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On the Integration of Multi-Step Prediction and Model 

Selection for Stationary Time Series 

J.T.C. Kool and A.H.Q.M. Merkies *) 

Abstract 

An important aim of modelling economie time series is the 

generation of predictions. However a model, which is 

suitable for describing the data within a sample, may be 

suboptimal for the generation of out sample forecasts, 

especially for increasing time horizons. 

The objective of this paper is to analyze a model selec

tion procedure, which is also based on the predictive per

formance. In first instance the time horizon of prediction 

is formulated and then the appropriate model is selected, 

so different time horizons of prediction may lead to 

different models. After a suitable model has been chosen, 

we also examine the method of estimation. The properties 

of the various estimators and the model selection procedure 

are investigated by simulation. 
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It is quite common in time series analysis to separate model identifica-

tion and prediction, due to the implicit assumption that prediction is 

straightforward, once a model is identified. Consequently the time 

horizon of the predictions usually only appears in the second stage of 

this procedures; it is ignored in the identification. We will show that 

if time series are modelled with some ARIMA-process this approach may be 

not optimal. In practical applications of model building two sources of 

error occur. First misspecification can hardly be avoided. Even in the 

case where economie data follow an ARIMA process exactly it is difficult 

to dectect the true process in moderate sample sizes (Sneek, (1984)). 

Secondly the assumed model is only an approximation of the data generat-

ing process. 

Findley (1984) shows that a model which is optimal for one-step ahead 

prediction in terms of prediction error variance may be suboptimal when 

the goal is multi-step prediction or spectral estimation. Gersch and 

Kitagawa (1983) consider model selection and prediction simultaneously. 

By using monthly data they conclude that a model which is appropriate 

for one-step ahead prediction differs from the model which is used for 

the generation of twelve-step ahead predictions. For non-stationary time 

series the optimal forecast procedure is dependent on the time horizon 

of the predictions and the prefilter which is used to make the time se

ries stationary (Meese and Geweke, (1984)). 

In this paper we consider model identification and prediction for sta

tionary time series simultaneously and we concentrate on the implications 

of misspecification. In section II asymptotic results are derived, while 

in section III expressions for small samples are given. The method of 

estimation and order determination are discussed in section IV. Some si-

mulation results are presented in section V and in the last section some 

conclusions are drawn. 

Consider the infinite time series {X , t=0, ± 1, ± 2,...} and assume 

that {X } can be written as 

Xt = *0 *t + *1 5t-l +*2^t-2 + ••• > 
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where tj>_ - 1 and {£ , t = O, ±1, ±2,...} is a sequence of Gaussian 

innovations with the properties 

E[?fc] = 0 , E[£
2] = o1 , E U t Cfc_T3 = 0 x 4 0 . 

We define the function IJJ(Z) as 

^(z) = jl0 ̂  zj 

and we require that |^(z) | is bounded away from zero for |z| <_ 1 and 

1 Q |^| < M < =o . 

The spectral density function of {X } is 

h(X) = f- |t|;(z)|2 , 

where z = e , - T T < ^ X < ^ T T . 

In the class of all predictors of X . only linear predictors are con-

sidered. The one-step linear predictor X + 1 is 

00 Cl) 
X^, = .1, a) ' X^, . 
t+1 j=l j t+l-j 

and the expected mean square error of this predictor is 

02(1) =E[(X . - X..,)2] = ̂ £ |a 0 )(z)| 2 U(z)| 2 Idz 
T) t+1 t+1 2TT1 ' Z 

where a(1)(z) = 1 - .Ij a ï 0 T) 

and <j) indicates integration around the unit circle. 

The minimum of a2(l) equals o"2 and is attained if 

|a ( 0(z)| 2 = U(z)|~2 (Bloomfield, (1972)). 

Long term predictions can be calculated recursively for any linear pre

diction filter a (z) by 

*t+k-j 
X , = .1, a) ' X , . + .E. a. ' X 
t+k j=l j t+k-j j^k j 

with an expected mean square error of prediction of 
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a2(k) - E[(Xt+k - Xt+k)
2] -£* |„<»(,)|* |«.)|* |^J C j . ^ 4 * . 

where 

c (z) = {a
vw(z)} 

In the prediction procedure described above k-step ahead predictions 

(k > 1) can only be obtained if we first compute x
f +j » then

 x
t +2

 etc-

An alternative approach is to form k-step ahead predictions directly by 

X , = .1, a r X . . . 
t+k j=l j t+l-j 

By defining 

<k), , " (k) k-l+j 
cc (z) = 1 - .1. cc. z J 

it follows that 

?2 * !„.<>),, , I,,,/̂ I2 1 a | ( k ) = E [ ( X t + k - X t + k ) ^ ] = ^ ( | |a^(z)|k( Z)|
2^d Z . 

The greatest lower bound of both a2 (k) and a2(k) is 

7 k _ 1 ? 
k j=0 j 

When the true model is selected, and the true parameters are found, this 

implies that 

a 0 )(z) = ̂ _1(z) 

and a2(k) reduces to T , while minimization of a2(k) with respect 
n ie s 
(k) 

to {oc. , j > 1 } would not lead to a reduction of the forecast error 
3 ~ 

variance and the model is optimal in this sense. 

More interesting is the case where the underlying model is misspecified, 

so 

a 0 )(z) * f \ z ) . 

By rewriting 
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it follows 

a2(k) = -%-r § |l - 1, b. 2J |
2 \^(z)\z idz 

n 2TTI y ' j=k 3 ' ' r ' z 

which is equivalent with the expressions obtained for af..(k) . By minimiz-
fkl 

ing cf̂  (k) with respect to {a. , j >_ 1} it follows that the prediction 

error variance of k-step ahead forecast can be reduced by choosing an 

other model. 

Below we consider prediction filters, which contains only a finite number 

of parameters. The one-step ahead predictor filter {a (z)} can be 

written as 

O ) , x , (0 ( O p 
a (z) - 1 - a. z - ... - a zr 

1 P 
and for the k-step predictor the filter becomes 

0 0 , N , (k) k (k) k+p-1 a (z) = 1 - a, z - ... - a z r 

1 P 

We introducé the notation AR(p,k) , which specifies a prediction scheme 

with p+k-1 lags and p parameters. If X - AR(p,k) this implies 

.00 X = a(k) X + Xt al Xt-k p t-k-p+l t 

The prediction filter, which minimizes the error variance can be obtained 

by minimizing 

éH^wlM^l j i 2 1 , 

r. zJ K — dz 

where r. = E[X X .] 
J t t-j 

,00 Minimizing a2(p,k) with respect to {a 

solving the Yule-Walker equations, so 

s ( k ) 
P L p

P - l 

P- i 

5P"2 

P - 2 

-1 

(k) a } i s e q u i v a l e n t wi th 
P 

'k+1 

L. P+k-1 J 

( 2 . 0 



5 

P /•, \ 

and a2(p,k) = c2 rQ {1 - ±} 8. pk_] + .} 

where p. = r./r_ . 
J J O 

If the 1-step filter is used for the computation of X , then 

var {xt+k" W ^
9 n ( k ) 

where 32(k) is the minimal forecast error variance of the k-step filter. 
n 

By using a model selection procedure which is also based on considerations 

of the predictive performance it is also possible to reduce the error 

variance when the 1-step filter is misspecified. The results obtained 

above are valid in the asymptotic case or when the parameters are known. 

In the next section results are derived when the parameters have to be 

estimated from a finite sample. 

III The prediction error variances obtained in the preceding section are 

based on the assumption that the parameters are known. If the parameters 

have to be estimated from a finite number of observations the prediction 

error variance shall increase. The bias for misspecified models will be 

determined along the lines given by Davies and Newbold (1980). In first 

instance the error variance according to the 1-step filter will be comput-

ed, hJ 

fT+k
 = è<f> |a(1)<z)|2|«,(z)|2| jï0 c.z

j|2idz + £k(T) (3.1) 

where Xv.(T) is the bias due to estimation and 'T is the number of 

observations. For the derivation of Xi(T) we need the results given 

by Yamamoto (1976) for exact AR(p) processes. If 

t 1 t-1 2 t-2 p t-p t 

where £ is white noise, then it is shown by him that 

ïk(T) = tr {Mk V s ̂  E} 

where V^ .is the asymptotic variance covariance matrix of the maximum 

likelihood estimates of (a ... a ), M, is the matrix 
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k-1 Ak-l-j .!_ c. A J 

J=0 j M. - .!„ c. A' 

where A is a (p*p) matrix with a . = plim (3.) (j=l...p), a. ,.=1 

(j=l...p-l) and zero otherwise and E is also a (p*p) matrix with 

Z = E[XX'] , where X = (X, ... X )' . 
p. 

For the derivation of the asymptotic variance covariance matrix of the 

parameters of the misspecified model we introducé the vectors 

(k) , (k) (kK, (k) , ., 
a - (a-, ... ap )• , p - (pfe . . . Pk+p_j) ' . 

Now a = B P = g(p ) 

where R. . = p. . ., and g is a function R -» R . 
ij 1 i-j 1 

~(k) . (k) 
By expanding S in a Taylor-expansion around p , 

3 P 
( p ( k ) - p ( k ) ) 

- (k ) _ (k) 
p = p 

it follows 

V k ) = % \ Qk 
where W is a (p+k-l)*(p+k-l) matrix with 

w = E [(p. - p.)(p. - p.)] 

and Q, is a p*(p+k-l) matrix with 

The elements of W are given by Anderson (1971, p.489) explicitly 

oo 

w. . = I {p, .p, . + p, -P, . - 2p .p, p. . - 2p.p,p, . + 2p.p.p,} 
ij k=-°° k+i k+j k-i k+j j k k+i ï k k+j ï j k 

By inserting V^( 1) , -̂v(T) becomes: 

\(T) = tr (M^ Qk Wk Q^ ̂  £} . 
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For the k-step filter the error variance is 

gT+k
 = è ^ |a ( k )(z)| 2|M Z)|

2^d Z + xk (T) (3.2) 

where xv (T) is the bias due to estimation. For the k-step model M, is 

equal to the identity matrix, so XV(T) reduces to 

Xk(T) = tr {Qk Wk Qk 2} ~ 

The derivations given above are based on the assumption that the series 

which is used for estimation is independent of the series for which the 

predictions are made, but the two series have the same stochastic struc-

ture. For practical work this is a rather unrealistic assumption, but 

there is some Monte-Carlo evidence that the bias due to the dependence 

between the observations used for the estimation and the predictions is 

small (Reinsel, 1980). 

IV Having observed a finite realization of the series the parameters can be 

estimated by solving the equations (2.1). A related problem is the deter-

mination of the order of the process. A well known selection procedure 

and frequently used is the one suggested by Akaike (1974). The order of 

an AR-process can be determined by minimizing 

AIC(p) = In 32 + ̂  (p - 1,...,M) (4-.1) 

where a2 is an estimate of the residual variance and M a prespecified 

upper limit. Shibata (1976) shows that if the true process is finite 

AR, AIC tends to overestimate the true order, so this procedure is asymp-

totically not consistent. Although the AIC criterion is originally 

designed for Y-W estimates several other estimates which are asymptoti-

cally equivalent with these estimates have been used for the estimation 

of o2. 

By developing order selection criteria a lot of attention has been paid 

to the second term of the RHS of (4.1) and not to the estimation of the 

residual variance. However there is some evidence that the method of 

estimation can influence the order determination (Paulsen and Tsj^theim 

(1985), Beamish and Priestley (1981)). Especially when roots of the AR-



polynomial are closely to the unit circle and the process is strongly 

autocorrelated the Y-W estimate of the residual variance has a severe 

bias upwards. 

The processes considered by us are AR(°o) processes, so the optimal order 

is determined by minimizing 

AIC (p,k) - In 6*2 (Pfk) + 'O. (p=l,...,M) 

If the process is not degenerated to a finite AR process, this is selec-

tion procedure is asymptotically efficiënt (Shibata (1980)). By applying 

this rule some care has to be taken. First the parameters are estimated 

only by using a finite number of observations and secondly the estimation 

of the error variance can influence the order determination. 

In first instance we give some details of the evaluation of a2(p,k), 

(p=l ... M, k=l R) which can be calculated without estimating the 

parameters (a 
(k) 
1 

(k). 
a" ' ). For k = 1 , first p. 
P ' P M + 1

 h a v e t o 

be estimated and the matrix R has been computed, where R.. = p,. ., 

(i,j = 1 ... M+l). By making the decomposition 

R = LDL' , 

where L is lower triagonal. 1.. = 1 (i=l ... M+l) and D is diagonal 
11 

it follows 

a2 

n ( p ' ° = f 0 d
P + i 

where f^ is the estimated variance of the process (Pagano (1972)) 

For k > 2 the matrix R(p,k) is composed 

R(p,k) = 
P 1 P ••> p-1 p-2 

L Mk+p-l 

p-1 

'p-2 

1 

0 

k-1 

Jk+p-1 

0 

1 
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By decomposing 

R(p,k) = L(p,k) D(p,k)L'(p,k) 

at the same way as R , then 

82 (p,k) - rn d (p,k) (McClave (1975)). 
n "U p+k 

For the decomposition of R(p,k) the results of R can be used and only 

the last row of L(p,k) has to be calculated, while a2(p-l,k+l) can 

be directly obtained from the decomposition of R(p,k) and R , so all 

residual variances can very efficiently be determined. After the opti-

mal model for each k has been obtained the parameters can be estimated 

by: 

a 0 0 . L,~i D-i L-i p(k) 
p P P 

where L and D are the pxp submatrices of L and D res-p p 

pectively. 

It is well known that for small samples Y-W estimates are biased. An 

alternative is reestimation by the method of maximum likelihood. Suppose 

the true distribution of a random variable x can be written as g(x) 

and the class of possible distributions is f(x,6). The quasi-maximum 

likelihood estimator (QMLE) of 6 is the estimator 9 obtained by solving 

max L (x,6) 

eee 

where 

1 T 
L T (x,e) = - tEj log f(xt , e) . 

If f(x,e) contains the true distribution, f(x,8n) = g(x) for some 

8_ € 0 , then 9 is a consistent estimate of 8Q. If g(x) does not 

belong to the set f(x,8) , then 0 is an estimate of 9 , which mim-

mizes the Kullback-Leibler Information Criterion 

I (g, f,9) = ƒ g(x) logg(x) dx- ƒ f(x,8) logg(x) dx 

and I(g, f, 0) >_ 0 , while Kg, f, 9) = 0 if and only if g(x) = f(x,0) 

almost everywhere (White (1982)). 
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The QMLE is a handsome tooi for estimating the prediction filters 

(afk) ...a(k)} . 1 P 

For the 1-step filter 

x = k% , + ... + (Px + 5 (4.2) 
t 1 t-1 p t-p t 

where £ is assumed to be white noise with E[g^] = a£ . The likeli-
t t E, 

hood function is: 

LQ « - f log a\ - 1 log 1 ^ ) 1 - ^ 1 ^ ï ^ i (p)x.xj+i|+1(x.-...a^
1)x._p)

2} 

where fi..<p) = ri._.i , w J(p) are the elements of ü (p) and 

* n ... . r , are the theoretical autocovariances of the process. 
0 p-1 

For the multi-step filters there are several possibilities for the for-

mulation of the likelihood. A direct approach is that the underlying dis

tribution can be approximated by 

x^ = a$k)x . + ...+ « ( k )x . x] + n (4.3) 
t 1 t-k p t-k-p+1 t 

where n is assumed to be white noise and E[n?;] = er2 • The likelihood 
t t . n 

function of the fitted distribution can be written as: 

T 

L «e 
1 2 

, p+k-lp+k-1 .. T (k\ 2 

loga2-Uog|Q(p+k)|-i-Tf.I] .1, wJ(p+k)x.x. + .Ip4xi-..V V p _ k + 1 ) } 

However, there is a remarkable difference between L_ and L .In evaluat-

ing L„ the assumed underlying process is (4.2), whereas for L. it is 

assumed that (4.3) is the true distribution. A predictive likelihood 

for k >_ 2 , while (4.2) is the assumed distribution, can be obtained 

by the likelihood function 
2 

X T v-
L - - i z log F. - i . I =± 

1 i=k+l x i=k+l bi 

where v. = x. -x. ,. , and F. = var [v.] (Gersch and Kitagawa (1983)) 
ï l i l i-k 1 1 

(k) (k) 
The parameters of interest {a. , ..., a } can be obtained in two 

stages. In first instance maximize L„ with respect to the unknown 
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~(k) ~(k) 
parameters and in the second stage calculate {a , ..., a } 

recursively f ram the estimates {a] ,...., a } . For practical appli-

cations of L„ , v. and F. (i=k+l, ..., T) can be determined by the 

Kalman filter, but differentiation of L„ can be cumbersome. 

By maximizing L. and L„ respectively the parameters of interest may 

not converge to the same value, even if T tends to infinity, because 

by assuming different distributions the stationary conditions can change, 

An examp-le can make this point clear. Suppose the true distribution is 

AR(2), and the assumed distribution for the 1-step filter is also AR(2), 

Xt = *1 Xt-1 + *2 Xt-2 + 5t 
(4.4) 

For this process the stationary conditions are given by the region Kj , 

where 

<j>j + (f>2 < 1 , + J - + J < 1 > |<I»2I < 1 (4.5) 

(see figure 1). For the sake of simplicity we evaluate the multi-step 

filter only for k = 2 . If the assumed distribution is: 

xt = S2 Xt-2 + S3 Xt-3 + \ 
(4.6) 

then this process is stationary if 

B2 +'B3 < 1 , B 2~B 3 < 1 , 6| - B2 < 1 , |ö2| < 1 (4.7) 

Fig. 1. Stationary regions for the 1-step and 2-step f i l te r of the 
process x = <j>j xfc_j + <t>2

 y:
t_2

 + ?t • 
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In terms of (<f>i»<f>o) , (4 .6) i s : 

x t = (*? + *2 ) x t - 2 + *1 *2 X t - 3 + \ • 

By r e w r i t i n g 

1 - (** + <f.2)z
2 - (f>j «j.2 z

3 - (1 + (J.JZ) (1 - «frjz - <}.2 z
2 ) 

it follows that the region K„ implied by the stationary conditions (4.7) 

is given by (4.5). and the additional constraint \$.\ < 1 . However 

K c K , and K *«•. K is not of the measure zero, so if (<j> ,cjO ÉK N L 

and when the direct approach is done by using L, , the parameters B„ anc* 

L do not converge to the true values, although both likelihood functions 

are dominated by the residual sum of squares. 

In section II optimal prediction filters are obtained by solving the Y-W 

equations (2.1). For k = 1 the roots of the prediction filter lay 

outside the unit circle (Pagano (1972)). For multi-step predictions the 
(k) 

roots of the optimal filter {a (z)} do not have necessarily this 

property, so the application of quasi-likelihood via L. can lead to a 

filter, which is not optimal in terms of prediction error variance. 

V The properties of the prediction filters for some series are investigat-

ed by simulation. The following time series are considered 

AR(1) xfc = 0.9 xt_j + 5t 

MA(1) \ = 5
t " °*

9 Ct-1 

ARMA(1,2) xt = 0.8
 x

t
 + ?t

 + 0-4 5t_j + O.B Kt_2 . 

The AR(1) process has been chosen to analyse the predictors when the 

class of models which are considered consists also the true model. The 

sample sizes T = 50 and T = 100 are investigated, because in applied 

work this sample sizes often occured. For the three processes the optimal 

values of p, f™ , , gT,i, and a2(k) are given in the tables 1 till 3. 

The variance of the innovation sequence E, is set at 1.0 . Predictions 

up to a time horizon of 8 are investigated. 
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The tables should be read als follows: k is the time horizon of predic

tion, p is the order of the optimal AR(p,k) filter, fT+t is t n e Vx&~ 

diction error variance when the optimal AR(p,l) model has been used for 

prediction, g,..,, is the error variance of the optimal AR(p,k) filter 

and cr2(k) is the corresponding asymptotic prediction error variance and 

is equal to the variance of the assumed distribution. For the ARMA(1,2) 

process the minimum absolute value of the roots are also given, because 

all roots of this filter may not lay outside the unit circle. The optimal 

orders are obtained by evaluating the expressions (3.1) and (3.2) for 

p=l...M and then select p for which the error variance is minimal. For 

the selected p, cr2(k) is obtained by letting T go to infinity. 

For the AR(1) model holds asymptotically fT+v
 = Sf+i, » t)Ut f°r sma-H 

samples f , < g,,,,., , which is due to the f act that f_ . is based on 
1+k 1+K l+K 

the estimation of p. , whereas for gT+t the estimate of p, is used, 

so efficiency is lost, For the MA(1) model gT+, <
 r

T+i, f°r k ̂  2 and 

the multi-step prediction filters reduces to a random walk, so gT+-K. is 

equal to the variance of the process. In all cases gT+t is less than 

f„ , for the ARMA(1,2) model, although for k = 2 the difference is 

negligible and for T = 100 the difference is smaller than for T = 50. 

For the simulation random variables were generated by making use of the 

IMSL routine GGNPM, and time series of 407 observations were computed. 

The first 100 realizations were not used and the following T observations 

were used for estimation. To make the estimates independent from the pre-

dictions, the observations 300 till 407 were used to evaluate the fore-

cast error variances. The number of replications for the AR(1) and MA(1) 

process were 500, and for the ARMA(1,2) 250 samples were generated. For 

each process the same innovation sequence was used. 

In first instance the order is determined by the Y-W estimates of 02(p,k), 

which don't require the estimation of the remaining parameters. The fore-

cast error variances in small samples are influenced by the method of 

estimation (Ansley and Newbold (1980, 1981)), so three estimation methods 

have been applied. First the parameters are obtained by solving the Y-W 

equations (2.1). Secondly the likelihood L is maximized, although for 

some prediction filters of the ARMA(1,2) process the estimates cannot 
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converge to the theoretical values, so the error variances must be biased 

upwards. The likelihood functions L. and L_ are dominated by the residual 

sum of squares and we have reestimated the parameters by least squares, 

~(k) _-l 
a = B q 

and 

-2/ M 1 l , -(k) ~(k) .2 o^(p,k) = ™ rrr „ £ , (x -a. x^ . - . . . - a x^ , .,) 
n T-p-k+1 t=p+k t 1 t-k p t-k-p+1 

where 

T T 
?ij = t=|+k Xt-k+l-i

 Xt-k+l-j '
 qi = t=?+k

 xt Xt-k+l-i C1.J-1---P)-

For the analysis of the predictive performance and the order determination 

the following statistics are computed: 

1) The estimated asymptotic forecast error varianee 

1 NR „ 

where NR is the number of replications, j is the replication index 

and p is the estimated order of replication j. 

2) The mean square error of the variance*relative to the theoretical 

) 
value ( 

MSE (52 (k)) = {^jS, {3^(p,k)(j) - ^(k)}2}* . 

3) The bias of the predictions 

j NR j 100 
Bias (fT+k) = — .Ij {J^ .IJ xT+k+. (j) - xT+k+.|T+i (j)} 

4) The prediction error varianee 

! NR f j 100 

^T+k NR j-1 1.100 iSl {(xT+k+i(j) XT+k+i|T+i(j))~(XT+k+i(j) XT+k+i |T+i( j)) }' 

where the bar implies the estimated mean within a replication. 

5) The mean square error of this varianee relative to the theoretical 

value 

(\ NR 2V 
MSE < W " [m jSi <f

T+k «> " f
T+k} ) 
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6) The mean of the estimated orders 

j NR 

7) The mode of the order distribution, 

~mod 

The statistics 3, 4 and 5 are also computed for Sm., • For each time 

horizon hundred predictions are computed. The results of the simulation 

are summarized in the tables 1 till 3. We first discuss briefly the order 

determination. For the AR(1) process the maximum number of parameters was 

set at 10 and for the other two processes the upper limit was 15. For 

k = 1 the order distribution of the AR(1) process coincide with the 

asymptotic distribution given by Shibata (1976). For increasing k the 

distribution becomes more fat-tailed. Especially for T = 50 the distri

bution tends towards zero, which explains the decreasing mean when k in-

creases. For k = 1 the order of the optimal filter of the MA(1) process 

is slightly underestimated and for increasing k the distribution is domi-

nated by p = 0 . For the ARMA(1,2) process and small k the order is 

strongly underestimated, which may be caused by the very erratic behav-

iour of the sequence cr2(p,k) (see table 4). 

ï 10 11 12 

k - I ,T -50 1.647 1.589 1.391 1.274 1.286 1.230 1.260 1.226 1.243 .1.253 1.259 1.277 

k-1 ,1-100 1.640 1.547 1.342 1.228 1.224 1.600 1.175 1.141 1.146 1.145 1.143 1.151 

k=2,T=50 3.865 3.249 3.291 2.997 3.059 3.009 3.012 3.032 3.036 3.092 3.094 3.147 

k=2,T=100 3.823 3.142 3.146 2.858 2.884 2.811 2.793 2.793 2.774 2.802 2.789 2.815 

Table 4. Theoretical values of the asymptotic forecast variance for some 
selected values of the ARMA(1,2) process. 



YW 

QML 

LS 

k 1 2 3 4 

T 5 0 1 0 0 5 0 1 0 0 5 0 1 0 0 5 0 1 0 0 

P 1 1 1 1 1 1 1 1 
0-2 (k) 1 . 0 0 0 1 . 0 0 0 1 . 8 1 0 1 . 8 1 0 2 . 4 6 6 2 . 4 6 6 2 . 9 9 8 2 . 9 9 8 
fn 1 . 0 2 0 1 . 0 1 0 1 . 8 7 5 1 . 8 4 2 2 . 5 8 4 2 , 5 2 5 3 . 1 6 8 3 . 0 8 3 
T+k 

gT+k 
1 . 8 7 9 1 . 8 4 4 2 . 6 0 0 2 . 5 3 3 3 . 2 0 1 3 . 1 0 2 

P 1 . 4 3 0 1 . 4 4 4 1 . 4 9 4 1 . 6 6 6 1 . 4 6 2 1 . 7 7 4 1 . 3 9 4 1 . 9 0 0 

mod 1 1 1 1 1 1 1 1 

oUk) 1 
MSEfr?2(k» 

. 0 4 5 1 . 0 2 9 1 . 7 7 1 1 . 8 0 2 2 . 2 8 7 2 . 3 8 5 2 . 6 3 1 2 . 7 9 9 oUk) 1 
MSEfr?2(k» . 2 7 5 . 1 7 3 . 5 4 2 . 3 5 2 . 8 2 1 . 5 5 1 1 . 0 8 0 . 7 3 8 

b ias f . 0 1 2 . 0 0 6 . 0 2 0 . 0 1 1 . 0 2 6 . 0 1 6 . 0 3 1 . 0 2 1 
fj+k 1 . 1 0 7 1 . 0 1 8 2 . 0 4 8 1 . 8 4 6 2 . 7 7 6 2 . 5 1 6 3 . 2 9 2 3 . 0 2 2 

MSE(fT . ) . 3 3 0 . 1 7 4 . 7 6 2 . 4 1 2 1 . 0 8 4 . 6 8 6 1 . 3 1 0 . 9 5 4 
b ias g . 0 2 2 . 0 1 4 . 0 2 9 . 0 2 4 . 0 3 7 . 0 3 2 

| l + k . MSE(gT+k) 
2 . 1 0 2 1 . 8 6 0 2 . 9 1 2 2 . 5 5 8 3 . 4 9 0 3 . 0 9 9 

| l + k . MSE(gT+k) . 8 8 1 . 4 1 5 1 . 2 8 3 . 6 3 9 1 . 5 3 5 . 9 9 3 

*rj<k) . 9 3 5 . 9 6 0 1 . 6 6 7 1 , . 7 2 3 2 . 2 3 3 2 . 3 3 3 2 . 6 2 7 2 . 7 8 7 
MSE(o^(k)) . 2 0 1 . 1 4 0 . 4 3 6 . 3 0 7 . 7 1 3 . 4 9 5 . 9 8 9 . 6 8 2 

b ias f- . 0 0 4 . 0 0 3 . 0 0 1 . 0 0 5 . 0 0 4 . 0 0 9 . 0 0 6 . 0 1 2 
?T+k 1 . 0 4 5 1 , . 0 0 9 1 . 9 0 2 1 . 8 2 5 2 . 5 8 8 2 . 4 8 6 3 . 1 0 6 2 . 9 9 1 

MSE(fT+k) . 2 3 1 . 1 6 3 . 5 0 9 . 3 6 6 . 7 5 7 . 5 8 8 . 9 8 5 . 8 1 4 
b ias g . 0 0 1 . 0 0 6 . 0 1 1 . 0 1 3 . 0 2 0 . U20 

MSE(|T+k) 
1 . 9 4 6 1 , . 8 3 4 2 . 7 2 9 2 . 5 1 2 3 . 3 3 1 3 . 0 5 4 

MSE(|T+k) . 6 9 8 . 3 7 1 1 . 0 2 0 . 6 0 9 1 . 2 6 9 . 8 7 9 

# ( k ) , 
MSE(o^(k)) , 

. 930 , 9 5 9 1 , . 6 5 0 1 , . 7 1 9 2 . 2 0 2 2 , 3 2 2 2 . 5 8 5 2 . 7 7 3 # ( k ) , 
MSE(o^(k)) , , 2 0 3 ,140 . 4 3 7 . 307 . 7 2 8 . 5 0 2 1 . 0 2 1 . 6 9 6 

b ias f-, . 001 ,002 - , . 0 0 1 .005 . 0 0 2 . 0 0 8 . 0 0 5 . 0 1 2 
fI+k 1• 

MSE(fT+k) , 
, 0 4 8 1 , , 010 1 , . 9 1 1 1 , . 827 2 . 6 0 3 2 . 4 8 9 3 . 1 2 7 2 . 9 9 6 fI+k 1• 

MSE(fT+k) , ,232 .163 . 5 1 6 .366 . 7 7 8 . 5 8 9 1 . 0 2 2 . 8 1 6 
b ias g . 0 0 0 . 0 0 6 . 0 1 1 . 0 1 3 . 0 2 2 . 0 2 0 

gT+k 1 , . 9 6 4 1 , . 8 4 1 2 . 7 5 4 2 . 5 2 5 3 . 3 6 5 3 . 0 6 8 
MSE(gTi .) . 7 0 2 . 3 7 3 1 . 0 2 3 . 6 0 2 1 . 2 8 2 . 8 7 3 

Table 1. Theoretical and simulation results of the AR(1) process. 

5 

50 100 

1 1 
3.428 3.428 
3.643 3.536 
3.714 3.571 

1.364 1.914 
1 1 

2 . 8 5 4 3 . 1 1 5 
1 . 3 2 0 . 9 2 4 

. 0 3 4 . 0 2 6 
3 . 6 5 9 3 . 4 0 5 
1 , 4 9 9 1 . 1 6 1 

. 0 4 6 . 0 4 2 
3 . 9 3 7 3 . 5 2 1 
1 . 8 4 8 1 . 2 7 5 

2 , . 8 9 4 3 . 1 5 0 
1 , . 2 2 9 . 8 6 0 

. 0 1 0 . 0 1 7 
3 , . 5 0 1 3 . 3 8 2 
1 . . 1 9 4 1 . . 0 1 9 

. 0 1 7 . 0 2 3 
3 , . 8 2 0 3 . 4 9 4 
1 , , 6 0 b 1 . 1 6 9 

2 . , 8 6 4 3 , . 1 4 1 
1 , . 267 . 8 7 9 

. 008 . 0 1 7 
3 , , 5 2 8 3 , . 3 8 7 
1 . , 244 1 , . 0 2 0 

. 0 2 0 . 0 2 4 
3 . , 8 5 5 3 , . 5 0 6 
1 . . 6 0 7 1 , . 1 5 9 

6 

50 100 

1 1 
3.777 3.777 
4.028 3.902 
4.139 3.958 

1.202 1.880 
1 1 

3.018 3 .348 
1.539 1.086 

.038 .031 
3.906 3.690 
1.643 1.337 

.047 .049 
4 .216 3.832 
1.949 1.472 

3.091 3 .411 
1.459 1.027 

.013 .021 
3.791 3 .678 
1.370 1.209 

.018 .032 
4 .163 3.827 
1.801 1.365 

3.052 3 .403 
1.514 1.051 

.012 .021 
3 .821 3 .685 
1.425 1.211 

.022 .033 
4 .195 3 .838 
1.792 1.361 

50 

1 
4 .059 
4 .336 
4 .495 

1.086 
0 

3.123 
1.716 

.040 
4 .079 
1.749 

.044 
4 .413 
2.116 

3.238 
l . b l b 

.016 
4 .014 
1.513 

.014 
4 .343 
1.887 

3.220 
1.675 

.015 
4 .047 
1.570 

.017 
4 .383 
1.894 



50 100 50 100 50 100 50 100 50 100 50 1 

YW 

QML 

LS 

p 5 7 0 0 0 0 
1>810 

0 0 0 0 
, .of-(k) 1 . 0 7 5 1 . 0 4 3 1 . 8 1 0 1 . 8 1 0 i . 8 1 0 1 . 8 1 0 1>810 1 . 8 1 0 1 . 8 1 0 1 . 8 1 0 1 . 8 1 0 1 . 8 

fT+k 1 . 1 8 1 1 . 1 1 6 2 . 0 1 1 1 . 9 4 9 1 . 9 7 5 1 . 9 3 1 1 .93H 1 . 9 1 3 1 . 9 0 7 1 . 8 9 5 1 . 8 7 1 1 . 8 

&T+k 1 . 8 1 0 1 . 8 1 0 1 . 8 1 0 ; 1 . 8 1 0 1 . 8 1 0 1 . 8 1 0 1 . 8 1 0 1 . 8 1 0 1 . 8 1 0 1 . 8 

P 4 . 0 3 8 5 . 9 2 0 . 9 0 0 1 . 0 9 6 . 7 7 6 1 . 0 2 4 . 6 9 0 . 9 3 8 . 5 7 6 . 8 4 4 . 5 5 4 . 8 

Pmod 4 4 0 0 0 0 0 0 0 0 0 

S £ ( k ) 
MSE(5- (k) ) 

1 . 0 0 0 . 9 9 1 1 . 6 5 6 1 . 7 1 0 1 . 6 6 5 1 . 7 1 3 1 . 6 7 5 1 . 7 1 b 1 . 6 8 5 1 . 7 2 0 1 . 6 8 5 1 . 7 S £ ( k ) 
MSE(5- (k) ) . 2 4 6 . 1 6 3 . 4 5 1 . 3 1 6 . 4 4 5 . 3 1 8 . 4 3 6 . 3 1 6 . 4 3 4 . 3 1 7 . 4 3 4 . 3 

b i a s f . 0 0 2 . 0 0 2 . 0 0 1 . 0 0 1 . 0 0 2 . 0 0 2 . 0 0 0 . 0 0 0 . 0 0 1 . 0 0 1 . 0 0 1 . 0 

MSE^T + k ) 
1 . 2 3 0 1 . 1 3 8 2 . 0 2 5 1 . 9 4 3 1 . 9 7 6 1 . 9 2 7 1 . 9 3 3 1 . 9 0 7 1 . 8 9 8 1 . 8 8 6 1 . 8 7 2 1 . 8 

MSE^T + k ) . 2 4 0 . 1 9 5 . 4 6 2 . 3 9 3 . 4 1 2 . 3 8 4 . 3 8 6 . 3 7 2 . 3 7 4 . 3 6 2 . 3 6 0 . 3 
b i a s g . 0 0 1 . 0 0 1 . 0 0 2 . 0 0 2 . 0 0 0 . 0 0 0 . 0 0 1 . 0 0 1 . 0 0 0 . 0 

§T+k 1 . 9 0 0 1 . 8 5 6 1 . 8 9 2 1 . 8 5 9 1.'883 1 . 8 5 1 1 . 8 6 9 1 . 8 4 8 1 . 8 6 5 1 . 8 
MSE(gT + k ) . 4 3 8 . 3 7 3 . 4 0 4 . 3 7 2 . 4 0 3 . 3 6 5 . 3 8 5 . 3 5 3 . 3 8 7 . 3 

MSElJa^Ck-)) 
. 9 4 3 . 9 5 3 1 . 6 4 5 1 . 7 0 5 1 . 6 5 1 1 . 7 0 7 1 . 6 6 1 1 . 7 1 2 1 . 6 6 9 1 . 7 1 4 1 . 6 6 7 1 . 7 

MSElJa^Ck-)) . 2 5 9 . 1 7 5 . 4 6 2 . 3 2 1 . 4 5 5 . 3 2 4 . 4 4 9 . 3 2 2 . 4 4 4 . 3 2 3 . 4 4 6 . 3 
b i a s f . 0 0 2 . 0 0 2 . 0 0 1 . 0 0 1 . 0 0 2 . 0 0 2 . 0 0 0 . 0 0 0 . 0 0 1 . 0 0 1 . 0 0 0 . 0 

?T+k 1 . 2 4 6 1 . 1 4 6 2 . 0 7 2 1 . 9 6 6 2 . 0 1 7 ' 1 . 9 4 8 1 . 9 6 8 1 . 9 2 6 1 . 9 2 8 1 . 9 0 3 1 . 8 9 5 1 . 8 
MSE(f T + k ) . 2 4 6 . 1 9 9 . 4 9 1 . 4 0 6 . 4 3 8 . 3 9 6 . 4 0 4 . 3 8 1 . 3 9 1 . 3 7 0 . 3 7 6 . 3 

b i a s g . 0 0 1 . 0 0 1 . 0 0 2 . 0 0 2 . 0 0 0 . 0 0 0 . 0 0 1 . 0 0 1 . 0 0 0 . 0 

§T+k 1 . 9 1 4 1 . 8 6 2 1 . 9 0 6 1 . 8 6 5 1 . 8 9 6 1 . 8 5 7 1 . 8 8 6 1 . 8 5 4 1 . 8 8 2 1 . 8 
MSE(gT + k ) . 4 6 5 . 3 8 0 . 4 3 0 . 3 8 2 . 4 3 6 . 3 7 4 . 4 1 1 . 3 6 0 . 4 1 5 . 3 

5 2 ( k ) 
MSE(o2(k)) 

. 9 4 0 . 953 1 . 6 4 6 1 . 7 0 8 1 . 6 5 4 1 . 7 1 0 1 . 6 6 2 1 . 7 1 7 1 . 6 6 6 1 . 7 1 7 1 . 6 6 6 1 . 7 5 2 ( k ) 
MSE(o2(k)) . 2 6 5 . 1 7 5 . 4 6 4 . 3 1 9 . 4 5 6 . 3 2 1 . 4 5 0 . 3 2 0 . 4 4 4 . 3 2 1 . 4 4 8 . 3 

b i a s f . 0 0 2 . 0 0 2 . 0 0 1 . 0 0 1 . 0 0 2 . 0 0 2 . 0 0 0 . 0 0 0 . 0 0 1 . 0 0 1 . 0 0 0 . 0 

M S E ^ + k ) 
1 . 2 5 5 1 , . 1 4 8 2 . 0 8 4 1 . 9 7 0 2 . 0 2 8 1 . 9 5 2 1 . 9 7 8 1 . 9 2 9 1 . 9 3 5 1 . 9 0 5 1 . 9 0 3 1 . 8 

M S E ^ + k ) . 2 6 4 , 2 0 1 . 5 1 1 . 4 0 8 . 4 5 6 . 3 9 9 . 4 1 7 . 3 8 4 . 3 9 9 . 3 7 2 . 3 8 2 . 3 
b i a s g . 0 0 1 . 0 0 1 . 0 0 2 . 0 0 2 . 0 0 0 . 0 0 0 . 0 0 1 . 0 0 1 . 0 0 0 . 0 

MSEtgT + k) 
1 . 9 1 9 1 . 8 6 3 1 . 9 0 8 1 . 8 6 7 1 . 8 9 9 1 . 8 5 9 1 . 8 9 0 1 . 8 5 5 1 . 8 8 7 1 . 8 

MSEtgT + k) . 4 7 3 . 3 8 1 . 4 3 0 . 3 8 4 . 4 2 4 . 3 7 4 . 4 2 1 . 3 6 0 . 4 2 5 . 3 

Tab Ie 2. Theoretical and simulatión results of the MA(1) process 



YW 

QML 

LS 

k 1 2 3 4 5 6 

T 50 100 50 100 50 100 50 100 50 100 50 

P, 8 8 4 9 2 4 1 2 1 2 1 
o2(k) 1 .055 1 .055 2 .720 2 .513 5 .919 5.717 8 .069 7.764 9 .140 8.945 9.826 9 . 

"T+k 1 .226 1 .141 3 .004 2 .782 6 .755 6.205 9.157 8.397 10.665 9.785 11.552 1 0 . 
?T+k 2 .997 2 .513 6 .450 5.717 8.570 7.764 9 .850 8.945 10.7.71 9 . 

IMmin 1 .126 1 .126 .926 .849 .879 .819 1.178 .933 1.192 .993 1.202 1 . 

P 3 .748 6 .032 3 .296 5 .508 2 .468 3.680 2 .064 3.240 1.820 2 .744 1.528 2 . 

Pmod 3 6 2 6 2 2 1 2 1 1 0 

SUk) 1 .471 1 .248 3 .088 2 .789 5 .330 5.390 6 .556 6 .883 7.199 7.769 7.590 8 . 
MSE(5^(k)) .713 .368 1 .190 .724 1 .967 1.222 2.947 1.924 3.602 2.420 4 .047 2 . 
Jjias f - .001 - .001 - .003 - .003 - .002 - . 0 0 2 - . 0 0 6 - . 0 0 1 - . 0 1 0 .002 - . 0 1 3 . 
fT+k_ 1 .489 1. .225 3 .532 2 .904 6 .983 6.111 8.980 8.046 10.069 9 .239 10.470 9 . 
MSE(fT+k) .572 .266 1 .654 .742 3 .194 1.613 4 .163 2 .423 4 .447 3.080 4 .382 3 . 
b ias g - .009 0 .000 .001 .003 - . 0 0 4 .014 - . 0 0 4 .023 0 .000 . 0 

^ k , ' s 
MSEtgT+k) 

3 .534 2 .933 7 .085 6.154 9.116 8.053 10.250 9 .209 10.721 9 . ^ k , ' s 
MSEtgT+k) 1, .541 .776 3, .178 1.664 3.996 2 .415 4 .527 2.976 4 .627 3 . 3 

82(k) 
MSE(52(k)) 
b ias f 

1. .078 1. .001 2, .842 2, .513 5 .587 5.662 6 .909 7.214 7.593 8.122 8.044 8 . b 82(k) 
MSE(52(k)) 
b ias f 

.327 .182 1. .048 .604 1, .958 1.260 2 .897 1.903 3.508 2 .404 3.892 2 . 8 
82(k) 
MSE(52(k)) 
b ias f -, .007 -, ,001 .016 -, .004 -, .024 - . 0 0 6 - . 0 3 1 - . 0 0 7 - . 0 3 6 - . 0 0 7 - . 0 3 5 - . 0 
^T+k 1, .404 1. ,204 3 . .244 2 , ,859 6. .698 6 .188 8.805 8.206 10.102 9.454 10.713 1 0 . 1 
MSE(fT+k) .384 ,233 .904 .654 1, .895 1.501 2.806 2 .283 3.474 2 .915 3.882 3 . 3 
b ias g - . ,028 - , .005 -, .028 - . 0 0 2 - . 0 3 6 .006 - . 0 3 3 .017 - . 0 3 7 . 0 
gT+k- , MSE?gT+k) 

3 , .512 2, .956 6, .793 6.320 8 .813 8.1109 10.019 9.267 10.557 9 . 9 gT+k- , MSE?gT+k) 1. .089 ,790 2, .027 1.720 2.856 2 .364 3.534 2 .943 3.862 3 . 3 

a^(k) 1. .070 1. .000 2 . .494 2, .405 5 . ,081 5.262 6.572 6.959 7.372 7 .988 7 .903 8 . 5 
MSE(5^(k)) 
b ias f 

.326 ,183 ,808 .515 1, .926 1.226 2 .938 1.938 3.586 2 .465 3.984 2 . 8 MSE(5^(k)) 
b ias f - , ,008 - , ,001 - , ,017 - , .004 -, .025 - . 0 0 5 - . 0 3 1 - . 0 0 6 - . 0 3 5 - . 0 0 5 - . 0 3 4 - . 0 

fT+k. 
MSE(fT+k) 

1 . ,409 1 . ,207 3 . ,257 2 . ,863 6 . .720 6.194 8 .843 8.212 10.156 9 .463 10.793 1 0 . 1 fT+k. 
MSE(fT+k) .385 ,233 ,907 ,651 1, .905 1.499 2.837 2.286 3.529 2 .931 3.980 3 . 4 
bias g _, ,023 ,004 ,027 - . 0 0 5 - . 0 3 2 .002 - . 0 3 2 .014 - . 0 3 3 . 0 

3 , .234 2 . ,882 6, ,691 6 .111 8.824 8 .021 10.129 9 .253 10.753 9 . 9 
MSE^ST^I.) ,844 ,661 1 . ,900 1.513 2.815 2 .208 3.554 2 .843 3.976 3 . 3 

Table 3. Theoretical and simulation results of the ARMA(1,2) process. 
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We now discuss the predictive performance of the various filters. It 

must be noted that the estimates are. influenced by the order determina-

tion, so it might be expected that the variability of the estimates 

shall increase. More comparable results can be obtained by fixing the 

order. In almost all cases o2(k) is biased downwards. Some notable 

exceptions are Y-W estimates of the AR(1) and the ARMA(I,2) process 

for small k'. For the strongly autocorrelated processes the bias becomes 

larger for increasing time horizons and the Y-W estimates are more biased 

than the QML and LS estimates. In general we can see that for the AR(1) 

and the ARMA(1,2) process £„,, ) and g„ , are overestimated for 
T+k T+k 

small k, whereas the error variances are underestimated for increasing 

k. For the correctly specified AR(1) process fT+, is less than §T+k 

for all time horizons and for the MA(1) process in nearly all cases the 

converse holds true, which is in accordance with the theoretical results. 

For the ARMA(1,2) process however ?_.. < §_,. for the Y-W estimates, 
1+K l+K 

f . > g , for the LS estimates and the method of QML gives mixed 
1+K 1+K 

results. 

The most important feature is that for all processes the difference 

f , - g is biased downwards. This implies that although for misspe-

cified models multi-step prediction filters are theoretically better, 

it is hardly to detect in practice. For the AR(1) process especially 

the multi-step filter produces more badly results than expected. 

A comparison of the different estimation methods leads to the following 

conclu-sions. First, there is little difference between QML and LS, 

except for those filters for which one or more roots lay inside the unit 
(k) (k) o 

circle. Secondly, QML and LS estimate the parameters (ou ,...,a ,az(p 

more accurate than Y-W, but the differences between the forecast varian

ces are less pronounced. By comparing the influence of the sample size, 

we see that the bias of the estimate 02(k) becomes less if T increases. 

The prediction error variances of the MA(1) process are more accurate 

for T = 100 , but for the other two processes there are mixed results. 
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VI In this paper we have examined the properties of the various prediction 

filters for stationary time series. By using different models for the 

various time horizons the forecast error variance can be reduced if the 

1-step filter is misspecified, although the simulation results show 

that the reduction is less than theoretically expected. We suspect that 

the order determination and the method of estimation have influenced the 

results, so both issues require further investigation. Especially the 

evaluation of a likelihood function, which is also based on the predic-

tive accuracy might be useful, although the analytical expressions can 

become quite complicated. It seems worthwhile to apply the proposed 

method to real economie data and to compare the results with results 

obtained by the conventional methods. However in the case of non-

stationary series, special attention should be paid to the prefilter, 

which is used for detrending the series. 

JK/AM/mt 
860414 
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