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General Introduction 

Table 1. Ovarian cancer disease stages according to the International Federation of Gynecology 

and Obstetrics (FIGO; from: [8]) 

Stage Description 

0 No evidence of primary tumor 

I Tumor confined to ovaries 

IA Tumor limited to one ovary, capsule intact. No tumor on ovarian surface. No malignant cells 

in the ascites or peritoneal washings. 

IB Tumor limited to both ovaries, capsule intact. No tumor on ovarian surface. No malignant 

cells in the ascites or peritoneal washings. 

IC Tumor limited to one or both ovaries, with any of the following: capsule ruptured, tumor on 

ovarian surface, positive malignant cells in the ascites or positive peritoneal washing. 

II Tumor involves one or both ovaries with pelvic extensions. 

IIA Extension and/or implants in uterus and/or tubes. No malignant cells in the ascites or 

peritoneal washings. 

IIB Extension to other pelvic organ. No malignant cells in the ascites or peritoneal washings. 

IIC IIA/B with positive malignant cells in the ascites or positive peritoneal washings. 

III Tumor involves one or both ovaries with microscopically confirmed peritoneal metastasis 

outside the pelvis and/or regional lymph node metastasis. 

IIIA Microscopic peritoneal metastasis beyond the pelvis. 

IIIB Macroscopic peritoneal metastasis beyond the pelvis 2 cm or less in greatest dimension. 

IIIC Peritoneal metastasis beyond the pelvis more than 2 cm in greatest dimension and/or 

regional lymph nodes and/or metastasis. 

IV Distant metastasis beyond the peritoneal cavity. 

 

 

2. Ovarian cancer treatment 
 

Standard treatment of ovarian cancer consists of cytoreductive surgery followed by combination 

chemotherapy. Optimal debulking is defined as resection of the uterus, ovaries, oviducts and 

omentum, after which residual lesions should measure < 1 cm. For early disease stage it is of 

importance to consider possible routes of spread by means of peritoneal washing, peritoneal 

biopsies and biopsies of retroperitoneal lymph nodes. 

Chemotherapy for ovarian cancer has developed from single alkylating agents to 

combination therapy over the past 30 years. In the 1970’s and 1980’s the efficacy of single 

alkylating agents and various combinations of melphalan, chlorambucil, cyclophosphamide, 

hexamethylmelamine, methotrexate, 5-fluorouracil, doxorubicin and cisplatin have been explored. 

Eventually, platinum-based combination chemotherapy was adopted as standard cytotoxic regimen. 

At the end of the 1980s paclitaxel was identified as an active agent in ovarian cancer with a 

response rate of 24% in platinum-resistant disease [9]. Combination of paclitaxel with cisplatin, and 
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currently with carboplatin, has improved progression-free survival and overall survival in patients 

with disease stage III and IV [10;11]. Nowadays, paclitaxel combined with carboplatin is considered 

as the standard chemotherapy in use for ovarian cancer.  

Despite all progress made, the majority of patients presenting with stage III and IV ovarian 

cancer are not cured and many patients display recurring disease with chemoresistant properties 

[3]. It is therefore of utmost importance to explore new treatment options. Similar to other tumor 

types, multiple classes of compounds directed against tumor cell targets have been explored. Thus 

far, none has yet replaced the most effective treatment of paclitaxel and carboplatin in ovarian 

cancer. There are, however, some approaches of interest among which are anti-invasive treatment, 

prevention of angiogenesis and tailor-made targeted therapy in combination with classical cytotoxic 

agents [12-14]. Gene and viral therapeutic approaches are also under study (reviewed in [15]). 

Presently, anti-angiogenic therapy (reviewed in [16] and highlighted in section 5.5) and compounds 

targeting key molecules in survival and growth receive much attention. Molecular targets include c-

Kit, Platelet Derived Growth Factor (PDGF) receptors, members of the Jak-STAT pathway, 

PI3K/Akt/mTOR and Erk family members (reviewed in [17]). Moreover, possible new targets are 

being explored, such as endothelin A, which promotes transition of epithelial to mesenchymal cells 

[18;19] and neuropilin-1, a receptor for both semaphorin and Vascular Endothelial Growth Factor 

(VEGF) [20]. Two other prominent molecular targets include cyclooxygenase-2 (COX-2) and members 

of the Human Epidermal growth factor Receptor (HER) family (highlighted in sections 7.1 and 7.2 

respectively).  

 

3. Docetaxel 
 

3.1 History of taxanes 

In 1964 Monroe Wall and Masukh Wani of the Research Triangle Institute, North Carolina, have 

discovered that an extract of the bark of the pacific yew (Taxus brevifolia) had anticancer activity. 

After another 6 years of research the active ingredient was identified and named paclitaxel. In 1979 

the group of Susan Horwitz [21] unraveled the unique mechanism of action of paclitaxel; it 

promotes microtubule assembly and prevents microtubule disassembly due to binding to and 

stabilization of microtubules [22]. After demanding research, Bristol-Myers Squibb was able to semi-

synthetically produce paclitaxel (Taxol®). In 1992 the US Food and Drug Administration (FDA) 

approved the drug for use after failure of first-line chemotherapy for advanced ovarian cancer [23]. 

Nowadays, the combination of paclitaxel and carboplatin is first-line treatment for this disease [24]. 

The discovery of a precursor of paclitaxel in the leaves of the European yew (Taxus baccata) 

in the mid-eighties opened the way for biosynthesis of docetaxel with even higher potency than 

paclitaxel. The chemical structures of docetaxel and paclitaxel differ slightly; docetaxel has a 

hydroxyl functional group on carbon 10 (paclitaxel has an acetate ester at this site) and a tert-butyl 

substitution on a phenylpropionate side chain [25]. Following its discovery docetaxel (Taxotere®) 

was further developed by Rhône-Poulenc Rhorer, which is now part of Sanofi Aventis. 
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Fig. 3: Effects of docetaxel on invasion and angiogenesis as well as combination of docetaxel with new 

targeting compounds for the treatment of ovarian cancer. 

 

will result in the production of pro-angiogenic proteins, among which are Platelet Derived Growth 

Factor (PDGF) and most prominently Vascular Endothelial Growth Factor (VEGF) [35]. Fig. 4 is a 

simplified illustration of the processes involved in tumor angiogenesis. 

The key players in the angiogenesis process are endothelial cells that line the vasculature. 

Endothelial cells are generally non-proliferating stationary cells forming a luminal surface in close 

contact with the subendothelial extracellular matrix. Upon wounding and also upon tumor growth 

endothelial cells are triggered to proliferate and migrate to form new blood vessels. More than 25 

years ago it has already been established that isolated primary endothelial cells are able to form 

capillary-like structures in vitro [36]. Experimental human endothelial cells are mainly derived from 

human foreskin (microvascular endothelial cells MVECs) and human umbilical veins (HUVECs). 

Freshly isolated HUVECs can be cultured during approximately seven passages in culture medium 

enriched with human serum on plastic coated with either fibronectin-collagen or gelatin [37]. The 

quality depends on a variety of donor habits. It has been pointed out that successful generation of 

HUVEC cultures is significantly distressed when the mother is a smoker or when HUVECs are isolated 

within 1 h after delivery [38]. In addition, isolated endothelial cells from healthy individuals differ 

from tumor-derived ECs that might be cytogenetically unstable [39]. These considerations indicate 

that experiments with HUVECs suffer from broad inter-donor differences and are not always 

representative for tumor conditions. Still, HUVECs are widely used as one of the best possible 

models for (tumor) vasculature, also because of their ability to form vessel-like structures on 

artificial extracellular matrices, such as Matrigel. 
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Fig. 4: The angiogenic process in tumors. Tumor cells secrete pro-angiogenic molecules, often as a response to 

hypoxia (A). Binding of these molecules to specific receptors result in the activation of complex signal 

transduction pathways in endothelial cells (B). Activated endothelial cells penetrate into the extracellular 

matrix in the direction of the concentration gradient of pro-angiogenic proteins (C). New blood vessels reach 

distant tumor cells (D) [40;41]. Pictures obtained from Pfizer and used with permission. Ang-1: angiopoietin-1, 

PDGF: Platelet Derived Growth Factor, VEGF: Vascular Endothelial Growth Factor, FGF: Fibroblast Growth 

Factor, MMPs: Matrix MetalloProteinases 

 

 

4.2 Cytoskeleton 

In the angiogenesis process, endothelial cells require an intact and proper functioning cytoskeleton 

to be able to invade and migrate towards the applied chemo-attractant gradient provided by, for 

instance, VEGF. The microtubule and actin cytoskeleton operate in close collaboration and together 

orchestrate endothelial cell motility [42]. Actin forms focal protrusions and contractile bundles 

through the cell body in the direction of movement. Actin bundles (stress fibers) form focal 

adhesions at the site of the cell membrane and are, in association with myosin filaments, able to 

contract, thereby initiating cell movement [43]. The microtubule cytoskeleton provides support by 

polarization (localization of the centrosome, the main microtubule organizing center) in the 

direction of movement and by filling up the actin protrusions [44].  
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4.3 RhoGTPases 

Actin and microtubule reorganization are tightly monitored by molecules of the RhoGTPase family, 

while vice versa RhoGTPase activity is also regulated by cytoskeleton dynamics. In endothelial cells 

Rho GTPases are typically activated by shear stress [45] and mechanical tensions [46]. The best 

known RhoGTPases are Cdc42, Rac1 and RhoA. Activation of Cdc42 by, for instance, integrins and 

cytokines is one of the first events in cell migration [47]. Cdc42 mediates cell polarization and 

orientation of the centrosome in the direction of movement [48;49]. Cdc42, but also several growth 

factors and polymerization of microtubules, activates Rac1 which consecutively induces assembly of 

thin protrusive structures (lamellipodia) in the direction of movement at the leading edge of the 

cell. In addition, it induces actin polymerization (formation of stress fibers) and the formation of 

new adhesion sites onto the extracellular matrix [43;50;51]. In turn, Rac1 is one of the activators of 

RhoA, which is present in the cell body to mediate assembly and contraction of myosin-actin 

filaments. In addition, RhoA activity at the back of the cell provokes release of the tail, while the 

formation of protrusions is induced at the leading edge [52]. These actions result in the eventual 

movement of the cell [51;53]. The sequence of events in a migrating cell is illustrated in Fig. 5. 

Because of their key function in endothelial cell motility RhoGTPases might provide a promising 

target for anti-angiogenic therapy [54;55]. Moreover, it has recently been reported that tumor-

associated endothelial cells display disturbed Rho activity and abnormal angiogenesis features in 

vitro [56]. At the moment, possible therapeutic strategies focus on post-translational processes and 

on downstream effectors of RhoGTPases [57]. 

 

4.4 Inhibition of angiogenesis 

The ultimate outcome of all events described above is the migration of endothelial cells towards 

the chemo-attractant gradient provided by tumor cells in agony, a process called tumor 

angiogenesis. Already in 1971 Folkman has proposed that inhibition of angiogenesis might impede 

tumor growth [58]. Only recently, targeting tumor vasculature has been explored as treatment 

approach for epithelial ovarian cancer [16]. 

Inhibition of tumor angiogenesis is possible at different levels. Firstly, the angiogenic 

process can be directly inhibited. Therapeutic agents might specifically inhibit endothelial cell 

proliferation (caplostatin), hinder endothelial cell motility (endostatin) or interfere with MMP 

functioning. Secondly, the angiogenic process can be hampered by indirect processes. Well known 

examples include the clearance of angiogenic growth factors, such as VEGF with the anti-VEGF 

antibody bevacizumab or blocking endothelial cell growth factor receptor functioning by receptor 

tyrosine kinase inhibitors, such as sunitinib and sorafenib [59]. Besides the vast array of specific 

anti-angiogenic compounds, microtubule-targeting anticancer agents, such as docetaxel, are 

potential candidates to interfere with endothelial cell motility and proliferation, either directly by 

obstructing microtubule dynamics or indirectly by interference with RhoGTPase activity.  
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Fig. 5: Involvement of RhoGTPases and the cytoskeleton in the migration of cells. Activity of Cdc42 results in 

polarization of the cell (a) and the subsequent orientation of the microtubule-organizing center in the 

direction of movement (b). Stable microtubules align in the direction of movement (c) and are triggered to 

grow (d). Cdc42 activity and microtubule growth induce activation of Rac1 in the leading edge, which in turn 

mediates formation of cellular extensions (e). RhoA is activated and myosin-actin filaments contract (f), while 

cell-substrate contacts in the rear are relieved (g). Because of the forward movement, microtubules buckle 

and break in the cell body (h) providing a positive feedback of RhoGTPases activity. The eventual effect is 

movement in the direction of the arrow (i). Adapted from [44] and [53]. CPA: CycloPiazonic Acid 

 

 

4.5 Inhibition of metastasis 

The molecular mechanisms responsible for metastatic properties of tumor cells are different from 

the molecular changes that result in primary tumor formation. Therefore, it might be possible to 

use molecular mediators of metastasis formation as therapeutic targets. Metastatic properties of 

tumor cells are orchestrated by intricately linked highly conserved signaling pathways, including 

mitogenic pathways (MAPK), stress activated pathways (JNK, p38), survival pathways (Akt) and 
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cytoskeletal signaling routes [60]. Moreover, activated molecules, such as the pro-angiogenic 

protein VEGF and the protein urokinase Plasminogen activator (uPa) involved in extracellular 

degradation, facilitate the metastatic process [61]. 

Currently, strategies are being explored to inhibit ovarian cancer metastasis formation. A 

combination of the mammalian Target Of Rapamycin (mTOR) inhibitor rapamycin and VEGF inhibitor 

bevacizumab has been found to be a potential approach to prevent metastasis in an intraperitoneal 

model of human ovarian cancer [62]. Experiments involving inhibition of uPa function by the 

protease inhibitor bikunin (both in vitro and in vivo) and prevention of VEGF production by blockage 

of estrogen receptors in vitro may also provide a possible means to delay or prevent metastases 

[63;64]. 

One family of molecules that is involved in virtually all signaling pathways described for 

tumor metastases is the RhoGTPase family. Moreover, the activities of Rac1, Cdc42 and RhoA can be 

upregulated in tumors, leading to increased proliferation and motility [65]. Targeting, either 

directly or indirectly (e.g. via inhibition of microtubule dynamics by docetaxel), might provide a 

successful method to inhibit both tumor cell metastases and tumor angiogenesis. 

 

 

5. Combination of docetaxel with targeting agents 
 

Tumor cells often differ from normal cells because of the presence of tumor-specific molecules 

either from overexpression or due to gene mutations that are involved in survival and proliferation, 

rendering these molecules as specific targets for treatment. Targeting agents in cancer therapy can 

be defined as drugs designed to interfere with the function of a specific molecule (mostly a protein) 

that has a critical role in tumor growth and progression. Nevertheless, classical cytotoxic drugs with 

established antitumor efficacy in the clinic remain important and their combination with targeting 

drugs might even improve treatment outcome, for instance when targeting proteins mediating 

chemotherapy resistance [66]. 

Docetaxel has been combined with a variety of targeting agents in preclinical and clinical 

studies to pursue better effective treatments of various tumor types. Examples include 

combinations with farnesyl transferase inhibitors, augmerosen (antisense oligonucleotide targeting 

Bcl-2 mRNA), cetuximab and trastuzumab, all with varying outcome [67]. More specifically, when 

docetaxel was combined with cetuximab in an in vivo xenograft model antitumor efficacy was 

increased 3.7-fold (single dose cetuximab) or 8.5-fold (double dose cetuximab) [68] and in another 

xenograft model study the antitumor activity of docetaxel was enhanced with 22% when 

trastuzumab was added [69]. To date, only a very limited number of studies have explored the 

combination of docetaxel with targeting drugs in ovarian cancer.  

As already stated earlier, most patients with stage III and IV ovarian cancer cannot be cured 

and many patients develop recurrent disease with chemoresistant properties [3]. Targeting specific 

key molecules involved in proliferation and survival of ovarian cancer cells is therefore of utmost 
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potential improvement of antitumor effects when celecoxib would be added to chemotherapy in 

ovarian cancer. Currently, this question is being addressed in a multicenter clinical study in the 

Netherlands using docetaxel plus carboplatin with/without celecoxib (DoCaCel) in ovarian cancer 

patients. 

 

5.2 Trastuzumab, pertuzumab and cetuximab 

5.2.1 HER receptor family 

Human Epidermal growth factor Receptors (HER) constitute a family of four cell surface receptors 

involved in transmission of signals controlling normal cell growth and differentiation. Family 

members include EGFR (HER1, ErbB1), HER2 (ErbB2, p185HER2), HER3 (ErbB3) and HER4 (ErbB4). All 

receptors consist of an extracellular ligand-binding domain, a single transmembrane region and a 

cytoplasmic tyrosine kinase domain. Binding of specific ligands to the extracellular region of the 

receptors leads to the formation of both homo- and heterodimers, which triggers phosphorylation at 

specific tyrosine residues in the cytoplasmic region resulting in further cellular signaling [97]. 

Despite the extensive homology with the other family members no ligand that binds HER2 with high 

affinity has been identified [98].  

Amplification of the HER genes leads to overexpression of receptors and disrupts normal 

control mechanisms [99;100]. Overexpression of EGFR has been observed in various tumor types, 

such as breast, lung, esophageal and colorectal cancer [101-104], while HER2 overexpression has 

been observed in head and neck, gastric, breast and lung cancer [105-108]. Overexpression of EGFR 

and HER2 is associated with poor clinical outcome. In ovarian cancer 33.3% of patients consistently 

express EGFR, while 20% of newly diagnosed patients overexpress HER2. The prognostic significance 

of EGFR and HER2 (over)expression in ovarian cancer remains unclear [109-111]. 

 

5.2.2 HER-targeting ligands 

HER-specific ligands each contain a domain that is responsible for binding to a specific receptor. 

Epidermal Growth Factor (EGF) specifically targets EGFR, whereas neuregulin 1 (NRG-1, also 

referred to as heregulin) binds specifically to HER3 and HER4 [112]. HER ligands are bivalent 

molecules that bind with high affinity to their specific receptor. Once the high affinity site has 

bound, the low affinity site is effectively immobilized on the plasma membrane thereby increasing 

the affinity for other HER receptors resulting in receptor dimerization [113]. 

Each homo- and heterodimers receptor complex may activate different signaling pathways 

that elicit specific cellular responses [114]. Downstream mediators of HER signaling include the Ras-

Raf-MAPK and PI3K-Akt pathways which lead to cell survival and proliferation (Fig. 7). 
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Fig. 7: HER-induced cell signaling after stimulation with either EGF or heregulin (HRG). Note that HER2 lacks 

a specific ligand, while HER3 has a deficiency in kinase (k) activity.  

 

 

Lacking a specific ligand, HER2 is believed to be the preferred co-receptor for EGFR, HER3 

and HER4 and is proposed as a master coordinator of the signaling network [115]. Moreover, HER2-

containing dimers (ERGFR-HER2 and HER3-HER2) were found to have superior signaling potency as 

compared to HER2-less homo- or heterodimers [116;117]. In breast cancer cells HER2 overexpression 

was associated with relative resistance against paclitaxel-induced apoptosis [118]. 

 Recent studies have addressed the potential role of EGF and HRG in ovarian cancer. 

Expression of HRG mRNA has been shown in the majority of ovarian tumors [119;120]. Proliferation 

of different human ovarian cancer cell lines stimulated with HRG correlated with HER2 expression 

levels, although cells with relatively higher levels of HER2 as compared to HER3 and HER4 levels 

seemed to be growth inhibited by HRG [120;121]. There is also conflicting data concerning 

stimulation of human ovarian cancer cells with EGF; responses are different in each cell line tested 

[122-124]. 

 

5.2.3 Trastuzumab, pertuzumab and cetuximab  

The HER receptors and their ligands are aberrantly expressed in a wide range of tumors, rendering 

them excellent tumor-associated proteins for targeted therapy. Several antibodies that bind to the 

extracellular domain of the receptors (e.g. trastuzumab, pertuzumab, cetuximab, matuzumab and 

panitumumab) and tyrosine kinase inhibitors (TKIs) interfering with the intracellular receptor kinase 

activity (e.g. gefitinib, erlotinib, lapatinib) are in clinical use or in clinical trials and others are 
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under development [125].  In contrast to TKIs, antibodies are able to recruit and activate immune 

cells, such as macrophages and monocytes that bind antibody Fc regions [126].  

Trastuzumab and pertuzumab both target HER2. Trastuzumab is a recombinant DNA-derived 

humanized monoclonal IgG1 antibody that binds with high affinity and specificity to the 

juxtamembrane region of the extracellular domain of HER2 [127]. Upon binding, trastuzumab is able 

to inhibit activation of intracellular tyrosine kinases, to block cleavage of the receptor, to induce 

antibody-dependent cell-mediated cytotoxicity and to promote endocytoxic degradation of the 

receptor [128]. Trastuzumab has been approved for treatment of patients with HER2-overexpressing 

breast carcinomas. In these patients trastuzumab in the adjuvant or neo-adjuvant setting in 

combination with paclitaxel or docetaxel improved disease-free survival, whereas it improved 

survival in metastatic disease [129]. 

Trastuzumab inhibits signal transduction primarily in HER2-overexpressing cells and does not 

influence NRG-induced signaling via HER3-HER2 heterodimerization. In contrast, pertuzumab, a 

humanized murine IgG1 monoclonal antibody, is unable to prevent HER2 cleavage, but potently 

hampers formation of HER2-containing heterodimers [130]. Unlike trastuzumab, pertuzumab 

treatment response seems to be dependent on HER2 activity status rather than HER2 overexpression 

[131]. Pertuzumab has already shown to be well tolerated and functional in ovarian cancer patients 

that relapsed from chemotherapy [132]. Although pertuzumab is well tolerated as a single agent as 

has been demonstrated in prostate cancer and non-small cell lung cancer patients, it lacked clinical 

activity in these malignancies [133-135]. The aforementioned studies called for clinical trials in 

which pertuzumab will be combined with chemotherapy. Combined treatment with docetaxel in a 

phase Ib study in patients with advanced solid tumors appeared to be safe with manageable side-

effects [136].  

Cetuximab is an IgG1 chimeric human-mouse monoclonal antibody directed against the 

extracellular part of the EGFR, thereby competing with natural ligands and preventing receptor 

activation. It is approved by the FDA for the treatment of irinotecan-refractory patients with EGFR-

expressing advanced colorectal cancer and in head and neck squamous cell carcinoma patients in 

combination with radiotherapy [137;138]. Phase II studies with celecoxib in other malignancies 

yielded differential outcomes; no clinical benefit was observed when added to 

platinum/gemcitabine in pancreatic cancer patients [139] and clinical outcome was suggested to 

improve upon addition to platinum/gemcitabine in non-small cell lung cancer [140]. In addition, a 

phase I/II trial showed that the combination of celecoxib with carboplatin/paclitaxel in stage IV 

non-small cell lung cancer patients was safe and well tolerated with a slight response advantage as 

compared to treatment with carboplatin/paclitaxel alone [141]. Cetuximab combined with FOLFOX-

4 (infusion of fluorouracil, leucovorin and oxaliplatin) proved to be highly active as first-line 

treatment of metastatic colorectal cancer [142]. Modest activity has been observed when 

cetuximab was added to carboplatin in EGFR-positive relapsed platinum-sensitive ovarian cancer 

patients [143].  
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5.2.4 Treatment with antibody combinations  

HER2 (over)expression has been shown to activate EGFR signaling, while signaling via HER2/HER3 

dimers may result in amplification of the EGFR gene [144]. It is therefore of interest to explore the 

antitumor effects of combinations of HER family-targeting antibodies. A number of in vitro and in 

vivo studies have demonstrated superior activity of combining EGFR- and HER2-targeting agents as 

compared to single agent activity (reviewed in [145]). Trastuzumab and cetuximab given together 

with flutamide in prostate cancer cells showed greater antitumor activity than flutamide given with 

either of the antibodies alone [146]. In squamous cell carcinoma cell lines the combination of 

trastuzumab and cetuximab yielded synergistic antiproliferative effects and additional antibody-

dependent cellular cytotoxicity in most of the cell lines investigated [147]. Another in vitro study 

has, however, shown in breast cancer cell lines that cetuximab did not add to cell growth inhibition 

induced by either trastuzumab or pertuzumab, most probably due to the dominance of 

overexpressed HER2 [148]. Conversely, delayed tumor growth was observed in HER2-overexpressing 

breast cancer xenograft models when trastuzumab or pertuzumab was combined with the EGFR-

targeting agent gefinitinib as compared to treatment with either of the agents alone [149]. Several 

as yet unpublished phase I studies underline the potential of combined treatments targeting both 

EGFR and HER2. For instance, the combination of the EGFR-targeting agent erlotinib plus 

trastuzumab and paclitaxel was well tolerated in patients, while responses were observed in breast 

cancer patients that had progressed on trastuzumab and paclitaxel [145].  

Taken together, the results obtained so far with EGFR- and HER2-targeting antibodies 

demand studies in ovarian cancer in which dual targeting of HER family receptors will be combined 

with classical cytotoxic agents, such as docetaxel. 

 

 

 

6. Outline of the study 
 

6.1 General aim 

Ovarian cancer is the leading cause of death from all gynecological malignancies. It is a dismal 

cancer type since in most patients the disease is detected in an already advanced stage. Ovarian 

cancer is often featured by excessive cell growth combined with a vast production of new blood 

vessels supplying nutrients to newly formed tumor tissue. Moreover, ovarian cancer is renowned for 

its intra-abdominal metastatic potential. At the moment, combination chemotherapy consisting of a 

platinum compound and a taxane is the standard treatment regimen, but still many patients are not 

cured and will display recurrent disease. Platinum compounds and taxanes possess recognized 

antitumor activity, but their mechanism of action is not specific for tumor cells only. Treatment 

with targeted agents exploiting specific molecular tumor characteristics might provide a more 

successful approach of ovarian cancer treatment. We selected docetaxel to explore combinations 

with novel agents as new treatment options for ovarian cancer patients. In this thesis four different 
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treatment strategies were tested in vitro to examine possible enhancement of the antitumor effects 

of docetaxel. 

 

6.2 Inhibition of angiogenesis and metastasis 

Cytotoxic drugs, such as Vinca alkaloids and taxanes, are known to possess anti-angiogenic activity. 

Docetaxel interferes with microtubule dynamics, thereby inhibiting the proper function of the 

motility machinery. We examined whether docetaxel would be able to inhibit the angiogenic 

properties of endothelial cells. In Chapter 2 the anti-angiogenic properties of docetaxel and two 

other microtubule-targeting agents (epothilone B and vinblastine) were explored in human umbilical 

vein endothelial cells (HUVECs). Cisplatin and doxorubicin were included as control cytotoxic 

agents. By using equitoxic concentrations of the various drugs differences in anti-angiogenic effects 

were explored in a wound assay and an invasion assay without affecting endothelial cell 

proliferation. In addition, effects of the drugs on the integrity of the microtubule and actin 

cytoskeleton as well as consequences of treatment on Rac1 and Cdc42 activity were examined.  

Interference with microtubule dynamics by docetaxel is likely to have an effect not only on 

endothelial cell motility, but also on movement of tumor cells required for metastasis formation. 

Therefore, we investigated whether subtoxic concentrations of docetaxel were able to inhibit 

metastatic properties of human ovarian cancer cells. In Chapter 3 the anti-metastatic property of 

docetaxel was investigated and compared with that of epothilone B, vinblastine, cisplatin and 

doxorubicin. Cytochalasin D as an inhibitor of actin polymerization was included in the experiments. 

For reasons of comparison, equitoxic concentrations of the agents were used. Apart from subtoxic 

concentrations, additional experiments were carried out with 50%-growth inhibiting concentrations. 

Differences in the anti-motility potential between the compounds were investigated in wound 

assays and invasion assays using the human ovarian cancer cell lines IGROV-1, OVCAR-3 and SKOV-3. 

Interference with microtubule or F-actin function was visualized. Inhibition of Rac1 and Cdc42 

activity was assessed with the use of equitoxic concentrations of docetaxel and cytochalasin D. 

 

6.3 Combination treatment with targeting drugs 

Besides the well-known prognostic factors for ovarian cancer, such as the  FIGO stage and the 

residual disease after cytoreductive surgery, recent emphasis has been put on a variety of 

molecular markers to predict prognosis. The presence of COX-2 seems to be associated with 

increased tumor cell survival. Given the fact that cytotoxic agents may upregulate COX-2 

expression, combination of chemotherapy with COX-2 targeting agents might improve antitumor 

efficacy. We investigated if celecoxib would be able to improve docetaxel-induced cytotoxicity in 

ovarian cancer. In Chapter 4 the antitumor effects of docetaxel (and cisplatin) combined with 

celecoxib were assessed in selected human ovarian cancer cell lines. The ovarian cancer cell lines 

used (A2780, H134, OVCAR-3, IGROV-1 and SKOV-3) do not express COX-2 protein; therefore, as a 

control, human colon cancer cell lines containing COX-2 were included. Antagonistic, additive or 

synergistic effects of the drug combinations were studied by means of the MTT assay and evaluated 

by the Chou and Talalay equation for analysis of multiple inhibitions [150]. In addition, cytotoxic 
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effects of docetaxel (or cisplatin) combined with celecoxib were assessed by analysis of changes in 

the cell cycle distribution and the activity of caspase-3. Also, possible molecular mechanisms 

underlying the antitumor effects of drug combinations were investigated. 

Other prognostic molecular markers include members of the HER family of cell surface 

receptors. EGFR and HER2 are frequently overexpressed resulting in increased cell growth and 

resistance to chemotherapy. Their role in ovarian cancer is not yet clear. We investigated if EGFR- 

and HER2-targeting agents were able to improve docetaxel treatment in ovarian cancer. In Chapter 

5 the effects of trastuzumab, pertuzumab, cetuximab (alone or in combination) on the antitumor 

activity of docetaxel were analyzed in OVCAR-3, IGROV-1 and SKOV-3 cells. These cell lines express 

EGFR, HER2, HER3 and HER4 in different degrees, which gave an opportunity to investigate drug 

effects in cells with differential EGFR and HER2 expression. We evaluated the antiproliferative 

effects of the different combinations in the MTT assay and apoptotic effects expressed by activation 

of caspase-3. Moreover, phosphorylation of receptors and downstream modulators of HER-induced 

signal transduction, such as Erk and Akt, were monitored in order to provide more insight into the 

molecular changes possibly accounting for the enhanced antitumor activity of docetaxel when 

combined with antibodies. 
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Summary 
Conventional anticancer agents may display anti-angiogenic effects, but the underlying mechanism 

is poorly understood. We determined the anti-angiogenic properties of cisplatin, doxorubicin and 

the microtubule-targeting agents docetaxel, epothilone B and vinblastine at concentrations not 

affecting cell proliferation. We also assessed tubulin and actin morphology and the activity of two 

key molecules in cell motility: the small Rho GTPases Cdc42 and Rac1. 

 The Highest Non-Toxic Concentration (HNTC) of each drug was defined as the concentration 

inhibiting a maximum of 10% Human Umbilical Vein Endothelial Cell growth upon a 1-h drug 

exposure, being for cisplatin 10 mM, doxorubicin 100 nM, docetaxel 10 nM, epothilone B 1 nM and 

vinblastine 10 nM. Comparative endothelial cell (EC) functional assays using HNTCs for an exposure 

time of 1 h indicated that EC migration in the wound assay, EC invasion in a transwell invasion 

system and EC formation into tube-like structures on a layer of Matrigel, were significantly inhibited 

by docetaxel, epothilone B and vinblastine (p<0.05), but not by cisplatin and doxorubicin. Docetaxel 

was slightly more efficient in the inhibition of EC motility than epothilone B and vinblastine. 

Fluorescence microscopy revealed that only the microtubule-targeting agents affected the integrity 

of the tubulin and F-actin cytoskeleton: disturbed microtubule structures, less F-actin stress fiber 

formation and appearance of nuclear F-actin rings. These observations were associated with early 

inhibition of Rac1 and Cdc42 activity. In conclusion, HNTCs of microtubule-targeting agents 

efficiently reduce EC motility by interference with microtubule dynamics preventing the activation 

of Rac1/Cdc42 and disorganizing the actin cytoskeleton. 

  

  

Introduction 
Recent interest has focused on the potential anti-angiogenic properties of cytotoxic agents that 

specifically target the cell’s motility apparatus by affecting the dynamics of microtubules, among 

which are the taxanes, epothilones and Vinca alkaloids [1]. Taxanes, such as paclitaxel and 

docetaxel, induce stability of microtubules, whereby the dynamic reorganization and 

depolymerization are inhibited. Taxanes can inhibit endothelial cell motility and proliferation, 

which leads to disrupted vessel formation on Matrigel or the chick chorioallantoic membrane, 

decreased vessel sprouting from aortic rings embedded in Matrigel and reduction of newly formed 

blood vessels in tumor-bearing mice [2-6]. Epothilones are structurally unrelated to taxanes, but 

share their ability to stabilize microtubules [7]. Evidence for anti-angiogenic properties of 

epothilone B has been provided by the observation that vessel formation was inhibited in vitro [8] 

and by studies on frequent low-dose administration which resulted in inhibition of proliferation of 

endothelial cells in culture [9]. Vinca alkaloids show a different mode of action than taxanes and 

epothilones; they inhibit both tubulin polymerization and the formation of the mitotic spindle. In 

vitro EC proliferation, motility and organization together with blood vessel formation in tumors in 

vivo were found to be potently inhibited by vinblastine [10,11]. 

While anti-angiogenic properties of microtubule-targeting agents have been recognized, it is 

also established that drug concentrations lower than those inhibiting EC proliferation are able to 
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suppress microtubule dynamics [1]. Interference with microtubule dynamics will not only affect 

endothelial cell motility, but also other cellular processes. For instance, the activity of Rho 

GTPases, a family of molecules that tightly coordinate motility, might be disturbed. Rho GTPases 

are activated upon binding of tumor-secreted VEGF to specific receptors on the surface of 

endothelial cells [12,13]. One of the best known family members, Cdc42, regulates polarity of the 

cell, enabling motility to be initiated in the desired direction [14]. Moreover, the orientation of the 

centrosome, the main microtubule-organizing center of the cell, towards the leading edge of the 

cell depends on Cdc42 function [15]. Another prominent Rho GTPase family member, Rac1, induces 

the formation of extensions (lamellipodia) and stimulates actin polymerization at the cell’s leading 

edge together with the formation of new adhesion sites to the matrix [16]. Member RhoA mediates 

assembly and contraction of actin-myosin filaments in the cell body and at the rear, which will 

result in a forward motion [17].  

Microtubules operate in close collaboration with the dynamics of the actin cytoskeleton and 

together they orchestrate cell motility [18]. One of the hallmarks of migrating cells is the formation 

of contractile actin bundles through the cell body in the direction of movement. These actin cables 

(stress fibers) form focal adhesions at the site of the cell membrane and are linked with myosin 

filaments that are able to contract and, thus, stimulate motility [16]. Because of actin 

polymerization in the leading edge of the cell, a retrograde flow of actin is formed which leads to 

buckling and breakage of actin-associated microtubules. These broken microtubules, in turn, 

polymerize in the direction of movement, thereby activating Rac1 [18]. It is likely that this positive 

feedback loop and the interactions with actin are prone to become disturbed after microtubule 

dysfunction.  

Research on mechanistic changes underlying the inhibition of EC motility by microtubule-

targeting agents is limited. Most studies on anti-angiogenic effects by these compounds focused on 

inhibition of motility and reduction of vessel formation. In the experiments often toxic drug 

concentrations were employed that also inhibit EC proliferation. Therefore, we designed a study in 

which the anti-angiogenic properties of classical cytotoxic agents affecting microtubules, docetaxel, 

epothilone B, vinblastine, were examined with the use of subtoxic, as well as equitoxic 

concentrations and included two other standard anticancer agents, cisplatin and doxorubicin, that 

both affect DNA integrity. We also examined the effects of microtubule dynamics disruption on the 

integrity of the actin cytoskeleton. In addition, activities of Rac1 and Cdc42 were measured to 

obtain insight into a possible interference in the regulation of EC motility on the level of Rho 

GTPases by the anticancer agents. 

  

 

Materials and methods  
 

Cell culture 

Human Umbilical Vein Endothelial Cells (HUVECs) were isolated from fresh umbilical cords according 

to the procedure described by Van Hinsbergh and Draijer [19]. HUVECs were cultured in gelatin-
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coated tissue culture flasks in complete medium: M199 medium (Invitrogen, Breda, the Netherlands) 

containing 10% Human Serum (HS; Invitrogen), 10% Fetal Calf Serum (FCS; Invitrogen), 300 mg/ml L-

glutamine, 100 U/ml penicillin, 100 mg/ml streptomycin (Bio-Whittaker, Verviers, Belgium), 5 IU/ml 

heparin and 50 mg/ml Endothelial Cell Growth Factor (ECGF isolated from bovine brain) at 37oC in 

5% CO2. HUVECs were used in passages 2 to 4. 

 

In vitro antiproliferative assay 

The antiproliferative effects of cisplatin (Bristol-Myers Squibb, Woerden, the Netherlands), 

doxorubicin (Pharmachemie, Haarlem, the Netherlands), docetaxel (Sanofi-Aventis, Antony, 

France), epothilone B (Novartis, Basel, Switzerland) and vinblastine (Eli-Lilly, Houten, the 

Netherlands) were analyzed in the MTT assay. Cells were plated in quadruplicate in culture medium 

in 96-well plates at 3,000 cells per well and were exposed to a drug concentration range for 1 h. 

After washing, cells were grown in culture medium for an additional 96-h period. The number of 

viable cells was determined by addition of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-

bromide (MTT; Sigma Aldrich, Zwijndrecht, the Netherlands). The extinction of the formazan 

product was measured at 540 nm on a Multiscan plate reader (Thermo Biosciences, Breda, the 

Netherlands). Results were expressed in IC50 and IC10 values, being the drug concentrations 

responsible for 50% and 10% cell growth inhibition, respectively, as compared to control cell growth. 

The IC10 concentration, the Highest Non-Toxic Concentration (HNTC) of a drug, was used in all 

further experiments and was checked in parallel MTT assays for each experiment.  

 

Migration assay 

HUVECs were seeded in duplicate in gelatin-coated wells of a 24-well plate and grown to 

confluence. Cells were or were not treated with drugs (HNTC) for 1 h in culture medium. A scratch 

wound was applied in two perpendicular directions in the confluent cell-layer with a sterile pipette 

tip. Immediately after wounding (0 h) and at time-points 4, 8 and 12 h, wounds were captured at 

25x magnification by using a confocal laserscan microscope (TCS 4D; Leica, Jena, Germany) and 

Q500MC software (Leica). At all indicated time-points, the wound width was measured in four areas 

and compared to the initial width at time-point 0 h (set at 100%). 

 

Invasion assay 

EC invasion was measured in a 24-well plate transwell system (Falcon, Woerden, the Netherlands) 

containing inserts with a fluorescence-blocking filter and a pore size of 8 mm (HTS fluoroblock; 

Falcon). The inserts were coated on the bottom with 2 mg/ml fibronectin (ICN, Zoetermeer, the 

Netherlands), washed with phosphate-buffered saline (PBS; Bio Whittaker) and coated on the upper 

side with 5 mg Extracellular Matrix gel (ECM gel; Sigma-Aldrich) in 100 ml PBS. 2x105 HUVECs were 

seeded on top of the ECM gel layer (duplicate experimental samples) and allowed to settle for 4 h. 

Thereafter, HUVECs were exposed to drugs (HNTC) for 1 h, or were left untreated (control) in 

culture medium followed by replacement of drug-containing medium by fresh culture medium in the 

upper compartment. Culture medium, enriched with 25 ng/ml recombinant human Vascular 
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complete culture medium, while at the same time drugs (HNTC) were added or not. One h 

thereafter, Rac1/Cdc42 activity was analyzed using the Rac/Cdc42 Activation Assay Kit (Chemicon, 

Chandlers Ford, United Kingdom) according to instructions provided by the manufacturers. In brief, 

after washing, cells were lysed in assay buffer (supplemented with 0.5 mM trypsin inhibitor, 0.5 

mg/ml leupeptin, 1 mM PMSF) and centrifuged to remove cell debris. To determine total 

Rac1/Cdc42 levels, 40 ml of each sample was stored at -80oC for separate analysis. The remaining 

960 ml of the supernatant was incubated with 10 mg of agarose-conjugated p21-binding domain of 

PAK-1, which binds both activated Rac1 and Cdc42, for 1 h at 4oC while tumbling. Agarose beads 

with bound active Rac1/Cdc42 were washed four times in assay buffer, resuspended in 30 ml of SDS-

sample buffer and boiled for 10 min.  

Active (GTP-bound) and total Rac1/Cdc42 protein levels in each sample were analyzed by 

Western blot. Samples obtained from the Rac1/Cdc42 activity assay were subjected to 12% 

polyacrylamide gel electrophoresis (130 V, 2 h). The separated proteins were transferred to a 

Polyvinylidene Difluoride membrane (PVDF; Millipore) by electrotransfer (400 mA, 2 h). The blots 

were blocked with 10% milk (Protifar; Nutricia, Zoetermeer, the Netherlands) in Tris-buffered saline 

– Tween 20 (TBS-T: 10 mM Tris, pH 8.0, 150 mM NaCl, 0.0025% Tween 20) at room temperature for 1 

h and incubated overnight at 4oC with the Kit-provided mouse monoclonal antibody directed against 

Rac1 (1:500; Chemicon) diluted in 5% BSA/TBS-T. After the membrane was washed three times for 5 

min with TBS-T it was incubated with 5% milk/TBS-T, containing horseradish peroxidase (HRP)-

linked anti-mouse IgG secondary antibody, for 1 h at room temperature. After three TBS-T washing 

steps of 15 min Rac1 protein was visualized on photography film by enhanced chemoluminescence. 

Cdc42 protein was visualized on the same blot. Therefore, the Rac1 blot was stripped for 15 min in 

stripping buffer (Pierce, Rockford, IL) and washed three times with TBS-T. After reassuring that no 

Rac1 signal was left on the membrane, the blots were blocked again with 10% milk in TBS-T for 1 h, 

incubated overnight with the Kit-provided mouse monoclonal antibody directed against Cdc42 

(1:250; Chemicon) and, thereafter, incubated with HRP-linked anti-mouse IgG secondary antibody 

for 1 h. Proteins were visualized on photography film by enhanced chemoluminescence. The films 

were scanned and band intensities of active and total protein levels were quantified using TINA 

quantification software (Raytest, Straubenhardt, Germany) and expressed relative to the band 

intensities of untreated samples (set at 1.00). 

 

Statistical analysis 

The differences in the effects among the anticancer agents on migration, invasion, organization and 

the activities of Rac1/Cdc42 were statistically analyzed by one-way ANOVA followed by the LSD 

adjustment, using SPSS software (SPSS Inc, Chicago, IL). The level of significance was set at p<0.05.  
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50% after 12 h. Docetaxel, and to a minor extent epothilone B and vinblastine, slowed down the 

migration of HUVECs. Fig. 1B depicts wound closure at 12 h after treatment as a percentage of 

control wound width. HNTCs of cisplatin and doxorubicin did not affect motility of HUVECs; wound 

closure was 91.8% ± 5.5% (mean ± SEM) and 89.5% ± 5.7%, respectively. The microtubule-targeting 

agents significantly inhibited HUVEC migration at HNTCs. Inhibition by docetaxel was most 

pronounced; at 12 h only 44.3% ± 3.9% of the wound was filled as compared to control migration 

(p<0.001). Upon exposure to epothilone B and vinblastine wound closure was 58.9% ± 5.2% (p<0.001) 

and 69.7% ± 6.3% (p<0.001), respectively. Docetaxel was more effective in the inhibition of 

migration than epothilone B (p<0.05) and vinblastine (p<0.01). 

 

Microtubule-targeting agents inhibit HUVEC invasion through Matrigel 

HUVEC invasion was investigated in a transwell system, in which cells were allowed to 

invade through Matrigel in the direction of a chemoattractant (rhVEGF) for 24 h. In 

agreement with the results obtained from the migration assay, docetaxel showed to be 

most effective in the inhibition of HUVEC invasion as compared to that induced by the 

other microtubule-targeting agents, although the differences between these agents were 

not significant (Fig. 2). When the invasion of untreated cells was set at 100%, only 

46.0% ± 8.2% (mean ± SEM) cell invasion was measured after docetaxel treatment 

(p<0.001). Epothilone B-treated cells invaded 63.8% ± 7.4% (p<0.01), while 

vinblastine-treated cells invaded 67.3% ± 10.4% (p<0.02). Cisplatin and doxorubicin did 

not significantly influence HUVEC invasion, as the percentages were 85.7% ± 7.1% and 

87.5% ± 5.4%, respectively. 

 

Microtubule-targeting agents inhibit HUVEC organization 

Organization of ECs into pre-cord like structures on Matrigel can be regarded as an early onset of 

tube formation. Organization patterns of HUVECs were captured after 24 h. Untreated cells formed 

the well-known cord-like structures which were also visible in samples that were treated with either 

cisplatin or doxorubicin (Fig. 3A-C). Quantification revealed that the relative number of cell-cell 

contacts for cisplatin was 110.1% ± 7.6% (mean ± SEM) and for doxorubicin this was 104.2% ± 16.6%, 

which was not significantly different from the number of contacts in control cells (set at 100%; Fig. 

3G). Aberrant organization structures were observed after treatment with microtubule-targeting 

agents; HUVECs showed less contacts with neighboring cells and extensions emerging from single 

cells did not reach far enough to contact adjacent cells (Fig. 3D-F). Docetaxel (30.0% ± 6.2%), 

epothilone B (20.7% ± 11.2%) and vinblastine (30.5% ± 10.1%) all significantly prevented the 

formation of cell-cell contacts as compared to control cells (p<0.001). 
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Fig. 2: Invasion assay. HUVECs were seeded on top of a Matrigel layer (5 mg) in a transwell insert. Cells were 

treated with drugs (HNTC) for 1 h (10 mM cisplatin, 100 nM doxorubicin, 10 nM docetaxel, 1 nM epothilone B, 

10 nM vinblastine) after which a chemoattractant (25 ng/ml rhVEGF) was added to the lower compartment of 

the transwell system. The number of invaded cells was assessed after 24 h by measuring the amount of 

liberated calcein from calcein-AM (5 mM) that was added to the lower compartment. Invasion towards the 

applied VEGF gradient by untreated cells was set at 100%. Mean values are shown of at least three separate 

experiments. Bars, SEM; * p<0.02, ** p<0.01, *** p<0.001. 

 

 

of vinblastine-treated cells (0.98 ± 0.03) was not significantly different from that of control cells 

(Fig. 4F). Thus, a short exposure period to very low concentrations of microtubule-targeting agents 

seems to be sufficient to impede tubulin integrity, which will likely influence the proper functioning 

of the actin cytoskeleton.  

In a separate experiment, the F-actin structure of endothelial cells at the edge of a wound 

was visualized in more detail (Fig. 5). Control cells (Fig. 5A) displayed actin extensions at the rim of 

the cell and actin stress fibers throughout the cell body, both in the direction of movement 

(indicated by the arrow). The overall actin arrangement in cells treated with either cisplatin (Fig. 

5B) or doxorubicin (Fig. 5C) was similar to that of control cells. HUVECs treated with the 

microtubule-targeting agents, however, contained less actin stress fibers. Instead, rings of F-actin 

formed around the nucleus suggesting loss of correct cell polarization. Moreover, actin protrusions 

in the direction of movement were virtually absent at the leading edge of most cells (Fig. 5D-F).  

 

Microtubule-targeting agents inhibit activity of Rac1 and Cdc42 

Since motility of endothelial cells is dependent on the functioning of Rac1 and Cdc42, the activities 

of these molecules were measured after drug treatment. Activity of both Rac1 and Cdc42 is tightly 

regulated by actin and tubulin dynamics; disturbances in the microtubule/actin integrity induced by 

docetaxel, epothilone B or vinblastine might result in a loss of function of these two key molecules 

in the onset of cell migration.  

After a 1-h drug exposure, active Rac1 and Cdc42 were pulled down from total cell lysates 

and compared to total levels of the proteins by Western blot (Fig. 6A, B). Total levels of both Rac1 

and Cdc42 remained the same in HUVECs after treatment with each of the drugs. Ratios between 

active and total protein levels were calculated to analyze drug effects on the activity of Rac1 (Fig. 

6C) and Cdc42 (Fig. 6D). Cisplatin (respective ratios of 1.04 ± 0.02 and 1.05 ± 0.37; mean ± SD) and 
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Fig. 3: Organization assay. HUVECs were collected in test tubes in which they were exposed to drugs (HNTC) 

for 1 h. Thereafter, cells were seeded on top of a Matrigel layer. Organization structures were visualized 

after 24 h by confocal laserscan microscopy. Untreated HUVECs (A), HUVECs treated with 10 mM cisplatin (B), 

100 nM doxorubicin (C), 10 nM docetaxel (D), 1 nM epothilone B (E) and 10 nM vinblastine (F). Images are 

representative for three separate experiments (25x magnification, horizontal bar = 200 mm). G, Number of 

cell-cell contacts of treated HUVECs as compared to the number of control cells (set at 100%). Mean values are 

given from at least three experiments. Bars, SEM; * p<0.01. 

 

 

doxorubicin (respective ratios of 0.99 ± 0.11 and 0.97 ± 0.46) had no effect on the activities 

of these Rho GTPases. Activity of both Rac1 and Cdc42 was potently inhibited by the microtubule-

targeting agents. Docetaxel treatment resulted in activity ratios of 0.58 ± 0.04 and 0.53 ± 0.23 for 

Rac1 and Cdc42, respectively. Epothilone B activity ratios were 0.76 ± 0.17 and 0.51 ± 0.23, while 

vinblastine ratios were 0.63 ± 0.10 and 0.34 ± 0.10, for Rac1 and Cdc42, respectively. When Rac1 

(p<0.05) and Cdc42 (p<0.02) activity ratios for all microtubule-targeting agents were grouped and 

compared to control ratios a significant difference was calculated. 
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