Epigenome-wide association study of well-being

Published as:

Abstract
Well-being (WB) is a major topic of research across several scientific disciplines, partly driven by its strong association with psychological and mental health. Twin-family studies have found that both genotype and environment play an important role in explaining the variance in WB. Epigenetic mechanisms, such as DNA methylation, regulate gene expression and may mediate genetic and environmental effects on WB. Here, for the first time, we apply an epigenome-wide association study (EWAS) approach to identify differentially methylated sites associated with individual differences in WB. Subjects were part of the longitudinal survey studies of the Netherlands Twin Register (NTR) and participated in the NTR biobank project between 2002 and 2011. WB was assessed by a short inventory that measures satisfaction with life (SAT). DNA methylation was measured in whole blood by the Illumina Infinium HumanMethylation450 BeadChip (HM450k array) and the association between WB and DNA methylation level was tested at 411,169 autosomal sites. Two sites (cg10845147, \(p = 1.51 \times 10^{-8} \) and cg01940273, \(p = 2.34 \times 10^{-8} \)) reached genome-wide significance following Bonferroni correction. Four more sites (cg03329539, \(p = 2.76 \times 10^{-7} \); cg09716613, \(p = 3.23 \times 10^{-7} \); cg04387347, \(p = 3.95 \times 10^{-7} \) and cg02290168, \(p = 5.23 \times 10^{-7} \)) were considered to be genome-wide significant when applying the widely used criterion of a FDR q-value < 0.05. Gene ontology (GO) analysis highlighted enrichment of several central nervous system categories among higher-ranking methylation sites. Overall, these results provide a first insight into the epigenetic mechanisms associated with well-being and lay the foundations for future work aiming to unravel the biological mechanisms underlying a complex trait like WB.
Introduction

Because of its strong associations, in individuals and in society, with physical and mental health as well as economic development, well-being (WB) has become a topic of interest across different scientific disciplines1-3. In general, WB is conceptualized to include a continuous spectrum of positive feelings and subjective life assessment that can be assessed with a series of measures, such as satisfaction with life (SAT), happiness (HAP) and quality of life (QoL).

Twin-family studies report that in the general population, a substantial part of the variation in the different measures of WB is explained by genetic differences between individuals4. A large meta-analysis5 showed that the weighted average heritability for WB was 36\% (95\% CI: 34-38, and for SAT 32\% (95\% CI: 29-35). A multivariate twin-sibling study exploring the etiology of the covariance among multiple WB indices revealed that the genetic variance in the different measures was explained by one underlying set of genes6. These results also emphasize the importance of environmental factors in the variation of WB, and a dynamic interplay between genes and environment is to be expected for a complex trait like WB.

Epigenetic regulation of gene expression by mechanisms such as DNA methylation may mediate the interplay between the genetic make-up of individuals and their exposure to the environment7-9. Methylation changes can be caused by external conditions, such as long-term stress-exposure10,11, (prenatal, maternal) smoking exposure12,13 and dietary modifications at conception14. There are no epigenetic studies of the association between DNA methylation and WB, but some epigenetic studies have been performed involving complex traits related to WB. From twin studies, it is known that there is a negative association between psychopathology and WB, with the strongest association between WB and anxiety/depression15. Epigenetic differences in candidate genes related to major depressive disorder (MDD) have been reported in multiple studies16,17. Additionally, a DNA methylation EWAS of monozygotic twins discordant for adolescent depression18 found two reproducible differentially-methylated probes (DMPs) that were located within \textit{STK32C}, which encodes a serine/threonine kinase of unknown function.

Here we describe the first EWAS for well-being performed in a population-based sample from the Netherlands Twin Register (NTR). Our aim was to identify genomic locations where differences in DNA methylation in blood level are associated with differences in well-being.
Methods

Subjects and samples
The subjects in this EWAS participated in longitudinal survey studies conducted by the Netherlands Twin Register \(^{19,20}\) and in the NTR biobank project \(^{21}\). Peripheral blood samples were drawn from the NTR participants in the morning after an overnight fast, and for biomarkers studies and for DNA and RNA isolation (see \(^{20}\)). In 3264 peripheral blood samples from 3221 participants genome-wide methylation probes were assessed. After quality control (QC) of the methylation data, 3089 samples from 3057 participants were retained (for a detailed description of the QC procedures, see van Dongen 2015; this issue). For the present study, we included participants if the following information was available: Satisfaction with Life score, good quality methylation data and data on white blood cell counts leaving 2519 samples from 2456 subjects for the final analyses. The dataset included 606 complete MZ and 291 complete DZ pairs, 102 fathers of twins, 112 mothers of twins, 15 siblings and 2 spouses of twins.

All subjects provided written informed consent and study protocols were approved by the Central Ethics Committee on Research, involving Human Subjects of the VU University Medical Centre, Amsterdam, an Institutional Review Board certified by the US Office of Human research Protections (IRB-2991 under Federal wide Assurance-3703: IRB/institute codes, NTR 03-180).

Well-being
Well-being was assessed by a short inventory that measures satisfaction with life (SAT)\(^{20}\). Data on satisfaction with life were collected in multiple NTR surveys. For the current study, data from surveys 6 (2002), 8 (2009) and 10 (2013) were analyzed. The SAT scale consists of 5 items which have to be answered on a 7-point scale ranging from 1 = ‘strongly disagree’ to 7 = ‘strongly agree’. A typical question that is included in this questionnaire is “If I could live my life over, I would change almost nothing” (for all items see Table 1). Internal consistency of the scale was good with a Chronbach’s Alpha of 0.86 and test-retest scores in the range of 0.24 (over 16 years), to 0.54 (over 4 years) to 0.84 for a period of two weeks to 1 month\(^{22}\). Within this NTR sample the test-retest scores are 0.53 between survey 6 and 8 (7 year interval), 0.48 between survey 6 and 10 (11 year interval) and 0.63 between survey 8 and 10 (4 year interval) and the phenotypic correlation of satisfaction with life with an overall well-
being factor score is 0.97. For individuals who completed survey 6, 8 and 10, the WB score closest to the moment of blood draw was selected.

Table 1: Satisfaction with life scale

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAT item 1</td>
<td>In most ways my life is close to ideal</td>
</tr>
<tr>
<td>SAT item 2</td>
<td>The conditions of my life are excellent</td>
</tr>
<tr>
<td>SAT item 3</td>
<td>I am satisfied with my life</td>
</tr>
<tr>
<td>SAT item 4</td>
<td>So far I have gotten the most important things I want in life</td>
</tr>
<tr>
<td>SAT item 5</td>
<td>If I could live my life over, I would change almost nothing</td>
</tr>
</tbody>
</table>

Infinium HumanMethylation450 BeadChip data

DNA methylation was assessed with the Infinium HumanMethylation450 BeadChip Kit (Illumina, Inc.) 23. 500ng of genomic DNA from whole blood was treated by bisulfite using the ZymoResearch EZ DNA Methylation kit (Zymo Research Corp, Irvine, CA, USA) following the standard protocol for Illumina 450K micro-arrays, by the department of Molecular Epidemiology from the Leiden University Medical Center (LUMC), The Netherlands. Subsequent steps (i.e. sample hybridization, staining, scanning) were performed by the Erasmus Medical Center micro-array facility, Rotterdam, The Netherlands. Quality control and processing of the blood methylation dataset has been described in detail previously24. A number of sample-level and probe-level quality checks were performed. Sample-level QC was performed using MethylAid26. Probes were set to missing in a sample if they had an intensity value of exactly zero, or a detection P-value > 0.01, or a bead count < 3. After these steps, probes that failed based on the above criteria in > 5 % of the samples were excluded from all samples (only probes with a success rate >= 0.95 were retained). Probes were also excluded from all samples if they mapped to multiple locations in the genome27, or if they had a SNP within the CpG site (at the C or G position) irrespective of minor allele frequency in the Dutch population (Genome of the Netherlands Consortium 2014). Only autosomal methylation sites were analyzed in the EWAS. The methylation data were normalized with Functional Normalization28, and normalized intensity values were converted into beta (β)-values. The β-value represents the methylation level at a site, ranging from 0 to 1 and is calculated as:

\[\beta = \frac{M}{M+U+100} \]
where \(M \) = Methylated signal, \(U \) = Unmethylated signal, and 100 represents a correction term to control the \(\beta \)-value of probes with very low overall signal intensity. After QC and normalization, Principal component analysis was conducted on genome-wide methylation sites.

Covariates

White blood cell percentages were included as covariates in the EWAS to account for variation in cellular composition between whole blood samples. The following subtypes of white blood cells were counted in blood cells: neutrophils, lymphocytes, monocytes, eosinophils, and basophils\(^{20} \). Because of its strong correlation with neutrophil counts (\(r = -0.93 \)), lymphocyte counts were not included in the model, while basophil counts were not included because they showed little variation between subjects (many subjects having 0% of basophils in their blood). Inspection of the PCs that were computed on the genome-wide methylation data indicated that PC1 reflected, as expected, sex (\(r = 0.99 \)), PC 2 showed a strong correlation with lymphocyte percentage (\(r = -0.8 \)) and neutrophil percentage (\(r = 0.79 \)). Additionally, PC3 showed a modest correlation with age (\(r = -0.41 \)) and a weak correlation with white blood cell percentages (absolute \(r \sim 0.1 \)). However, it is possible that this PC is reflective of unmeasured white blood cell subtypes and was therefore included in the model. Because of their correlation with several lab procedures, such as sample plate and order of processing, PC4 and PC5 were included to account for technical variability (For a graphical representation of the included PC’s, see Supplemental figure S1).

Epigenome-wide Association analysis

Using generalized estimation equation (GEE) models, we tested whether DNA methylation was associated with WB for each methylation site, with DNA methylation \(\beta \)-value as outcome variable and the following predictors: WB score, sex, age at blood sampling, age squared, monocyte percentage, eosinophil percentage, neutrophil percentage, HM450k array row, and Principal Components (PCs) 3, 4 and 5 from the methylation data. Age squared was included as a covariate as several studies suggest a U-shaped relationship between WB and age, with the lowest point approximately in midlife\(^{29,30} \). GEE models were fitted with the R package gee, with the following specifications: Gaussian link function (for continuous data), 100 iterations, and the “exchangeable” option to account for the correlation structure within families and within persons.
FDR q-value was computed with the R package q-value with default settings. The genomic inflation factor (λ) was calculated with the default regression method from the R package GenABEL. In all analyses, an FDR q-value <0.05 was considered statistically significant. Additionally, a more stringent Bonferroni correction was applied by dividing 0.05 by the number of observations ($N = 411169$). Follow-up analyses, including a test for enrichment of genomic locations and gene ontologies, were performed based on the output from the EWAS.

Genomic Annotation

As described in detail by Slieker et al. (2013), methylation sites were mapped to genomic features and DNase I hypersensitive sites (DHS). These genomic features consist of five gene-centric regions: (1) intergenic regions (>10kb to -1.5 kb from the nearest transcription start site (TSS)), (2) proximal promoter (-1.5 kb to +500kb form the nearest TSS), (3) distal promoter (-10 kb to -1.5 kb from the nearest TSS), (4) gene body (+500bp to 3’ end of the gene) and (5) downstream region (3’end to +5 kb from 3’end). Additionally, CpG were mapped to CG island (CGIs) (CG content > 50% length > 200bp and observed/expected ratio of CpGs > 0.6), CGI shore (2kb region flanking CGI), CGI shelf (2kb region flanking CGI shore), or non-CGI regions. Locates were obtained from the UCSC genome browser. DHS locations, mapped by the ENCODE project were also downloaded from the UCSC genome browser.

Enrichment of genomic locations

To test whether specific genomic locations showed a stronger association between DNA methylation and WB, eight categories were tested for being enriched using the EWAS test statistics for all genome-wide methylation sites. The locations tested are: (1) gene body, (2) proximal promoter, (3) distal promoter, (4) downstream region, (5) CGI, (6) CGI shore, (7) CGI shelf, and (8) DHS. To account for differences in variability between methylation sites we also included the mean and standard deviation of DNA methylation level in the model as covariates. For a detailed description of the method used for this analysis, see also Van Dongen et al. (2015), published in this same special issue of TRHG.
Enrichment of the Gene Ontology terms

Methylation sites with a stronger association with WB were tested for enrichment of Gene Ontology (GO) terms. To do so, all methylation sites that were tested were ranked by EWAS p-value and the resulting ranked gene list was supplied to the online software tool GOrilla. GOrilla performs GO enrichment analyses based on gene rank, and therefore no p-value cut-off for defining the input list of genes is required. The background in this analysis consists of all genes for which methylation sites were analysed in the EWAS. In all analyses, we accounted for multiple testing by controlling the false discovery rate (FDR). An FDR q-value < 0.05 was considered statistically significant.
Results

Table 2: characteristics of the well-being data

<table>
<thead>
<tr>
<th>Data</th>
<th>N</th>
<th>Mean</th>
<th>Median</th>
<th>Sd</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>Median</th>
<th>Sd</th>
<th>Mean</th>
<th>Median</th>
<th>Sd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survey 6</td>
<td>10087</td>
<td>26.62</td>
<td>28</td>
<td>5.26</td>
<td>5</td>
<td>35</td>
<td>39.44</td>
<td>34.00</td>
<td>14.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survey 8</td>
<td>19746</td>
<td>27.22</td>
<td>29</td>
<td>5.32</td>
<td>5</td>
<td>35</td>
<td>40.41</td>
<td>39.94</td>
<td>16.32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survey 10</td>
<td>11604</td>
<td>26.80</td>
<td>28</td>
<td>5.24</td>
<td>5</td>
<td>35</td>
<td>44.42</td>
<td>47.00</td>
<td>17.49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EWAS^</td>
<td>2519</td>
<td>27.02</td>
<td>29</td>
<td>5.46</td>
<td>5</td>
<td>35</td>
<td>38.30</td>
<td>35.33</td>
<td>13.53</td>
<td>36.79</td>
<td>33.10</td>
<td>13.01</td>
</tr>
</tbody>
</table>

^Includes individuals with 450k methylation data and data on white blood cell counts.

Characteristics of the study sample

Data on well-being were available for 1747 individuals who filled out survey 6, 2056 individuals who filled out survey 8 and 1059 individuals who filled out survey 10. The EWAS was performed on 2519 blood samples from 2456 subjects (mean age at blood sampling = 36.8 years, SD = 13, % male = 31.1), for which the well-being score closest to the moment of blood draw was selected: For 1799 samples, WB was assessed after blood draw (mean 3.1 years) and for 720 samples, WB was assessed before blood drawn (mean 2.5 years). Table 2 summarizes the characteristics of the WB data and EWAS study sample. The average WB score of the EWAS study sample was comparable to the averages of the different survey waves (mean EWAS study = 27.0, mean survey 6 = 26.8, mean survey 8 = 27.5, mean survey 10 = 27.0), and was also comparable to the mean of the overall NTR survey database satisfaction with life score (26.9, n= 38,740) (For a distribution of the well-being data, see Supplementary figure S1).

EWAS

After QC, we tested 411,169 autosomal sites in the genome for their association between DNA methylation and WB score, while correcting for white blood cells counts, age at blood sampling, age squared, sex, array row and 3 PCs from the methylation data. Figure 1 shows the Quantile-Quantile (QQ) plot. The genomic inflation factor (\(\lambda \)) was 1.227.
Figure 1 Quantile-Quantile (QQ) plot from the EWAS of well-being. The observed p-values (y-axis) are plotted against the p-values expected under the null hypothesis (x-axis). The straight diagonal line denotes the pattern that is expected under the null hypothesis, with 95% confidence intervals indicated by the shaded grey area.

Figure 2 Manhattan plot showing the P-values for the association between well-being and DNA methylation level at genome-wide autosomal sites. The horizontal grey line represents the bonferroni-adjusted p-value threshold. The blue horizontal line represents the FDR q-value <0.05.
Two of the methylation sites reached the genome wide significant threshold of $p = 1.22 \times 10^{-7}$ when Bonferroni corrected and six of the methylation sites reached genome significance when using a threshold of FDR q-value < 0.05 ($p = 5.23 \times 10^{-7}$) (figure 2). The highest ranking methylation site was cg10845147 ($p = 1.51 \times 10^{-8}$), located on chromosome 5: 172149624, which was negatively associated with WB (figure 3A). The nearest gene associated with this site is the DKFZP761M1511 gene (synonym is NEURLIB). This gene spans 50274 base pairs (bps) of chromosome 5 and ranges from 172641266 to 172691540. The other site reaching Bonferroni genome-wide significance is cg01940273 ($p = 2.34 \times 10^{-8}$), located on chromosome 2:233284934, which showed a positive relationship between DNA methylation and WB (figure 3B). The gene closest located to this site is the ALPPL2 gene, which ranges from chromosome 2:232406843 to 2: 232410714 (3871 bps) (Supplementary Figure S2). The four additional CpG sites that were genome-wide significant using FDR q-value < 0.05 are cg03329539 ($p = 2.76 \times 10^{-7}$, chromosome 2), cg09716613 ($p = 3.23 \times 10^{-7}$, chromosome 13), cg04387347 ($p = 3.95 \times 10^{-7}$, chromosome 16), and cg02290168 ($p = 5.23 \times 10^{-7}$, chromosome 1). The significant CpG sites located on chromosome 1 and 2 were positively associated with WB, whereas the CpG sites located on chromosome 13 and 16 were negative associated with WB. Characteristics of genome wide significant methylation sites as well as the location of the nearest genes are provided in table 3.

Table 3: Top-ranking CpG sites from the EWAS of well-being

<table>
<thead>
<tr>
<th>CpG site</th>
<th>Chr</th>
<th>Position (hg19)</th>
<th>(Nearest) Gene name</th>
<th>Distance gene from each site (bps)</th>
<th>Mean Methylation level A</th>
<th>SD Methylation level A</th>
<th>Estimate B</th>
<th>Robust SE C</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>cg10845147</td>
<td>5</td>
<td>172149624</td>
<td>DKFZP761M1511</td>
<td>491642</td>
<td>0.69</td>
<td>0.04</td>
<td>-0.00072</td>
<td>1.27 E-04</td>
<td>1.51 E-08</td>
</tr>
<tr>
<td>cg01940273</td>
<td>2</td>
<td>233284934</td>
<td>ALPPL2</td>
<td>874220</td>
<td>0.66</td>
<td>0.05</td>
<td>0.00101</td>
<td>1.80 E-04</td>
<td>2.33 E-08</td>
</tr>
<tr>
<td>cg03329539</td>
<td>2</td>
<td>233283329</td>
<td>ALPPL2</td>
<td>874220</td>
<td>0.45</td>
<td>0.05</td>
<td>0.00065</td>
<td>1.27 E-04</td>
<td>2.76 E-07</td>
</tr>
<tr>
<td>cg09716613</td>
<td>13</td>
<td>33000534</td>
<td>CG015</td>
<td>572356</td>
<td>0.27</td>
<td>0.04</td>
<td>-0.00052</td>
<td>1.02 E-04</td>
<td>3.23 E-07</td>
</tr>
<tr>
<td>cg04387347</td>
<td>16</td>
<td>88537187</td>
<td>ZFPM1</td>
<td>171</td>
<td>0.22</td>
<td>0.05</td>
<td>-0.00075</td>
<td>1.48 E-04</td>
<td>3.94 E-07</td>
</tr>
<tr>
<td>cg02290168</td>
<td>1</td>
<td>151255971</td>
<td>ZNF687</td>
<td>25647</td>
<td>0.12</td>
<td>0.02</td>
<td>0.00030</td>
<td>5.98 E-05</td>
<td>5.23 E-07</td>
</tr>
</tbody>
</table>

Top hits from the EWAS for the association between methylation and well-being

A Mean and standard deviation of the methylation proportion (β-value) in the entire 450K cohort

B Estimate from the regression of methylation proportion on well-being score.

C Robust standard error of the estimate (accounting for the clustering of observations within families)
Figure 3. Scatterplots for the two top CpGs based on the entire NTR study sample. Well-being scores are plotted against methylation level. [A] shows the relationship between WB and methylation level of CpG site cg10845147. [B] shows the relationship between WB and methylation level of CpG site cg01940273.

Next, we looked at the association with WB for all CpGs in relatively close proximity (within 10,000 bp = 10kb) of each significant CpG site (for an overview of all CpG sites located within this window and their p-value and regression coefficient, see Supplementary table S1). For the highest ranked CpG site (cg10845147, chromosome 5), CpG site cg07853407 was located closest at 2563 bps. This side showed no association with WB (p = 8.17 * 10^{-1}, ß = 1.22 * 10^{-5}). The two genome-wide significant CpG site on chromosome 2 were located within 1606 bps from each other. Within this window, five additional probes were measured. All of these probes showed a change in methylation in the same direction of association with WB (see Supplementary table S1). On chromosome 13, CpG site (cg12054869) was located closest to the significant CpG site (cg09716613) at 716 bps, while for chromosome 16, the CpG site located most closely to the leading CpG site (cg04387347) was located 73 bps away. Finally, the CpG site located closest to the leading CpG site at chromosome 1 was cg01062937 at 668 bps. For each of these probes, the regression coefficient for WB indicated a similar direction of effect as the significant probe in that specific region.

Enrichment of genomic locations

Table 4 shows the results of the regression of the EWAS test statistics on annotation categories across all genome-wide sites. Enrichment of signal was seen in the gene body (p =
1.34 \times 10^{-5}), proximal promoters (p = 6.01 \times 10^{-18}), CGI shores (p = 9.26 \times 10^{-10}) and DHS (p = 3.68 \times 10^{-14}). CpG sites with a lower mean methylation level, showed, on average, a stronger association with WB (p = 9.13 \times 10^{-15}). To account for the fact that the errors in this regression are not normally distributed, jackknife standard errors were computed, but this analysis led to the same conclusions as the normal linear regression standard errors (see supplementary table S2). These findings indicate that methylation sites associated with well-being are enriched in gene bodies promoter areas and other regions of regulatory active DNA.

Table 4: Results from the regression of EWAS test statistics on genomic annotation categories.

<table>
<thead>
<tr>
<th>Regression parameter</th>
<th>Estimate</th>
<th>Std. Error</th>
<th>t value</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1.110</td>
<td>0.012</td>
<td>85.59</td>
<td>0</td>
</tr>
<tr>
<td>Gene Body</td>
<td>0.035</td>
<td>0.008</td>
<td>4.35</td>
<td>1.34 \times 10^{-5}</td>
</tr>
<tr>
<td>Proximal Promotor</td>
<td>0.077</td>
<td>0.009</td>
<td>8.63</td>
<td>6.01 \times 10^{-18}</td>
</tr>
<tr>
<td>Distal Promotor</td>
<td>0.009</td>
<td>0.014</td>
<td>0.60</td>
<td>0.54</td>
</tr>
<tr>
<td>Downstream Region</td>
<td>0.022</td>
<td>0.021</td>
<td>1.05</td>
<td>0.29</td>
</tr>
<tr>
<td>DNase I hypersensitive site (DHS)</td>
<td>0.048</td>
<td>0.006</td>
<td>7.57</td>
<td>3.68 \times 10^{-14}</td>
</tr>
<tr>
<td>CGI Shore</td>
<td>0.048</td>
<td>0.008</td>
<td>6.12</td>
<td>9.26 \times 10^{-10}</td>
</tr>
<tr>
<td>CGI Shelf</td>
<td>0.002</td>
<td>0.010</td>
<td>0.23</td>
<td>0.82</td>
</tr>
<tr>
<td>CpG Island</td>
<td>0.001</td>
<td>0.008</td>
<td>0.06</td>
<td>0.94</td>
</tr>
<tr>
<td>Mean methylation level(^a)</td>
<td>-0.086</td>
<td>0.011</td>
<td>-7.75</td>
<td>9.13 \times 10^{-15}</td>
</tr>
<tr>
<td>SD methylation level(^b)</td>
<td>3.57</td>
<td>0.182</td>
<td>19.64</td>
<td>6.63 \times 10^{-86}</td>
</tr>
</tbody>
</table>

\(^a\)Mean methylation level of the site.

\(^b\)Standard deviation of the methylation level.

Results based on jackknife are presented in Supplementary Table 2.

Gene ontology analysis

Gene ontology enrichment analysis based on EWAS p-value rank identified a large number of GO terms that were significantly enriched among higher ranked methylation sites. The strongest enriched GO term were positive regulation of biological processes (GO:0048518, p = 5.38 \times 10^{-21}), positive regulation of cellular processes (GO:0048522, p = 1.34 \times 10^{-16}) and developmental processes (GO:0032502, p = 2.38 \times 10^{-16}). Also, many brain and central nervous system processes, such as regulation of neurogenesis (GO:0050767, p= 3.72 \times 10^{-12}), neuron projector guidance (GO:0097485, p = 5.77 \times 10^{-10}), neurotrophic signaling pathway (GO:0038179, p = 2.53 \times 10^{-8}) as well as regulation of neuron differentiation (GO:0045664, p = 1.81 \times 10^{-8}) were significant enriched among higher ranking methylations sites (see supplementary table S3 for a complete list of significant GO terms).
Discussion

By performing an epigenome-wide methylation analysis, the aim of the present study was to identify genomic locations at which differences in DNA methylation level are associated with differences in well-being in a population-based sample of adults. Six genome-wide significant hits were identified after correction for multiple testing (FDR q-value < 0.05), while two hits remained significant after applying the stricter Bonferroni correction. Annotation analysis showed that enrichment of signal was seen in the gene body, proximal promoters, CpG shores and DNase I hypersensitive sites. Gene ontology analysis, which tests categories of genes instead of single methylation sites, revealed that genes involved in regulation of cellular processes and central nervous system processes were enriched among higher-ranking genes from our EWAS. Here we describe the six CpGs that were genome-wide significant using an FDR q-value < 0.05. The gene located closest (at ~500kb distance) to our top-ranked CpG site cg10845147 (genomic location: chr5:172149624) is DKKFZP761M1511 (synonym is NEURLIB). NEURLIB (Neuralized E3 Ubiquitin Protein Ligase 1B) is a ligase that is involved in the regulation of the Notch pathway by influencing the stability and activity of several Notch ligands. Notch pathways acts as a regulator of cell survival and cell proliferation and are suggested to play a role in human mammary development. ENCODE data on Transcription Factor Binding site (TFBS) and DNase hypersensitivity sites (DHS) were accessed through the UCSC genome browser and showed that our top CpG, cg10845147 does not overlap with a TFBS but is located within a DHS peak in several cell types, suggesting that it is located within a regulatory region (ENCODE TFBS ChIP-seq data Mar 2012 Freeze).

The second and third ranked CpG site (cg01940273, location: chr2:233,284,934 and cg03329539, location: chr:233,283,329) are approximately 875kb located from the nearest gene called alkaline phosphatase, placental-like 2 (ALLPL2). Alkaline phosphatases (ALPs) are responsible for the dephosphorylation of various molecules including proteins, nucleotides or alkaloids. Circulating ALP concentration is associated with premature birth and low birth weight. ALLP2 enzyme levels are increased up to 10-fold in 80% of cigarette smokers and elevated in patients with a number of cancers. Both CpGs found in our study have been associated with smoking in several studies. In those studies, it was shown that methylation at multiple CpGs, including our two CpGs was decreased among heavy smokers, but slowly increased among former smokers. Because of their association with smoking, we tested whether adding smoking as covariate would alter the significance level of the two...
CpGs. For both sites, the p-values did not reach the genome-wide significance threshold when adjusting for smoking (cg01940273, p = 1.21 * 10^{-5} and cg03329539, p = 7.89 * 10^{-5}). Although not significant anymore, the association with WB is reduced rather than fully attenuated when correcting for smoking. The regression coefficient remained in the same direction as before, suggesting a positive relationship between WB and an increase in methylation. A growing field of research has been focusing on the effects of smoking cessation on well-being. The general findings of these studies are all pointing in the same direction: smoking cessation improves well-being. For instance, a study by Wilson et al. (1999) found that light, moderate, and heavy smokers scored significantly lower than never-smokers as well as ex-smokers on the health-related quality-of-life scale (HR-QoL), with the strongest difference between heavy smokers and never-smokers. A similar finding was found by (Piper et al. (2012) and Shahab & West (2012), who found that successful quitters reported improved subjective well-being, in contrast to continuing smokers, after one to three years. Finally, the genes, located nearby the other significant CpG sites, were CGO18/ N4BP2L1 (chromosome 13), ZFPM1 (chromosome 16) and ZNF687 (chromosome 1) and have not been previously linked to well-being or related phenotypes.

Additionally, we looked up the top 3 probes associated with depression as reported by Dempster et al. (2014), and the genes located most closely to these probes (DPYSL4, STK32C, KIF13B, DUSP4, PQLC3 and KCNF1) to investigate whether these genes are also associated with WB. The six genes were located in close proximity to 341 probes in our dataset, but none of these probes reach genome wide significance with p-values ranging from p = 0.001 to p = 0.99. Also, alterations in DNA methylation of the BDNF pathway have been associated with depression. However, the 80 probes lying in close proximity in our dataset did not show an association with WB with p-values ranging from 0.003 to 0.99 (for a complete overview see Supplementary Table S4).

A limitation of this study is that we did not have access to a validation data set. Therefore, future studies are warranted, especially for follow-up of the CpG sites that reached genome-wide significance. Additionally, we limited this study to WB and did not consider other aspects of behaviour such as different personality traits or psychiatric symptoms. Since WB is strongly associated with a wide-range of mental health diseases like depression or neuroticism, DNA methylation levels associated with WB as measured in this study may be informative for associated phenotypes. The ideal EWAS approach would therefore encompass WB and related phenotypes (e.g. different aspects of personality and depression).
Such an approach would give insight into which methylation sites are common for WB and its related phenotypes and which sites are specific for WB.

In conclusion, this study provides the first genome-wide methylation association study of well-being. We found six genome-wide significant DNA methylation sites of which two remained significant after the more stringent Bonferroni correction. Once genetic variants have been identified for well-being, future studies that integrate both genetic and – epigenetic information are warranted to investigate the intriguing interplay between genetic and environmental mechanisms in a complex trait like well-being.
References

Supplementary Information

Supplementary Figure 1: Heatmap correlations between the PC’s and the covariates
Supplementary Figure 2: Distribution of wellbeing scores used in this EWAS