is often taken as an indicator of the relative importance
of rate and time coding (94).

4.2.1.2 van Rossum distance

The van Rossum distance (13) ties the spikes to a more biological context
by using a kernel, which can be considered as the effect a spike will have
on the postsynaptic neuron (see also (99)). An exponentially decaying
kernel with time constant τ is applied to each spike and differences in
the effect patterns are considered when calculating the distance. The
larger is τ, the longer lasts the effect of a spike.

Although the resulting profiles are time-dependent there is no time-
normalization. Rather, the values are obtained in a spike-based manner,
since each spike is convolved with a kernel function. For this reason
the distance obtained from the time-resolved profile is actually spike-
resolved. Often the Victor-Purpura distance and the van Rossum dis-
tance are considered interchangeable with parameter conversion τ = 1/q
(compare (100)).
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4.2.2 Time-resolved spike train distances

For the time-resolved distances it is more important when a spike occurs
in relation to its neighbours than if there is a match for it in the other
spike train. As a consequence timing is more important than rate and
in the distance rate is seen through differences in ISI-lengths rather than
the spike count. Thus, these measures consider spike timing first and
rate differences enter only as a consequence of that timing.

The three time-resolved measures used in this study are the ISI-distance,
the SPIKE-distance and the RI-SPIKE-distance. These measures are calcu-
lated by integrating instantaneous dissimilarity values over continuous
time rather than summing over discrete spikes. All of these distances are
time scale independent since they do not require a time scale parameter.

The time-resolved profiles used to calculate these distances are ob-
tained by comparing the spike trains based on previous and following
spikes of both spike trains at each time moment. Due to missing infor-
mation before the first and after the last spike, edge effect corrections are
applied and special cases of empty spike trains and one spike are treated
separately by adding auxiliary spikes (See 2.5.1).

4.2.2.1 ISI-distance

The ISI-distance (3, 4) assesses the dissimilarity of the spike trains based
on instantaneous rate synchrony, where the rate is estimated from the
inverse of the local interspike intervals (ISIs). It is calculated by averag-
ing the local rate dissimilarity over the total length of the recording. The
ISI-distance obtains the minimum value zero for identical local rates ev-
erywhere which means not only perfectly identical spike trains but also
spike trains consisting of constant and equal interspike intervals with a
global phase shift. It can grow arbitrarily close to one for periodic spike
trains with ever larger rate differences.

4.2.2.2 SPIKE-distance

While the ISI-distance assesses local rate dissimilarity, the SPIKE-distance
(5, 6) additionally takes into account difference in spike timing. For the
simple case of spike trains with steady rates this means that whereas the
ISI distance will assess any two processes with the same rate as identical,
whereas the SPIKE-distance also evaluates the phase shift. The SPIKE-
distance obtains its minimum value zero for exactly identical spike trains
only. The theoretical upper limit is one (since this is the limit for the time
profile), but in practice the maximum value is 0.55 due to how spikes can
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be arranged to be as far from each other as possible in the spike trains
(as can be shown using, e.g., an evolutionary algorithm).

4.2.2.3 RI-SPIKE-distance

The latest time-resolved measure is called rate independent (RI)-SPIKE-
distance (8). While both the ISI-distance and the SPIKE-distance are
sensitive to differences in rate, in the RI-SPIKE-distance this sensitivity
has been removed. This allows the measure to purely focus on spike
timing information.

4.2.3 Analysis and statistical considerations

In this study we use the definition of time coding as correlations be-
yond rate (83) to investigate how the sensitivity of the different spike
train distances to rate and time coding depends on the rate of the spike
trains. To address this question we follow common practice (see e.g.
(101, 102, 103)) and use pairs of independent steady rate Poisson spike
trains as surrogates for random spike trains with fixed rate and no tim-
ing information. We sample the distances over multiple realizations in
order to calculate the expectation values and to estimate the statistical
significance. Any spike trains from spike generating processes that are
more similar than expected can be considered containing information
beyond pure randomly distributed spikes. The results consist of two
parts, one where we deal with reasonably high overall spike rates and
one where we look at the special case of very low rates.

In the first part (Sec. 4.3.1) we reduce the dimension by keeping the
sum of the two rates fixed and analyze how the rate ratio determines
the expectation value, i.e., the distance value that results of rate coding
alone. We then assess the ability of the spike train distances to detect
timing information in the data via their operational ranges for temporal
coding which we define as the range of values the distances can obtain
after differences in rate have already been taken into account.

In the second part (Sec. 4.3.2) we examine the floor effect which can
occur for spike trains with very low rates. Rate can be estimated by
averaging over large numbers of redundant cells or by averaging over re-
peated presentations of the same stimulus (104). The rate is by definition
an average quantity and not a property of a single spike train. While
counting spikes will always provide an estimate of the rate, the question
of similarity is more complicated for spike train distances, since they
also contain timing information. Thus, first we compare in very general
terms, using simple spike counting, estimates of the total rate of two
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spike train pairs, one pair with equal rates and one pair with a very high
rate ratio. In order to have any timing information that can be compared
in the data, there must be at least one spike in both spike trains. We
again use Poisson models to identify for both spike train pairs the low-
est rate at which this is violated with only 5% probability. In the next
step we evaluate for both kinds of spike train distances the full depen-
dence of the distance values on the two rates of the independent Poisson
processes. Once more we use a 5% confidence layer as indicator of a
value being outside of the distribution obtained for pure rate.

In both parts of this study we work with spike trains of unit length 1s,
since this way the rate exactly equals the expectation value for the num-
ber of spikes in one spike train. For the spike-resolved Victor-Purpura
and van Rossum distance we also look at the influence of the respective
time scale parameter. All our results for both the spike-resolved and the
time-resolved spike train distances are gathered in Table 4.1.

4.3 results

In the first part (Sec. 4.3.1) we investigate the rate-dependent sensitiv-
ity of the different distances to temporal coding. Whereas this analysis
is carried out for reasonably high rates, in the second part (Sec. 4.3.2)
we focus on very low spike rates for which the floor effect can occur.
Each time we first discuss the spike-resolved and then the time-resolved
spike train distances. In the third part we illustrate with simple exam-
ples the most important differences between the two kinds of spike train
distances.

4.3.1 Detecting time coding

Identifying time coding can be difficult, since many spike train distance
measures respond to changes in both rate and timing. In order to de-
tect time coding one has to know what is the expected distance when
only rate is considered. To this aim, we first calculate the expectation
values for pure rate code using Poisson spike trains of varying rate ra-
tios by averaging over a sufficient number of realizations (here we use
1000) such that all timing fluctuations cancel out. For the spike-resolved
Victor-Purpura distance it is straightforward to eliminate the effect of
the rate coding. Here the operational range for time coding, i.e., the
range of values that can be obtained beyond rate difference, is easily ob-
tained by subtracting the spike count difference (Victor-Purpura distance



90 rate and temporal coding in spike train distances

Figure 4.1: Statistics of two Poisson spike trains with a fixed total rate of 1000Hz
divided among the two spike trains. (A) Dependence of the Victor-
Purpura distance on the rate ratio for three different values of the
time scale parameter q. (B) The operational range for spike time
coding is marked in grey. (C) Same dependence for the ISI-distance,
the SPIKE distance (compare (58)) and the RI-SPIKE-distance (see
(8)). (D) Operational ranges for spike time coding. For all distances
and rate ratios values can go down to almost zero which is indicated
by increasingly darker shades of grey.
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for q = 0). For the time-resolved distances this is not possible and the
operational range becomes simply the range of values.

4.3.1.1 Spike-resolved spike train distances

First we estimate the operational range for time coding for the spike-
resolved distances. As a first step in Fig. 4.1A we show the dependence
of the Victor-Purpura distance on the rate ratio for three different values
of the time scale parameter q. For large values of the parameter value q
the distance always attains its maximum value independent of the rate
ratio. Since the curves are made such that the sum of the rate of the
two processes is 1000Hz for a pair of spike trains of unit length 1s, the
result is a constant line at DV = n1 + n2 = 1000 (compare Section 4.2.1.1).
The total rate is kept reasonably high in order not to run into the floor
effect. The only region where the parameter q has any reasonable effect
is within the first decade around a rate ratio of one.

In Fig. 4.1B we depict the operational range for timing information ob-
tained by subtracting the spike count difference (q = 0) which is always
part of the total distance value independently of the time scale param-
eter. We can see that while for equal rate processes timing information
covers almost the whole range of the distance, the operational range is
lost very fast with increasing rate difference. As a result, ever larger
portions of any distance value come from spike count difference. This
holds true even for very large q-values which supposedly indicate timing
information.

Thus, in order to obtain spike timing information using the Victor-
Purpura distance, the spike trains must have very similar rates. As a
consequence of how the distance is defined, the minimum distance for
any spike train pair is obtained for q = 0. For this parameter value
the distance equals exactly the spike count difference between the spike
trains. In contrast, when q approaches infinity, the distance becomes
spike count over both spike trains and considers spike trains with a
smaller overall number of spikes as more similar. The only region where
the distance has any time coding detection capability is when rates are
almost identical and q is in some intermediate range. While the parame-
ter q is often taken as deciding the relative importance of rate and time
coding (94), this is not the whole story. We refrain from examining the
van Rossum distance in detail, because it behaves similarly to the Victor-
Purpura distance but requires normalization between parameter values
since the maximum distance value depends on the choice of tau.

Due to these findings we suggest that one should not use the Victor-
Purpura distance nor the van Rossum distance for detecting timing infor-
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mation for spike trains that do not have nearly identical rates. Addition-
ally, since the q = 0 case for the Victor-Purpura distance is simply spike
count and estimates purely rate we regard it as well suited for detect-
ing rate coding. These findings are marked at the top of the first main
column of Table 4.1 for the normal case of reasonably high rates.

4.3.1.2 Time-resolved spike train distances

In Fig. 4.1C we show the rate ratio dependence for the ISI-distance,
the SPIKE-distance and the RI-SPIKE-distance. The ISI-distance and
the SPIKE-distance consider not only timing but also rate information.
Accordingly, when only rate is considered, they obtain their minimum
value for pairs of spike trains with equal rate. In contrast, the RI-SPIKE-
distance ignores differences in rate and thus has a flat response indepen-
dent of the rate ratio.

Fig. 4.1D depicts the operational ranges of all three measures. For
any given rate ratio the operational range is defined as the overall range
of values from minimum to maximum, i.e. the range that is covered
due to deviations from the expectation value caused by the influence of
spike timing. All three distances can obtain minimum values arbitrarily
close to zero for any rate ratio (an extreme example for large rate ratios
would be a infinitesimally narrow multi-spike burst matching a single
spike). Regarding the maximum values, the ISI-distance is able to cover
the whole interval by approaching the value of one arbitrarily close (the
higher rate spike train is evenly distributed, the lower rate spike train is
concentrated on the edges). This is not the case for the SPIKE-distance
and the RI-SPIKE distance which yield the maximum values of 0.5 and
0.54, respectively, for spike train pairs with alternating spikes and the
excess spikes of the higher rate spike train concentrated at the edges. 1

The important result here is that, in contrast to the Victor-Purpura
distance, all three distances cover a wide range of values even for very
high rate ratios. For the ISI-distance and the SPIKE-distance this full
operational range means that they are always able to identify both local
rate and local spike timing information at the same time. This makes
them the best candidates for evaluating synchrony in general. The RI-
SPIKE-distance, on the other hand, was specifically designed to ignore
differences in rate, so it is obvious that it should not be used for detect-

1 Note that the maximum values for the SPIKE- and the RI-SPIKE-distance shown here
were obtained for sufficiently high spike numbers also in the lower rate spike train.
Otherwise the edge effect can lead to slightly higher values (e.g. up to 0.61 instead of 0.5
for the SPIKE-distance). All results for maximum and minimum values were obtained
and/or confirmed with an evolutionary algorithm (see, e.g. (105)).
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Figure 4.2: The floor effect for spike trains with a very low rate. Mean overall
rates (dashed lines) and overall numbers of spikes in the two spike
trains at 5% confidence (solid lines) over 10,000 realizations for a
spike train pair with a rate ratio of one (red curves) and a pair with
a very high rate ratio (green curves). While the mean values which
perfectly match the expectation values (curves not visible) are grow-
ing linearly with the rate of the process with higher rate (note the
logarithmic x-scale), the actual spike counts can only attain discrete
values. Moreover, due to the floor effect it takes 1.5 spikes for spike
train pairs with rate ratio one and 3 spikes for spike train pairs with
very high rate ratio to get at least a single spike in either of the two
spike trains at 95% probability.

ing rate coding. However, this very property makes it best suited for
detecting pure timing information.

These results are marked in Table 4.1 at the bottom of the first main
column for the standard case of reasonably high rates.

4.3.2 Floor effect

Even though the rate is a continuous property that can assume any value,
the spike trains are sampling the rate with discrete samples. Thus, while
for reasonably high rates the ”resolution” of the sampling is high enough,
as there are sufficient discrete samples available to give a good estimate
of the actual rate, at the low end the sampling is not sufficient, since
there are only a few discrete values the spike count can assume. This is
called the floor effect.

In order to study the floor effect we first generate 10,000 realizations
of two pairs of unit Poisson spike trains, one pair with equal rates (rate
ratio = 1) and one pair for which the rate of one of the spike trains is
lowered considerably (rate ratio � 1). Subsequently, for each of these
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Figure 4.3: Statistical assessment of the Victor-Purpura distance and the van
Rossum distance for three different values of the time scale parame-
ter. The blue surface represents the mean of 1000 spike train pair
realizations with corresponding rates. The green 5% confidence
boundary trails the mean surface so close that it can not be seen. The
red lines show fixed rate producing on average 1000 spikes in total
in the two spike trains and thus corresponds to the curves shown in
Fig. 4.1A. The parameter values for the Victor-Purpura distance are
(A) q = 0, (B) q = 1000 and (C) q = 1010. For the van Rossum dis-
tance we use the parameter values τ = 1/q. Only for (D) we avoid
division by zero by setting τ = 1/10−10. The other two cases yield
(E) τ = 1/1000 and (F) τ = 1/1010. Note that for the Victor-Purpura
distance the range of values is only determined by the number of
spikes and thus independent of the parameter value. For the van
Rossum distance the time scale dependent kernel size changes the
range of the distance axis as well.
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pairs we calculate the mean and the 5% confidence boundary from the
distribution of total spike counts of the sum of the two trains. This means
that at any given rate there is only a 5% chance of getting spike trains
with less spikes than this boundary.

As can be seen from Fig. 4.2, the average values follow the actual rate
linearly, but the 5% confidence boundary is discrete, since spike trains
can only have an integer number of spikes. Due to this floor effect, most
of the rate information is not contained within one short spike train.
One needs to have a good sampling of the process either from multi-
ple repetitions or from longer recordings in order to get a meaningful
rate estimate. While the mean of the rate is exactly the true rate of the
processes, one can have empty spike trains at over 5% chance when the
corresponding confidence curve is at 0. We can see from Fig. 4.2 that
in order to reach non-empty spike trains at 95% confidence, one should
obtain spike trains with an average rate of 3 spikes for high rate ratios
and 1.5 for equal rates. This means that if one knows that the two spike
trains are from the same process, they need to have a minimum rate of
1.5 spikes/recording. Note that this factor 2 between the 5% boundary
for a rate ratio of 1 and the 5% boundary for a high rate ratio is observed
over all rates. The reason is that for very high rate ratios the spike train
with the lower rate tends to be empty and thus non zero samples are
only drawn from one spike train instead of two.

4.3.2.1 Spike-resolved spike train distances

The rate dependence surface is plotted for many different rate combi-
nations and three different parameter values for the Victor-Purpura dis-
tance in Fig. 4.3A-C, and for the corresponding parameter values with
the van Rossum distance (Fig. 4.3D-F). The first thing to note is that
the general shape of the surfaces is very alike between the two spike-
resolved distances using the parameter conversion τ = 1/q. In the fol-
lowing we discuss the Victor-Purpura distance in more detail, since the
definition for it is more intuitive.

As can be seen in Fig. 4.3A-C, the smooth mean surfaces trace exactly
the total rate of the processes for high rate ratios identical to Fig. 4.2
mean spike counts and the 5% confidence layer traces so close by to the
mean that they cannot be distinguished. It is important to note that there
is no visible artefact from the floor effect in the distance measure but the
curves are smooth, since the distance is always primarily spike count
difference. This is caused by the property that the parameter q only has
an effect in a very narrow area near identical rates as we have already
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Figure 4.4: Same as Fig. 4.3, but this time for the ISI-distance (A), the SPIKE-
distance (B) and the RI-SPIKE-distance (C). For the sake of visibility
we separate the mean vales (blue, top) and the 5% confidence bound-
ary (green, bottom) in two separate subplots. The red line represents
the fixed rate equivalent to the curves in Fig. 4.1C.

seen in Sec. 4.3.1. For low rates the Victor-Purpura distance is almost
flat and close to zero since the range [n2 − n1, n2 + n1] tends to vanish.

In Fig. 4.3D-F we can see that for the van Rossum parameter τ =

1/q the distance performs very similar to the Victor-Purpura distance.
However, a comparison of distances obtained with different parameter
values can be done with the Victor-Purpura distance, but not with the
van Rossum distance since there the range of values also depends on the
time scale parameter.

Both distances can be used for very low rates without artefacts, since
they assess rate first and timing second. These findings are marked at
the top of the second main column of Table 4.1.

4.3.2.2 Time-resolved spike train distances

In Fig. 4.4 are again plotted the mean and 5% confidence boundary for
the distribution, but this time for the ISI-distance, the SPIKE-distance
and the RI-SPIKE-distance. The means of the distance values grow once
the random processes start introducing spikes. In Fig. 4.4A one can see
the mean rate surface of the ISI-distance. While the surface increases
almost linearly up to 1Hz, the scaling to total time makes the distance
settle to an expectation value that depends on the rate ratio. However,
it is important to note, that the 5% confidence layer does only get above
zero after a threshold rate is reached. This means that below this thresh-
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old there is at least a 0.05 chance of getting two empty spike trains due
to the floor effect (compare again Fig. 4.2).

In Fig. 4.4B we can see that the general shape of the mean surface for
the SPIKE-distance shares the rate-dependent nature of the ISI-distance.
On the other hand, the RI-SPIKE-distance (Fig. 4.4C) by construction
shows no rate dependence. This means that the distance is purely based
on spike timing and ignores rate differences in the spike trains.

In contrast to the spike-resolved Victor-Purpura and van Rossum dis-
tances, the time-resolved ISI-distance, SPIKE-distance and RI-SPIKE-dis-
tance can attain any distance value between zero and the maximum even
for very low rates. While both kinds of distances are affected by the same
floor effect, the definition of time coding by (83) as being over and above
any information coded in rate is not satisfied for time-resolved distances,
since the measures attempt using timing information even before there
is sufficient rate. Only once it becomes unlikely to have two empty spike
trains the boundary starts to increase and the values obtained start being
reliable. This increase is not only manifested for empty spike trains. Al-
ready spike trains from processes with lower rates are more likely to be
similar by chance than those obtained with higher rates. From this we
can conclude that spike train distance values can only be considered non-
random, when the rate of the spike-generating process is high enough
not to produce empty (or quasi empty) spike trains and when the sim-
ilarity of a pair is below the 5% confidence interval surface. Even for
these the similarity has to be very pronounced not to be considered as
being drawn from a random distribution.

The ISI-distance, the SPIKE-distance and the RI-SPIKE-distance are
time-resolved which allows an instantaneous assessment of similarity.
The normalization of the measures means that the spikes are assessed
in relation to the length of the local ISIs. This time scale independence
allows comparisons of spike trains with very different rates.

The reason why the ISI-distance, the SPIKE-distance and the RI-SPIKE-
distance can draw any values even for spike trains that have very few if
any spikes is an artefact from the normalization used for these measures.
Since the values are time-resolved, and even a single spike needs to be
comparable, the measures apply edge effect corrections (8). For this rea-
son already for such extreme cases as a spike train pair composed of
an empty spike train and a spike train with just one spike the distances
can obtain virtually all of their range (depending on the location of this
single spike). While the time-resolved nature gives the measures the
advantage of being able to assess similarity in time, instead of just as-
sessing timings of pairs of spikes, it becomes a downside for very low
spike counts when not enough information is available to form mean-
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Figure 4.5: Simple examples illustrating some of the most important differences
between the Victor-Purpura distance DV and the SPIKE-distance DS.
(A) Floor effect: SPIKE-distance looks for timing in a single spike.
(B) Spike trains with different rates: Victor-Purpura distance ignores
timing information of extra spikes. (C) The Victor-Purpura distance
is insensitive to exactly matching spikes. (D) Simple clustering ex-
ample: In contrast to the SPIKE-distance, for spike trains with differ-
ent rates the Victor-Purpura distance can never really focus on the
timing information, even for large q-values.

ingful time-resolved profiles. Because of this we do not suggest using
time-resolved measures for processes with a very low rate. These results
for the ISI-distance, the SPIKE-distance and the RI-SPIKE-distance can
be found in Table 4.1 at the bottom of the second main column for very
low rates.

4.3.3 Examples

In previous Sections we have done statistical analysis of the spike train
distances. In this Section we give a brief overview of the implications
of the results using constructed examples (Fig 5). In Fig 4.5A we see
typical examples of spike trains near the floor effect. There is hardly any
visible rate and thus determining timing is problematic. Since the Victor-
Purpura distance is primarily assessing rate and only second single spike
timing, it gets the distance of one for both spike train pairs. However, the
SPIKE-distance always incorporates timing and thus it can reach a very
large variety of different values (0.42 and 0.07 in these example spike
trains) even when there is very little timing information. This is due to
the inflated contribution of the edge effects.
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In Fig. 4.5B we see another situation, where we have two spikes at a
short distance of each other. It is clearly visible that in the first spike train
pair there is more timing information beyond rate than in the second.
However, since the Victor-Purpura distance considers only the closest
spike pairs, the distance will be the same independently of how the four
other spikes are arranged. This is again due to rate first assessment of
similarity. The SPIKE-distance uses timing assessment over time rather
than over spikes and indicates a clear distinction between the two cases.

However, even the Victor-Purpura distance itself is ambiguous in re-
spect to whether the value is obtained from rate or from timing. In Fig.
4.5C we see two very different scenarios. In the top spike train there
is a perfectly coincident pair of spikes plus a few additional spikes in
the second spike train. If we compare this to the exactly identical spike
trains with only the two coinciding spikes removed we get exactly the
same distance. In both cases this value comes purely from rate difference.
However, there is a considerable difference in timing correlation between
the two spike trains. This is clearly reflected by the values obtained for
the SPIKE-distance.

In Fig. 4.5D we show how serious these effects are. As we mentioned
already in Section 4.3.1, the Victor-Purpura distance and the van Rossum
distance can hardly distinguish any timing information once the rate
ratio is 10-fold or more. However the effects are realized already for
much lower rate differences. In this example we consider three spike
trains (2, 10 and 4 spikes). The first two spike trains clearly contain
timing correlations, while the third does not correlate with either of the
two. We can observe that the rate difference obtained with low q values
(here q = 10−2) is basically the spike count difference between pairs.
The result is that the spike trains 1 and 3 have more similar rate than
any other pair. Then by tracking the distances for increasing q-values
the order of the distances remains the same until single spike timing
reaches its peak at q = 100.6. Here the distances from 1 to 2 and 2 to
3 are equal. However, still the distance between 1 and 3 prevails as the
smallest one indicating that they are the most similar pair. While after
this q-value the distance from 1 to 2 is closer than 2 to 3, the pair with
built in time correlations, 1 and 2 never reaches the range where it would
be the most similar. In Fig. 4.5D relative distances are drawn as distance
triangles with the respective distances for different q. For comparison
we have added the distance triangle obtained for the spike trains using
the SPIKE-distance, which, since it is not restricted to comparing pairs of
spikes and thus rate first, finds the most time correlated pair with ease.
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4.4 discussion and conclusions

Spike train distances can be constructed in a few different ways. The ba-
sic components common to all are the spikes in time. Some spike train
distances are evaluated over values attached to spikes, like the Victor-
Purpura distance (12, 93), and the van Rossum distance (13), and thus
difference in spike count becomes a dominant feature. We call these
spike-resolved distance measures. For the ISI-distance (3, 4), the SPIKE-
distance (5, 6), and the RI-SPIKE-distance (8) effects of spikes are evalu-
ated in relation to time and these distances are thus time-resolved.

In this study we asked two questions: How does the sensitivity of the
different spike train distances to rate and time coding depend on the
rates of the two processes and how high a rate is needed in order to ob-
tain reliable estimates of timings in the data? To answer these questions
we used two independent steady rate Poisson spike trains as surrogates
for rate only coding neurons and calculated both the expectation values
and the 5% confidence boundary over multiple realizations. The results
are gathered in Table 4.1.

The first key finding of the analysis of time coding is that the spike-re-
solved Victor-Purpura distance compares the spike trains spike for spike
and thus they are always sensitive to differences in spike counts even
for parameter values seemingly indicating time coding. For large spike
count differences the spike-resolved distances do not obtain the ability
to assess timing information beyond spike pairs and thus in many cases
most of the distance comes from mismatch in spike counts rather than
timings, independently of the time scale parameter. As a result, for the
Victor-Purpura distance timing information is only available for spike
trains with almost identical rates (as illustrated in Fig. 4.5B and 4.5D).
Since the behaviour of the van Rossum distance in response to rate dif-
ferences closely resembles that of the Victor-Purpura distance, it also has
the same problem (in addition to its normalization issues for different
tau-values). These results are consistent with those obtained by (22) for
a similar analysis of rate differences.

The second key finding is that the time-resolved measures perform
better in assessing timings in the normal case of reasonably high rates.
Also these measures can provide a meaningful instantaneous similarity
profile within the coding window. Since they assess similarity in time,
the exact spike count becomes less important and the actual timing of
events becomes more relevant. However, they suffer from artefacts when
the rates of the spike generation processes is so low that the floor effect
takes place (see Fig. 4.5A for an example). For spike trains with only
a few spikes one should use the spike-resolved Victor-Purpura or van
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Rossum distance, since they assess first similarity in spike count and
then apply timing information assessment only for pairs of spikes.

Investigation for neuronal coding has been going on for decades and
the two most prominent approaches are to find similarities in responses
in rate and in timing. However, while the distinction between the coding
types is clear in a philosophical sense as presented by (83), the exact
nature of time coding as being ”over and above any information that
might be correlated with the number of spikes within the window” is
not uniquely defined. It depends on the type of correlation chosen.

For the spike-resolved distances sensitivity to rate never goes away
since the information contained in the timing accuracy of spike pairs is
always added on top of the rate information. For the Victor-Purpura
distance, even for high q-values the relative importance of timing gets
smaller for increasingly different rates. Moreover, this timing informa-
tion only includes the distances between spikes that are needed to match
all the spikes of the shorter spike train with their nearest spikes in the
other spike train. While the importance of these differences does increase
with higher q-values (Figure 4.1B) it is still capped by the maximum cost
of 2 per spike pair (delete and add instead of shift). The timing of the
other n2 − n1 spikes in the longer spike train is ignored entirely (see
Fig. 4.5B), a loss of information that again increases with larger rate
difference. Additionally, it is ambiguous if the distance obtained with
parameter values indicating timing truly come from timing as shown in
Fig. 4.5C. Therefore, while it may sound the intuitive thing to do, one
cannot simply take the distance with a parameter indicating time cod-
ing and subtract the rate coding distance to get the timing correlations
in the data. For the time-resolved ISI-distance, SPIKE-distance and RI-
SPIKE-distance the measures have been defined as the integral over a
dissimilarity profile that covers the whole recording time. In this case
the intuitive difference between coinciding burst and steady rate is ac-
counted for, since the assessment is not done spike by spike. On the
other hand, for the ISI-distance or the SPIKE-distance there is no single
value to be obtained for rate coding in order to subtract the time cod-
ing information content without a surrogate. The only measure we have
shown to be independent of rate information is the RI-SPIKE-distance.
This is an important notion, since one of the most essential questions
in the analysis of neuronal coding is if spike trains contain information
beyond rate and this measure is able to provide exactly this assessment.

For the investigation of neuronal coding the argument between rate
and time coding types hinges crucially on the inaccuracy of the defini-
tion of time coding. Additionally the coding types are slightly mixed
through the concept of the encoding window. If one estimates rate over
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an encoding window and then splits it into multiple bins, which are es-
sentially shorter encoding windows, the result will be an assessment of
timing and timing accuracy depending on the bin size.

Based on our analysis we would advice against using the spike-re-
solved Victor-Purpura or van Rossum distances if one is interested in
timings in the data when the rates are sufficiently high to avoid any
floor effect. Also, the original interpretation of the parameters q and τ

as precision of temporal coding ((94), but see also (22)) is slightly mis-
leading in the light of this study, since it only works for nearly identical
rates. In all cases, the information about differences in rate is always
included. This seems to be consistent with results found in (106). As a
result, it might be useful to reassess some older studies, where the Victor-
Purpura distance and the van Rossum distance have been used for the
distinction of time coding from rate coding in neuronal data such as the
studies conducted by (95) and (96) for songbird data.

If one is interested in rate, the Victor-Purpura distance and the van
Rossum distance can provide information of the rate difference between
the spike trains. However, this information is equally available from
the spike count and the true strength of the measures lies in assessing
synchrony of spike trains with a very low rate, where they can provide
a distance at the same time based on rate difference and on timings
of single spikes. The results for the very low rate can be relevant in
real data analysis, but most of the time there are enough spikes to use
the time-resolved distances. The time-resolved distances always assess
timing information due to how they are defined.

For simplicity the results in this paper have been obtained for spike
trains of unit length 1s, since for a spike train of length one any rate will
produce on average the same number of spikes as the rate. However,
the values will scale with the recording length. This is very important,
since a rate requirement of 1.5Hz for a spike train of unit length 1s will
translate to 15Hz for a 100ms recording. Also the analysis performed
here can be used to estimate window or bin sizes for methods that need
to split a spike train into smaller segments. For this, assuming a steady
rate over a recording, one can obtain a very good rate estimate via a
better sampling of the process, since the original non-divided spike train
is less likely to suffer from the floor effect.

It is important to note that from a statistical point of view the rate of
the process and the length of the recording are inversely proportional.
Recording a 10Hz process for 0.1s gives exactly the same amount of
information about the distribution of the process as recording a 1Hz
process for 1s. Thus it is possible to obtain the statistical significance of
the rate of a steady rate process either by taking one long recording or
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averaging over multiple short ones. Taking multiple short samples of a
process may be more laborious than using one longer recording. On the
other hand, it is harder to ensure stationary of the process over longer
time than over multiple repetitions. Another problem with neurons is
to ensure that the rate of the process does not change faster than it is
sampled. However, assessing change in the rate of the process in relation
to sampling is outside the scope of this paper.

In this study random spike trains were simulated as steady rate Pois-
son processes. While this approach is often used, it does not match many
experimental ISI-distributions (e.g. (101, 107)). It is important to use a
meaningful surrogate when evaluating whether the distance could have
been obtained by chance. While there have been some studies on spike
train surrogates (108, 109, 110), there is yet no simple answer as to which
null hypothesis to test for and how to adapt the surrogates to the specific
null hypothesis that is tested.

Here we compared four established spike train distance measures and
one recently proposed measure. The same study could be conducted
on other measures, e.g. on SPIKE-synchronization (7) or on other new
classes of measures (30), to see how these approaches perform under
the same conditions. It would also be interesting to see if spike-resolved
and time-resolved distances all share some common characteristics. Also
different kinds of normalizations and integrations in the measure de-
scriptions may share common features. If one were able to construct a
theoretical framework for the distances, perhaps by combining desired
properties from complementary measures it could be possible to con-
struct a measure that works universally in all cases. In the meantime, we
suggest referring to Table 4.1 when deciding which of these measures to
use for which kind of data.
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4.5 appendix

4.5.1 Spike-resolved spike train distances

In this paper we evaluate two spike-resolved distances, the Victor-Purpura
distance (12, 93) and the van Rossum distance (13).

4.5.1.1 Victor-Purpura distance

The Victor-Purpura distance DV (12, 93) is calculated by finding the
smallest path to convert one spike train into the other using three ele-
mentary steps:

1. Deleting a spike with a cost of 1.

2. Inserting a spike with a cost of 1.

3. Shifting a spike to coincide with another spike in the other spike
train with a cost of q|∆t|.

The time scale parameter q determines how far away two spikes can
be in order for it to cost less than achieving the same by using steps 1

and 2. This parameter is thus considered as an indicator of the relative
importance between time and rate coding.

4.5.1.2 van Rossum distance

The van Rossum distance DR (13) first transforms discrete spikes into
continuous functions by convolving each spike with an exponential ker-
nel

H(t)exp
(
− t

τ

)
, (4.1)

where H(t) is the Heaviside step function, t is time and τ the time con-
stant. Using the resulting waveforms x̃(t) and ỹ(t) the distance can then
be calculated as

DR(τ) =
1
τ

∫ ∞

0
|x̃(t)− ỹ(t)|2dt. (4.2)

Quite recently a markage trick has been presented which significantly
reduces the computational cost of calculating the van Rossum distance
(111).
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4.5.2 Time-resolved spike train distances

In this paper we also investigate three time-resolved spike train distances,
the ISI-distance (3, 4), the SPIKE-distance (5, 6), and the very recently
proposed RI-SPIKE-distance (8). Note that in (8) all of these distances
have been adapted for data with multiple time scales. To see how these
adaptive versions behave please refer to 4.5.2.4.

4.5.2.1 ISI-distance

The ISI-distance DI (3, 4) measures the instantaneous rate difference be-
tween spike trains. It relies on a time-resolved profile, meaning that a
dissimilarity value is defined for each time instant. To obtain this profile,
we assign to each time instant t the time of the previous spike

t(n)P (t) = max
{

t(n)i |t
(n)
i ≤ t

}
for t(n)1 6 t 6 t(n)Mn

(4.3)

and the time of the following spike

t(n)F (t) = min
{

t(n)i |t
(n)
i > t

}
for t(n)1 6 t 6 t(n)Mn

. (4.4)

From this for each spike train n an instantaneous interspike interval (ISI)
can be calculated as

x(n)ISI (t) = t(n)F (t)− t(n)P (t). (4.5)

The pairwise ISI-profile is then defined as

In,m(t) =
|x(n)ISI (t)− x(m)

ISI (t)|
max

{
x(n)ISI (t), x(m)

ISI (t)
} . (4.6)

The multivariate ISI-profile is obtained by averaging over all pairwise
ISI-profiles:

I(t) =
2

N(N − 1)

N−1

∑
n=1

N

∑
m=n+1

In,m(t). (4.7)

Finally, integration over time gives the distance value

DI =
1

te − ts

∫ te

ts

I(t)dt. (4.8)

Here, ts and te denote the start and the end of the recording, respectively.
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4.5.2.2 SPIKE-distance

The SPIKE-distance DS (5, 6) measures the relative spike timing between
spike trains normalized to local firing rates. In order to assess the ac-
curacy of spike events, each spike is assigned the distance to its nearest
neighbor in the other spike train

∆t(n)i = min
j
(|t(n)i − t(m)

j |). (4.9)

These distances are then interpolated between spikes using for all times
t the time differences to the previous spike

x(n)P (t) = t− t(n)i for t(n)i 6 t 6 t(n)i+1, (4.10)

and to the following spike

x(n)F (t) = t(n)i+1 − t for t(n)i 6 t 6 t(n)i+1. (4.11)

This defines a time-resolved dissimilarity profile from discrete values the
same way as Eqs. 4.3 and 4.4 did for the ISI-distance. The instantaneous
weighted spike time difference for a spike train can then be calculated as
the interpolation from one difference to the next

Sn(t) =
∆t(n)i (t)x(n)F (t) + ∆t(n)i+1(t)x(n)P (t)

x(n)ISI (t)
, t(n)i 6 t 6 t(n)i+1. (4.12)

This function is analogous to the term x(n)ISI for the ISI-distance, with the
only difference that it is piecewise linear instead of piecewise constant.
It is also continuous.

The pairwise SPIKE-distance profile is then obtained by averaging the
weighted spike time differences, normalizing to the local firing rate aver-
age and, finally, weighting each profile by the instantaneous firing rates
of the two spike trains

Sm,n(t) =
Snxm

ISI(t) + Smxn
ISI(t)

2
〈

xn,m
ISI (t)

〉2 . (4.13)

From this the multivariate profile and the distance value can be calcu-
lated similar to Eqs. 4.7 and 4.8.

4.5.2.3 RI-SPIKE-distance

The rate-independent SPIKE-distance (RI-SPIKE-distance) DRI
S (8) is sim-

ilar to the SPIKE-distance, but leaves out the weighting by rate difference
by substituting Eq. 4.13 with

SRI
m,n(t) =

Sn(t) + Sm(t)
2
〈

xn,m
ISI (t)

〉 . (4.14)
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Figure 4.6: Adaptive spike train distances A-SPIKE-distance and RIA-SPIKE-
distance with fixed parameters T . In each case we present two
different surface projections. (A) A-SPIKE-distance with T = 0.1
applied to two Poisson spike trains of unit length. When both spike
trains exhibit high rates compared to the global parameter T the
spike trains are considered more similar. (B) A-SPIKE-distance with
T = 0.01. With smaller details still considered important the drop
moves to higher frequencies. (C) RIA-SPIKE distance with T = 0.01.
The RIA-SPIKE distance does not take into account rate, but starts
ignoring differences in spike times once both rates become high.

The RI-SPIKE-distance shares all the properties of the SPIKE-distance,
but it only evaluates normalized spike timing differences, whereas the
SPIKE-distance additionally uses differences in rate to determine simi-
larity.

Again, the multivariate profile and the distance value can be obtained
analogous to Eqs. 4.7 and 4.8.

4.5.2.4 Adaptive spike train distances

In (8) all three of the time-resolved distances described in Secs. 4.5.2.1-
4.5.2.3 have been adapted for data containing multiple time scales by
adding a notion of the relative importance of local differences compared
to the global time scales. The adaptive versions start to gradually ignore
differences between spike trains for ISIs that are smaller than a minimum
relevant time scale (MRTS). The MRTS is implemented by an additional
parameter T which can either be set by the user or estimated directly
from the data.

In the present study we basically evaluated these adaptive versions
with the threshold parameter T set to zero, which is equivalent to us-
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ing the original distances. This makes sense since the generalizations
are primarily designed to reduce the importance of small time scales in
datasets containing multiple time scales, but the steady rate Poissonians
analyzed here contain only one time scale.

The only reasonable comparison using the adaptive versions is when
the threshold is fixed to a constant value. This causes higher rates to
be considered as less significant for dissimilarity (once the spike trains
get very dense, relative differences in ISIs or spike times hardly matter).
So for completeness, in Fig. 4.6 we provide the results for the adaptive
distance to be compared with Fig. 4.4. Higher rates with a rate ratio close
to 1 are considered as more similar because the differences are small in
comparison to the threshold. For a smaller threshold (Fig. 4.6B) the area
where similarity is enforced moves to higher frequencies. The adaptive
versions are designed to work with datasets containing multiple time
scales such as regular spiking and bursts and for a fixed threshold the
spike trains with a higher rate are considered as long bursts.

We also looked at the results for an automated threshold. Here the
graphs look almost identical to the T = 0 case (results not shown). How-
ever, and more importantly, the results can not really be compared in a
meaningful way, since the threshold is different for different spike train
pairs (see (8), for details).
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T H E M O S T D I S C R I M I N AT I V E N E U R O N A L
S U B P O P U L AT I O N S

Background: Spike trains of multiple neurons can be analyzed following
the summed population (SP) or the labeled line (LL) hypothesis. Re-
sponses to external stimuli are generated by a neuronal population as a
whole or the individual neurons have encoding capacities of their own.
The SPIKE-distance estimated either for a single, pooled spike train over
a population or for each neuron separately can serve to quantify these
responses.
New Method: For the SP case we compare three algorithms that search
for the most discriminative subpopulation over all stimulus pairs. For
the LL case we introduce a new algorithm that combines neurons that
individually separate different pairs of stimuli best.
Results: The best approach for SP is a brute force search over all possible
subpopulations. However, it is only feasible for small populations. For
more realistic settings, simulated annealing clearly outperforms gradi-
ent algorithms with only a limited increase in computational load. Our
novel LL approach can handle very involved coding scenarios despite its
computational ease.
Comparison with Existing Methods: Spike train distances have been ex-
tended to the analysis of neural populations interpolating between SP
and LL coding. This includes parametrizing the importance of distin-
guishing spikes being fired in different neurons. Yet, these approaches
only consider the population as a whole. The explicit focus on subpopu-
lations render our algorithms complimentary.
Conclusions: The spectrum of encoding possibilities in neural populations
is broad. The SP and LL cases are two extremes for which our algorithms
provide correct identification results.

Adapted from: Using spike train distances to identify the most discriminative neuronal subpop-
ulation (11)

111
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5.1 introduction

The nervous system is believed to employ large populations of neurons
to code and broadcast information. Population coding can be considered
less vulnerable and, hence, a more reliable and robust manner than cod-
ing via single neurons (112). In neuronal recordings population coding
can appear in two ways. First, all the neurons in the recorded popula-
tion contribute equally (113). Patterns of activity within the population
are irrelevant for coding as all that matters is whether or not any of the
neurons fires. There, the information being conveyed is that of a single
spike train generated by the population as a whole. In contrast to this so-
called summed population (SP) hypothesis, each neuron may have a unique
and distinguishable role (114, 115, 116). In this case, the population is
best decoded neuron-by-neuron, which is referred to as the labeled line
(LL) hypothesis (117). Examples for the relevance of each coding scheme
in experimental data can be found, e.g., in (118) (SP) and (119) (LL).

When recording a neuronal population after stimulus presentation,
usually only some of the neurons encode the stimulus while others might
be involved in different tasks or may exhibit a seemingly erratic activity
independent of the stimulus. The responses of these non-coding neurons
do not contribute to stimulus discrimination but rather act as a noisy dis-
turbance if included in the analysis. We evaluated different methods to
distinguish coding from non-coding neurons under either the SP- or the
LL-hypothesis. As will be shown below, the two presumptions require
different ways for evaluating stimulus discrimination.

Spike train distances are a useful means to assess neuronal coding by
clustering responses to repeated presentations of a given set of stimuli.
If the distance is chosen to be sensitive to the distinguishing features in
the spike trains, a small distance between responses to the same stim-
ulus and a large distance between responses to different stimuli can be
obtained. While this kind of analysis has been mainly carried out for
individual neurons (see e.g. (97, 95, 96)), current technical advances (e.g.,
(37, 38)) allow for studying neuronal coding in simultaneously recorded
populations of neurons (120, 121). It has been shown that sensory infor-
mation is typically not localized in individual neurons (122) but appears
to be distributed over larger neuronal populations (123, 124). However,
the coding via individual neurons and the summation of an entire popu-
lation are the extreme case in a broad spectrum of possibilities (125, 126).
In fact, recent evidence points at some intermediate scenario in which a
comparably small number encodes information not only in a robust but
also very efficient way (127, 128). Ince and colleagues (129) reported that
sensory cortical circuits may process information using small but highly



5.2 spike train distances for neuronal decoding 113

informative ensembles consisting of a few privileged neurons. In the
context of brain computer interfaces (BCIs), it was found that a reduced
set of carefully selected important neurons exceeded BCI performance
levels of the full ensemble (130).

The search for an optimal coding population requires fine-tuned anal-
yses under both the SP- and the LL-hypothesis. For these two cases
we show how to separate relevant from irrelevant subpopulations by
identifying the subpopulation of neurons amongst all possible ones that
discriminates best a given set of stimuli.

5.2 spike train distances for neuronal decoding

Spike train distances can measure the extent to which in a coding pop-
ulation repeated presentations of the same stimulus yield similar spike
train responses, while different stimuli result in dissimilar responses. To
simulate this, we considered the following setup. N neurons are simul-
taneously recorded upon repeated presentations of different stimuli – in
a real experiment this is typically done with a multi-electrode array. The
number of stimuli S and the number of repetitions R yield an overall
number of trials by means of T = S·R. Different spike trains are here
denoted as tn,s,r with n = 1, . . . , N, s = 1, . . . , S and r = 1, . . . , R indexing
neurons, stimuli, and repetitions, respectively. Across simulations we
selected a subset of neurons to be the coding subpopulation. The goal
was, hence, to identify that subset, i.e. the neuronal subpopulation that
collectively could distinguish between stimuli.

Spike train distances quantify the similarity of neuronal activity based
on rate and timing within spike trains (see e.g. (117, 21, 19)). Over the
years, many different distances have been proposed, including time scale
dependent measures such as the Victor-Purpura distance (12) or the van
Rossum distance (13) but also time scale independent approaches like
the ISI-distance (3, 4) and the SPIKE-distance (5, 6). Here, we employed
the SPIKE-distance D (6) as it offers the possibility of time scale and
parameter-free assessments via the relative spike timing between spike
trains normalized to the local firing rates (10). The smaller its value, the
more similar the spike trains are, with D = 0 indicating identical spike
trains. A detailed description of the SPIKE-distance can be found in the
Appendix.

Neuronal coding can be assessed by determining the matrix of pair-
wise spike train distances over all trials (see e.g. (95, 96, 97)). How do
these distances cluster in response to different stimuli? Identifying clus-
ters depends on the presumed type of encoding. As said, we distinguish
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between the SP- and the LL-hypotheses, i.e. we either combine all neu-
rons into a single population or treat each neuron separately. In both
cases, we determined distance matrices and estimated their stimulus dis-
crimination performance to quantify how a subpopulation succeeds in
discerning different stimuli.

For the summed population case, we compared three fundamentally
different algorithms for finding the population that is able to most effi-
ciently discriminate between a set of stimuli. (i) For comparably small
neuronal populations one can perform a brute force search in which pair-
wise distance matrices and their stimulus discrimination performance
are calculated for all possible subpopulations. (ii) A gradient algorithm
used by (129) relies on a restricted number of subpopulations: from a
given starting subpopulation one searches for the optimum performance
by simply following a maximum local ascent. There are two alternatives.
(129) followed a bottom-up variant that starts with the best individual
neuron and gradually adds neurons. In addition, we also considered a
top-down variant that iteratively subtracts neurons starting from the full
population. (iii) A conventional albeit heuristic approach taken from sta-
tistical physics is simulated annealing. It is known for being less prone
to getting stuck in suboptimal solutions as the aforementioned gradient
ascent optimization methods.

For the labeled line case, we introduce a novel algorithm for identi-
fying the most discriminative LL population. It performs a selection
process that evaluates each individual neuron separately and forms the
optimized subpopulation by combining the best neurons from every pair
of stimuli.

5.3 data

For both the SP and the LL case we used a Poisson neuron model with
an absolute refractory period of 2 ms. We always considered pure time
coding. All coding and non-coding neurons had the same baseline rate
M. For our first examples we also assumed the coding of the optimal
subpopulation to be noiseless and perfect, though later on this assump-
tion was weakened by adding noise.

5.3.1 Summed Population (SP)

We simulated spike train responses for a group of neurons that code in
unison but not individually. These coding neurons were complemented
by non-coding ones, which were simulated separately as neurons with-



5.3 data 115

out responses beyond baseline activity. We show the generation of the
SP data using an example with S= 4 stimuli and R= 5 repetitions each,
so overall T=20 trials. The population comprised of N=7 neurons, the
first c = 3 of which were coding perfectly for the different stimuli and
the last four were non-coding. Fig. 5.1 depicts four exemplary spike train
raster plots: responses to the first two repeated presentations of the first
two stimuli. The same data also serve to illustrate the further procedures
in Figs. 5.2 and 5.3.

The pooled spike train of the first c coding spike trains was generated
randomly but different for each of the S stimuli. Subsequently, for each
of the R trials of every stimulus the spikes of the pooled spike train were
evenly distributed among the c coding neurons. For the N − c noisy,
non-coding neurons, a trial was independent of every other trial irre-
spective of the stimulus. Throughout procedures, we ensured that for
each trial the expectation value for the rate was the same for all individ-
ual neurons. Hence, the SP activity of the coding neurons for a given
stimulus agreed exactly across trials but the activity of both coding and
non-coding individual neurons remained largely random. As a result,
the coding subpopulation discriminated the different stimuli perfectly,
while all its ’superpopulations’ (populations which contain it as subpop-
ulation) as well as all its subpopulations did not perform likewise well.

5.3.2 Labeled Line (LL)

To study the LL case, we combined a set of stimuli with a population of
neurons by varying the responsiveness of the neurons to these stimuli
with the following setting in mind: Usually, every stimulus consists of a
combination of different features and the individual neurons are either
sensitive to these features or not. This implies that a stimulus may be
coded by more than one neuron but also that for a diverse set of stimuli a
combination of neurons is required to discriminate between all of them.
Similarly, every individual neuron may be sensitive to more than one
stimulus, to only one or even to none of the stimuli.

When simulating the spike trains, we assumed that for a neuron not
sensitive to any of the features present in a stimulus, every stimulus rep-
etition yielded random firing. On the contrary, a neuron sensitive to a
certain stimulus responded very reliably (consistently) to repeated pre-
sentations of that very stimulus. In essence, we created a single spike
train and copied it. In order to make the resulting spike trains more
realistic, we used different realizations of jitter noise up to ±5 ms) for ev-
ery repetition. We note that changing the amplitude of the noise altered
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Figure 5.1: Summed population coding: Simulated spike train responses ob-
tained from the first two of R=5 repetitions for the first two of S=4
stimuli (i.e. overall four out of T = 20 trials). There are N = 7 neu-
rons of which c=3 form the coding subpopulation (in red) whereas
the remaining 4 neurons are just noisy (in blue). Below the spikes
of the individual neurons we depict the pooled spike train of the
coding subpopulation (”C”, red), the noisy (non-coding) subpopula-
tion (”NC”, blue) and the whole population (”All”, black). By con-
struction, the pooled spike train of the coding subpopulation was
identical for different repetitions of the same stimulus (i.e., for the
first two and for the last two rasterplots), while the pooled response
of the non-coding subpopulation was random.

the reliability (consistency) of the responses and we were able to control
the responsiveness of the neurons to certain stimuli. As in the SP case,
we always used a (statistically) constant rate for all spike trains, while
controlling for reliability.
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5.4 methods

Our approach to assess population coding is to search for the subpop-
ulation with maximum discriminative power across the responses to re-
peated presentations of a set of stimuli. Since the summed population
and the labeled line hypotheses make different assumptions about neu-
ronal coding, this task is addressed using fundamentally different algo-
rithms. However, both analyses rely on similar pairwise distance matri-
ces of the SPIKE-distance D, which in the case of SP are calculated for
neuronal subpopulations, in the case of LL for individual neurons. The
two algorithms also share the same basic discrimination performance
Ps,s̄ which quantifies for all repetitions R of each pair of stimuli s, s̄ the
degree to which identical stimuli give rise to similar responses and dif-
ferent stimuli result in dissimilar responses:

Ps,s̄ =
1

R2 ∑
r,r̄

Ds,r;s̄,r̄ − 1
2R(R−1) ∑

s,r,r̄ 6=r
Ds,r;s,r̄

=
〈

Ds,r;s̄,r̄〉
r,r̄ −

〈
Ds,r;s,r̄〉

s,r,r̄ 6=r .

(5.1)

Hence, the larger the mean inter-stimuli distance and the smaller the
mean intra-stimulus distance, the better the two stimuli can be distin-
guished.

In the SP case for the pooled spike trains of every subpopulation under
evaluation the discrimination performance is computed for all stimulus
pairs at the same time. The most discriminative SP subpopulation is the
one that yields the highest average performance. In contrast, for LL every
individual neuron is evaluated separately. Since often different stimulus
pairs will be distinguished best by different neurons, the discrimination
performance is optimized for one stimulus pair at a time. For every stim-
ulus pair the algorithm identifies the discriminative neurons and selects
the best one. Together, the selected neurons form the most discriminative
LL subpopulation.

5.4.1 Summed population (SP)

5.4.1.1 Discrimination Performance

The first step of the summed population analysis for any given subpop-
ulation K, stimulus s and repetition r, is to pool the spike trains from all
the neurons of this subpopulation according to

tK,s,r =
⋃

k∈K
tk,s,r. (5.2)
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The matrix of all pairwise spike train distances between all T = S ·R
pooled responses can be readily determined. We denote them as

Ds,r;s̄,r̄
K = D (tK,s,r, tK,s̄,r̄) . (5.3)

If a neuron population is able to discriminate a pair of stimuli, one can
expect low values of the spike train distances between different repeti-
tions of the same stimulus (intra-stimulus), but high values for different
stimuli (inter-stimulus). In the SP case all stimulus pairs are evaluated
at the same time. Accordingly, one can introduce the discrimination per-
formance of a subpopulation K as

PK =
1

S(S−1) ∑
s,s̄ 6=s

Ps,s̄
K

=
1

S(S−1)R2 ∑
s,s̄ 6=s,r,r̄

Ds,r;s̄,r̄
K − 1

SR(R−1) ∑
s,r,r̄ 6=r

Ds,r;s,r̄
K

=
〈

Ds,r;s̄,r̄
K

〉
s,s̄ 6=s,r,r̄ −

〈
Ds,r;s,r̄
K

〉
s,r,r̄ 6=r ,

(5.4)

with Ps,s̄
K given in Eq. 5.1 and here specified via subscript to the sub-

population K. The better subpopulation K is able to distinguish the
different stimuli, the higher the value of PK. Note that in Eq. 5.1 we
could reduce the computational cost by making use of the fact that the
initial loop 〈inter-stimuli〉 − 〈intra-stimulus〉 over stimulus pairs can be
transformed into the mean inter-stimulus distance minus the mean intra-
stimulus distance for the entire discrimination matrix.

Fig. 5.2 shows the pairwise distance matrices and their discrimination
performance values for three subpopulations of the data set exemplarily
shown in Fig. 5.1. In this noise-free example, the coding subpopulation
(the first three neurons in Fig. 5.2A) was able to discriminate perfectly
and, accordingly, we obtained a very high value of P. The non-coding
subpopulation (last four neurons in Fig. 5.2A) could not distinguish be-
tween the different stimuli. Its discrimination performance P was very
close to the expected zero value (Fig. 5.2B). Finally, for the pairwise dis-
tance matrix of the full population (Fig. 5.2C), which contained both the
coding and the noisy non-coding subpopulation, we found an interme-
diate discrimination performance P.

5.4.1.2 Algorithms

Since the measure PK in Eq. 5.4 quantifies the discrimination perfor-
mance for every given subpopulation, it can serve to search the space of
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Figure 5.2: Summed population coding: Stimulus-dependent clustering for the
seven neurons (three coding, four non-coding) of Fig. 5.1: Pairwise
spike train distance matrices of all T = 20 trials consisting of S = 4
stimuli with R = 5 repetitions each for three different subpopula-
tions: A. The coding subpopulation consisting of first three neurons
(C, red) distinguish the stimulus perfectly. The different stimuli can
be distinguished easily because in this noise-free case high distances
are obtained for inter-stimuli realizations and zero values for intra-
stimuli realizations. Accordingly a very large discrimination per-
formance is obtained. B. Evaluating the summed activity of the
last four neurons, the non-coding subpopulation (NC, blue) leads
to seemingly random distances and stimulus discrimination fails.
Such a distance matrix results in a very low discrimination perfor-
mance. C. For the full population (All, black) the intra-stimulus sub-
matrices can still be distinguished but are much less pronounced.
Accordingly, the discrimination performance P attains some inter-
mediate value. The sub-matrices resulting from the four examples
(first two repetitions of the first two stimuli) given in Fig. 5.1 are
marked by white boxes.
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all possible subpopulations for the best SP-coding subpopulation Kopt,
defined as

Kopt : PSP
Kopt

= max
K
{PK} . (5.5)

As mentioned in Section 5.2, there are three different approaches to this
task.

(i) Brute force

One can determine the stimulus discrimination performance PK for the
summed activity of every possible subpopulation K, and identifies the
subpopulation that provides the maximum performance. Since all possi-
ble subpopulations are evaluated, the brute force approach is guaranteed
to find the best subpopulation. Its result can thus serve as a ground truth
for other less exhaustive algorithms. Evaluating all possible subpopula-
tions, however, is not feasible for very large datasets because the number
of possible subpopulations increases exponentially with the number of
neurons N:

Kbf =
N

∑
k=1

(
N
k

)
= 2N − 1. (5.6)

For example, for N = 125 the individual terms from different subpopu-
lation sizes add up to Kbf = 4.25 · 1037, which is far beyond the limits of
current soft- and hardware implementations. More restrictive algorithms
are needed that explore only a (relevant) subspace of the numerous sub-
populations.

(ii) Gradient algorithms

The idea behind gradient algorithms is to evaluate the discrimination
performance for a restricted number of neuronal subpopulations. There
are two variants: The bottom-up variant used by (129) starts with the
best individual neuron and builds up the population by adding in each
iteration the best remaining neuron. The alternative top-down variant
starts from the complete population and iteratively subtracts one neuron
at a time. Both variants are illustrated in Fig. 5.3 using the example
from Figs. 5.1 and 5.2. In this example, both gradient variants correctly
identified the first 3 neurons as the coding subpopulation. Importantly,
for either algorithm the number of combinations for which the stimulus
discrimination performance had to be calculated amounts only to

Kgrad =
N

∑
k=1

k = 1
2 N(N + 1), (5.7)
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Figure 5.3: Summed population coding: Color-coded discrimination perfor-
mance for different neuronal subpopulations within the example
from Figs. 5.1 and 5.2, in which a subpopulation consisting of the
first 3 out of N = 7 neurons code for the different stimuli while
the remaining non-coding neurons fire just randomly. Every matrix
element depicts the performance of one specific subpopulation. The
right panels show the maximum performance for a given subpopu-
lation size. A. The bottom-up algorithm starts with the discrimina-
tion performances of the individual neurons. In every subsequent
iteration one adds the neuron that complements the current sub-
population best (indicated by small black ticks) and this is repeated
until the full population size is reached. B. The top-down algorithm
begins with the discrimination performance of the complete popula-
tion (depicted in the first column of the top row). In every iteration,
one discards the neuron that contributes the least to the discrimina-
tion (marked by short black horizontal lines) until just one neuron
remains. — The red and the black dots in both matrices mark the
coding and the full subpopulations whose pairwise distance matri-
ces are shown in Fig. 5.2A and 5.2C, respectively (the non-coding
subpopulation in Fig. 5.2B is never visited). For both algorithms, the
maximum overall population sizes (red circle in A, magenta circle
in B) is correctly obtained for the coding subpopulation (marked by
crosses in red resp. magenta and confirmed by the green rectangles
indicating the ground truth results of the brute force approach).

which is much smaller than Kbf and, thus, feasible even for very large
N. For N = 125, the individual terms from different subpopulation sizes
add up to only Kgrad = 7875.
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(iii) Simulated annealing

Simulated annealing (61) is a heuristic approach, which – in principle –
allows to find the global maximum without having to explore the whole
search space, though there is no guarantee that the optimum solution
will at all be found and, if so, that this will be in fewer steps than the
brute force search. However, simulated annealing, in contrast to the
two gradient algorithms, has the ability to recover from local maxima.
Suboptimal solutions are hence much less likely to occur.

One uses a random permutation of neurons as an initial subpopula-
tion K0. The n-th step in the search is to add or remove a randomly
chosen neuron to or from the current subpopulation Kn−1 resulting in a
new population Kn. Addition or removal is applied with equal probabil-
ity, except for the boundary populations of one neuron and all neurons,
for which the only possible steps are to add or to remove a neuron, re-
spectively. Whether or not the addition/removal is accepted depends on
the new discrimination performance Pn relative to the current one Pn−1.
The corresponding acceptance probability is set by

qn = exp
{
−|Pn − Pn−1|

Tn−1

}
, (5.8)

where Tn−1 is a pseudo-temperature that allows moving ’downhill’ in or-
der to not get stuck in a local and thus suboptimal maximum. Steps with
Pn > Pn−1 are always accepted. The likelihood of accepting steps with
Pn ≤ Pn−1 is also finite but decreases according to a gradual and step-
wise cooling scheme in which Tn is held constant for a certain number
of iterations chosen depending on the number of neurons.

By means of a path of N0 random test steps from the starting popula-
tion one can set the initial temperature to

T0 = − 1
ln(0.95) 〈|Pn − Pn−1|〉n=1,...,N0

, (5.9)

which guarantees a fair mobility in the beginning because even downhill
steps are accepted with a likelihood of 95% (131). The stopping criterion
for the algorithm is that between two successive temperature changes
the population remains unchanged, i.e. Kn = Kn−1. During the whole it-
eration one tracks the highest discrimination performance value reached
thus far and in case the final value is worse than this best value along
the path, it can not be the global maximum and thus the algorithm resets
the temperature to T0 and continues with increased mobility.
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5.4.2 Labeled Line (LL) – Discrimination Performance & Algorithm

The assumption underlying LL coding is that neurons individually en-
code different properties or features of a stimulus. Hence, in this case
every neuron must be evaluated separately. This actually makes things
much easier since instead of having to deal with distance matrices in the
space of all possible subpopulations as in the SP case, it is now sufficient
to calculate only N distance matrices, one for each neuron. A single
neuron typically codes for one specific stimulus feature only. Therefore,
in order to discriminate a large and broad set of S stimuli, the comple-
mentary information provided by many neurons needs to be combined.
Identifying the most discriminative LL population is thus equivalent to
finding discriminative neurons for as many stimulus pairs as possible.
For two stimuli to be distinguishable there must be at least one individ-
ual neuron sensitive to their difference. In case more than one neuron is
found for a stimulus pair, the most discriminative one is selected.

Fig. 5.4 illustrates this procedure using a very schematic and simplified
example. For clarity we use two very distinct features (color and vehicle
type), but in a typical recording these often would be two different fea-
tures of the same sensory mode. Our starting point is a set of S different
stimuli (Fig. 5.4A) whose repeated presentations elicit T = S× R spike
train responses (Fig. 5.4B). From these responses a pairwise distance ma-
trix D is computed for every individual neuron n = 1, ..., N (Fig. 5.4C).
Looping over stimulus pairs transforms each of these T× T distance ma-
trices into a S× S discrimination matrix that indicates the stimulus pairs
this particular neuron is able to discriminate. For two different stimuli
s and s̄ to be distinguishable, their intra-stimulus distances Ds,s and Ds̄,s̄

and their inter-stimuli distances Ds,s̄ (both pooled over all repetitions of
the respective stimuli) should stem from different distributions. If they
were to stem from the same distribution, the two stimuli could not be
discriminated.

We seek to verify the hypothesis that responses to two different stimuli
can be discriminated. To this end, we employ three two-sample t-tests
ts̄,s̄
s,s = t (Ds,s, Ds̄,s̄), ts,s̄

s,s = t (Ds,s, Ds,s̄), and ts,s̄
s̄,s̄ = t (Ds̄,s̄, Ds,s̄) at a signifi-

cance level of α = 0.001. From these three tests one can form a logical
discrimination matrix such that for neuron n the discrimination between
stimuli s and s̄ reads

Ms,s̄
n =

{
1 if ts̄,s̄

s,s ∨ ts,s̄
s,s ∨ ts,s̄

s̄,s̄ = true

0 otherwise.
(5.10)

The two stimuli can be discriminated by this neuron (i.e. Mn
s,s̄ = 1) when-

ever at least one of the three tests yields significant differences. In the



124 the most discriminative neuronal subpopulations

Stimulus 1A Stimulus 2 Stimulus 3 Stimulus 4
N

e
u

r
o

n
 1

B

D
1

C

M
1

D

P
1

E

N
e
u

r
o

n
 2

D
2

M
2

P
2

N
e
u

r
o

n
 3

D
3

M
3

P
3

Time

N
e
u

r
o

n
 4

Time Time Time

D
4

D
S

M
4

Discrimination

P
4

Performance

P

F

M

1  2  4
G

Figure 5.4: Labeled line coding: Schematic example in which each of the N = 4
neurons is sensitive only to one specific feature of the different stim-
uli. Neuron 1 responds to white and neuron 2 to red objects, neuron
3 to cars and neuron 4 to ships. A. The S = 4 stimuli were chosen
such that they combine these features. B. Spike trains responses of
each neuron to R = 5 repetitions of every stimulus. C. Pairwise dis-
tance matrices Dn (using the SPIKE-distance D) over all T = 20 trials.
D. Corresponding discrimination matrices Mn. Black is always 0,
whereas each neuron has its own color representing 1 for the stimu-
lus pairs it can distinguish. E. Performance matrices Pn. The value is
zero for stimulus pairs that can not be discriminated and otherwise
the higher the better the discrimination. F. The population perfor-
mance matrix P collects for each stimulus pair the highest values
obtained for any of the four individual neurons. G. The correspond-
ing neurons are indicated in the population discrimination matrix
M which is colored according to which neuron achieves the best
discrimination performance (Ps,s̄

n ) for that stimulus pair. The overall
performance is PLL = 0.148 and is obtained for the optimized LL
population KLL

opt = [1 2 4] (written on top, the corresponding perfor-
mance matrices are marked in E by black rectangles). Note that the
color coding in both subplots D and G is discrete and used to label
the individual neurons.

example of Fig. 5.4, all neurons respond to just one single feature of the
stimuli, the first two to color (white and red) and the last two to vehicle
type (car and ship). Thus, all of the neurons are able to discriminate
among some of the stimuli but not among others (Fig. 5.4D).
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Next, in order to identify the best LL subpopulation for discrimination,
we define the discrimination performance for each stimulus pair (s, s̄)
and every neuron n as

P̂s,s̄
n = Ms,s̄

n Ps,s̄
n (5.11)

with Ps,s̄
n given in Eq. 5.1, supplemented by the subscript n to index indi-

vidual neurons. High values of P̂s,s̄
n are obtained for large inter-stimuli

and small intra-stimulus distances, while for the stimuli pairs a neuron
cannot discriminate the value vanishes (cf. Fig. 5.4E). From these indi-
vidual discrimination performance matrices the population performance
matrix can be obtained as

P̂s,s̄
max = max

n

{
P̂s,s̄

n
}

, (5.12)

which takes for every stimulus pair the best discrimination performance
of all the individual neurons (see Fig. 5.4F). The population discrimina-
tion matrix

Ms,s̄
max =

{
arg P̂s,s̄

max if P̂s,s̄
max > 0

0 otherwise
(5.13)

indicates for every stimulus pair the best neuron (cf. Fig. 5.4G) and
from this matrix the optimized LL population is obtained by uniting all
neurons that contribute to the discrimination, i.e.

KLL
opt =

⋃
s 6=s̄,Ms,s̄

max>0

Ms,s̄
max. (5.14)

Finally, the LL discrimination performance of the full population for the
whole stimulus set is the mean of the discrimination performances over
all stimulus pairs, that is,

PLL =
〈

P̂s,s̄
max
〉

s 6=s̄ . (5.15)

In our example, from Fig. 5.4G we can extract the best selection from
the two color neurons (both neuron 1 and neuron 2) and from the two
’vehicle type’ neurons (just the ship neuron, neuron 4) yielding neurons
1, 2, and 4 as the optimized LL population which obtains an labeled line
discrimination performance of PLL = 0.148.

5.5 results

5.5.1 Summed Population (SP)

(i) Brute force

This is the preferred algorithm because it guarantees that the best dis-
crimination performance is found. However, the number of subpopula-
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tions that have to be evaluated increases exponentially with the number
of neurons, see Eq. 5.6, rendering this algorithm applicable only for com-
parably small numbers of neurons. In this study whenever possible we
used it as benchmark to verify the correctness of the solutions found
by the other algorithms and to evaluate their decrease in computational
cost. Being able to obtain the ground truth this way was most important
for the examples with noisy spike trains where the actual result was not
known beforehand.
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Figure 5.5: Summed population coding: Same setup and format as Fig. 5.3B but
this time the top-down gradient algorithm was applied to a neuronal
population of size N = 125 which corresponded to a total number
of more than 1037 possible subpopulations. In this simulation the
subpopulation consisting of the first 47 neurons (marked in green)
coded for the different stimuli while the remaining non-coding neu-
rons fired randomly. Even though it evaluated just less than 8.000
subpopulations, the algorithm correctly identified the coding sub-
population as indicated by the maximum over all population sizes
(magenta circle in curve on the right).

(ii) Gradient algorithms

We illustrate the appropriateness of using gradient algorithms, i.e a proof-
of-principle, using a noise-free case. In Fig. 5.5 we used a similar ex-
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ample as in Fig. 5.3, again with S = 4 different stimuli which were re-
peated R=5 times each. This time, however, the population consisted of
N = 125 neurons, a number in the range of real life experiments. This
corresponds to more than Kbf=4·1037 possible subpopulations and thus
renders the brute force approach absolutely unfeasible. For the gradient
algorithm (top-down variant) the discrimination performance had to be
determined for only 7875 subpopulations. The first c = 47 coded per-
fectly and this coding subpopulation was correctly identified as the one
with the maximum discrimination performance PSP

Kopt
.

Next, we ran two simulations that are constructed such that each time
one of the two variants of the gradient algorithm did not find the best
subpopulation since it got trapped in a local maximum. The two cases
employed essentially the same setup, but the first case was noiseless
whereas in the second case we applied noise that disrupted the timing
information of each spike with 50% chance. For the first simulation we
generated a population of N = 10 neurons made up of three different
subpopulations. The first four individual neurons are each able to dis-
criminate between all the stimuli on their own. Next, a subpopulation of
three neurons could discriminate only collectively, i.e. as a population,
but with a slightly lower discrimination than the individual neurons. Fi-
nally, the last three neurons were non-coding. For a population of this
size the brute force approach is still feasible and its result served as
ground truth.

In the simulation without noise shown in Fig. 5.6, the best discrimina-
tion performance should have been obtained by the very best individual
neuron. This was indeed the result of the bottom-up variant (Fig. 5.6A).
However, the top-down variant failed and erroneously indicated the neu-
ronal subpopulation consisting of the middle four neurons as the winner
(Fig. 5.6B). This is because it had to follow the iterative procedure of sin-
gling out one neuron at a time for elimination and, hence, could not
treat the middle population as a single entity. Therefore, at each step
breaking up the population was being considered a very bad option and
falsely avoided to the very end. The individually coding neurons were
eliminated first and thus never evaluated on their own, which left the
performance of the collectively coding subpopulation as the best one en-
countered along the path.

Fig. 5.6C depicts the SP discrimination performances given in Eq. 5.4
calculated for each of the individual neurons. Each of the first three neu-
rons had a very large discriminative power far superior to the individual
neurons of the collectively coding subpopulation which were still better
than the non-coding neurons. In Fig. 5.6D we show the winners chosen
by each of the different algorithms. The top-down gradient variant was
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Figure 5.6: Summed population coding: Example where the top-down gradi-
ent algorithm failed. The population consists of three neurons that
code the different stimuli individually (Indi), four neurons that code
them as a collective (Coll) and three non-coding neurons (NC). The
top panels A and B follow the setup of the bottom-up and the top-
down algorithms in Fig. 5.3A and B, respectively. For the sake of
legibility now the curves of the maximum performance per popu-
lation size are superimposed in white (axis on top). The optimal
solution is the single best individually coding neuron (neuron #1 on
the left) and this neuron was indeed correctly identified by all algo-
rithms apart from one. The top-down algorithm always discarded
the neuron contributing the least and since it could not discard the
whole collective unit it got stuck in a local maximum. C. Perfor-
mance of individual neurons. D. Neuronal subpopulations identi-
fied as winners by the different algorithms. The horizontal green
line indicates the optimal discrimination performance as verified by
the brute force algorithm.

the only algorithm that did not succeed in identifying the very first indi-
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vidual neuron as the most discriminative subpopulation (as verified by
the brute force approach).
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Figure 5.7: Summed population coding: Similar to Fig. 5.6 but in this example
we added some noise which made the bottom-up gradient algorithm
fail. The discriminative performance of the individual neurons was
degraded to such an extent that here the four summed population
neurons performed better (to stay with our convention that the win-
ning subpopulation comes always first, we reversed the order of
these two groups of neurons). The bottom-up algorithm could never
add the SP-population as a whole and thus always had to pick the
best individual neuron remaining. This took it to a local maximum
right at the beginning, and from then on the discrimination perfor-
mance of the very first individual neuron apparently remained the
optimal solution along the whole path.

In the second simulation summarized in Fig. 5.7, we used exactly the
same setup but added so much noise to the first three individually cod-
ing neurons that they did no longer outperform the four collectively
coding neurons which thus together should have been identified as the
most discriminative subpopulation. In this case the bottom-up gradient
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algorithm failed (Fig. 5.7A), whereas the top-down variant managed to
find the correct solution (Fig. 5.7B). The reasoning is exactly inverse to
the first case. The iterative ’one-neuron at a time’ scheme did not allow
to include the collectively coding population consisting of four neurons
in one step and since each of them on their own was worse than the
three individually coding neurons (see Fig. 5.7C), these latter neurons
were added first. Again, Fig. 5.7D summarizes the results of the dif-
ferent algorithms. There, the bottom-up gradient algorithm incorrectly
identified the best individual neuron as most discriminative.

The respective failures of the top-down and the bottom-up variants
in these two simulations were both due to the fact that the gradient
algorithms follow a steepest ascent approach where at each step they
take the locally optimal choice. The well-known problem with this greedy
approach is that it does not necessarily lead to the global optimum. In
this specific context it meant that once an incorrect neuron was added
(bottom-up) / a correct neuron was excluded (top-down), the gradient
algorithms had no way to correct this ’mistake’ and these bad choices
remained. We would like to add that we also found cases in which
neither variant was able to find the correct solution. So running both
algorithms and picking the overall best performance can also not provide
a guarantee that the optimal solution is found.

(iii) Simulated annealing

Since gradient algorithms are much faster than the brute force approach
and successful under idealized conditions, they can be used for first test-
ing. However, our examples illustrate that they can generally not be
relied upon in more realistic settings. Fortunately, simulated annealing
provides a recovery mechanism that considerably reduces the likelihood
of getting stuck in a local maximum.

Both Fig. 5.6D and Fig. 5.7D include the successful simulated anneal-
ing algorithm. In these two cases as well as in all other cases that we
looked at, simulated annealing was indeed able to identify the most dis-
criminative neuronal subpopulation. However, this increased reliability
of the simulated annealing algorithm compared to the two gradient vari-
ants comes with a prize, an increased computational cost.

The runtime of an algorithm consists mostly of two parts, the num-
ber of subpopulations that have to be evaluated and the time it takes to
evaluate each of these subpopulations. As summarized in Fig. 5.8, we
compared the different algorithms regarding the numbers of subpopu-
lations visited. As expected, for the brute force algorithm that number



5.5 results 131

10 15 20 25 30

# Neurons

101

102

103

104

105

106

107

# 
S

u
b

p
o

p
u

la
ti

o
n

s

Brute Force
Iterative Bottom-Up
Iterative Top-Down
Annealing
Annealing (Unique)

Figure 5.8: Comparison of the computational cost for the different algorithms
for summed population coding: Subpopulations evaluated versus
number of neurons. Note that the values for simulated annealing
are averages over ten trials.

increased exponentially with the number of neurons. For the two vari-
ants of the gradient algorithm the numbers were identical in line with
Eq. 5.7, and much smaller than for the brute force algorithm. In the
case of simulated annealing, our selected examples revealed values in
between these two extremes for large enough numbers of neurons. Here
we had to divide the number of subpopulations evaluated into two dis-
tinct categories. The first one is the actual number visited by the random
walk, the second one is the number of uniquely evaluated subpopula-
tions. We added the latter because some of the subpopulations might
have been revisited many times. We note that in our implementation the
discrimination performance for every subpopulation is determined only
at the first visit and stored so that at all repeated visits this value can
be readily retrieved via an unambiguous mapping to the subpopulation
space. This makes revisiting a subpopulation considerably cheaper than
calculating a new one. While for small population sizes the actual num-
ber of subpopulations evaluated might be even higher than for brute
force, it starts to gain more speed compared to the brute force approach
as soon as the algorithm no longer has to visit all solutions. This also
implies that for a small number of neurons it is always preferable to use
the brute force approach, because it not only gains speed, but, unlike the
simulated annealing, also guarantees the ground truth solution.
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5.5.2 Labeled line (LL)

For the LL case, we investigated a more complex example than Fig. 5.4.
However, we used a schematic design to sketch a general idea of some
of the complications that may occur. In this example R=5 repetitions of
S=8 stimuli were presented to N = 10 neurons (Fig. 5.9).

The coding and discrimination capabilities of every individual neuron
can be seen best in the subplots of Figs. 5.9A and 5.9B. Neurons 1 and
2 both coded for the first four of the eight stimuli, but neuron 1 seemed
to respond to one feature common in all of these stimuli whereas neu-
ron 2 responded to each of these stimuli in a different way (Fig. 5.9A).
This implies a sensitivity to four different features that were present in
just one of these stimuli each. Because of this, only neuron 2 was able
to distinguish between these four stimuli themselves, whereas both neu-
rons were able to discriminate between any of the first four stimuli and
any of the last four (compare M1 and M2 in Fig. 5.9B). Neurons 3 and
4 were each sensible to two of these four features (neuron 3 equally and
neuron 4 differently) and neurons 5 and 6 to just one. So among the
fist six neurons there was a hierarchy of specificity with neurons 1 and
2 the least and neurons 5 and 6 the most specific. All these neurons
also showed different levels of reliability, which caused that only three
of them (neurons 1, 2 and 4) obtained maximum discrimination values
for some stimulus pairs (Fig. 5.9, C and D) and thus contributed to the
optimal LL population (Fig. 5.9E). An even higher level of redundancy
could be observed for neurons 7 and 8, which both coded exactly for
the same two stimuli, but here only neuron 8 was reliable enough to en-
ter the optimal LL population. Neuron 9 did not respond to any of the
stimuli, i.e. this neuron was either just noisy or sensitive only to one (or
more) feature(s) that were not present in any of the stimuli.

In the simpler example of Fig. 5.4, all off-diagonal elements of the pop-
ulation performance matrix P were positive which means that all pairs
of stimuli could successfully be discriminated. The optimized LL popu-
lation consisted of three neurons, one vehicle type neuron and two color
neurons, which came about because both color neurons happened to be
most discriminative for some of the stimulus pairs. Here it would take
only two neurons to perfectly discriminate, as long as a color neuron
was combined with a vehicle type neuron. This nicely illustrates the sub-
tle distinction between coding and discrimination: with only the ’white’
neuron 1 and the ’car’ neuron 3 all stimuli could be discriminated even
though none of these two neurons actually coded for stimulus 4, the ’red
ship’. While this contained a case of discrimination without coding, ex-
actly the opposite case occurred in Fig. 5.9. There, for stimulus pair 7
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Figure 5.9: Labeled Line Coding: A reasonably complex example based on
R = 5 repetitions, S = 8 stimuli and N = 10 neurons. A. Pairwise
spike train distance matrices Dn over all T = 40 trials. Both neu-
rons 1 and 2 responded to the first four stimuli, but whereas the
first reacted with just one common response, the second did so with
a different response for each of these stimuli. Neuron 3 was only
sensitive to the first two (equally) and neuron 4 only to the third
and fourth stimulus (separately) who were also covered by neuron
5 and 6 but only one at a time. The two neurons 7 and 8 coded for
the fifth and sixth stimulus but with varying degrees of reliability,
while neuron 9 did not respond to any of the stimuli. Neuron 10

was sensitive to the last two stimuli reacting to both of them with
the same response. B. Discrimination matrices Mn, colored such
that the stimuli pairs that could be discriminated are marked with
a unique color for each neuron. C. Corresponding performance ma-
trices Pn that were used to identify the best performance for each
stimulus pair. D. Maximization of the Pn-matrices results in the
population performance matrix P. The black off-diagonal element
indicates stimuli 7 and 8 which could not be discriminated by any
of the neurons of this population. E. The population discrimination
matrix M gathers the neurons that contributed to the optimized LL
subpopulation KLL

opt = [1 2 4 8] (again marked in C by black rectan-
gles). Their overall performance in this example was PLL = 0.139.
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and 8 we obtained a zero outside of the diagonal indicating that these
two stimuli could not be discriminated by this set of neurons, although
neuron 10 was responding to both of these stimuli. Therefore, this is a
case of coding without discrimination. In general, two stimuli cannot
be discriminated whenever the population contains only neurons that
are not sensitive to any of the features that distinguish them. Some of
the neurons might still code the stimuli but just not the distinction. In
Fig. 5.4, a red car and a red ship could not be discriminated if only ’color’
neurons were evaluated.

5.6 discussion

5.6.1 Summary

We evaluated methods for identifying the most discriminative subpopu-
lation when looking at neuronal responses to repeated presentations of
a set of stimuli. Central to our studies were two different assumptions
about neuronal population coding. According to the summed population
(SP) hypothesis all neurons in a population potentially contribute to the
coding of an external stimulus, whereas under the labeled line (LL) hypoth-
esis stimulus encoding is realized through individual neurons. In both
cases our analysis relied on the computation of pairwise distance matri-
ces and a basic discrimination performance that quantifies the degree to
which identical (different) stimuli yield similar (dissimilar) spike train
responses. However, since the two hypotheses include different assump-
tions about neuronal coding they required complementary algorithmic
approaches.

For SP we compared three approaches that search the space of all pos-
sible subpopulations for the maximum discriminative performance over
all stimulus pairs: (i) A brute force search evaluating all possible subpop-
ulations; (ii) two variants of a steepest ascent or gradient algorithm; and
(iii) simulated annealing. By definition, approach (i) provides the best re-
sults as evaluating all possible combinations guarantees that the global
maximum is found. However, the number of possible subpopulations
increases exponentially with the number of neurons (Eq. 5.6), rendering
a brute force approach feasible only for rather small populations. Gradi-
ent algorithms (ii), like the one used in (129), overcome this limitations,
as the number of subpopulations that has to be evaluated increases only
quadratically with the number of neurons (Eq. 5.7). Unfortunately, while
useful under very idealized conditions, in general these approaches have
problems in finding the correct solution. In contrast, our simulated an-
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nealing approach (iii) proved much more reliable in finding the maximal
discriminative power than both variants of the gradient approach, and
this despite only a moderate increase in computational cost in the major-
ity of cases studied here (see Fig. 5.8 for an example).

For LL we introduced an optimization algorithm which finds the most
discriminative subpopulation by evaluating every neuron separately. First,
for every individual stimulus pair the algorithm identifies the discrimi-
native neurons and selects the best one. These best neurons are then
combined to form the optimal LL-population. As shown in Fig. 5.9, the
algorithm can handle quite involved coding scenarios, even though its
computational complexity is much lower than in the SP case (because we
only have to deal with one distance matrix per neuron). Moreover, we
are guaranteed to find the best subpopulation since this time no search
in a very high-dimensional subpopulation space is needed.

5.6.2 Comparisons

To provide a more intuitive understanding of the relationship between
the SP and the LL hypothesis, consider a single neuron that in itself is
able to discriminate the whole set of stimuli perfectly. Such a neuron
is where both hypothesis meet. It could be considered either as a per-
fect SP population of size one or as an LL neuron that yields a perfect
discrimination matrix on its own. While for a few stimuli one neuron
alone might indeed be able to do the job, the distinction of a large and
complex set of stimuli typically works along several feature dimensions
and a population of neurons is needed to work in unison and comple-
ment each other. Conversely, in order to obtain a robust and universal
subpopulation in an experimental setting, it is essential to test the pop-
ulation on a stimulus set that is as diverse as possible. In general, for
both the SP and the LL case one should always keep in mind that the
results obtained are a function of both the stimulus set presented and
the neuronal subpopulation recorded.

For such a complex stimulus set, SP and LL hypotheses can be seen as
two distinct ways neurons as a population may collaborate to carry out
the task of the perfect neuron. In the SP case they divide the spikes of
each individual response among themselves, while in the LL case the re-
sponses to different stimuli are distributed among the neurons. It would
also be possible to construct all kind of SP and LL mixtures by combining
subdivision of spikes among neurons (SP coding blocks) with separation
of stimulus sensitivity between different neurons (LL subpopulations) at
any level. However, since this can get arbitrarily complex, a modification
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of the algorithms to address these mixed cases seems to be computation-
ally out of reach.

There are other potential modifications. The current LL algorithm
identifies for each stimulus pair all the neurons that are sensitive to dis-
crimination and selects only the very best one. Overall this will result
in a rather minimal LL-subpopulation. However, in real-life applications
additional criteria such as redundancy and reliability might be very im-
portant. To create more stability it could be preferable to include more
rather than less neurons (130). This could be particularly useful when-
ever two neurons distinguish the same stimulus pair but use different
features to do so. The inclusion of both of these neuron would guar-
antee access to complementary information that might be essential to
discriminate more diverse stimulus sets. Then, both algorithms are de-
signed to identify the most discriminative subpopulation which is why
we always look at pairs of two stimuli. If instead one were interested in
finding the coding subpopulation, the algorithms could be modified to
evaluate responsiveness to individual stimuli.

For the sake of simplicity we restricted our simulations to cases with
uniform rates. However, recent studies on the observed variability in
firing rates have emphasized the prevalence of log-normal distributions
(132) and the roles of ’soloists and choristers’ (133). This raises the ques-
tion of the relative importance of coding by sparse-firing vs. higher-
frequency neurons. In the SP case varying firing rates may imply that
the population spike train is divided among the population with a non-
uniform probability distribution. However, this will only change the
gradient towards the optimal solution and not the solution itself. Thus,
our algorithm will not be affected. Likewise, in the LL case, the stimulus
pairs are assessed individually and therefore the rate is less important.
The neurons that display the most consistently distinct responses for dif-
ferent stimuli will be selected regardless of the actual rates.

Our algorithms employ the SPIKE-distance as a fundamental measure
for comparing spike trains. The only other approaches that use spike
train distances to evaluate the coding properties of neuronal ensembles
are population extensions for the Victor-Purpura distance (125) and the
van Rossum distance (126). These population measures interpolate be-
tween the two extreme cases of summed population and labeled line
coding by means of a parameter that determines the importance of distin-
guishing spikes fired in different cells (minimal for SP, maximal for LL).
While the applications to the pooled spike train of the full population
(SP) or to all individual spike trains separately (LL) are straightforward
((134) resp. (135)), it is not obvious how to interpret intermediate cases.
More importantly, these approaches never deal with subpopulations but
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always consider the population as a whole. This hampers comparison of
results because these population extensions have not been designed to
answer questions about the extent to which a part of the population con-
tributes to stimulus discrimination and much less to identify the most
discriminative subpopulation. In short, our algorithms and these popu-
lation extensions address complimentary questions.

5.6.3 Outlook

So far we have applied both the SP and the LL algorithms to simulated
datasets only. We either knew the ground truth a priori or we could
apply the brute force approach to obtain the ground truth. After having
passed this verification test, the next step will be to analyze experimen-
tal datasets in which a neuronal population is recorded upon repeated
presentations of a set of stimuli. These can be data from animal models
in both sensory and motor regions, but also recordings of intracranial
neuronal spiking from patients undergoing seizure monitoring prior to
epilepsy surgery (136).

Once the algorithms are applied to experimental data their results may
serve to address further fundamental questions about neuronal coding.
One of them regards the size of the most discriminative subpopulation
and how it compares to the size of the full population and to the size of
the subpopulation that conveys the same information as the whole (see,
e.g., the information theoretic analysis carried out in Ince et al., 2013).
Moreover, it would be interesting to investigate the spatial location of the
discriminative neurons and search for properties that distinguish them
from other neurons. For example, one may evaluate their overall firing
rates and their level of connectivity (132) as well as their coupling to the
overall firing of the population (133).

Another potential application for our algorithms are BCIs (see, e.g.,
(137, 138)), in particular, the kind of BCI that works with multi-unit spike
train read-out (139). Current BCI systems are following the so-called
mass-effect principle and rely on rather crude population averages like
mean firing rates over many neurons (140). This could be improved sig-
nificantly by increasing the signal-to-noise ratio (SNR) by selecting the
most informative neurons (130) and making explicit use of the temporal
structure of spike trains (141). Algorithms for finding the most discrimi-
native subpopulation based on the spike timing sensitive SPIKE-distance
could lead to refined and more targeted estimates of ensemble activity.
Comparing the SP and LL algorithms on the same dataset may provide
further insights on how neural circuits encode. In fact, the success or fail-
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ure of clinical BCI applications will depend on our efforts to understand
population coding.
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6

E P I L O G U E

6.1 on the concept of similarity

While I was studying Bioengineering at Tampere University of Technol-
ogy, I had this revelation in one of the classes. The lecturer showed us a
slide of an opened radio with tags for each of the components and their
descriptions.”This is how we perceive a radio. We have defined the concepts
and constructed the device based on our knowledge of how each individual com-
ponent works.” Next the lecturer showed us a slide of the same radio with
the tags removed. ”Now let us imagine that the radio is a biological system.
We have very little prior knowledge. How do we approach the complexity of a
system that we do not know much about? Obviously if we have only one ra-
dio, we cannot do much in fear of breaking it. However, if we had more radios,
we can start removing parts one by one.” In the slide, the tags started to
get new names. ”DNTN: Do Not Touch Node, VN: Vital Node, NVIN: Not
Very Important Node”. This made sense, since we are essentially reverse-
engineering the system. But then it hit me and I realized something even
more vital. No matter how far we dissect the radio, we will always use
some frame of reference that we are familiar with. In my case the system
I was studying was already the brain. Most importantly, since we are
talking about the brain, there can be the unconscious assumption that it
bears similarity to our own electric circuit constructions, in which you
have a conductor between elements and any information transmitted in
the conductor is coded and can be read in between. Does the brain really
work that way? Are neurons but conductors and computation elements,
or are spikes just the result of the computation done on some other level?

Using similarity in rate or spike timing is an essential part in our at-
tempt to assess neuronal coding. We must, however, always be critical
towards the methods used, since similarity is not a well defined concept.
Rather there are many ways to define what is similar. Which of the three
are the most similar with each other, a mouse, an apple, and a pig? Do
we look at size? Speed? Colour? Genetic sequence? The basis of similar-
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ity in our case lies by far in the assumption that we know how the brain
transmits information. There is evidence of both rate and timing being
involved in the process. However, these two concepts are intertwined
on a very basic level. If a neuron is silent and needs to transmit infor-
mation via spikes and it does that with a reliable spike pattern, will the
transmitted information be in the increased rate or in the spike timing,
or will the increased rate and timing be a direct result of how the previ-
ous neuron layer had been activated, which again was activated by the
previous, and so on? It might be that the coding is, for example, in the
connections and synaptic strengths and the spike pattern similarity that
we observe is but a consequence, since we are not aware of a neuron that
functions in time scales that would be able to ”read” the spike pattern
over time. Even if we identify a coding neuron, the next one will still
just ”see” near instantaneous changes in the membrane potential. The
time scales in which neurons primarily operate and the time scale of the
spike pattern that should contain the information do not match. Thus,
our way of separating rate and timing could be completely alien to the
neurons. In fact, it might be that both concepts are but derived for us to
understand what is going on.

This is not a totally new idea. There is plenty of literature about how
neuronal connections may affect network behaviour (see e.g. (142) and
references therein) as well as how the synapses and Glia-cells interact at
synapse and local level (143). The point I am trying to make is that when
we consider neuronal coding, it is not the neuron that codes anything. It
is merely responding to stimulation it gets over time. If there are sim-
ilarities in the spike pattern elicited by a neuron, it is more a property
of the underlying input network than the neuron itself. The main differ-
ence in this respect between a single neuron and the network is memory.
A single neuron can only have a very limited memory of the spikes it
has elicited in the past, yet a network consisting of more neurons and
connections can have this capability.

Then one may ask how the network is utilizing this capability. If you
have a robust network response, in which the timing of the spikes will
always be similar given a certain initial activation pattern, is this time
coding? If so, what will happen if one of the neurons is lost or connec-
tions change? If the network is less robust and as a consequence the
spike pattern looks a little different each time, but activity in certain neu-
ron layers is similar, is this rate coding? How about if and when the
neuron we are recording is part of a network layer itself and thus it is
but a single unit among many? If and when the neuron has connections
back to the previous layer thereby influencing the spike pattern it will
receive in the next moments? Perhaps we are approaching the problem
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through concepts that are more easy for us to grasp in order to create
order within chaos?

6.2 using the algorithms

Even if the spike train patterns that we can record from single neurons
are not a result of the neuron itself coding something, it can relay infor-
mation of how the underlying network has responded as well as what
is being relayed forwards (or backwards). I any case the information
is present in the spike pattern for us to decode. Thus, measures such
as spike train distances may be used to assess correlations in neuronal
coding as long as one does not mix the measure with how the neurons
actually work. There exist plenty of metrics that can tell us about eco-
nomic situations without being actually money moving around, or how
to reward people for a job well done by defining what we consider to be
a good job, like measuring scientific quality by number of publications.
An important thing about metrics is that you will get what you measure.
No more, no less.

In the past few years we have expanded existing measures and in-
troduced new ways of assessing spike trains. These approaches can be
readily applied in neuroscience but also in fields such as brain-computer
interfaces and robotics. For example for prosthesis control discrimina-
tion between different states is exactly what is needed. Our expanded
measures can be used for assessing similarity in multiple time scale sys-
tems and for providing additional information about leader-follower re-
lationships.

The adaptive extensions of the measures that I explained in Chapter 2

provide a way to limit the time scale free nature of the measures. This
is especially useful when there are multiple time scales in the data. The
parameter does not introduce a single time scale like those of the pa-
rameters of the Victor-Purpura distance and the van Rossum distance,
but rather sets a limit after which differences are assessed based on the
minimum relevant time scale. However, these extensions should be used
with care, since while they are able to provide additional information,
they pose very strong limitations for how to use the measures. First
of all assessing the correct time scale manually can be difficult unless
one has prior knowledge of the system. Second, the automated extrac-
tion can be used, but there one has to be careful not to compare values
obtained with different time scale parameters with each other, since val-
ues obtained are only valid in relation to the time scale parameter. In
this respect these extensions bear similarity with the Victor-Purpura dis-
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tance and the van Rossum distance for which one would not compare
values obtained with different time scales. Additionally the automated
extraction cannot detect the useful time scale parameter. It is simply an
estimate based on distributions of ISIs.

The main topic of this thesis concerned neuroscience but in practise
there are many fields in which spike train distances can be applied. In
Chapter 3 I talked mainly about neuroscience, but in the original pub-
lication (9) we also applied the method to climate data. In this thesis
the Victor-Purpura distance and the van Rossum distance have been as-
sociated with both being spike-resolved and having a time scale param-
eter, while the ISI-distance and the SPIKE-distance having no parameter
and being time resolved. These properties are not linked. The SPIKE-
synchronization used for identifying the leader-follower relationships is
a time scale free spike-resolved measure. It uses local rate for determin-
ing the time scale and assesses similarity purely in spike pairs. Sim-
ilarly the leader-follower assessment is done under the assumption of
robust spike responses and spikes are compared to single spikes in the
other spike trains. This combination has a different approach to sim-
ilarity from all those above and is very useful if the spike generation
process can be expected to be robust, as it is equally sensitive to rate as
any spike-resolved measure. However, the way it is used for identifying
synfire-patterns does not care about the rate mismatch, since the main
task for the algorithm is merely to identify spike pairs and then the time
order of the spikes in the pairs is used.

The most important thing to consider when applying the methods is
to understand what the methods are designed to identify and sometimes
what we think they do isn’t what they actually do. In Chapter 4 I showed
the analysis we did on some of the most used spike train distances and
how they behave under different conditions. The time resolved distances
perform very well under the assumption that spikes are generated with
slight randomness in their timing and number, but not when the number
of spikes in the recording window is very low. On the other hand if we
assume that each spike is generated with precision and robustness in the
spike numbers, also spike-resolved distances will perform well. Their
strength is that they are robust in assessing similarity of low rate spike
trains, but are not well equipped when one adds noise to the spike gen-
eration process and spike count is different from one realization to the
next, since they are blind to timing of spikes without a pair in the other
spike train. It is very important that one is aware of these limitations
when using the methods for neuroscience or even when applying them
in other fields.
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This is especially important since often for Victor-Purpura distance the
parameter value yielding best discrimination performance is thought to
provide additional information about the tradeoff between rate and time
coding. This is a ”dangerous” assumption as I have shown in Chapter
4 and should be used with care. The parameter value indicates timing
correlation only for spike trains with very similar rates. Additionally, as
noted in the previous Section, one should not mix the way neurons work
with the metrics.

So far the spike train distances have mainly concentrated in classi-
fying single neuron responses. Another complementary approach has
been made possible by developments in high throughput sensor technol-
ogy. With the increasing availability of recordings from the same sample
means that it might be possible to analyse the responses of multiple neu-
rons together rather than each one individually. There is no conceptual
leap from single neuron recordings once we remember that the single
neuron response is a a sort of a reflection of input layer population re-
sponse. The main difference is that in the population robustness on the
single neuron level might not be required and thus it would be possible
to see discrimination on the population level that is not detectable for a
single neuron.

When assuming that a population codes together there are two main
approaches that I explained in Chapter 5. The more traditional approach
is labelled line, where each recorded unit shows features that alone are
enough for discrimination. The other approach is summed population,
where the spikes are distributed among the neurons. This is a slightly
more complex scenario, since identification of the population that elicits
the spikes is computationally heavy. One important thing to notice is
that this kind of population coding can only be expected if the popu-
lation response is robust. If it would be simply rate-response without
discriminable spike-pattern, the distribution of rate among multiple neu-
rons would produce redundant neurons that would alone be able to dis-
criminate. Thus the summed population concept only makes sense if
one expects that spike timing is important, but which neuron fired the
spike is not.
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S U M M A RY

A neuron transmits information by a moving potential difference over
the cell membrane called action potential and by releasing neurotrans-
mitters to other neurons as a result. The time discrete representation of
an action potential is called a spike. The series of spikes fired by the same
neuron over time are called spike trains

A lot of neuroscience research is concentrated on finding response
patterns in spike trains of neurons. For a given stimulus a neuron that
codes for something in the stimulus is expected to elicit similar response
each time. This is called reliability of response. However, defining when
a response pattern is reliable or not is not a simple task. One may argue
that similarity itself is not a well-defined concept. In a way this boils
down to defining which properties of the response are considered to
describe similarity. And, of course, selecting them will affect the results
of any comparison. The properties considered for assessing similarity
of responses of neurons must come from the way the neurons transmit
information or code.

Similarity can be self-similarity in response to the same stimulus at
different times, or it can be similarity between responses of two different
neurons. There are many ways to assess if spike patterns are similar or
not that use different assumptions.

Over the years different measures have been developed in order to
quantify similarities between two or more spike trains. The two most
popular time scale parametric measures, the Victor-Purpura and the
van Rossum distance, describe spike train (dis)similarity based on user-
defined time scales to which the measures are mainly sensitive. A draw-
back of these measures is the fixed time scale, since it sets a boundary
between rate and time coding for the recording. However, for real data
which typically contain many time scales (such as regular spiking and
bursts), this is difficult to detect with a measure that is mainly sensitive
to only one of them.

The problem of having to choose one time scale has been eliminated
in the three time-resolved and time scale independent measures ISI-dis-
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tance, SPIKE-distance and SPIKE-synchronization. Since they always
adapt to the local firing rate, all three of these measures are time scale
free. While they correctly identify the relative firing rate differences, they
have no concept of actual time scales and treat all time scales as equally
important. As a the consequence, for very small time scales even minor
deviations from perfect synchrony lead to very high values of dissimi-
larity. For real data the smallest time scales are often not very relevant
and any dissimilarities there can mostly be disregarded. Thus the mea-
sures’ focus on the local time scales results in a (spurious) amplification
of dissimilarities which compared to the global time scales are rather
negligible.

In Chapter 2 I addressed the problem by proposing generalizations to
the three measures called adaptive ISI-distance (A-ISI-distance), adaptive
SPIKE-distance (A-SPIKE-distance) and adaptive SPIKE-synchronization
(A-SPIKE-synchronization). These generalized definitions add a notion
of the relative importance of local differences compared to the global
time scales. In particular, they start to gradually ignore differences be-
tween spike trains for ISIs that are smaller than a minimum relevant
time scale. The adaptive generalizations allow to disregard spike time
differences that are not relevant on a more global scale.

The methods were developed for use in neuroscience, but in fact they
work the same with any point process. In neuroscience typical time
scales are in the range of milliseconds or sometimes seconds and any
time scales below this will not be considered relevant. In fields such
as meteorology the respective time scales could be hours and days or
even months and years. The relevant time scale clearly depends on the
system under consideration. Setting the minimum relevant time scale for
a given dataset might not be a simple task. To address this, I proposed a
method to extract a threshold value from the spike trains, that is based
on the proportions of the different time scales present in the data. The
extended methods are intended to be used exclusively when there are
multiple time scales in the data.

In Chapter 3 I explained a complementary method for identifying simi-
larity between spike trains which quantifies the consistency of the leader-
follower relationships within a spike train set. The framework consists
of two directional measures (SPIKE-Order and Spike Train Order) that al-
lows to define a value termed Synfire Indicator which quantifies the con-
sistency of the leader-follower relationships in a rigorous and automated
manner, and also to sort multiple spike trains from leader to follower.
The SPIKE-Order profile was used for color-coding and visualizing lo-
cal spike leaders and followers and Spike Train Order functioned as an
overall indicator of leader-follower consistency. A set of spike trains ex-
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hibiting perfectly consistent repetitions of the same global propagation
pattern is called a synfire pattern. The synfire patterns were evaluated
using spike-to-spike matching and expecting that the system where the
spikes were recorded from functions with robust single spike timing.

In Chapters 2 and 3 I explained new methods for point processes. In
Chapter 4 I took a step back and had a look on how the similarity de-
scriptions in some of the most commonly used spike train distances ac-
tually match to what is expected of them. The analysis was based on the
two main approaches to neuronal coding. Since a neuron does not dis-
criminate where the stimulation it receives actually came from, it seems
reasonable to assume that high enough firing rate in the downstream
neurons will eventually build up and elicit spikes in the next one. This
assumption is called rate coding. An alternative approach considers a
more compact coding, where each neuron time their spikes carefully to-
gether in order to achieve the wanted spike upstream at a certain time.
This referred to as time coding. Both the assumptions are perfectly rea-
sonable, yet exclusive from the neuron’s point of view. As quoted in
Chapter 4:

• ”It is generally accepted that a rate encoding scheme is one in which
the relevant information encoded about the stimulus is correlated only
with the number of elicited spikes within the encoding window and is not
correlated with any aspect of the temporal pattern of the spikes within the
encoding window.”

• ”In a temporal encoding scheme, the relevant information is correlated
with the timing of the spikes within the encoding window, over and above
any information that might be correlated with the number of spikes within
the window.”

This definition of temporal coding does not require rate correlation actu-
ally to be present. Also it is not limited to single spike correlations but
applies to any correlations in spike patterns that would not be expected
due to rate alone.

In Chapter 4 I used that definition of time coding as correlations be-
yond rate to investigate how the sensitivity of the different spike train
distances to rate and time coding depends on the rate of the spike trains.
In this study I asked two questions: How does the sensitivity of the dif-
ferent spike train distances to rate and time coding depend on the rates
of the two processes and how high a rate is needed in order to obtain reli-
able estimates of timings in the data? The analysis was conducted using
independent steady rate Poisson spike trains as surrogates for random
spike trains with fixed rate and no timing information.



166 summary

The first finding is that the spike-resolved Victor-Purpura distance
compares the spike trains spike-for-spike and thus they are always sen-
sitive to differences in spike counts even for parameter values seem-
ingly indicating time coding. For large spike count differences the spike-
resolved distances do not obtain the ability to assess timing information
beyond spike pairs and thus in many cases most of the distance comes
from mismatch in spike counts rather than timings, independently of the
time scale parameter. As a result, for the Victor-Purpura distance timing
information is only available for spike trains with almost identical rates.
Since the behaviour of the van Rossum distance in response to rate dif-
ferences closely resembles that of the Victor-Purpura distance, it also has
the same problem (in addition to its normalization issues for different
tau-values).

The second finding is that the time-resolved measures perform better
in assessing timings in the normal case of reasonably high rates. These
measures can also provide a meaningful instantaneous similarity profile
within the coding window. Since they assess similarity in time, the exact
spike count becomes less important and the actual timing of events be-
comes more relevant. However, they suffer from artefacts when the rates
of the spike generation processes is so low that the floor effect takes
place. For spike trains with only a few spikes one should use the spike-
resolved Victor-Purpura or van Rossum distance, since they assess first
similarity in spike count and then apply timing information assessment
only for pairs of spikes.

The nervous system is believed to employ large populations of neu-
rons to code and broadcast information. Population coding can be con-
sidered less vulnerable and, hence, a more reliable and robust manner
than coding via single neurons. In Chapter 5 I evaluated existing ap-
proaches and introduced new algorithms for identifying the most dis-
criminative subpopulations from a population of recorded neurons.

In neuronal recordings population coding can appear in two ways.
First, all the neurons in the recorded population contribute equally. Pat-
terns of activity within the population are irrelevant for coding as all that
matters is whether or not any of the neurons fires. There, the information
being conveyed is that of a single spike train generated by the population
as a whole. In contrast to this so-called summed population (SP) hypothesis,
each neuron may have a unique and distinguishable role. In this case,
the population is best decoded neuron-by-neuron, which is referred to
as the labeled line (LL) hypothesis. The coding via individual neurons and
the summation of an entire population are the extreme case in a broad
spectrum of possibilities. In fact, recent evidence points at some interme-
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diate scenario in which a comparably small number encodes information
not only in a robust but also very efficient way.

The search for an optimal coding population requires fine-tuned anal-
yses under both the SP- and the LL-hypothesis. For these two cases
I showed how to separate relevant from irrelevant subpopulations by
identifying the subpopulation of neurons amongst all possible ones that
discriminates best a given set of stimuli.

For the SP case, I compared three fundamentally different algorithms
for finding the subpopulation that is able to most efficiently discrimi-
nate between a set of stimuli. First SP algorithm is a simple brute force
solution that goes through every possible permutation. This is compu-
tationally heavy and even for relatively small data sets is not feasible.
Computationally lighter gradient algorithms were also tested and I ran
two simulations that are constructed such that each time one of the two
variants of the gradient algorithm did not find the best subpopulation
since it got trapped in a local maximum. Since gradient algorithms are
much faster than the brute force approach and successful under ideal-
ized conditions, they can be used for first testing. However, our exam-
ples illustrate that they can generally not be relied upon in more realistic
settings. I also constructed a third algorithm using simulated annealing
that provides a recovery mechanism that considerably reduces the likeli-
hood of getting stuck in a local maximum and providing correct result
more consistently even if slightly increasing computation load.

For the LL case, I introduced a novel algorithm for identifying the
most discriminative LL population by evaluating every neuron sepa-
rately. First, for every individual stimulus pair the algorithm identifies
the discriminative neurons and selects the best one. These best neurons
are then combined to form the optimal LL-population. The algorithm
can handle quite involved coding scenarios, even though its computa-
tional complexity is much lower than in the SP case. Moreover, one is
guaranteed to find the best subpopulation since this time no search in a
very high-dimensional subpopulation space is needed. I also identified
that there is a mismatch between definitions of discrimination and cod-
ing, even if the two concepts seem to be linked. In reality one may have
coding without discrimination and vice versa.

In this thesis I have introduced new methods and evaluated existing
ones. The most important thing to consider when applying methods is
to understand what they are designed for. What we think they should
do is sometimes not what they are actually doing. Having a clear un-
derstanding of how the measures we use evaluate the data is crucial for
proper interpretation of the results. My thesis was devoted to this chal-
lenge. My comparative studies and newly proposed methods provide
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an encompassing approach to the analysis of spike trains and general
point processes, and with that, hopefully paved the way to application
in neuroscience and beyond.
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