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On the Integration of Multi-Step Prediction and Model
Selection for Stationary Time Series

J.T.C. Kool and A.H.Q.M. Merkies *)

Ahstract

An important aim of modelling economic time series is the
generation of predictions. However a model, which is
suitable for describing the data within a sample, may be
suboptimal for the generation of out sample forecasts,
especially for increasing time horizons.

The objective of this paper is to analyze a model selec-
tion procedure, which is also based on the nredictive ner-
formance. In first instance the time horizon of prediction
is formulated and then the appronriate model is selected,
so different time horizons of prediction may lead to
different models. After a suitable model has been chosen,
we also examine the method of estimation. The properties
of the various estimators and the model selection procedure

are investigated by simulation.

*) Department of Economics and Department of Econometrics
and Actuarial Science, Free University, P.0O. Box 7161,
1007 MC Amsterdam, The Netherlands.
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It is quite common in time series analysis to separate model identifica-
tion and prediction, due to the implicit assumption that prediction is
straightforward, once a model is identified. Consequently the time
horizon of the predictions usually only appears in the second stage of
this procedures; it is ignored in the identification. We will show that
if time series are modelled with some ARIMA-process this approach may be
not optimal. In practical applications of model building two sources of
error occur. First misspecification can hardly be avoided. Even in the
case where economic data follow an ARIMA process exactly it is difficult
to dectect the true process in moderate sample sizes (Sneek, (1984)).
Secondly the assumed model is only an approximation of the data generat-

ing process.

Findley (1984) shows that a model which is optimal for one-step ahead
prediction in terms of prediction error variance may be suboptimal when
the goal is multi-~step prediction or spectral estimation. Gersch and
Kitagawa (1983) consider model selection and prediction simultaneously.
By using monthly data they conclude that a model which is appropriate
for one-step ahead prediction differs from the model which is used for
the generation of twelve-step ahead predictions. For non-stationary time
series the optimal forecast procedure is dependent on the time horizon
of the predictions and the.prefilter which is used to make the time se-

ries stationary (Meese and Geweke, (1984)).

In this paper we consider model identification and prediction for sta-
tionary time series simultaneously and we concentrate on the implications
of misspecification. In section II asymptotic results are derived, while
in section III expressions for small samples are given. The method of
estimation and order determination are discussed in section IV, Some si-
mulation results are presented in section V and in the last section some

conclusions are drawm.

Consider the infinite time series {Xt, t=0, + 1, £ 2,.,.} and assume

that [Kt} can be written as
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where by = 1 and {Et, t =0, 1, #2,,..} is a sequence of Gaussian

innovations with the properties
£ 1 = 271 = 42 ] =
E[,1 =0, E[£2]=0%, E[Et £, ) =0 T#0 .

We define the functiom ¥(z) as
=]

3
50 V., Z

p(z) = 3

j
and we require that |y(z)| 1is bounded away from zero for

550 |ij <M<,

The spectral density functiom of {Xt} is

2
h(d) = 5= v |2,

i
where 2z = e s MK AT,

In the class of all predictors of X

t+1
sidered. The one-step linear predictor Xt+l is
XN
2 _ (1
Xeal jgl ® Xt+1-~j

and the expected mean square error of this predictor is

lz| <1

-~ 2
a2(1) = BL(x,,, - & 21 =26 1P @12 fu@ )2 La

t+l 2ni

[==]
where u(l)(z) =1- .z ugl) z3
=3
and § indicates integration around the unit circle.

The minimum of Gﬁ(l) equals 02 and is attained if

16 ) (2 = v |72 (Bloomfield, (1972)).

and

only linear predictors are con-

Long term predictions can be calculated recursively for any linear pre-—

diction filter a(l)(z) by

- MO 1 %
Xt+k = J=l j t+k~ Jzk t+k-j

with an expected mean square error of prediction of
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where

c(z) = {u(l)(Z)}-] .

In the prediction procedure described above k-step ahead predictions

(k > 1) can only be obtained if we first compute X , then X ete.

t+l t+2

An alternative approach is to form k-step ahead predictions directly by

L0

Yoo = 551 %5 Feereg

t+k

[

By defining

&), v _,_ 5T (k) k-1+j
o {(z} = 1 jgl aj Z

it follows that

2

~ 2
0200) = E[(x - %07 = 2§ e @ le)]2 Lz .

t+k

The greatest lower bound of both Uﬁ(k) and -cé(k) is

k-1
= 2 2
T =0 jéo wj .

When the true model is selected, and the true parameters are found, this

implies that

-1

Py = v

and G%(k) reduces to T
{agk)
]

_ while minimization of dé(k) with respect

to ,» J > 1} would not lead to a reduction of the forecast error

variance and the model is optimal in this sense.

More interesting is the case where the underlying model is misspecified,

50

« Py #v7'@) .

By rewriting



it follows

2(k) ’Eﬁ?ﬁ |1 - Jzk b. zJ[2 |w(z) |2 -I-dz

which is equivalent with the expressions obtained for cé(k) . By minimiz-

ing Ug(k) with respect to {aﬁk), i 2.1} it follows that the prediction
error variance of k-step ahead forecast can be reduced by choosing an

other model.

Below we consider prediction filters, which contains only a finite number
of parameters. The one-step ahead predictor filter {a(l)(z)} can be

written as

a(])(z) =] - afl)z - .. - agl)zp

and for the k-step predictor the filter becomes

G(k)(Z) =1 - or.(k)zk - - a(k)zk"'p—l
1 P
We introduce the notation AR(p,k) , which specifies a prediction scheme

with p+k~1 lags and p pArameters, If X, = AR(p,k} this implies

= oK) : (k)
Xe m 00 B * e 2% Keeper T M

The prediction filter, which minimizes the error variance can be obtained

by minimizing

52 (p,k) =6 10 )2 |92 |2 14z -

2n1

2 o
%ﬁ Im(k)(z)l2 |j=Z rJ zJ|2- dz

where rj = E[Xt Xt J] .

Minimizing oi(p,k) with respect to is equivalent with

agk)... a;k)}

solving the Yule-Walker equations, so

- (k) r T-1 —
&, g | Py e Qp-l Py
az ey l . . pp_2 pk+l 2.1)
()

| i —pp_] p . * !
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2 = g2 -5

and Gn(p,k) o 1y {1 j§

whére p. =r./r, .
% i’o

If the l-step filter is used for the computation of Xt+k then

-

- 2
var {Xt+k 'Xt+k} 2_8n(k)

where ag(k) is the minimal forecast error variance of the k-step filter.
By using a model selection procedure which is also based on considerations
of the predictive performance it is also possible to reduce the error
variance when the l-step filter is misspecified. The results obtained
above are valid in the asymptotic case or when the parameters are known.
In the next section results are derived when the parameters have to be

estimated from a finite sample.

The prediction error variances obtained in the preceding section are
based on the assumption that the parameters are known. If the parameters
have to be estimated from a finite number of observations the prediction
error variance shall increase. The bias for misspecified models will be
determined along the lines given by Davies and Newbold (1980). In first
instance the error variancergccording to the l-step filter will be comput~
ed, Ly

e = 2 9 e V@R Iv@ 12 (5 o1 Laz + Fm (3.1)
where ;k(T) is the bias due to estimation and T 1is the number of
observations. For the derivation of ;k(T) we need the results given
by Yamamoto (1976) for exact AR(p) processes, If

Xt = aIXt_I+ aZXt_2+ T apxt-p+ Et

where gt is white noise, then it is shown by him that

% (D = tr {4 V.M 1)

where Ve .is the asymptotic variance covariance matrix of the maximum

likelihood estimates of {a

e up), Mk is the matrix
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M= E c. Ak—1-d
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where A is a (p*p) matrix with a, ., = plim (&j) (j=1...p), a,

. =1
1] i+
(3j=1...p=1) and zero otherwise and I 1is also a (pxp) matrix with
I = E[XX'] , where X = (Xl - Xp)' .

For the derivation of the asymptotic variance covariance matrix of the

parameters of the misspecified model we introduce the vectors

(k) _ (k) k), , (k) _ '

o = (al .o up ', e = (pk e pk+p~l)

- ~=1 . {k a
Now u(k) = 3 p( > _ g(p(k))
where B,, = 5.. . and g is a functiom Rp+k—l - R®P .

1] 1i-31 -

By expanding a(k) in a Taylor—expansion around p(k) s

L0 ®, . 2g 3&) ) (k)

o =g (p ) + "iL“TET'— (P - p )

25 {500 (0

it follows
— 1
Va(k) = QW Q

where Wk is a (p+k=1)*(p+k-1) matrix with

viy T E [(pi -~ pi)(pj - pj)]

and Q is a px(p+k-1) matrix with

The elements of W are given by Anderseon (1971, p.489) explicitly

[==)

Y15 Tketet PheiPirj T Pkmifrei T P PRkt T P iPKPke

2
+ ZOinDk}
By inserting Va(l) , KK(T) becomes :

;K(T) = er (M Q W QM I}
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For the k-step filter the error variance is

2 -~
g "2z $ LM @@ LR @ .2

where Qk(T) is the bias due to estimation. For the k-step model Mk is

equal to the identity matrix, so xk(T) reduces to
Ll = ' ~
xk(T) ty {Qk W,oQ L}

The derivations given above are based on the assumption that the series
which is used for estimation is independent of the series for which the
predictions are made, but the two series have the same stochastic struc-—.
ture. For practical work this is a rather unrealistic assumption, but
there is some Monte—Carlo evidence that the bias due to the dependence
between the observations used for the estimation and the predictions is
small (Reinsel, 1980).

Having observed a finite realization of the series the parameters can be
estimated by solving the equatioms (2.1). A related problem is the deter-
mination of the order of the process. A well known selection procedure
and frequently used is the one suggested by Akaike (1974). The order of

an AR“process can be determined by minimizing
2 4 2p
AIC(p) = 1n 8¢ + = (p = 1,...,M) (4. 1)

where 82 is an estimate of the residual variance and M a prespecified
upper limit. Shibata (1976) shows that if the true process is finite

AR, AIC tends to overestimate the true order, so this procedure is asymp—
totically not comsistent. Although the AIC criteriom is originalily
designed for Y-W estimates several other estimates which are asymptoti-

cally equivalent with these estimates have been used for the estimation
of 02,

By developing order selection criteria a lot of attention has been paid
to the second term of the RHS of (4.1) and not to the estimation of the
residual variance, However there is some evidence that the method of

estimation can influence the order determination (Paulsen and Tsjdtheim

(1985), Beamish and Priestley (1981)). Especially when roots of the AR-



polynomial are closely to the unit circle and the process is strongly
autocorrelated the Y-W estimate of the residual variance has a severe
bias upwards.

The processes considered by us are AR(w) processes, so the optimal order

is determined by minimizing
AIC (p,k) = 1n Bﬁ (p,k) +£’1‘2 (p=1,...,M)

If the process is not degenerated to a finite AR process, this is selec~
tion procedure is asymptotically efficient (Shibata (1980)). By applying
this rule some care has to be taken. First the parameters are estimated
only by using a finite number of observations and secondly the estimation
of the error variance can influence the order determination.

In first instance we give some details of the evaluation of Gﬁ(p,k),
{p=1 ... M, k=1 ... K) which can be calculated without estimating the
(agk) e ugk)).

parameters For k =1 , first 51 e 6M+1 have to

be estimated and the matrix R has been computed, where -Rij = pli—jl
(i, = 1 ... M+1). By making the decomposition

R

oLt

where L 1is lower triagomal. 1ii = ] (i=1 ... M+1) and D 1is diagonal

it follows
2 P
af'l (P’l) rO dp-l-l

where ?O is the estimated variance of the process (Paganoc (1972)).

For k > 2 the matrix R(p,k) 1is composed

[ 1 o P 0 L0 pk-l-p-l—.l
pl 1 DP_Z . - .
o__. ol 0 ... 0 0
R(p,k) = | P-1 P2 | k
0o ... . 0 0
: . Ik-l .
0o . . 0 0
. 1
L Pkep-1 " 0 ... O !




By decomposing
R(P,k) = L(Psk) D(p’k)L‘(p ’k)
at the same way as R , then
2 XY = & _
3n (p,k) £, dp+k(P’k) (McClave (1975)).

For the decomposition of R(p,k} the results of R can be used and only
the last row of L{p,k) has to be calculated, while 8§(p-1,k+l) can
be directly obtained from the decomposition of R(p,k) and R , so all
residual variances can very efficiently be determined. After the opti-
mal model for each k has been obtained the parameters can be estimated
by: '

a(k) - L;-l D;l L;l 5(k)
where L;i and D-'1 are the pxp submatrices of L-l and Dw1 Tes—
pectively,
It is well known that for small samples Y-W estimates are biased. An
alternative is reestimation by the method of maximum likelihood. Suppose
the true distribution of a random variable x can be written as g{(x)
and the class of possible distributions is £(x,8). The quasi-maximum

likeiihood estimator (QMLE)} of 8 is the estimator 8 obtained by solving

max LT {x,9)
BeED

where

1 T
Ly (x,8) = T'tél log f(xt + 9 .

If f£(x,8) contains the true distributionm, f(x,eo) = g(x) for some
80 € © , then 8 is a consistent estimate of 6y, If g(x) does not
belong to the set £(x,8) , then © is an estimate of & , which mini-

mizes the Kullback-Leibler Information Criterion
I(g,£,0) = [ g(x)logg(x)dx- | £(x,9) log g(x) dx

and I(g, f, 8) > 0 , while I(g,f,8) =0 if and only if g(x) = f(x,8)
almost everywhere (White (1982)),
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The QMLE is a handsome tool for estimating the prediction filters

afk) cen a;k)} .

For the l-step filter

_ (N ,
x = &lxt~l+ eee ap x + £ (4.2)

where £, 1is assumed to be white noise with E[Ei] = ¢2 . The likeli-

t 3

heod function is:

(x -...a(l)x. )2}

- I 2 -1 __p ij
Ly = -3 log o log [Q(p) | {.Z E ()=, KJ 1“P+l P i-p

g1 g= Y

where Qij(p) = r, ,‘WlJ(p) are the elements of Q—l(p) and

Ty eee .rp_I are the theoretical autocovariances of the process.
For the multi-step filters there are several possibilities for the for-
mulation of the likelihood., A direct approach is that the underlying dis-
tribution can be approximated by

(k)

_ (k)
S A T T up xt*k-p+l 0, (4.3)

where n, is assumed to be white noise and E[n%] = Uﬁ . The likelihood

function of the fitted distribution can be written as:

L1 ¢'=-—§-lcngcrr_I -3 log {Q(p+k)|--£;-2- 1}=: E_: W (p+k)x x + Z +1£ i -p—k+l)
n

However, there is a remarkable difference between LO and L1 . In evaluat-

ing L0 the assumed underlying process is (4.2), whereas for L1 it is

assumed that (4.3) is the true distribution. A predictive likelihoed
for k > 2 , while (4.2) is the assumed distribution, cam be obtained

by the likelihood function

2
% T l T Vi
L, « - Y logF. -4 I ==
z i=k+ 1 i=ket Fy

where v. = X, -x. .. and F, = var [v.] (Gersch and Kitagawa (1983)).

1 1 1li-k 1 1
. o (k) (k) . .
The parameters of interest {a] s ey B } can be obtained in two

stages. In first instance maximize L2 with respect to the unknown
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parameters and in the second stage calculate BT, e

af” g1y

recursively from the estimates s weey . For practical appli-~
cations of L,,v, and Fi (i=k+1, ..., T) can be determined by the
Kalman filter, but differentiation of L2 can be cumbersome.

By maximizing L and L, ‘respectively the parameters of interest may
not converge to the same value, even if T tends to infinity, because

by assuming different distributions the stationary conditions can change.
An example can make this point clear. Suppose the true distribution is
AR(2), and the assumed distribution for the l-step filter is also AR(2),

X = ¢1 ey ¥ ¢2 Xe-2 * Et - _ (4.4)

For this process the stationary conditions are given by the region Kl ’
where

by F by <1, dy-d, <1, o] <1 (4.5)

(see figure 1). For the sake of simplicity we evaluate the multi-step

filter only for k = 2 . If the assumed distribution is:

X TRy Fpp P B3 X gty (4.6)
then this process is stationary if
. ) -
B, *+ By <1, B,~By <1, B2-8, <1, [g,] <] %D

9y

Fig. 1. Stationary regioms for the l-step and 2-step filter of the

- + -
process x_ ¢1 L + ¢2 xt___2 Et
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In terms of (¢l,¢2) , (4.6) is:

= 2
X = (0] FoE H F by by X gt

By rewriting
L= (62 + 6,022 ~ ¢ 625 = (1+8.2)(1~b,2 = §5 2°)
H 2 172 1 | 2

it follows that the region K. implied by the stationary conditioms (4.7)

2

is given by (4.5). and the additional comstraint ]¢l| < 1 . However
<K i .

KZ = Kl , and l\ , 1is not of the measure zero, so if (¢|,¢2) € Ki\l(z

and when the direct approach is done by using L1 » the parameters BZ and

83 do not converge to the true values, although both likelihood functions

are dominated by the residual sum of squares.

In section II optimal prediction filters are obtained by solving the Y-W
equations (2.1). For k = 1 the roots of the prediction filter lay
outside the unit circle (Pagano (1972)). For multi-step predictions the
roots of the optimal filter {a(k)(z)} do not have necessarily this
property, so the application of quasi-likelihood via L. can lead to a

1
filter, which is not optimal in terms of prediction error variance.

The properties of the prediction filters for some series are investigat-
ed by simulation, The following time series are considered

AR(1) Kt 0.9 X, + E’t

MA(T) X

-1

e 5 709 8y

ARMA(1,2) X 0.8 x +¢g +0.4¢g ,+0.88 , .

[}

t

The AR(1) process has been chosen to analyse the predictors when the
class of models which are comsidered consists also the txrue model, The
sample sizes T = 50 and T = 100 are investigated, because in applied
work this sample sizes often occured. For the three processes the optimal

values of p, and c%(k) are given in the tables 1 till 3.

T+k’ ®T+k
The variance of the innovation sequence Et is set at 1.0 . Predictions

“up to a time horizon of 8 are investigated.
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The tables should be read als follows: k 1is the time horizon of predic-
tion, p 1is the order of the optimal AR(p,k) filter, fT+k is the pre-
diction error variance when the optimal AR(p,1) model has been used for

prediction, is the error variance of the optimal AR{p,k) filter

Eps
and Uﬁ(k) isttge corresponding asymptotic prediction error variance and
is equal to the variance of the assumed distribution. For the ARMA(1,2)
process the minimum absolute value of the roots are also given, because
all roots of this filter may not lay outside the unit circle. The optimal
orders are obtained by evaluating the expressions (3.1) and (3.2) for
p=1...M and then select p for which the error variance is minimal. For

the selected p, U%(k) is obtained by letting T go to infimity.

For the AR(1) model holds asymptotically f = Brex ° but for small

T+k

samples fT+k < Brax ? which is due to the fact that fT+k is based on
the estimation of Py » whereas for sk the estimate of o) is used,

so efficiency is lost, For the MA(l) model Brak < f for k > 2 and

T+k

the multi-step prediction filters reduces to a random walk, so Brak is

equal to the variance of the process. In all cases is less than

g
T+k
f for the ARMA(I,2) model, although for k = 2 the difference is

nﬁéﬁigible and for T = 100 the difference is smaller than for T = 50,
For the simulation random variables were generated by making use of the
MSL routine GGNPM, and time series of 407 observations were computed,
The first 100 realizations were not used and the following T observations
were used for estimation. To make the estimates independent from the pre-
dictions, the observations 300 till 407 were used to evaluate the fore-
cast error variances. The number of replications for the AR(1) and MA(1)

process were 500, and for the ARMA(1,2) 250 samples were generated. For

each process the same innovation sequence was used.

In first instance the order is determined by the Y-W estimates of oﬁ(p,k),
which don't require the estimation of the remaining parameters. The fore-
cast error variances in small samples are influenced by the method of
estimation (Ansley and Newbold (1980, 1981)), so threé estimation methods
have been applied. First the parameters are obtained by solving the Y-W
equations (2.1). Secondly the likelihood Ll is maximized, although for

some prediction filters of the ARMA(!,2) process the estimates cannot
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converge to the theoretical values, so the error variances must be biased

upwards. The likelihood functions LI and L, are dominated by the residual

2
sum of squares and we have reestimated the parameters by least squares,

&(k) = B_lq
and

o 1 I (k) (k)
2 = - -
Un(p,k) = T t=%+k (.- &, 8

where

T T

B,. = 9 = E ¥ X

15 7 eebrk Feokeloi Ke-ketoj 0 U T eebek e Fpeiwr-p (237D

For the analysis of the predictive performance and the order determination

the following statistics are computed:

1) The estimated asymptotic forecast error variance

2200 = L T 82 (5,1
n R j&1 %p VPN

where NR is the number of replications, j is the replication index

and p is the estimated order of replication j.

2) The mean square error of the variancesrelative to the theoretical
value _
L
MSE (B200) = (g T, (825,00 (3) - o2(1))2)} .

3) The bias of the predictiomns

. 1 NR 1 100 ) 3
Bias (frn) = 351 700 i1 Frecri 3 7 Fpari|res 9
4) The prediction error variance
2 1 NR o[y 100 o N e ) 1
frvc = ¥R 350 {100 i1 i )~ R 1pa GV~ O s (D g | s (3

where the bar implies the estimated mean within a replication,

5) The mean square error of this variance relative to the theoretical

value

MSE (f. )

NR :
] - . 2\
) AR 351 e O 7 Epad )
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6) The mean of the estimated orders

_ 1 NR |

P =T j)=:l 5(3)
r3 The mode of the order distribution,

Phod
The statistics 3, 4 and 5 are also computed for Bp+k ° For each time
horizon hundred predictions are computed. The results of the simulation
are summarized in the tables 1 till 3. We first discuss briefly the order
determination. For the AR(!) process the maximum number of parameters was
set at 10 and for the other two processes the upper limit was 15, For
k = | the order distribution of the AR(l!) process coincide with the
asymptotic distribution given by Shibata (1976). For increasing k the
distribution becomes more fat-tailed. Especially for T = 50 the distri-
bution tends towards zero, which explains the decreasing mean when k in-
creases. For k = 1 the order of the optimal filter of the MA(l) process
- is slightly underestimated and for increasing k the distribution is domi-
nated by p = 0 . For the ARMA(1,2) process and small k the order is
strongly underestimated, which may be caused by the very erratic behav-

iour of the sequence U%(p,k) (see table 4).

P 3 4 5 ) 7 8 3 19 11 i2
k=1,Ta50 1.647 1.589 1.398 1.274  1.286  1.230  1.260 [.226 1.243 1.253  1.259 1,277
k=],T=100 1.640 1,547 1,342 1.228 1.224 1,600  §.175  1.,i4) 1.146 1,145 1.143  1.15]
k=2,T=50 3.865  3.249 3,291 2,997 3,059 3.009 3,012  3.032  3.036 3,092  3,09% 3.147
k=2,T=100 3.823  3.442 3,146 2,858 2,884  2.81) 2,793 2,793  2.774 2,802 2,189  2.815

Table 4, Theoretical values of the asymptdtic forecast variance for some
selected values of the ARMA(!,2) process.
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T 5@

p 1
oi(k) 1.006
fT+k 1.8249
B

p1.430

1:'rnod i
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We now discuss the predictive performance of the various filters. It

must be noted that the estimates are. influenced by the order determina-
tion, so it might be expected that the variability of the estimates

shall increase. More comparable results can be obtained by fixing the
order. In almost all cases Gﬁ(k) is biased downwards. Some notable
exceptions are Y~W estimates of the AR({i) and the ARMA(],2) process

for small k. For the strongly autocorrelated processes the bias becomes
larger for increasing time horizons and the Y-W estimates are more biased
than the QML and LS estimates. In general we can see that for the AR(1)

and the ARMA(1,2) process fT+k) and Bry 2re overestimated for

small k, whereas the error variances are underestimated for increasing

k. For the correctly specified AR(1) process £ is less than €T+k

T+k
for all time horizoms and for the MA(l) process in nearly all cases the

converse holds true, which is in accordance with the theoretical results.

-

For the ARMA(1,2) process however f for the Y-W estimates,

ok < ETak

fT+k > Brai for the LS estimates and the method of QML gives mixed

results.

The most important feature is that for all processes the difference //;
fT+k = Bpy 1S biased downwards. This implies that although for misspe-

cified models multi-step prediction filters are theoretically better,
it is hardly to detect in practice. For the AR(l) process especially

the multi~step filter produces more badly results than expected.

A comparison of the different estimation methods leads to the following
conclusions. First, there is little difference hetween QML and LS,

except for those filters for which one or more roots lay inside the umnit
circle. Secondly, QML and LS estimate the parameters (ufk),...,agk),cﬁ(p,k))
more accurate than Y-W, but the differences between the forecast varian-

ces are less pronounced. By comparing the influence of the sample size,

we see that the bias of the estimate Gi(k) becomes less if T increases.

The prediction error variances of the MA(l) process are more accurate

for T = 100 , but for the other two processes there are mixed results,
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In this paper we have examined the properties of the various prediction
filters for stationary time series. By using different models for the
various time horizons the forecast error variance can be reduced if the
l1-step filter is misspecified, although the simulation results show

that the reduction is less than theoretically expected. We suspect that
the order determination and the method of estimation have influenced the
regsults, so both issues require further investigation., Especially the
evaluation of a likelihood function, which is also based on the predic-

tive accuracy might be useful, although the analytical expressions can

become quite complicated. It seems worthwhile to apply the proposed

method to real economic data and to compare the results with results
obtained by the conventional methods., However in the case of non-
stationary series, special attention should be paid to the prefilter,

which is used for detrending the series,
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