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Chapter 3

Preliminaries of Geometry

3.1 Riemannian geometry

In this section we present all concepts about Riemannian manifolds that we need later
on. A manifold will be C∞−manifold. A good reference for these matters would be [53].

Definition 3.1.1. Let U be a neighborhood of a point p on a C∞-manifold M. We
denote the ring of C∞-functions on U by C∞(U) and the space of derivations on C∞(U)
by X∞(U).

Lemma 3.1.1. The space X∞(U) is a Lie algebra.

Proof. Let Xi, i = 1, 2 be derivations, that is, Xi(fg) = (Xif)g + f(Xig). The space
X∞(U) is an associative algebra, where the composition is given by (X · Y )(f) =
X(Y (f)). This implies antisymmetry and the Jacobi identity, when we define [X,Y ] =
X · Y − Y ·X. One now has to show that the commutator is indeed a derivation. One
has

[X,Y ]fg = (X · Y − Y ·X)(fg)

= X(Y (f)g + fY (g)) − Y (X(f)g + fX(g))

= XY (f)g + Y (f)X(g) +X(f)Y (g) + fXY (g)

−Y X(f)g −X(f)Y (g) − Y (f)X(g) − fY X(g)

= XY (f)g + fXY (g) − Y X(f)g − fY X(g)

= [X,Y ](f)g + f [X,Y ](g),

and this implies that [X,Y ] ∈ X∞(U). �

Definition 3.1.2. A connection on a manifold M is an operator ∇ : X∞(U)×X∞(U)→
X∞(U) which assigns to two C∞ vector fields X and Y with domain U, a third C∞

vector field denoted by ∇XY with the same domain U, in such a way that the following
properties are satisfied:

1. ∇X(Y + Z) = ∇XY +∇XZ,

2. ∇X+WY = ∇XY +∇WY,

3. ∇fXY = f∇XY,

35



36 Chapter 3. Preliminaries of Geometry

4. ∇XfY = X(f)Y + f∇XY,

for any X,W vectors at p ∈ M, Y, Z smooth fields and f a smooth function defined
on a neighborhood of p.

Definition 3.1.3. We say an n−dimensional manifold M is a Riemannian manifold if M
is endowed with a symmetric and positive definite 2-covariant tensor field <,>, that is,
it is C∞(U)-bilinear. The tensor <,> is called the Riemannian metric of the manifold,
and it allows us to define distances, length, angles, orthogonality, etc., in the natural
way. In particular, the length of a vector X is defined as

‖X‖ =
√
〈X,X〉.

Definition 3.1.4. A Riemannian connection on a Riemannian manifold M is a connec-
tion ∇ on M such that

1. ∇XY −∇YX = [X,Y ](the connection is torsion free ),

2. Z〈X,Y 〉 = 〈∇ZX,Y 〉+ 〈X,∇ZY 〉,
for all fields X,Y and Z with the common domain.

Definition 3.1.5. The curvature tensor of a connection ∇ is a tensor R that assigns to
each pair of vectors X,Y at a point p a linear transformation R(X,Y ) of the tangent
space to p, as TpM, into itself. After extending X,Y and Z to smooth vector fields on
U , R(X,Y )Z is defined via the relation

R(X,Y )Z = ∇X∇Y Z −∇X∇Y Z −∇[X,Y ]Z. (3.1.1)

That this defines a tensor has to be proved. The value of this expression is independent
of the way the vector fields were extended.

Definition 3.1.6. The torsion tensor of a connection ∇ is defined by

T (X,Y ) = ∇XY −∇YX − [X,Y ],

where X and Y are smooth vector fields on U.

Definition 3.1.7. The Riemann-Christoffel curvature tensor (of type (0, 4)) is the
4−covariant tensor

K(X,Y,Z,W ) = 〈R(Z,W )Y,X〉
for any X,Y,Z, and W tangent vectors at p.

Riemannian curvature tensors have the following properties:

Theorem 3.1.2. The following relations are true:

1. K(X,Y,Z,W ) = −K(Y,X,Z,W ) = −K(X,Y,W,Z),
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2. K(X,Y,Z,W ) = K(Z,W,X, Y ).

Definition 3.1.8. Given two independent vectors X,Y ∈ TpM, the normalized quadratic
form,

sec(X,Y ) =
K(X,Y,X, Y )

〈X,X〉〈Y, Y 〉 − 〈X,Y 〉2 ,

is called sectional curvature of X,Y. It can easily be checked that sec(X,Y ) depends
only on the plane π spanned by X and Y, and so the sectional curvature is also called
K(π), the Riemannian curvature of the plane section π.

Definition 3.1.9. A Riemannian manifold M is said to have constant Riemannian cur-
vature κ if the Riemannian curvature of all plane sections is the constant κ.

Proposition 3.1.3. The following properties are equivalent:

1. K(π) = κ for all 2-planes in TpM.

2. R(X,Y )Z = κ(〈Y,Z〉X − 〈X,Z〉Y ) for any X,Y and Z in TpM.

Corollary 3.1.4. Assume the manifold M has certain constant Riemannian curvature.
Then

1. ∇XR = 0 along any direction determined by the vector field X. That is, the
Riemannian curvature tensor is parallel.

2. If Z is orthogonal to X and Y, then R(X,Y )Z = 0.

3. If W is orthogonal to X and Y, then K(W,Z,X, Y ) = 0 for any Z.

3.2 Cartan’s moving frame method

This method was introduced by Elie Cartan at the beginning of last century. Cartan’s in-
sight was that the local properties of a manifold equipped with a geometric structure can
be very well understood if one knows how the frames of the tangent bundle (compatible
with the geometric structure) vary from one point of the manifold to another.

Let M be an arbitrary Riemannian manifold with metric 〈, 〉. We choose a local
orthonormal moving frame X = {ei | i = 1, . . . , n}. Denote by (θi) the dual coframe, i.e.,

θi(ej) = δij .

Remark 3.2.1. Notice that the notion of “dual of frame” which is another frame is
defined as another frame Y = {fi | i = 1, . . . , n} so that 〈ei, fj〉 = δij . See [42] for more
discussion on this issue.

Lemma 3.2.2 (E. Cartan). On the Riemannian manifold M as above, there exists a
collection of 1-forms ωij uniquely defined by the requirements

(a) ωij = −ωji .
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(b) dθi = θj ∧ ωij.

Proof. Uniqueness: Suppose ωij satisfy the conditions mentioned above. Since

{θk | k = 1, . . . , n}

form a basic for 1-forms and

{θj ∧ θk | j, k = 1, . . . , n and j < k}

a basic for 2-forms, there exist functions f ijk and gijk such that

ωij =
∑

k

f ijkθ
k, and dθi =

∑

j<k

gijkθ
j ∧ θk, gijk = −gikj,

so that we have then

n∑

j

θj ∧ ωij =

n∑

j,k=1

θj ∧ f ijkθk

= −
n∑

j,k=1

f ijkθ
k ∧ θj

=
n∑

j,k=1,j<k

(f ijk − fkj)θj ∧ θk

Then the condition (a) is equivalent to

(a1) f ijk = −f jik
while (b) gives

(b1) f ijk − f ikj = gijk.

The above two relations uniquely determine the f ′s in terms of the g′s via a cyclic
permutation of the indices i, j, k as

f ijk =
1

2
(gijk + gjki − gkij). (3.2.1)

Existence: Consider the functions gijk defined by

dθi =
∑

j<k

gjjkθ
i ∧ θk, gijk = −gikj.

Next define ωij = f ijkθ
k where f ′s are given by (3.2.1). Then the forms ωij satisfy both

(a) and (b). �
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Let the matrix a be invertible, so that X.a is another moving frame and the dual
frame associated to this moving frame is simply

θX.a = a−1θX ,

in which θX is the dual 1-forms as above associated to X. In the following lemma we
determine how 1-form ω behaves under the change of moving frame.

Lemma 3.2.3. We have that

ωX.a = a−1da+ a−1ωXa, (3.2.2)

where ωX and ωX.a are unique 1-forms as in Lemma 3.2.2 associated to moving frames
X and X.a, respectively.

Proof. We compute

d(aθX.a) = da ∧ θX.a + a.dθX.a

= da ∧ (a−1.θX) + a.(θX.a ∧ ωX.a)
= (da.a−1) ∧ θX − a.(ωX.a ∧ θX.a)
= (da.a−1) ∧ θX − a.(ωX.a ∧ a−1θX)

= (da.a−1) ∧ θX − (a.ωX.a.a
−1) ∧ θX

= (da.a−1 − a.ωX.a.a−1) ∧ θX .

On the other hand from the fact aθX.a = θX , we get that

d(aθX.a) = dθX = θX ∧ ωX = −ωX ∧ θX .

This implies that

da.a−1 − a.ωX.a.a−1 = −ωX , or ωX.a = a−1.da+ a−1.ωX .a.

�

We see that the 1-form ω corresponding to the moving frame does not behave like a
tensor when we change the coordinate system or moving frame.

Definition 3.2.1. Cartan connection on a manifold M is an assignment of a matrix
valued 1-form ω to every moving frame such that (3.2.2) holds.

Lemma 3.2.4. Let ∇ be the Levi Civita connection on Riemannian manifold M com-
patible with its metric and e′is and θ′s are as mentioned above and also ωij be the 1-forms
as in Cartan’s Lemma. Then

∇ekej = ωij(ek)ei.
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Proof. Define ω̂ij by

∇ekej = ω̂ij(ek)ei.

Since the connection is compatible, thus

0 = ∇ek〈ej , el〉 (3.2.3)

= 〈∇ekej , el〉+ 〈ej,∇ekel〉 (3.2.4)

= 〈ω̂ij(ek)ei, el〉+ 〈ej , ω̂il(ek)ei〉 (3.2.5)

= ω̂lj(ek) + ω̂jl (ek), (3.2.6)

Hence ω̂lj = −ω̂jl .
The differential of θi can be computed in terms of the Levi-Civita connection and

we have that

dθi(ej , ek) = ejθ
i(ek)− ekθ

i(ej)− θi([ej , ek])
= −θi([ej , ek])
= −θi(∇ejek) + θi(∇ekej)

= −θi(ω̂lk(ej)el) + θi(ω̂lj(ek)el)

= ω̂ij(ek)− ω̂ik(ej)

where the first equality follows from the fact that θi(ek)
′s are constant and second

equality from the fact that ∇ is torsion free connection. But we see that

(θ ∧ ω̂)i(ej , ek) = θl ∧ ω̂il(ej , ek)
= θl(ej)ω̂

i
l(ek)− θl(ek)ω̂il(ej)

= ω̂ij(ek)− ω̂ik(ej).

So

dθ = θ ∧ ω̂.
Thus the ω̂′s satisfy both condition (a) and (b) of Cartan lemma, so that, by uniqueness,
we must have ω̂ij = ωij. �

In other word, the lemma shows that o(n)−valued 1−form ω = (ω ij) is the 1 form
associated to moving frame X via Levi-Civita connection ∇. In particular, as we show
in the following lemma, the 2-forms

Ω = dω − ω ∧ ω, Θ = dθ − ω ∧ θ, (3.2.7)

which are called Cartan curvature form and torsion form, respectively are the Rieman-
nian curvature and torsion tensor on the Riemannian manifold. Together the equations
(3.2.7) form the Cartan structure equation.

Lemma 3.2.5. 1. Ωi
k(el, ej) = 〈R(el, ej)ek, ei〉.
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2. Θl(ej, ek) = 〈T (ej, ek), el〉.
where R and T are curvature and torsion tensors defined in (3.1.1) and (3.1.6).

Proof. By definition we have

R(el, ej)ek = ∇el∇ejek −∇ej∇elek −∇[el,ej ]ek

= ∇elω
i
k(ej)ei −∇ejω

i
k(el)ei −∇∇el

ej−∇ej el
ek

= +el(ω
i
k(ej))ei + ωik(ej)ω

m
i (el)em

−ej(ω
i
k(el))ei − ωik(el)ωmi (ej)em

−(ωij(el)ω
m
k (ei)em − ωil(ej)ωmk (ei)em)

Hence

〈R(el, ej)ek, ei〉
= +el(ω

i
k(ej)) + ωmk (ej)ω

i
m(el)

−ej(ω
i
k(el))− ωmk (el)ω

i
m(ej)

−(ωmj (el)ω
i
k(em)− ωml (ej)ω

i
k(em))

On the other hand, we have that

Ωi
k(el, ej) = (dω − ω ∧ ω)ik(el, ej)

= el(ω
i
k(ej))− ej(ω

i
k(el))− ωik([el, ej ])

−ωmk ∧ ωim(el, ej)

= el(ω
i
k(ej))− ej(ω

i
k(el))− ωik(ωmj (el)em − ωml (ej)em)

−(ωmk (el)ω
i
m(ej)− ωmk (ej)ω

i
m(el))

= el(ω
i
k(ej))− ej(ω

i
k(el))− (ωmj (el)ω

i
k(em)− ωml (ej)ω

i
k(em))

+ωmk (ej)ω
i
m(el)− ωmk (el)ω

i
m(ej)

= 〈R(el, ej)ek, ei〉

Thus we obtain that

〈R(el, ej)ek, ei〉 = (dω − ω ∧ ω)ik(el, ej).

For the proof of the second part, see the comprehensive book written by Michael Spivak
[64] volume II. �

3.3 Ehresmann connection and Cartan geometry

We generalize the idea of classical Cartan connection. The content of this section can be
found in various references, Spivak’s [64] and Kobayashi’s [36] are comprehensive books,
Sharpe [63] describes the Cartan generalization of Klein’s Erlangen program.
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As in Euclidean space there is a natural way to parallel-translate and compare vectors
at different points, likewise in a general manifold a choice of a connection prescribes a
way of translating tangent vectors “parallel to themselves” and to intrinsically define a
directional derivative.

In the case of a principal bundle P with structure group G over a manifold M :

G // P

π

��
M

We explain the rule of a connection when thinking of lifting a vector field v ∈ TM to a
vector field ṽ ∈ TP in a unique way. For each p ∈ P, let Gp be the vector subspace of TpP
consisting of all the vectors tangent to the vertical fiber. That is Gp = ker(dπ(p)) ⊂ TpP
in which dπ(p) : TpP → TπpM.

The lifting of v will be unique if we require ṽ(p) to lie in a subspace of TpP comple-
mentary to Gp. A smooth and G−invariant choice of such a complementary subspace is
called a Ehresmann connection (Cf. [17]) on P. This leads to the following definition.

Definition 3.3.1. A connection on a principal bundle P is a smooth assignment of a
subspace Hp ⊂ TpP, for each p ∈ P such that:

1. TpP = Gp ⊕Hp,

2. Hgp = Tp(Lg)Hp for each g ∈ G, where Lg is the left-translation in G and conse-
quently Tp(Lg) : TpP → TgpP.

Given a connection, the horizontal subspace Hp is mapped isomorphically by dπ onto
TπpM. Therefore the lifting of v is the unique horizontal ṽ which projects onto v. An
equivalent way of assigning a connection is by means of a Lie algebra valued 1−form ω
(Cartan connection). If X ∈ g, let X † be the vector field on P induced by the action of
the 1−parameter subgroup etX . Since the action of G maps each fiber into itself, then
X† is tangent to the vertical fiber at each point, i.e., X ∈ Gp. For each v ∈ TpP, we
define ω(v) as the unique X ∈ g such that X † is equal to the vertical component of v.
It follows that ω(v) = 0 if and only if v is horizontal.

Proposition 3.3.1. A Cartan connection 1−form ω has the following properties:

1. ω(X†) = X,

2. L∗gω = Adgω for each g ∈ G, in which Ad is adjoint representation of G.

The proof can be found in [36] and appendix A of [63].
Now we define the Cartan geometry based on the Ehresmann connection. Assume

here that H is a group with the Lie algebra h as subalgebra of g.

Definition 3.3.2. A Cartan geometry ξ = (P, ω) on M modeled on (g, h) with group
H consist of the following data:
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1. a smooth manifold M ;

2. a principal left H bundle P over M ;

3. a g−valued 1−form ω on P satisfies the following conditions:

(a) for each point p ∈ P, the linear map ωp : TpP → g is an isomorphism;

(b) (Lh)∗ω = Ad(h)ω for all h ∈ H;

(c) ω(X†) = X for all X ∈ h.

The g−valued form on P given by

Ω = dω +
1

2
[ω, ω]

is called the curvature. If ρ : g → g/h is the canonical projection, then ρ(Ω) is called
the torsion. If Ω takes values in the subalgebra h, we say that the geometry is torsion
free.

Definition 3.3.3. Let M is a connected manifold. Then Cartan geometry ξ = (P, ξ)
has constant curvature if Ωp(Xp, Yp) is independent of p ∈ P whenever the vector fields
X and Y are ω−constant vector fields.

That may also be expressed by saying that the curvature function

K : P → Hom(C2(g/h), h), K(p) = Ωp(ω
−1
p (u), ω−1

p (v))

is constant.

Definition 3.3.4. A Cartan geometry whose curvature vanishes at every point is called
flat.

Notice that while structure equation always holds for a Lie group, meaning that the
curvature of Maurer-Cartan form vanishes, not all Cartan geometry are flat.

3.4 Homogeneous space, symmetric space

The material of this section is taken from [4] and [33]. A homogeneous space of a
Lie group G is any differentiable manifold P on which G acts transitively, that is, for
p1, p2 ∈M, there is g ∈ G so that g.P1 = p2. The subgroup

H = Hp0 = {g ∈ G : g.p0 = p0}

is called the isotropy group at p0. It is a theorem that each such P can be identified
with a coset space G/H for some subgroup H and that this H plays the rule of isotropy
group of some point.
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Let g, h be the Lie algebras of G and H respectively, and let m be the vector space
complement of h in g. Then

g = h⊕m, [h, h] ⊂ h,

and m is identified with the tangent space Tp0M of M = G/H at point p0. At the
moment we know nothing of [h,m] and [m,m].

Definition 3.4.1. When g satisfies the more stringent conditions:

g = h⊕m, [h, h] ⊂ h, [h,m] ⊂ m,

then M = G/H is called a reductive homogeneous space.

These spaces possess canonically defined connection with curvature and torsion.
Evaluated at fixed point p0, the curvature and torsion tensors are given purely in terms
of the Lie bracket operation on m :

(R(X,Y )Z)p0 = −[[X,Y ]h, Z], X, Y, Z ∈ m,

T (X,Y )p0 = −[X,Y ]m, X, Y ∈ m,

where subscript h and m refer to the component of [X,Y ] in those vector subspaces.

Definition 3.4.2. When g satisfies the conditions:

g = h⊕m, [h, h] ⊂ h, [h,m] ⊂ m,

[m,m] ⊂ h,

then g is called a symmetric algebra and G/H is a symmetric space.

For these spaces the above mentioned canonical connection is derived from a metric,
which is itself given by the restriction of the Killing form to m. Clearly this connection
is torsion free and curvature tensor is given as

(R(X,Y )Z)p0 = −[[X,Y ], Z], X, Y, Z ∈ m.

For the symmetric spaces with constant curvature, we do have that

κ =
K(R(X,Y )Y,X)

K(X,X)K(Y, Y )−K(X,Y )2
= − K([[X,Y ], Y ], X)

K(X,X)K(Y, Y )−K(X,Y )2
,

for X,Y ∈ m.

Remark 3.4.1. There also can be defined a Levi-Civita connection.

Remark 3.4.2. On p.518 of Helgason’s book [33] there is a table of symmetric spaces.
Directly beneath this table those spaces which are Hermitian are listed.

Remark 3.4.3. The space Sp(n + 1)/Sp(n) × Sp(1) is homogeneous space. There we
have that m = g/h in which g = sp(n+ 1) and h = sp(n)× sp(1). Moreover this space is
naturally reductive space. For definition see [4].


