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Different normalization conditions for random phase approximation amplitudes have been ob-
tained recently for use with energy-dependent interactions. These conditions are shown to be equiv-
alent. A third method, which has a wider applicability, is also discussed.
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The random phase approximation (RPA) [1,2] is a
well-known method to describe the excitation of many-
body systems. As such it has also frequently been applied
in nuclear structure theory. In these applications [2], one
often adopted phenomenological interactions with a few
parameters adjusted so as to reproduce the energies of
the most collective excitations. More recently it has been
realized that this approach can only yield reasonable re-
sults in a unified description of both low-energy excita-
tions and those at higher energies, e.g., giant resonances,
if the interaction is allowed to be energy dependent. The
main physical origin of this energy dependence of the ef-
fective interaction in the RPA is the induced interaction
via medium polarization as well as the dispersive con-
tributions to the particle and hole propagators. These
effects are explicitly treated to some extent in the ex-
tended RPA (ERPA) method, utilized recently by vari-
ous authors [3-6).

One of the features of the ERPA method, and of the
use of energy-dependent interactions in the RPA in gen-
eral, is that this energy dependence yields an extra term
in the normalization condition for the RPA amplitudes.
In Ref. [6], this normalization condition was expressed in
the form
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where X7, and X7}, are the ERPA excitation amplitudes
of the nth excited state with excitation energy E™. In
this equation the operator
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is introduced, where (1 — F) is 1 (0) if orbital 1 is un-
occupied (occupied) in the Fermi sea, etc. Thus Q12
gives a plus or minus sign depending on whether it refers
to a particle-hole or hole-particle index. The energy-
dependent particle-hole interaction V?*(w) is

VP 5(w) = (@B~ V(w)|y671) . 3)

Now it can be shown that in a proper conserving theory
[6] the last term on the right in Eq. (1) is always nega-
tive. Even for low-energy excitations it may be as large
as several tens of percent, thereby contributing to the ex-
planation of observed quenching phenomena in, e.g., low-
lying magnetic excitations as well as giant resonances |5,
6].

]The observation that the normalization condition of
the RPA amplitudes is affected by the energy dependence
of the interaction was also made in a paper by Yang and
Kuo [7]. These authors gave the normalization condition,
using here the notation of Eq. (1):
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which at first sight seems completely different from Eq.
(1). In this expression A,(w) is the eigenvalue of the
RPA equation with an energy-dependent interaction
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In the ERPA, and in any theory which obeys conservation
laws according to the Baym-Kadanoff prescriptions [8],
A, (w) is a monotonically decreasing function of w and
therefore also in Eq. (4) the normalization of the RPA
amplitudes is less than unity. We shall now demonstrate
that Eqgs. (1) and (4) are equivalent.

For a clear exposition of the problem, it is useful to go
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back to the Bethe-Salpeter (BS) equation

Ti234(w) = Mp10(w)+ D Ma12(w) Vigse(w) 5634 (w)
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(6)
that is adopted in the ERPA for the particle-hole propa-
gator II. The spectral representation of IT is

Xn*X’n Xn X'n*
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with n a positive infinitesimal.
The philosophy of the ERPA is to adopt for II° the
free particle-hole propagator
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without the dressing of the particle or hole lines that is as-
sumed in the usual form of the full BS equation [9]. This
dressing of the particle and hole lines, as well as induced
forces, are included in the effective, energy-dependent,
particle-hole interaction VP*(w). If the poles E™ of the
propagator II, which represent the excitation energies of
the system, are well separated, one may solve the BS
equation (6) by considering the residues of both sides of

(M
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the equation at a pole E™. Then the first term of the
right-hand side (rhs) drops out, as it has no pole at E™,
and the homogeneous equation (5) for the amplitudes is
obtained. This derivation implies that a solution of Eq.
(5) is only a physical solution, i.e., a solution of Eq. (6),
if an eigenvalue coincides with the w parameter of the
interaction VP*(w) and this is then the excitation energy

E™ = An(E™). (9)

These solutions must then be obtained by solving Eq. (5)
for many values of the energy parameter w and searching
for the crossing points of the eigenvalue curves A with
the line w = FE; see, e.g., Ref. [6].

Since Eq. (5) is a homogeneous equation, it cannot
provide the normalization of the amplitudes. For this
purpose one has to return to the inhomogeneous equation
(6), which holds for all values of w and consider a value of
w that differs by a small quantity § from the eigenvalue
E™, so that the contribution of the inhomogeneous term
cannot be neglected. A useful expression is that for the
inverse of the propagator II, which follows immediately
from Eq. (6) by multiplication with II-! from the left

and (1'[0)_1 from the right
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Now consider the identity
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The factor in curly brackets is regular at w = E™ and may be Taylor expanded. The propagator II may be split into
a part [I%(w = E™ + §) that is regular at w = E™ and a pole term. Neglecting terms of order § one then obtains from

Eq. (11):
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Now the first term on the rhs vanishes because w = E" is a physical solution of Eq. (5). For the same reason the
second term will vanish upon multiplication from the left with X3, and summation over indices 1 and 2. In this way

one is left with the equation
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from which the normalization condition (1) is immediately obtained on division by X7;.
Also the normalization condition (4) is now readily obtained by using Eq. (5) for w = E™ 4 § and making a Taylor
expansion. The terms to zero order in § then just satisfy Eq. (5) for w = E™ and therefore one is left with the terms

to first order in §, which yield
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Multiplication by X7, (E,)Q15 from the left and summation over its indices eliminates the terms which contain the

derivatives of the Vectors X, because of the relation
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12
which follows from the transpose of (5). In this way Eq. (14) therefore yields the relation
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If this is substituted in the normalization condition (1),
condition (4) is obtained immediately.

From the derivation presented here, it is clear that
these methods are only applicable if the excitation en-
ergy E™ is well separated from the other solutions. In
the ERPA the use of Eq. (1) does not require much more
computational work than Eq. (4) because the matrix ele-

ments of %’51 differ only by simple energy denominators
from those of V' which are required anyway. However, Eq.
(4) has the advantage of being more transparent when the
ERPA equations are solved graphically, as, e.g., in Fig.
8 of Ref. [6]. In such a plot the normalization is directly
related to the steepness of the eigenvalue curve A, (w) at
the physical point w = A, (w) = E™.

We have focused here on the particle-hole RPA; how-
ever, the same argument may be carried through for the
particle-particle, hole-hole RPA, where Q12 = ©(1 —
FY©(2 — F) — ©(F — 1)O©(F — 2). One may also gen-
eralize to finite temperature where the respective Q op-
erators are

QM =fifao—fifey QB =ffo—fife, 17

with f =1 — f and the occupation probability f = [1 +
exp($7£)]~! in an obvious notation; note that in this case
Q is no longer of magnitude unity.

At higher excitation energy, i.e., in the region of two-
particle-two-hole states, the interaction V(w) will be-
gin to exhibit many close-lying singularities and conse-
quently many close-lying physical eigenvalues E™ will be
found. The procedure sketched here, i.e., the search for
the physical solutions of Eq. (5), then becomes rather
impractical. For this reason one applies another method
[6] to calculate excitation strengths directly after solving
Eq. (6) by means of Eq. (10). Here we apply this method
to derive the normalized ERPA amplitudes for discrete
states and we remark that it is in fact more widely ap-
plicable than Eqs. (1) and (4). For this purpose consider
the response matrix

Rypys(w) = — %Im Mapys (w)
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Clearly R(w) as well as II(w) is singular at w = E™ and
therefore the matrix (10) cannot be inverted. This prob-
lem is circumvented by keeping a finite value for 7 in Eq.
(7). Then

Raprs(w,m) = %; aB 1,‘5(7——52)—2:"—
X X ——T | . (19)
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The response function for a one-body probe
0 =) (a|0|B)alag (20)

af
is then immediately obtained as [6]

So(w,n) = Y _ (a|O|B)* Rapys(w,n)(v|016) , (21)
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i.e., as a sum of Lorentzians. If the value of 7 is taken
sufficiently small these Lorentzian distributions may be
separated off for well isolated physical excitation energies
E™. In this case the ERPA amplitudes, including their
normalization, may be directly deduced from the matrix

apXys = —nlm Hagys(w = E™,n) (22)
after ITI(w, n) is obtained from the inverse of the rhs of Eq.
(10). Of course Eq. (22) holds formally only in the limit
that 7 tends to zero. This method has the advantage that
it can also be applied in cases where one does not use II°
in the BS equation (6), but a free propagator which in-
cludes already the dressing of the particle and hole lines,
as in the standard BS equation [9]. In such cases one
cannot derive an ERPA equation of the form (5), but
one can still use Eq. (10). So this method is generally
applicable to solve equations of the form (6) with any
chosen TI°, e.g., to systems at finite temperature. One
may note that instead of using Eq. (22), X75X7s may
also be obtained by contour integration of II(w) around
the pole w = E™, excluding all other poles of (7). Such
a procedure is numerically more involved and therefore
the use of (22) is more practical.

In summary, we have discussed several apparently
different expressions for the normalization of the RPA
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transition amplitudes and shown the equivalence among
them. We would like to emphasize that the magnitude of
this normalization is in general smaller than unity when
a realistic energy dependent vertex function is employed.
This is in contrast to a number of early calculations where
this normalization was taken to be either +1 or —1. This
reduction of normalization has been found to be impor-
tant in determining nuclear transition rates [5,6]. It has
also been found to be important for nuclear matter sat-
uration properties, as indicated by a recent ring-diagram

nuclear matter calculation [10].
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