What are the most powerful predictors of charitable giving to victims of typhoon Haiyan: Prosocial traits, socio-demographic variables, or eye cues?

Zoi Manesi, Paul A.M. Van Lange, Niels J. Van Doesum, Thomas V. Pollet

1. Introduction

Major natural disasters often prompt charities to start rallying for extra donations. However, little is known about which variables predict disaster donations most strongly. Here we focused on donations to victims of typhoon Haiyan in the Philippines (2013). A multifaceted approach combined three potential predictors: (a) prosocial traits (social value orientation and social mindfulness, or SVO and SoMi), (b) socio-demographic variables, and (c) minimal social cues (eye images). Participants (N = 643) completed an online survey in which they decided whether or not to spend time on a fundraising task to support the typhoon victims. Results of this exploratory study showed that SVO and SoMi, followed by educational attainment and political ideology, were the most prominent predictors of the decision to donate. Furthermore, SVO, SoMi, educational attainment, and religiosity were related to the donated amount. In disaster relief appeals, prosocial personality (and certain socio-demographic factors) might be a more important predictor of helping behavior than exposure to eye images.

1.1. SVO and SoMi

One line of research on charitable giving that could explain disaster donations (specifically) has traditionally focused on social value orientation (SVO), a dispositional factor reflecting the degree and direction of care about others’ outcomes in relation to one’s own in situations of interdependence (Messick & McClintock, 1968; Van Lange, 2000). SVO predicts various forms of giving, including donations to noble causes, volunteering, and postmortem organ donation (Bekkers, 2006; McClintock & Allison, 1989; Van Lange, Bekkers, Schuyt, & Van Vugt, 2007). Typically, heightened SVO levels are positively associated with helping behavior, due to an increased sense of social responsibility and concern for fairness and equality (De Cremer & Van Lange, 2001; Stouten, De Cremer, & Van Dijk, 2005). Given this evidence, individual differences in SVO should predict donations to disaster victims.

A recently introduced construct that has strong associations with
SVO is social mindfulness (SoMi), which can be defined as seeing and considering the needs and wishes of others before making a decision (Van Doesum, Van Lange, & Van Lange, 2013; Van Lange & Van Doesum, 2015). SoMi signals prosocial intentions and is positively associated with self-reported empathy and perspective-taking. Here we examine for the first time the ability of SoMi to predict a specific type of helping, namely donations to disaster victims.

1.2. Socio-demographic variables

A second line of research on charitable giving, which could potentially explain disaster donations (specifically), has focused on various socio-demographic variables, including educational attainment, age, political ideology, religion, and gender (Bekkers & Wiepking, 2011b; Wiepking & Bekkers, 2012; Zagelka & James, 2015). Typically, individuals with higher educational attainment and at an older age tend to show greater charitable giving than those with lower educational attainment and at a younger age (Wiepking & Maas, 2009). According to Wiepking and Maas (2009), a likely explanation for the “education-giving” link is that higher educational attainment facilitates understanding of others’ needs and, thus, greater willingness to help. Furthermore, higher educational attainment increases access to financial capital, which in turn provides the resources to donate. With regard to age, it has been proposed that older people donate more because of lifecycle and cohort effects (Bekkers & Wiepking, 2011b).

With regard to political ideology, several studies suggest that liberal political attitudes tend to enhance charitable giving (Farwell & Weiner, 2000; Osborne & Weiner, 2015, but see Brooks, 2007). This can be attributed to the link between liberal political attitudes, sympathy for people in need, and adherence to prosocial values (Farwell & Weiner, 2000; Van Lange, Bekkers, Chirumbolo, & Leone, 2012).

The link between gender or religion and charitable giving may be strong but is often contingent on other variables (e.g., the measure of giving or the type of charitable cause or organization). For instance, women appear more likely to give than men, but men give higher amounts on average than women (Wiepking & Bekkers, 2012). Furthermore, being religiously affiliated can increase charitable giving and prosociality (Brooks, 2007). However, such charitable behaviors are often parochial as they can be directed toward members of a religious ingroup (Galen, 2012). Given this evidence, we sought to explore the potential role of each of the aforementioned socio-demographic variables and the interplay between factors in predicting donations to disaster victims.

1.3. Eye images

A third line of research on charitable giving has drawn attention to cues of social surveillance: For instance, the mere presence of an image of watching eyes is shown to be an effective intervention to enhance charitable giving (e.g., Fathi, Bateson, & Nettle, 2014; but see Northover, Pedersen, Cohen, & Andrews, 2017). Eye images were specifically selected here because, in contrast to other social cues, they can serve as an effective and cost-effective intervention that has attracted considerable attention from policy-makers and NGO’s in recent years.

One explanation for the effect of eye images on charitable giving is that such minimal cues to being watched can trigger a feeling of social scrutiny, which could potentially evoke concerns about one’s own reputation (i.e., what others think of me; Oda, Niwa, Honma, & Hiraishi, 2011). Such reputational concerns, in turn, elicit a strong inclination to scrutiny, which could potentially evoke concerns about one’s own reputation. Considering that the emotional content of aid appeals can affect charitable giving (Small & Verrochi, 2009), we sought to examine the effects of eye images and eyes’ emotion (but also gender) on disaster donations. More broadly, it needs to be noted that prosocial traits, socio-demographic variables and eye cues have also been associated with donations of time and effort (e.g., volunteering, see Bekkers, 2005, 2010). In summary, our primary purpose was to carry out an exploratory study of disaster donations. To this end, we focused on responses to a call for urgent help to victims of typhoon Haiyan. We assessed the relative impact of three types of variables on donations in an online setting: (a) prosocial traits (SVO and SoMi), (b) socio-demographic variables (educational attainment, age, gender, political ideology, and religious beliefs), and (c) minimal social cues (eye images). Using a multifaceted approach, we aimed to determine the relative importance of each variable in predicting the decision to donate (yes/no) and the amount of donation.

2. Method

2.1. Participants

The study sample comprised 643 US participants (68.1% women, $M_{age} = 29.79$, $SD_{age} = 9.96$), recruited between December 10th and 16th, 2013, from the online platform CrowdFlower. The majority indicated that they were Caucasian (68.9%), followed by Asian, African-American, Hispanic, Mixed, and Native American (10.1%, 7.5%, 6.7%, 2%, and 1.7% respectively). A small minority (3.1%) preferred not to report ethnicity. The university’s ethics committee approved the study and participants provided informed consent before participating.

2.2. Procedure

Participants completed the SVO and SoMi measures, and the compulsory part of the typing task (see typing task, below). Next, they read a text about the impact of typhoon Haiyan in the Philippines and answered some comprehension questions. Afterwards, they indicated if they wished to raise financial support for the typhoon victims by volunteering their time to complete extra typing task trials (voluntary part). Money raised through the typing task was donated to the typhoon appeal. While reading the text and deciding whether or not to donate, participants were exposed to a typhoon appeal logo with a picture of eyes or controls (Appendix A). At the end, participants answered certain socio-demographic questions, and received $0.50 for their participation.

2.3. Materials and measures

2.3.1. SVO

We administered the six primary items of the SVO Slider Measure (Murphy, Ackermann, & Handgraaf, 2011). For each item, participants decided how to allocate a monetary amount between themselves and an anonymous other. To compute participants’ SVO index, we calculated mean allocations for self and other for the six items. The inverse tangent of the ratio of those two means produced participants’ SVO index (SVO angle). According to Murphy et al. (2011), individuals with higher SVO levels (i.e., prosocials) have an angle equal to or greater than 22.45°, whereas individuals with lower SVO levels (i.e., proselfs) have an angle less than 22.45°.

2.3.2. SoMi

Participants completed the SoMi paradigm (Van Doesum et al., 2013). In each of 24 trials, participants were presented with a dyadic situation (i.e., the participant and an anonymous other) in which they were asked to select one of the products displayed on the screen. The ratio of presented products per trial is one unique versus multiple non-unique products (e.g., one blue pen versus multiple black pens). The paradigm consists of 12 experimental trials (one unique versus multiple non-unique products) and 12 control trials (multiple non-unique products), presented in randomized order. The SoMi score was based on participants’ tendency to make other-regarding choices in the
experimental trials by selecting one of the non-unique products and, thus, leaving a larger variety of product options for the other. Greater proportion of socially mindful choices (1-0) indicated higher levels of SoMi ($M = 0.58, SD = 0.25, Mdn = 0.58$).

2.3.3. Typing task
This simple, yet time-consuming, task served as the measure of charitable giving (see also Manesi, Van Lange, & Pollet, 2016). The task included two parts: (a) a compulsory part, which served to acquaint participants with the task and included five typing trials (all participants were required to complete this part, but completion did not contribute to charity), and (b) a voluntary part, which was optional (only participants who chose to donate completed typing trials). Inclination to help was measured by choosing to donate by completing task trials of the voluntary part (yes/no decision), and by the amount donated (the number of task trials completed from those who chose to donate). In the voluntary part, every extra task trial (max. 30) that the participant completed helped raise $0.05 for charity (e.g., five extra task trials contributed $0.25, see Appendix B). In this task, participants typed strings of characters with the use of the keyboard. On each task trial, a string of 20 random letters was displayed in the center of the computer screen and participants were asked to type those characters without errors (for an example task trial, see Appendix B).

2.3.4. Eye images
We used 24 different eye images, of which half depicted male eyes and the other half depicted female eyes. Each pair of eyes displayed one of four emotions: joy, anger, sadness, neutral/no emotion. To create the images, we cropped eye regions (279 x 93 mm in size) from 24 standardized facial photographs of three Caucasian adult men and three Caucasian adult women (frontal view). For consistency, the images were taken of the same models from the Radboud Faces Database (RaFD, Langner et al., 2010). The eye image was incorporated into a logo of the disaster relief appeal (Appendix A). For the control group, we used a blank stimulus or a typhoon picture. Each participant was presented images of four emotions: joy, anger, sadness, neutral/no emotion, other. The following options: joy, anger, sadness, neutral/no emotion, other. The default value of the slider was 5. This was followed by a question on religious affiliation: “What is your religious affiliation?” The remaining 26.9% of participants reported having no religion or being agnostic, and 4.8% preferred not to answer.

2.4. Statistical analyses
We chose a bottom-up approach: machine learning, specifically (an extension of) Random Forests. This technique generates many classification/regression trees (Hastie, Tibshirani, & Friedman, 2009; Hothorn, Hornik, Strobl, & Zeileis, 2010; Strobl, Malley, & Tutz, 2009). We used 10,000 trees to discover patterns in data and we focused on algorithms implemented in R (R Development Core Team, 2008), and particularly ctree (Hothorn et al., 2010). We chose a bottom-up approach: machine learning, specifically (an extension of) Random Forests. This technique generates many classification/regression trees (Hastie, Tibshirani, & Friedman, 2009; Hothorn, Hornik, Strobl, & Zeileis, 2010; Strobl, Malley, & Tutz, 2009). We used 10,000 trees to discover patterns in data and we focused on algorithms implemented in R (R Development Core Team, 2008), and particularly ctree (Hothorn et al., 2010; Strobl et al., 2009). The algorithm can handle correlated data, interactions between variables, and non-linear patterns in the data, and will implement multiple splits along the same variable. It also allows the grouping of categorical predictors, does not overfit, and corrects for multiple testing. This is especially valuable since our study was exploratory and no specific hypotheses were set forth.

These 10,000 trees are generated via the ctree algorithm and are nested in a random forest (here cforest), which can determine variable importance (Strobl et al., 2009). Variable importance informs us which variables have little to no predictive ability and which ones do. It is based on the premise that permuting (or shuffling) a predictor variable, which is “genuinely” predictive, should lead to substantially worse predictions (Janitza, Strobl, & Boulesteix, 2013; Strobl et al., 2009).

All analyses were run in R 3.1.3 (R Development Core Team, 2008) and the party package, which is a computational toolbox for recursive partitioning (Hothorn et al., 2010). Extensive information on this data analysis method and the advantages of this approach is provided as electronic Supplementary material (ESM 1). Data and R code are available as ESM 2 and 3, respectively.

3. Results
3.1. Decision to donate (yes/no)

The percentage of correctly classified cases was 78.38%. One hundred eighty-eight participants decided to donate. The random forest analysis showed that four variables were largely predictive of the decision to donate: SVO, SoMi, liberal/conservative ideology, and educational attainment (Fig. 1). To further understand the underlying pattern, we examined some sample trees. With regard to SVO, the tree algorithm split the variable at an angle of 32.93°, with 347
participants being categorized as proselfs and 296 participants being categorized as prosocials. Note that SVO split at a different angle than the (theoretical) angle proposed by Murphy et al. (2011), which is 22.45°. Results show that prosocials (> 32.939° angle) were significantly more likely to donate to disaster victims as compared to proselfs (≤ 32.939° angle; p = .001, for a sample tree, see Fig. 2). Furthermore, participants scoring higher on SoMi (as compared to those scoring lower) were more likely to donate (Table 1). Also, participants who tended to identify themselves as liberal (as compared to those being more conservative) and who had higher (as compared to lower) levels of educational attainment were more likely to donate. Eye images formed the second to least predictive variable (Fig. 1). Table 1 presents intercorrelations for the primary variables of interest regarding donating (yes/no decision).

3.2. Amount donated for those who donate

When analyzing only the data of individuals who donated, cforest revealed that SVO, SoMi, educational attainment, and religiosity were important for predicting the donated amount (Fig. 3). SVO, SoMi, and educational attainment had positive associations with the donated amount (based on correlations). Furthermore, correlational analyses showed that religiosity was negatively associated with the donated amount. However, while these variables helped in predicting the amounts of donations in the forest, sample individual trees showed no statistically significant results. No other variables were of substantial and consistent importance in predicting the amount donated. Table 2 presents intercorrelations for the primary variables of interest regarding the amount donated.

4. Discussion

Given the complex nature of disaster donations, the present study is one of the first attempts to pit different powerful predictors against one other. This extends prior research, which has primarily focused on contextual and unilateral explanations (e.g., Zagefka & James, 2015), and helps develop effective appeals for sensitizing the public to donate. Examining donations to victims of typhoon Haiyan, data from 643 participants showed that SVO and SoMi, followed by educational attainment and liberal-conservative ideology, were the most prominent predictors of the decision to donate. Furthermore, correlational analyses showed that SVO, SoMi and educational attainment were positively associated whereas religiosity was negatively associated with the donated amounts (for participants who decided to donate). No interactions were observed in the sample trees.

An interesting finding is that SVO proved to be an important predictor of charitable giving in a large-scale context, involving helping of large communities of unknown others far away. The context is important because SVO is measured in a hypothetical decision-making context involving a dyad. Donating to victims far away is not dyadic, and one could assume that such helping is strongly influenced by feelings of empathy and perceived urgency – features that are not included in the measurement of SVO. As such, the present research provides evidence for the ecological validity of SVO in domains that are large scale, empathic, and characterized by urgency.

Perhaps the most novel finding of the present research is that SoMi was a relatively important predictor of disaster donations – in terms of predictive power. This finding hints at the possibility that SoMi can represent stable individual differences in minding others’ control over their situational outcomes. Furthermore, this finding suggests that the SoMi paradigm may have the potential to complement and extend
existing game-theoretic methods that predict real-life giving and other-regarding behavior, such as SVO (McClintock & Allison, 1989; Van Lange et al., 2007).

With regard to socio-demographic factors, in line with numerous studies of charitable giving (e.g., Wiepking & Maas, 2009), educational attainment was an important predictor of disaster donations. Extending this past research, the present study shows that higher educational attainment can lead to greater responsiveness to emergency relief appeals. Furthermore, individuals who gravitated toward liberal values (instead of conservative ones) tended to show greater donation likelihood. This result is consistent with past work showing that liberal political attitudes are associated with heightened sympathy and willingness to help people in need (Van Lange et al., 2012).

Interestingly, we found a negative relationship between religiosity and the decision to donate (Van Lange et al., 2007). Fig. 2. A sample decision tree for the decision to donate (yes/no decision). The algorithm separates based on SVO ($p = .001$), with prosocials ($> 32.939^\circ$ angle) being significantly more likely to donate than proselfs ($\leq 32.939^\circ$ angle).

Table 1
Correlation matrix for study variables (decision to donate).

<table>
<thead>
<tr>
<th>Variable</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision to donate (yes/no)</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SoMi</td>
<td>0.095</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVO</td>
<td>0.162***</td>
<td>0.190***</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Religiosity</td>
<td>0.009</td>
<td>−0.017</td>
<td>0.032</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Political left/right</td>
<td>−0.091</td>
<td>0.026</td>
<td>−0.094</td>
<td>0.375***</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Political liberal/conservative</td>
<td>−0.081</td>
<td>0.010</td>
<td>−0.059</td>
<td>0.402***</td>
<td>0.566***</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>0.065</td>
<td>0.047</td>
<td>0.026</td>
<td>0.177***</td>
<td>0.126***</td>
<td>0.155***</td>
<td>–</td>
</tr>
</tbody>
</table>

Note. $N = 626$. Decision to donate is dummy-coded (0 = no, 1 = yes). We report Pearson’s correlation coefficients.

* $p < .05$.

*** $p < .001$.

5
and donated amount in our correlational analyses. This may be due to
the nature of the charitable cause: Donating to support the victims of
typhoon Haiyan is a form of outgroup help. Religious individuals often
show heightened charitable behaviors toward ingroup others, but less
so toward outgroup others (Galen, 2012). Future studies could explore
the relation between religiosity and disaster donations to (religious)
ingroups versus (religious) outgroups.

The finding that neither an image of watching eyes nor social in-
formation conveyed by those eyes substantially predicted disaster do-
ations adds to the growing debate on the eye-images effect (Northover
et al., 2017). Certain methodological reasons may have accounted for
the null result. For instance, the exposure time to eye images may have
been too long, and this may have resulted in habituation to the stimuli
(Sparks & Barclay, 2013). Nevertheless, our results also suggest that eye
images are relatively less powerful than prosocial traits in predicting
proactive helping in an emergency situation, like a disaster relief ap-
peal.

Certain limitations of this research need to be acknowledged. First,
results are likely to apply to international disaster aid only, and cannot
be generalized to other types of charities (e.g., domestic aid relief).
Second, our measure of charitable giving involves constraints that
follow the specifics of the task itself. For instance, certain participants
may opt-out of such types of repetitive, cognitive tasks (due to lack of
interest). Future studies could focus on different types of disaster relief
and include different types of tasks (e.g., tasks requiring physical e-
f fort or actual donations) and additional predictors (e.g., socioeconomic
status).

5. Conclusions

The contribution of our findings to knowledge is twofold. First, in a
crisis situation like a natural disaster, individuals who donate tend to be
those who have prosocial personality tendencies, liberal ideology,
higher education, and lower religiosity. Second, such emergency si-
tuations may be exactly the kind of situations in which minimal cues to
being watched may not be crucial, as the urgency of the crisis may draw
all the attention. As such, it is important to realize that in these situa-
tions, prosocial factors really matter and predict who gives and who
does not.

Declaration of interests

The authors declare no conflict of interest.
Acknowledgments

This project was made possible through the support of a grant from the John Templeton Foundation (Grant ID: 43919) awarded to Paul Van Lange and Thomas Pollet. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation. Thomas Pollet is supported by the Netherlands Institute for Advanced Study in the Humanities and Social Sciences.

Appendix A

(a) Example eye-logo for the typhoon appeal (with sad female eyes)

(b) Example eye-logo for the typhoon appeal (with happy male eyes)

(c) Example control-logo for the typhoon appeal

Appendix B

(a) Example typing task trial

Please type the letters that you see below:

knfscgpmxtojbqyfjov

(b) Example feedback on participant's donation amount (after completion of five typing task trials)
Appendix C. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.paid.2018.03.024.

References

Wiepking, P., & Maas, I. (2009). Resources that make you generous: Effects of social and

Web references