Acknowledgement

Four years are a long time and many people have passed by, crossed my path or gone along with me. Some are even still around as very good friends, which I appreciate very much! And though there is my name on the front page of this little booklet, this work would not have been possible without the support, patience, friendliness, expertise, friendship and effort of many of you!

First of all, I would like to express my gratitude to my promoters Gareth Davies, Wim van Westrenen and Pieter Vroon, who have given me the chance to work on this very challenging study in non-traditional stable isotope geochemistry and experimental mineralogy. These two fields are already in and of themselves demanding fields of research to study and the combination of both was challenging for all of us on many levels. In short: we had both good times and times that were not so good! I am grateful for both because we learned from it and that is what made our time special.

This thesis benefitted from the critical review and feedback of an international reading committee: I would like to thank Tim Elliot, Dan Frost, Jan Wijbrans, Merlin Méheut and Anat Shahar for their detailed reading and very helpful comments.

The set-up of a GER0 one-atmosphere gas-mixing furnace in the HPT laboratories of VU University Amsterdam was "one" major practical aspect of my thesis work. It required loads of applied mineralogy background knowledge as well as the ability of translating this knowledge to planning, hands-on work, thinking, communicating, co-operating and inventing...

For a good start, the large applied overview, tips & tricks, discussion and thinking ahead, I would like to thank Reiner Schultz, Max Wilke and Monika Koch-Müller (all of them at GFZ Potsdam, GER), Christian Liebske (at that time Tata Steel IJmuiden, NL) and Philip Kegler (CAU Kiel, GER). All practical demonstrations on their institute’s furnaces were very supportive and the technical sketches provided the base for the specific in-house VUA furnace reconstructions shown in this study.

The people of the VU University Beta Fine-Mechanics workshop are thanked for their outstanding ideas, constructions, co-operation and support during and after the furnace set-up: my special gratitude goes to Nieck van Harlingen for planning and technical drawing, Rob Stoevelaar for the cooling water installation, self-closing vessels, gas flow and gas-mixing equipment supply, Hans Bakker for flange reconstruction and general technical support, and Daniel Pruijsr for continuous maintenance. I was, and still am deeply impressed by your helpfulness, attention and ever-swift action on the challenges, suggestions and ideas I came up with.

Though I am naming only a few of you, all of your colleagues at beta fine-mechanics always had a friendly word, a little joke, a smile or a cup of coffee for me and many times these little gestures have made my day as a foreigner in the Netherlands. Thank you very much!

I would also like to thank Wim van der Plaas from the VU University beta-electronica department. He supported and maintained the electronic devices of the furnace, such as the digital temperature read-out, the construction of the drop-quench facility and
he performed the complete lab view software programming for constant data logging and an oxygen fugacity real-time read-out in logarithmic units. Thank you, Wim. I enjoyed very much working with you, whether it was trial-and-error or with actual planning.

Another practical aspect of this thesis was to get trained in isotope geochemistry - a field that was more or less unknown to me, before I started this job. On my way there where many people – internally, as well as externally – that taught me practical chemistry, working techniques and analytical tricks that made this work only better: many thanks to Richard Smeets, Bas van der Wagt, John Visser, Laura Font, Jason Lafoon (Leiden University, NL), Jane Chadwick, Janne Koornneef, Sieger van der Laan (Tata Steel IJmuiden, NL) and Jan Schüessler (GFZ Potsdam, GER). Your experience has put my current knowledge together like a puzzle of thousand pieces and equips me with a specific expertise on metal stable isotope chemistry and analyses on advanced and rather common mass spectrometers. I appreciate your support and patience very much.

In this context I would like to thank Klaus Jacobs (at that time IKZ, Berlin, GER) for providing a Si single crystal as Si isotope in-house standard! This little piece of elemental silicon has isotope-analytically been investigated and provides an almost indefinite reservoir for Si isotope analyses.

For support during experimental sample charge separation by heavy liquids and handpicking and an always-friendly smile I would like to thank Roel van Elsas! I am grateful to Onno Postma as a colleague, who is simply always around for any question about gas flows, technical by-information and his critical considerations to every tiny problem one can think of. Thanks also to Bas van der Wagt for endless discussions on MC-ICPMS inlet systems and collector positioning, and thanks to both of you, Bas and Onno for good coffee breaks.

Our very best electron microprobe sample preparation lab is thanked for its numerous inventive and flexible solutions on my very specific samples, either as blast furnace ferrite or as tiny experimental samples charges that always needed a silicon-free treatment: thank you very much to Wynanda and Bauke for thinking, lab usage, discussing the issues and ordering the necessary equipment!

“Sampling an industrial blast furnace from the steel works as a geochemical model factory” is a very short sentence in an article or thesis and I can type it into this acknowledgement in less than 30 seconds. The truth is, that the actual process means a lot of effort to the every-day working procedures of many people in a steel plant. From getting registered as a visitor, to finding a guide who cares for the visitor’s safety on the plant’s area, the tapping whole of a blast furnace or in the converter hall and to sampling during the actual tapping process – and all this not only once – I owe my gratitude to many people of Tata Steel Ijmuiden, NL: thank you very much: Sieger van der Laan and his research group at Ceramic Research Centre (CRC, Ijmuiden) with Enno Zinngrebe, Christian Liebske, James Small and Patricia Romano-Triguero. Further I would like to thank Elisa Bot, Hans Jak and many others on the plant.

The experiments for the HPT study on Si isotopes fractionation in metal-silicate systems were performed in the high-pressure devices at BGI Bayreuth, GER. I would especially like to thank Dan Frost for his support and advice, for sharing his expertise on the
multi-anvil presses and for his hospitality. Working with you was a great experience, Dan, and I hope we’ll get the chance again in the future!!

I would also like to thank Antje Vogel, Oles Savachuk, Gertrud Gollner, Detlev Krause, Stefan Keyssner, Ojwang Dickson, Florian Heidelberg, Dave Rubie, Leonid Dubrovinsky, Hongzhan Fei and Huiyang Gou, as well as all the other BGI staff members that I met during my laboratory visits. I enjoyed the time in Bayreuth and the really good, supportive, funny and helpful conversations very much!

Four years can be incredibly long and I am surprised how long the list of people is, with whom I shared an office. Many thanks to Jelle van Sijl, Mirjam van Kan Parker (and Stuart), Jellie de Vries, Raheleh Motamedi, Esther Velasco, Yilong Li, Sonja Geilert, Alex Galic, Martijn Klaver, Allan Abdullah and last, but certainly not least: Fienke Nanne. Thank you Fienke for you enthusiasm, motivation and friendship. The last year was the most challenging one and I am grateful that you shared this time with me!

I would also like to thank all the colleagues, who I met at the VU, who came and went during my stay, or who are simply always around, and with whom I have shared great moments during coffee breaks, on the microprobe, during teaching, in the labs and for Thursday afternoon drinks: Fenny Bosse, Jane Chadwick, Elodie Tronche, Nachiketa Rai, Laura Font, Wim Lustenhouver, Cassian Pirard, Juan Carlos Corona, Aurelia Colin, Frauke Brouwer, Klaudia Kuijper, Jan Wijbrans and further, Brett Metcalfe, Alex Wright and Wouter Feldmeijer, Frans-Jan Parametier, Anne Fischer, Els Uffkes, Martin Stange, Mark Bokhorst (and Karel), Jochem Jongma and many many others…

My gratitude also goes to Elishevah van Kooten. She wrote an outstanding Master’s Thesis about silicate-silicate Si isotope fractionation in experimental and natural systems. Elishevah was one of the numerous students who spend the same time of her studies from the beginning to the ending of my time at the VU together with me. From field trips to the Auvergne in France, through to teaching I was always happy to have you around. Many thanks to you and Mirek!

Up to the very last minute of my PhD I have met people, who kept my motivation up, provided confidence and who made me finish this little booklet. I have not known you for long, but you have contributed immensely to the most challenging part of this work – consciously or unconsciously – I will never find out! Many thanks to Luc Mergens, Isabelle Garachon and Lucien van Valen, Jolanda van Iperen, Indra Kneepkens, Serge Cohen and Arie Wallert, Melli Fischer and family, Sjoert van Zoelen and Koosje Nijjendijk (and Rob).

Many thanks also to Patrick Schimkus and Dirk Fasshauer for their support during preparing the layout of this thesis and for their advice of proper printing and publishing with Solid Earth Print Productions. I appreciate your effort and patience very much!

A wise but anonymous poet once said: “Wherever you are, it is your friends that make the world”! This I can only confirm to be very true and I am grateful for the friends that I had and am still having around: Hans and Ankie Bakker, Sergio Speziale and Antonella, Enrico Eule and family, Dorothee Hippler and family, Heike Steigert and family, Annika Kaszowski and family, Matze Ebert, Bastian Joachim, my three godchildren Marvin, Lennard and Oskar, Anne and Sven Dachner, Hussein Ibrahim, Mari Bügelmeier and Michi, Janne and Sander, Kai Jahnke, Georg Spiekermann, Annemarie van Garderen and
degroeneeenvoud, Roberto Bos, Sylvie Boireaux, Patricia Sallé and Sabine Suhr: “If I was ever able seeing further, it happened because I was sitting on your shoulders!” Thank you very much!

Almost at the very end, I would like to thank the two people in my life, who made all this actually possible. Many thanks to my lovely parents! Liebe Eltern, danke, dass Ihr diese Reise für mich möglich gemacht habt und sie mir immer wieder ermöglicht.

I owe a very special gratitude to two more people:
My very best friend Mari Bügelmeyer and my sister Selina. Thank you for having you on my side!
Table of Contents

ACKNOWLEDGEMENT ... I

1. INTRODUCTION - FROM SOLAR NEBULA TO METALLIC PLANETARY CORES 2
 1.2 Formation of a Solar System – a Brief Outline ... 3
 1.3 Our Solar System ... 4
 1.4 From Planetesimals to Terrestrial Planets ... 5
 1.5 Earth’s set-up & Core formation .. 7
 1.6 Evidence for Si in the core ... 11
 1.7 The role of Si isotopes ... 12
 1.8 What’s left to learn – open questions ... 14
 1.9 Objectives and thesis organisation ... 15

2. SET-UP AND OPERATIONAL PRINCIPLES OF A HIGH-TEMPERATURE ONE-ATMOSPHERE GAS-MIXING FURNACE WITH IN-SITU MEASUREMENTS OF OXYGEN FUGACITY 18
 2.1 Technical details of the gas-mixing furnace .. 18
 2.2 Basic operational mode ... 19
 2.3 Operational principles ... 20
 2.4 In house re-design, electronic devices and data logging ... 24
 2.5 Furnace calibration .. 29

3. SI STABLE ISOTOPES - PRINCIPLES, PROCEDURES, ANALYSES & DATA PROCESSING ... 36
 3.1 Basic Principles of Stable Isotope Geochemistry ... 36
 3.2 Natural Abundance of Si Stable Isotopes .. 36
 3.3 Si Isotope Chemistry .. 37
 3.4 Si Isotope Analyses ... 40
 3.5 Data Processing & Data Rejection Criteria .. 45
 3.6 Silicon Single Crystal in-house Standard Calibration .. 47
 3.7 Long-term reproducibility of the Neptune MC-ICPMS at VUA 50

4. SI EQUILIBRIUM VERSUS KINETIC ISOTOPE FRACTIONATION ... 54
 4.1 Equilibrium Isotope Fractionation .. 54
 4.2 Kinetic Isotope Fractionation ... 56
 4.3 Mass Fractionation Lines for Si Isotopes ... 56
 4.4 Si Isotopes in a three-isotope diagram .. 57
 4.5 Linearization of δ²⁹Si and δ²⁸Si ... 58
 4.6 Definition of Δ²⁹Si' ... 58
 4.7 Δ'-δ'-Diagrams ... 59
 4.8 Uncertainties in Δ'-δ'-Space .. 60
 4.9 Δ'-δ'-Space and an Origin for BSE ... 61
5. SI ISOTOPE FRACTIONATION BETWEEN SI-POOR METAL AND SILICATE MELT AT PRESSURE-TEMPERATURE CONDITIONS RELEVANT TO METAL SEGREGATION IN SMALL PLANETARY BODIES ... 66
 5.1 INTRODUCTION .. 67
 5.2 METHODS AND ANALYTICAL TECHNIQUES .. 69
 5.3 RESULTS .. 74
 5.4 DISCUSSION .. 77
 5.5 CONCLUSION .. 82

6. EXPERIMENTALLY DETERMINED KINETIC SI ISOTOPE FRACTIONATION BETWEEN METAL AND SILICATE AT AMBIENT PRESSURE AND HIGH TEMPERATURES 86
 6.1. INTRODUCTION .. 86
 6.2. METHODOLOGY ... 87
 6.3. RESULTS .. 91
 6.4. DISCUSSION ... 102
 6.5. GEOCHEMICAL IMPLICATIONS ... 106
 6.6. SUMMARY ... 109

7. HIGH-PRESSURE, HIGH-TEMPERATURE SI ISOTOPE FRACTIONATION BETWEEN METAL AND SILICATE – IMPLICATIONS FOR CORE FORMATION .. 112
 7.1. INTRODUCTION ... 112
 7.2. EXPERIMENTAL AND ANALYTICAL METHODS .. 114
 7.3. RESULTS .. 118
 7.4. DISCUSSION ... 125
 7.5. CONCLUSION .. 132

8. SUMMARY & FUTURE PERSPECTIVES .. 136
 8.1 SUMMARY .. 136
 8.2. FUTURE PERSPECTIVES .. 137

DUTCH SUMMARY ... 139

THE AUTHORESS .. 141

LIST OF PUBLICATIONS .. 142

APPENDIX ... 143
 A1 BUFFER REACTION CURVES ... 143
 A2 TECHNICAL DRAWINGS OF TOP AND BOTTOM FLANGE ADAPTER 144
 A3 I SI ISOTOPE SIGNATURES OF TERRESTRIAL AND EXTRA-TERRESTRIAL MATERIALS 146
 A3 II LINEARIZATION OF SI ISOTOPE SIGNATURES FROM APPENDIX A3 I 151

BIBLIOGRAPHY .. 157