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Chapter 1

Introduction

Most natural phenomena can be described in terms of how various physical quantities
change with time. For example, Verhulst's law of logistic growth states that the rate
of change of an isolated biological population is proportional to both the population
size and the available resources. When considering multiple populations, competition
through, for example, limited resources or predation leads to interdependence of the
rates of change of the various populations.

Another example is provided by Newton's laws of motion, which state that the
acceleration (i.e. the rate of change in velocity) of an object is proportional to the
residual force on the object. Typically, the residual force can itself be expressed in
terms of rates of change. Again, the resulting models specify relations between how
the various quantities evolve in time.

Mathematically, such processes are described in the form of di�erential equations

Bt u � Apu; � q:

Here � denotes (a family of) parameters; for example (in population dynamics) search
e�ciency, available resources, carrying capacity, predation rate, and (in classical me-
chanics) mass, drag coe�cients, et cetera. Typically, one only has approximate knowl-
edge of such parameters, based on estimates, model assumptions, and measurements.
Thus, to truly understand these systems, one should consider what e�ect small devi-
ations in the parameters may have on the underlying processes. For example, a small
decrease in available resources may result in a slightly lower average population size.
In a more sombre situation it may lead to mass extinction.

Mathematically, such a drastic change in qualitative behaviour is called abifurca-
tion. The mathematical �eld of dynamical systemsis concerned with inferring qual-
itative information about the solutions of di�erential equations, their dependence on
parameters, and the possible bifurcations.

Local and nonlocal PDEs

Di�erential equations thus provide a means by which we can describe physical quan-
tities changing in time. But how can we incorporate the spatial dependence of these
processes in such models? Sticking with the example of population dynamics, imagine
a population of a certain species occupying a habitat which we denote byX . An
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2 CHAPTER 1. INTRODUCTION

ecologist might observe this population by sampling the population density at various
discrete and regularly spaced out locationsx i inside X . The recorded subpopulation
at time t and location x i is then denoted byui ptq.

Mathematically, the subpopulation ui at spatial site x i may now be modelled by
means of di�erential equations. The change ofui now not only depends onui itself,
but may also be (nonlocally) coupled to other populationsuj . For sake of simplicity,
let us momentarily assume that X � R . We then obtain in�nitely many discrete
spatial locations x i , which together form a lattice. Furthermore, assume the system is
spatially homogeneous and isotropic, i.e., one cannot distinguish a spatial sitex i from
a spatial site x j by simply comparing the evolution of the subpopulationsui and uj ,
respectively. We then obtain a lattice di�erential equation

Bt ui � Ap: : : ; ui � 1; ui ; ui � 1; : : :q:

The fact that A does not depend explicitly on the spatial locationsx i is a consequence
of the spatial homogeneity, and results in the equation having a network-like structure.

The simplest example of such a coupled system is obtained when the nonlinear
behaviour of A only appears in the local terms. We then obtain a system of equations
of the type

Bt ui � N i rus � f pui q; ui ptq PR d; (1.1)

where N is a convolution-type operator

N i rus �
¸

j PZ

N j ui � j : (1.2)

Such models arise not only in population dynamics, but also for instance in neuro-
sciences and material sciences.

Lattice di�erential equations such as (1.1) may be studied as is, or through an
approximation by a continuum limit, letting the distance between neighbouring lattice
sites tend to 0. Depending on the nature of N , nonlocal coupling may or may not
be retained in the continuum limit. For example, when the coupling originates from
di�usion of, say, chemical agents, (1.2) would be a discretised Laplacian, and the
continuum limit of (1.1) is a reaction-di�usion equation, i.e., for some � ¡ 0,

ut � �u xx � f puq: (1.3)

On the other hand, when the coupling is truly long-ranged, for example through
mechanical or electromagnetic coupling of subpopulationsui , a nonlocal coupling term
in the form of a convolution operator is retained.

More generally, identical considerations but now without dimensional restrictions
lead to three related but distinct classes of evolution equations: namely the generali-
sation of (1.1) to lattices in R n , reaction-di�usion equations

ut � � � u � f puq; upt; x q PR d (1.4)

on spatial domainsX € R n , and integro-di�erential equations on R n ,

ut � N � u � f puq; upt; x q PR d; (1.5)

where N � denotes convolution in the spatial variablex PR n .
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Pattern formation

These models have the ability to form spatial and temporal patterns. Not only are
these patterns beautiful to observe, they also play a prominent role in the dynamics.
To exemplify, consider the reaction-di�usion equation on the real line (1.3), with u
scalar-valued, and nonlinearity f given by

f puq � up1 � u2q: (1.6)

Now consider the evolution of a small localised perturbationu0 of the spatially ho-
mogeneous stateu � 0 under (1.1). Say, for example, that u0pxq ¡ 0 for |x| ¤ " for
some " ¡ 0, and u0pxq � 0 otherwise. Heuristically, under the temporal evolution
of (1.3), this initial perturbation is spread out due to the di�usion process, whilst si-
multaneously growing toward the stable homogeneous stateu � 1 under the in�uence
of the nonlinear dynamics. After some initial transient period, two interfaces appear,
propagating with linear wave speeds to the left and right, separating the spatially
homogeneous unstable stateu � 0 from the stable state u � 1. These interfaces form
a prominent feature in the dynamics, so it makes sense to study them in more detail.
Focussing on a single interfacial front, consider solutions of (1.3) which are of the form

upt; x q � vpt; x � ctq; v : R � R Ñ R ;

where c P R represents the wave speed which is, in prior, an unknown (thus to be
considered as a parameter). Here the idea is that the interface travels at speedc, so
that it appears �frozen� in the comoving frame of reference� � x � ct. Then vpt; � q
satis�es the equation

vt � �v �� � cv� � f pvq:

In particular, stationary solutions which satisfy

lim
� Ñ�8

vp� q � q� ; lim
� Ñ8

vp� q � q� ;

are referred to astravelling fronts (when q� � q� ) or excitatory pulses(when q� � q� ).
These are examples of wave-like phenomena which arrise through the nonlinear nature
of (1.3) by a process of local excitation and lateral inhibition. In the literature, the
nonlinear nature of these solutions is sometimes emphasised by referring to them as
nonlinear waves.

Such nonlinear waves may also be studied in higher spatial dimensions. Consider,
for example, (1.4) on a cylindrical domainX � R � 
 . Denoting coordinates onX by
px; yq PR � 
 , we may then consider waves propagating in the unboundedx direction,

upt; x; y q � vpt; x � ct; yq; v : R � R � 
 Ñ R d;

leading to the PDE
vt � v�� � cv� � � y v � f pvq:

In the lattice Equation (1.1), a travelling wave is a solution of the form

ui ptq � vpt; i � ctq; v : R � R Ñ R d;

which then satis�es
vt � N rvs � cv� � f pvq: (1.7)
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HereN represents the convolution operator with discrete kernel, induced by (1.2), i.e.,

N rvspt; � q �
¸

j PZ

N j vpt; � � j q:

Likewise, travelling waves in the integro-di�erential Equation (1.5) satisfy equations
of the form (1.7), where insteadN is a convolution operator with continuous kernel
N .

Spatial dynamics

Instead of considering the full spatio-temporal evolution of these equations, let us focus
on the stationary solutions, i.e., consider

v�� � cv� � � y v � f pvq � 0; (1.8)

and
N rvs � cv� � f pvq � 0: (1.9)

Classifying the bounded solutions of these equations is an important step towards
understanding the pattern forming abilities of (1.1), (1.4), and (1.5). In what follows,
we will assume that f is curl-free, so that

f pvq � r F pvq

for some potential F : R d Ñ R .

Interpreting � as a time-like variable, one may (formally) view these equations as
dynamical systems. Dynamical structures such as periodic orbits, homoclinic connec-
tions, and heteroclinic orbits, provide a key to classifying the behaviour of solutions
to (1.8) and (1.9).

The power of this idea is best illustrated when considering the scalar reaction-
di�usion process on the real line. There we retrieve the second-order ODE

v�� � cv� � f pvq � 0: (1.10)

This equation can be fully understood using phase-plane analysis. Particularly useful
is the underlying variational structure. When c � 0, this system has the Hamiltonian

Hpvq �
1
2

|v� |2 � F pvq; F 1pvq � f pvq:

Thus one may �nd families of periodic solutions, as well as isolated homoclinic and
heteroclinic connections. Forc � 0, we haveB� H pvq � � c|v� |2, from which a gradient-
like dichotomy follows: bounded solutions are either constant or heteroclinic.

Extending this spatial dynamics approach to higher-dimensional domains and non-
local PDEs is not without its problems. The PDE (1.8) is of elliptic type, and conse-
quently ill-posed as an initial value problem. This problem of lacking a �ow is even
more evident in the nonlocal Equation (1.9). Consider, for example, the system

vp� � 1q � 2vp� q � vp� � 1q � cv� p� q � f pvp� qq � 0: (1.11)
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In terms of spatial evolution, the nonlocal coupling induces both forward and backward
delay terms. It is then, in general, not possible to determine, given initial conditions
vp� q � v0p� q for � ¤ 0, the values of vp� q for � ¡ 0. Instead of trying to formulate
(1.9) as an initial value problem on an appropriately constructed �spatial phase space�,
we consider the spatial dynamics of (1.9) only on a formal level. Standard dynamical
systems results, which typically rely on pointwise considerations on the spatial phase
space, are thus not readily at our disposal. Rather, we take the route of adapting
techniques from dynamical systems by reducing to basic functional analytic aspects.

Nonlocal conservation laws

As we brie�y explained, the spatial Hamiltonian structure of (1.10) (with c � 0) pro-
vides a lot of qualitative information about the possible solutions. The same structure
is possessed by the PDE (1.8), at least whenf is curl-free, with Hamiltonian given by

Hpvq �
»




1
2

|v� |2 �
1
2

|r y v|2 � F pvqdy; r F pvq � f pvq;

and one �nds that solutions v of (1.8) satisfy

B� Hpvp�; �qq � � c
»



|v� |2 dy:

Under the right interpretation, such spatial Hamiltonian structures also exist for the
nonlocal equations of the type (1.9). For example, consider Equation (1.11). Given a
smooth function v : R Ñ R d, de�ne Hpvq by

Hpvq:� Lpvq � Bpvq;

where

Lpvq �
1
2

�
vp� 1q � vp1q

�
� vp0q � | vp0q|2 � F pvp0qq; r F pvq � f pvq;

and

Bpvq �
1
2

» 1

0

�
vp� � 1q �v� p� q � v� p� � 1q �vp� q



d�:

Given � P R , de�ne the spatial shift action p� � vqp� q :� vp� � � q. On the one hand,
direct computations show

B� Lp� � vq|� � 0 �
�

1
2

�
vp� 1q � vp1q

�
� 2vp0q � r F pvp0qq



� v� p0q

�
1
2

�
v� p� 1q � v� p1q

�
� vp0q

�
�

vp� 1q � 2vp0q � vp1q � f pvp0qq



� v� p0q

�
1
2

�
v� p� 1q � v� p1q

�
� vp0q �

1
2

�
vp� 1q � vp1q

�
� v� p0q:

On the other hand, computing B� Bp� � vq by di�erentiation under the integral, and
then integrating by parts, we �nd

B� Bp� � vq|� � 0 �
1
2

�
v� p� 1q � v� p1q

�
� vp0q �

1
2

�
vp� 1q � vp1q

�
� v� p0q:
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We conclude that, given a solutionv of (1.11), we have

B� Hp� � vq|� � 0 � � c|v� p0q|2:

Thus, when c � 0, the function H is a conserved quantity under spatial translations of
the solutions of (1.11), hence it behaves like a Hamiltonian for the spatial dynamics.
When c � 0, the function H behaves like a Lyapunov function. In particular, solutions
of this nonlocal equation satisfy a gradient-like dichotomy.

The function H was not just a lucky guess, nor is it speci�c to Equation (1.11).
Underlying is a variational principle: when c � 0, solutions of (1.9) correspond (at
least formally) to critical points of the free energy

� pvq �
»

R

1
2

v � N rvs � F pvqd�; r F pvq � f pvq:

Through a nonlocal variant of Noether's theorem, symmetries of this free energy cor-
respond to conserved quantities of the spatial shift action on solutions of (1.9). In
particular, the invariance under spatial translation results in the conservation of the
�total energy� H . The somewhat funky looking term B appears in this construction
through a �nonlocal integration by parts� procedure. This construction and various of
its consequences form the content of Chapter 3.

Morse�Floer theories

In Chapter 2 and Chapter 4 we further investigate Equations (1.8) and (1.9), respec-
tively, using topological methods. The idea of incorporating topological considerations
into dynamics is, of course, nothing new. A powerful link between topology and dy-
namics is provided by Morse theory. There are many di�erent perspectives on Morse
theory; for the sake or brevity, we introduce it here, on an informal level, from a purely
dynamical perspective. Morally, one should have in mind a dynamical system

vt � Apv; � q; (1.12)

and we wish to employ a homotopy continuation in the parameter � . All would be
�ne, and one could track the deformation of solutions in a smooth manner, as long as
the implicit function theorem is applicable. Once this is no longer possible, the system
undergoes a bifurcation, and the solution set may change drastically. The idea is now
to condense some of the dynamical structures into a combinatoric framework, in a
manner which is invariant under bifurcations (or, at least, bifurcations of a generic
type).

To gain some insight, let us �rst consider a local picture of gradient dynamics on
R 2, i.e., Apv; � q � � r F pv; � q, whereF p�; � q : R 2 Ñ R . Suppose that, for small values
of � , the system (1.12) has a stable equilibrium which we denote bya. Furthermore,
assume that for �   0, this is the only bounded solution of the system. Let us assume
the steady-states of the system undergo a saddle-node bifurcation at� � 0, creating
an additional pair of equilibra for � ¡ 0. Along with this steady-state bifurcation,
several connecting orbits are created; see Figure 1.1.

To capture this situation in an invariant manner, let C be the vector space overZ2

obtained by taking formal sums of the equilibria. Then, for �   0, we haveC � Z2,
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a a c b

Figure 1.1: Local bifurcation motivating the de�nition of the Morse homology. We consider here the
gradient �ow vt � � r F pv; � q, with level sets of F p�; � q depicted in the �gures. Left: The situation
for �   0, with a single stable equilibrium a. Right: A saddle point b and unstable equilibrium c are
created through a saddle-node bifurcation, with bifurcating heteroclinic orbits indicated in black.

with basis given by the single stable equilibriuma. For � ¡ 0, on the other hand, we
have C � Z3

2, with basis given by the stable equilibrium a, the saddleb, and unstable
equilibrium c. De�ne an endomorphism B of C by setting, for a given equilibrium z,

Bz �
¸

z1

npz; z1qz1:

Here the sum runs over all equilibriaz1 and npz; z1q � 1 if there exist an odd number
of isolated heteroclinic orbits connecting z with z1, and let npz; z1q � 0 otherwise.
For �   0 we haveB � 0. When � ¡ 0, we see from Figure 1.1 thatBc � b, whilst
Bb � 0 since there are two distinct orbits connectingb with a. With respect to the
basis t a; b; cu, we may thus representB by

B �

�

�
0 0 0
0 0 1
0 0 0

�

 :

Note that B2 � 0, and the quotient space

H :�
ker B
img B

is isomorphic to Z2, both when �   0 and when � ¡ 0.

The quotient spaceH is the invariant we hinted at before. Though we discussed
a system onR 2, we remark that only relative stability information on the equilibria
plays a role, and the dimension of the ambient space is irrelevant. Of course, the
construction was only sketched locally. Several properties are needed in order to make
it work on a global level. Compactness estimates are required to ensure that solutions
of (1.12) are not being pushed out towards in�nity. To make sense of the de�niton
of B on a global level, one has to exclude the existence of heteroclinic cycles, which is
typically achieved by assuming gradient-like behaviour of (1.12). Finally, the notion
of counting of isolated connecting orbits has to be well-de�ned. For systems which
de�ne a �ow, the latter is usually achieved by ensuring stable and unstable manifolds
intersect transversely.
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It is more common to decompose the vector spaceC as C � ` n Cn , where the
grading n encodes the unstable dimension of the equilibria. The endomorphismB
factors through this splitting, and the relation B2 � 0 results in the long exact sequence

� � � Cn Cn � 1 � � �
Bn � 1 Bn Bn � 1

The quotient spacesHn � ker Bn { img Bn � 1, with n PZ, are typically referred to as the
Morse homology. Observing that this construction does not require the global �ow,
but only information about heteroclinic orbits, one may try to extend this homology
theory to settings which lack a �ow. Such theories are often referred to as Floer
homologies.

In Chapter 2 we develop a Floer-type theory for travelling waves in reaction-
di�usion equations on unbounded cylinders, encoding� -independent solutions of (1.8)
in the chain groups Cn , and � -dependent solutions in the boundary operatorBn . In
Chapter 4 we do the same, but now for nonlocal equations as in (1.9). In both cases,
one the fundamental observations is that, with nonzero wave speedc � 0, travelling
waves satisfy a gradient-like dichotomy. A boundary operator Bn may thus be de-
�ned, after establishing compactness and transversality results, by counting isolated
heteroclinic solutions of the spatial dynamical system.

Forcing theorems

Forcing theorems form a class of results on dynamical systems, which, roughly speak-
ing, state that certain complicated solutions are forced to exist by the presence of
simpler solutions. The best known example of such a result isSharkovsky's period
three theorem, which states that, concerning the dynamics given by the iteration of
an arbitrary map h : r0; 1s Ñ r0; 1s, the existence of a period three orbit implies the
existence of periodic orbits with arbitrary period, as well as chaotic behaviour. This
result, in its core, is a consequence oftopological restrictions of the interval r0; 1s.

Floer theory, as described in the previous paragraph, provides a powerful relation
between travelling waves and topology, which allows us to obtain forcing theorems.
Consider, for example, Equation (1.9) with c � 0 and v scalar-valued. Critical groups
Cn are generated by the stationary solutions of the spatial dynamics, which in this case
are simply given by the zeroes off . The boundary operator Bn is de�ned through a
binary count of heteroclinic solutions of (1.9). Let us introduce a parameter-dependent
nonlinearity

f � pvq:� vp� � v2q;

so that for � � 1, this nonlinearity coincides with (1.6). Using the rapid growth of
f � pvq as |v| Ñ 8 , we obtain compactness estimates for (1.9), uniform in� . As a
result, the Floer homology for (1.9) with f � f 1 is isomorphic to the homology with
f � f � 1. Since, when� � � 1, the only root of f � is v � 0, we conclude that the Floer
homology of (1.9) with f � f � is of rank 1, i.e.,

¸

n PZ

rank
�

ker Bn

img Bn � 1



� 1;

independent of� . Observing that when � � 1 the critical groups have three generators,
v � � 1, v � 0, and v � 1, we �nd that this rank 1 condition can only be satis�ed if



9

the boundary operator B is nonzero. Since the boundary operator encodes heteroclinic
solutions of (1.9), we thus �nd that (1.9) with f � f 1 has at least one heteroclinic
solution. This argument does not depend on the particular choice ofN or c � 0, so
that we in fact retrieve the existence of a travelling wave of arbitrary wave speed.

Structure of the thesis

The main body of this thesis consists of three chapters, each of which is a self-contained
scienti�c article. Chapter 2 is based on the paper �A Floer homology approach to trav-
elling waves in reaction-di�usion equations on cylinders� (SIAM Journal on Applied
Dynamical Systems 17.4, 2018). Scalar reaction-di�usion equations on unbounded
strips and cylinders are considered. Travelling waves satisfy the second-order elliptic
PDE (1.8) with c � 0, which we cast as a dynamical system on a spatial phase space.
General compactness results are obtained using energy estimates, where blowup phe-
nomena (e.g. bubbling of Floer cylinders) are excluded in the physically relevant two-
and three-dimensional settings. Using nonlocal perturbations, generic transversality
of heteroclinic connections is ensured, and a Floer-type homology is constructed. We
then compute this homology for various nonlinearities. With this, a forcing theorem
is obtained, providing existence and multiplicity results for travelling waves.

Chapter 3 is based on the paper �Spatial Hamiltonian identities for nonlocally
coupled systems� (Forum Mathematics Sigma 6.e22, 2018). We focus on a class of
nonlocal equations which are, up to the action of an underlying symmetry, given as the
Euler�Lagrange equations of free energy functionals. A version of Noether's theorem
is derived, relating symmetries of the free energy with conserved quantities in the spa-
tial dynamics. We furthermore obtain a presymplectic structure, by which the spatial
dynamics may be interpreted as a Hamiltonian system. Using �nite-dimensional reduc-
tion on centre manifolds, dynamics near equilibria is reduced and various implications
of the Hamiltonian structure are investigated.

Finally, Chapter 4 is based on the preprint �Large fronts in nonlocally coupled
systems using Conley�Floer homology� (arXiv: 1907.03861). We consider travelling
waves in nonlocal equations. These satisfy (1.9) withc � 0. A Floer-type theory
is constructed for these equations, in which the gradient-like behaviour uncovered
in Chapter 3 plays a prominent role. We forego casting (1.9) on a �spatial phase
space�, instead relying on purely functional analytic considerations. Therefore we
develop, from scratch, a general transversality theory, and a classi�cation of bounded
solutions, in the absence of a phase space. In various cases the resulting homology can
be interpreted as a homological Conley index for multivalued vector �elds. With this,
the homology becomes a computable object. We derive from this a general forcing
theorem, by which existence and multiplicity of travelling waves is established.





Chapter 2

Floer homology for travelling waves in
reaction-di�usion equations on
unbounded cyclinders

2.1 Introduction

A prominent feature of reaction-di�usion equations is the formation of spatial and
temporal patterns. The formation of spatial patterns is often observed to be in the
form of a travelling wave invading one state (e.g. a homogeneous distribution) and
leaving behind another (more complicated) state (e.g. a spatial pattern). In this
chapter we develop a topological invariant based on a Floer homology construction.
This gives insight in the structure of the solutions of the reaction-di�usion equations.
Furthermore, it demonstrates emphatically that Floer homology has applications to a
broad class of evolutionary PDEs, far beyond the realm of symplectic topology where
it is traditionally employed.

Historically Floer homology is de�ned for the Hamilton action functional in order
to develop a Morse type theory for contractible period-1 orbits. In particular, this
approach has led to the resolution of the Arnol'd conjecture in many settings, see [9,
46, 49, 70] and the references therein. In the classical context Floer homology gives
an algebraic invariant which is related to a weighted count of critical points of the
Hamilton action and is isomorphic to the singular homology of the symplectic manifold.
Floer homology has been developed for numerous nonclassical settings, including [6,
40, 58, 62]. The basic idea in the construction is that solutions of a di�erential equation
can be organised using gradient dynamical systems.

The main message of this chapter is that such an approach works for the much
larger class ofgradient-like dynamical systems, including strongly inde�nite ones, and
may be regarded as an extension of the Conley index for elliptic partial di�erential
equations. Indeed, in the theory of pattern formation the di�erential equations in
question often display canonical gradient-like behaviour.

In this introduction we will start o� with an overview of the main results and
explain the advantages of the Floer homology approach, followed by a summary of
the Floer construction. We conclude the introduction with an example of a classical

11
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travelling wave problem using the Conley index and point out the analogues with the
Floer homology approach.

2.1.1 Main results

We consider a scalar reaction-di�usion equation on an unbounded cylindrical domain
R � 


Bs ' � � �x ' � f p�x; ' q; for s PR ; �x PR � 
 ; (RDE)

together with Dirichlet, Neumann, or periodic boundary conditions for �x P R � B 
 .
Here u is a scalar function, and
 € R d is a bounded domain with smooth boundary.
The operator � �x denotes the Laplacian onR � 
 , that is,

� �x � B 2
x 0

� B 2
x 1

� � � � � B 2
x d

; for �x � p x0; xq � p x0; x1; : : : ; xdq PR � 
 :

We will also be using the Laplacian on
 , which we will denote by � , that is,

� � B 2
x 1

� � � � � B 2
x d

; for x � p x1; : : : ; xdq P
 :

Suppose the nonlinearityf is homogeneous in the (unbounded)x0 variable. Then
a natural class of solutions (often observed experimentally) of (RDE) to consider are
of the form ' ps; �xq � upx0 � cs; x1; : : : ; xdq, for somec � 0 (without loss of generality
we will assumec ¡ 0). Then upt; x q (where t PR , x PR d) satis�es the elliptic PDE

B2
t u � cBt u � � u � f px; uq � 0; for t PR ; x P 
 ; (2.1)

together with Dirichlet, Neumann, or periodic boundary conditions at x P B
 .

If u is a solution of (2.1), then ' ps; �xq � upx0 � cs; x1; : : : ; xdq is called atravelling
wave (but we will also refer to u as such) if it converges (locally uniformly in x) as
s Ñ �8 to stationary solutions of (RDE). To make this more precise we �rst need
to de�ne � - and ! -limit sets. Let � puq denote the set of all accumulation points in
the C1

loc topology of the shifts up� � �; �q as � Ñ �8 . Similarly, let ! puq denote all
those accumulation points of shiftsup� � �; �q as � Ñ 8 . Then u is a travelling wave
when � puq X ! puq � H , and � puq and ! puq consist solely of stationary solutions of
(2.1), i.e. each z P � puq Y ! puq satis�es � z � f px; zq � 0 and the same boundary
conditions as were chosen in (2.1). Later on we will see that, under suitable conditions
on the nonlinearity f , any bounded solution of (2.1) is either a stationary solution or
a travelling wave.

In Section 2.2 we will formulate precise conditions on the nonlinearityf for which
our theory works. Special instances of such nonlinearities are of the form

f odd ;� px; uq � � � pxq|u|p� 1u � hpx; uq (2.2)

or
f even;� px; uq � � � pxq|u|p � hpx; uq: (2.3)

Here � PC4
b p
 q is such that inf x P
 � pxq ¡ 0, and the lower order term h PC4p
 � R q

is such that

lim sup
|u |Ñ8

sup
x P


|hpx; uq|
|u|p

� 0:
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It should be stressed that, although the namesf odd ;� and f even;� are suggestive, we
do not assume any symmetry of the lower order termh. For the power p we restrict
attention to the �subcritical range�: 1   p   8 if dim 
 � 1, and 1   p ¤ 3 if
dim 
 � 2. Extension of the theory which also deals with higher dimensional domains
and bigger p are subjects for future research, see also Remark 2.2.2 in Section 2.2.

Stationary solutions of (2.1), i.e. solutions which are independent oft, solve a
semilinear elliptic problem on a bounded domain
 . We say that a stationary solution
z is hyperbolic if the only solution of

� v � f u px; zqv � 0; for x P 
 ;

together with the same boundary condition considered in (2.1) isv � 0.

In this chapter we develop an algebraic/topological invariant which takes into ac-
count solutions of (2.1) which are stationary, as well as certain solutions which connect
stationary solutions (i.e. certain travelling waves). In terms of applications, the main
result from this chapter is the following theorem.

Theorem A (Theorem 2.10.2 from Section 2.10). Consider any nonzero wave
speedc � 0, and let k ¥ 1. Then the following holds:

� If f � f odd ;� and (2.1) has at least 2k distinct hyperbolic stationary solutions,
then (RDE) has at leastk distinct travelling wave solutions of wave speedc. More
precisely, to each given hyperbolic stationary solutionz (but with the possible
exception of at most one of them), there corresponds at least one travelling wave
u such that � puq � t zu or ! puq � t zu (but it is possible that ! puq resp. � puq
consist of non-hyperbolic stationary solutions).

� If either f � f odd ;� , or f � f even;� , or f � f even;� , and (2.1) has at least2k � 1
distinct hyperbolic stationary solutions, then (RDE) has at leastk distinct trav-
elling wave solutions of wave speedc. More precisely, to each given hyperbolic
stationary solution z, there corresponds at least one travelling waveu such that
� puq � t zu or ! puq � t zu (but it is possible that ! puq resp. � puq consist of
non-hyperbolic stationary solutions).

Furthermore, in each of these cases there exists at least one more stationary solution
(which might be non-hyperbolic).

Here we consider two travelling wave solutions' 1, ' 2 of (RDE) to be distinct from
each other if ' 1ps1; �q � ' 2ps2; �q for all s1; s2 PR , i.e. they are not simply time trans-
lates of one another. We note that the problem of establishing hyperbolic stationary
solutions is amenable to computer-assisted proof techniques, making the assumptions
in Theorem A veri�able in practice (see e.g. [8, 20]).

When f � f odd ;� , Equation (2.1) is dissipative, meaning that the set of all bounded
solutions is compact. In that case, similar results have previously been obtained using
di�erent methods. See for example [45, 50, 52, 75]. However, the methods used there
break down when the set of bounded solutions is not compact.

We point out that for suitable conditions on f (e.g. demanding that f � f odd ;�

has the symmetry f px; � uq � � f px; uq) Equation (2.1) has in�nitely many stationary
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solutions. This is well known, see for example [14, 55, 84, 101, 102], although this
can also be deduced from Theorem A directly. Now Theorem A implies that if all
the stationary solutions are hyperbolic (a condition which can be ensured by adding
a small perturbation), for such anti-symmetric nonlinearities f � f odd ;� there exist
in�nitely many travelling wave solutions of (RDE) with any given nonzero wave speed.

When 
 is zero-dimensional, a classical approach to proving the existence of con-
necting orbits in (2.1) is by using Conley index theory, see also Subsection 2.1.4.
However, since (2.1) is a strongly inde�nite problem, arguments based on Conley in-
dex theory cannot be applied directly. Indeed, any index pair for a stationary solution
is homotopy equivalent to a pointed in�nite dimensional sphere, hence the Conley
index of any rest point is trivial. In [45] this problem was circumvented by, roughly
speaking, assigning an index to isolated invariant sets via the limit of Conley indices
of �nite dimensional approximations of (2.1). In order for this limit to make sense,
one needs global compactness results on the set of all bounded solutions of (2.1), i.e.
this method is only applicable for dissipative nonlinearitiesf .

Previous work by various authors has shown that Floer homology is capable of
dealing with a larger class of problems than the analogous Conley index approach:
compare e.g. [29, 32] with [46, 86], and [63] with [6]. Inspired by this, we construct
a Floer-type homology theory for (2.1). This construction only requires a local com-
pactness result on the space of bounded solutions of (2.1), hence our results also apply
to nondissipative nonlinearities (e.g.f � f odd ;� ).

2.1.2 Comparison to classical Floer theory

We want to point out here that this work is not a straightforward application of the
standard Floer theory for Hamiltonian systems. Equation (2.1) takes over the role of
the (perturbed) Cauchy�Riemann equation in the standard Floer theory. Although
both (2.1) and the Cauchy�Riemann equation are elliptic, there are some important
di�erences.

Equation (2.1) is not a (formal) gradient �ow (but it is gradient-like), and it is
not immediately be clear whether the construction of the homology still works for
gradient-like equations. For example, the index theory for this problem becomes more
involved. The obtained index can be related to the classical Morse index of a related
parabolic equation, thus making the index amendable for computations. The existence
of a Lyapunov function for (2.1) guarantees that, just as in the classical situation, the
moduli spaces of connecting orbits can be compacti�ed by adding broken orbits.

In the case of standard Floer theory, transversality can be obtained by perturbing
the Hamiltonian and the almost complex structure. Thus the perturbed equation is
again a PDE. However, to us it seems that a natural way to achieve generic transver-
sality is by adding a nonlocal term to Equation (2.1). Of course, the downside of this
approach is that the perturbed equation is then no longer a PDE.

To illustrate why this is a sensible choice, it is best to rewrite the Equation (2.1)
as a dynamical system

Bt U � ApUq: (2.4)

Here U � p u; Bt uq, and ApUq is a di�erential operator acting on U plus a nonlinear
term f px; uq. But from a di�erent viewpoint, A is a (densely de�ned) vector �eld on
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a function spaceX (consisting of functions depending onx P 
 ). To obtain generic
transversality, one should allow for perturbations of (2.4) which are localised in the
�phase space�X . In general, there seems to be no reason to assume such a perturbation
can be chosen to be a di�erential operator. The fact that this is possible in classical
Floer theory is because solutions of perturbed Cauchy�Riemann equations share most
properties with holomorphic functions, see [47].

The choice to perturb the Equation (2.1) out of the class of PDEs does introduce
a number of new technical obstacles. The biggest hurdle turns out to be the unique
continuation theory developed in Section 2.4. To deal with the nonlocal perturbation
we had to develop a new variety of Carleman estimates.

Finally, we note that with classical Floer theory one is interested in the generators
of the homology. The boundary operator, which counts connecting orbits for the
gradient-�ow, is merely introduced in order to de�ne the homology. In contrast to
this, we are interested in the connecting orbits of a gradient-like equation. Hence the
boundary operator encodes the information we are actually interested in. The latter
is comparable to the connection matrix in Conley index theory.

2.1.3 Future work

We have chosen to present the theory only for
 of dimension1 and 2. This allows us to
work solely over Hilbert spaces. The advantage of this becomes apparent especially in
Sections 2.3 and 2.4. By replacing the various Sobolev spaces by theirL p counterparts,
one should be able to obtain similar results for higher dimensional
 .

We restrict to spaces
 which are either tori, or smooth domains inR d. It appears
to be straightforward to generalise the current results to work for more general spaces

 . A natural requirement would be that 
 is an orientable Riemannian manifold,
either closed, or with cylindrical ends. It would then be natural to allow for mixed
boundary conditions at the cylindrical ends.

Another aim for future work is to extend the invariant to higher order equations.
One of the main technical hurdles will then be the extension of the unique continuation
theory from Section 2.4.

In this article we only consider travelling waves in a scalar reaction-di�usion equa-
tion. However, the same construction will work, essentially without modi�cations, for
systems of reaction-di�usion equations, provided that the reaction term is of the form
f � r F .

The invariant that we develop only incorporates index 1 connecting orbits, for any
wave speedc � 0. However, a similar invariant can be developed to detect index0
orbits, for a speci�c wave speedc � c� . For this, one should incorporate a slow drift
on the wave speedc, which connects a slow wave speed system with a fast wave speed
system. Using similar techniques as presented here the existence of nontrivial orbits
for such systems can be shown. By combining this with a priori estimates on the
solutions, we are convinced that one can prove the existence of index0 orbits for a
speci�c wave speedc � c� , see [77, 93].

In [41] (and, using di�erent methods, in [1]) symplectic nonsqueezing results are
developed in the setting of Hamiltonian PDEs. These rigidity properties are derived
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u

u1

Figure 2.1: Sketch of an index pair pN; L q for the set of all bounded solutions of (2.5), with
f puq � p u � aqp1 � u2q, where 0   a   1 and c ¡ 0. The lightly shaded area indicates a possi-
ble choice of an isolating neighbourhood N , while the darkly shaded area indicates a possible choice
for an exit set L . The number of heteroclinic connections depend on choices of a and c.

using the analysis ofJ -holomorphic curves. The current chapter demonstrates that
Floer homology can be constructed using travelling waves instead ofJ -holomorphic
curves. This suggests the PDEs dealt with in this chapter possess additional rigidity
properties which are worth exploring in more detail.

2.1.4 A classical example

To illustrate how a topological invariant can be used to deduce the existence of solu-
tions of (2.1), we now brie�y recall how this problem can be tackled using standard
tools when 
 is zero-dimensional. In that setting (2.1) reduces to the ODE

u2 � cu1 � f puq � 0: (2.5)

A topological approach to existence of solutions of this ODE dates back to work by
Conley and Gardner, see [31, 51].

We �rst recall the de�nition of the Conley index. Given a �ow p' t qt on a metric
spaceX , a pair pN; L q is called an index pair if, roughly speaking, L € N € X
are compact subsets, such thatN and N r L are isolating neighbourhoods of the
�ow with InvpN q � InvpN r Lq, and all orbits which leave N must do so through L
without re-entering N r L . The (homological) Conley index ofpN; L q is then de�ned
as the relative (singular) homology of the pair pN; L q. In this example we will useZ2

coe�cients for the homology. It can be shown that any isolated invariant set S for
the �ow p' t qt admits an index pair pN; L q, i.e., an index pair for which InvpN q � S.
Moreover, if pN1; L 1q and pN2; L 2q are two index pairs for the same isolated invariant
setS, then the relative (singular) homologies of those pairs are isomorphic via a natural
isomorphism. Thus one can de�ne the (homological) Conley indexHC� pS; ' q, up to
natural isomorphism, as the relative homology of an index pairpN; L q for S. That is
to say, HC� pS; ' qshould be interpreted as an equivalence class of relative homologies.
This notion of de�ning HC� pS; ' q up to natural isomorphisms can be formalised by
de�ning HC� pS; ' q as the inverse limit over all index pairs pN; L q with InvpN q � S.
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A crude way to apply Conley index theory to (2.5) makes use of the direct sum
property of the index. This property states that, if an isolated invariant set S for the
�ow p' t qt can be written as the disjoint union of S1, and S2, then

HC� pS; ' q � HC� pS1; ' q ` HC� pS2; ' q:

Consider (2.5) as a dynamical system onR 2, and let S € R 2 consist of all bounded
orbits of this dynamical system. Now note that for c � 0 the dynamical system
is Hamiltonian, and for c ¡ 0 the system displays gradient-like behaviour, with the
original Hamiltonian function now strictly decreasing along nonstationary orbits. This
gradient-like behaviour implies that S consists of stationary solutions and heteroclinic
orbits.

Using the invariance property of the Conley index it can be seen thatHC� pS; ' q
is isomorphic to HC� pt0u;  q, where p t qt is the �ow of (2.5) with f puq � � u3 � u.
Since 0 is a saddle point for p t qt , it follows that HC� pt0u;  q is isomorphic to the
reduced singular homology of a 1-sphere. Hence

HCn pS; ' q � HCn pt0u;  q � Hn pS1; pt; Z2q �

#
Z2 if n � 1;
0 otherwise:

This is further illustrated in Figure 2.1.

Now suppose the system does not possess any connecting orbits. The gradient-like
behaviour then implies that S consists solely of rest points of the �ow, hence the direct
sum property implies

HC� pS; ' q � HC� ptp� 1; 0qu; ' q ` HC� ptpa; 0qu; ' q ` HC� ptp1; 0qu; ' q:

But local phase plane analysis shows that all of the rest points have nontrivial Conley
index. Hence the rank of the direct sum is at least3, while HC� pS; ' q is of rank 1.
This contradiction allows us to conclude that S contains at least one connecting orbit.

2.1.5 Outline of this chapter

As was already indicated, the proof of Theorem A is of the same spirit as the example
sketched in the previous section. Note that one of the essential ingredients in this
approach is the gradient-like behaviour, i.e., that the set of bounded solutions consists
of stationary solutions and connecting orbits. The other essential ingredient is the
existence of an algebraic object associated to isolating neighbourhoods, such that:

(1) It is amenable to computation, which follows from the invariance of the algebraic
object under (not necessarily small) perturbations of the nonlinearity f . In other
words, it is a topological invariant.

(2) It encodes dynamical information. In particular, it should satisfy a direct sum
property.

Since the equation we consider is in�nite dimensional the Conley index is not applica-
ble. In this chapter we develop a new topological invariant, which we call the travelling
wave homology.
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Let us now sketch the construction of the travelling wave homology as well as give
an outline of the chapter. We begin by assigning an index� f pZ q to hyperbolic sta-
tionary solutions Z of (2.1). This index can be thought of as a generalisation of the
classical Morse index. The existence of this (relative) index in our strongly inde�nite
setting relies on a version of the Fredholm alternative for (2.1), for which the hyper-
bolicity of the stationary solutions is needed, and which is discussed in Section 2.5.

The construction of the invariant then relies on a careful analysis of the spaces
M pZ � ; Z � q of connecting orbits between �xed stationary solutions Z � , Z � . One
important observation is that these spaces are compact modulo �broken trajectories�.
In Section 2.7 we give precise de�nitions as well as a proof of this property. Essential
ingredients are the local compactness results from Section 2.3, as well as the existence
of a Lyapunov function E.

Using the rapid decay of connecting orbits towards stationary solutions (discussed
in Section 2.6) the spacesM pZ � ; Z � qcan be described as the zero set of a di�erential
operator de�ned between certain a�ne Hilbert spaces. Thus, roughly speaking, if the
image of this di�erential operator intersects the zero section transversely, the implicit
function theorem (making use of the Fredholm theory from Section 2.5) gives us a
manifold structure on M pZ � ; Z � q. In fact, this manifold is �nite dimensional, with
dimension equal to� pZ � q � � pZ � q.

As it turns out, the natural way to ensure transversality holds generically is by
perturbing (2.1) using a small nonlocal term. The perturbed equation takes the form

B2
t upt; x q � cBt upt; x q � � upt; x q � f px; upt; x qq � gpx; pupt; �q; Bt upt; �qqq � 0: (2.6)

We stress that the perturbation g depends onupt; �q and Bt upt; �q as functions on 
 .
A typical example of such a perturbation is of the form displayed in (2.41). One
particular part where this nonlocal term prevents us from applying known results is
the unique continuation theory developed in Section 2.4. There we prove that if two
solutions pu; Bt uq and pv; Bt vq of (2.6) coincide at a certain time t � t0, they must in
fact coincide for all t P R , i.e. u � v. In the absence of the termg this would follow
from classical Carleman estimates [10, 11, 27, 28, 66, 94]. To deal with the nonlocal
perturbation g, in Section 2.4 we have derived a version of the Carleman estimates
where the function is not required to be localised except for thet-direction. This
is possible, at the cost of the Carleman estimates no longer holding uniformly over
all localised functions (as in the classical case), but the way in which the estimates
depend on the chosen function works well together with localising a solution of (2.1) in
the t-direction using cuto� functions. This allows us to prove the desired uniqueness
result. In the end, we are able to show that for generic choices ofg the transversality
condition is satis�ed (see Section 2.8).

Of particular interest is then the case whenM pZ � ; Z � q is of dimension2 and non-
compact. A careful analysis shows that this space can be compacti�ed by adding, for
each noncompact connected component ofM pZ � ; Z � q, precisely two broken trajecto-
ries. In the de�nition of the homology we shall also make use of isolating neighbour-
hoods (the precise de�nition of which will be given in Section 2.9), which will play a
similar role as in Conley theory. Then, if one letsCn denote the group which isZ2

generated by indexn stationary solutions contained in a �xed isolating neighbourhood
N , and de�ne homomorphisms Bn : Cn Ñ Cn � 1 by counting (modulo 2) connecting
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orbits which are contained in N , it follows that Bn � Bn � 1 � 0. This way we arrive at
the following theorem.

Theorem B (Theorem 2.9.1 from Section 2.9). One hasBn �Bn � 1 � 0, and con-
sequently,

HTW n pN; f; g; c q:� Hn pC� ; B� q �
ker Bn

img Bn � 1

is well-de�ned.

The resulting homology HTW � pN; f; g; c q is independent (up to natural isomor-
phisms) of the particular choice of g (for small g). Thus we obtain an invariant
HTW � pN; f; c q for (2.1). Furthermore, if pf � ; c� q is a homotopy between nonlineari-
ties pf 0; c0qand pf 1; c1q, and N satis�es an appropriate stability property with respect
to this homotopy (detailed in Section 2.9), then HTW � pN; f 0; c0q � HTW � pN; f 1; c1q.
In particular, when N is the entire phase space and the nonlinearityf is of the form
given in (2.2) or (2.3), then the homology is invariant under homotopy on the lower
order term h and the coe�cient � , as long asinf x P
 � � pxq ¡ 0 uniformly in the ho-
motopy parameter � . This is what allows us to determine explicitely the homology of
the global dynamics in all four cases, see Theorem 2.10.1.

The invariant HTW satis�es a direct sum property similar to that of the Conley
index. If N � A Y B , where A and B are disjoint isolating neighbourhoods for the
dynamics, then

HTW � pN; f; c q � HTW � pA; f; c q ` HTW � pB; f; c q:

This allows us to prove Theorem A in a way analogous to the simpli�ed example
involving Conley index theory in Section 2.1.4.

2.2 The extended problem

In this section we set up the extended problem into which our original problem can
be embedded. In later sections we will see that for generic choices from this class of
extended problems we can set up the desired transversality theory. It appears that
this is not possible without considering the extended problem.

2.2.1 Perturbations

Let 
 be either a bounded domain inR d with smooth boundary, or the d-dimensional
torus 
 � T d � R d{Zd. We will restrict ourselves to d P t1; 2u, see Remark 2.2.2.
Since we want to consider (2.1) as a dynamical system we are going to rewrite it as
a system of equations which involve �rst order derivatives of t only. We choose to
incorporate the boundary conditions in the phase space.

We denote byH k p
 q the L 2 Sobolev space, de�ned as the closure ofC8 p
 q in the
norm

}u}H k p
 q �

�

�
¸

|� |¤ k

}B� u}2
L 2 p
 q

�



1{2

:
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When 
 € R d is a domain, let B : C8 p
 q Ñ C8 pB
 q be given by eitherB puq � u|B

(Dirichlet), or B puq � B � u|B
 (Neumann), where� denotes the outward pointing unit
normal on B
 . When 
 is a torus (corresponding to periodic boundary conditions),
we setB � 0. For any k PN 0 we now de�ne

H k
B p
 q:� clH k p
 q

 
u PC8 p
 q : B puq � 0

(
:

Whenever it is convenient, the operatorB shall also be identi�ed with its extension
to Sobolev spacesH k p
 q.

We can now introduce the phase spaces

X k :� H k � 1
B p
 q � H k

B p
 q; k PN 0:

Together with the norms

}pu; vq}2X k :�
�
}u}2

H k � 1 p
 q � } v}2
H k p
 q

� 1{2
; pu; vq PX k

these become separable Hilbert spaces.

Given a possibly unbounded open subsetJ € R de�ne

W k; 2
loc pJ ; X 0; : : : ; X k q:� W k; 2

loc pJ; X 0q X W k � 1;2
loc pJ; X 1q X � � � X

X � � � X W 1;2
loc pJ; X k � 1q X L 2

loc pJ; X k q:

We endow these spaces with the compact-open topology. Convergence in this topology,
which in fact makes W k; 2

loc pJ ; X 0; : : : ; X k q into a Fréchet space, is characterised as
follows: a sequencepUn qn € W k; 2

loc pJ ; X 0; : : : ; X k q converges towardsU8 if and only if
for any bounded open subsetJ 1 € J it holds that

max
0¤ ` ¤ k

max
0¤ j ¤ k � `

»

J 1
}Bj

t Un ptq � B j
t U8 ptq}2X ` dt Ñ 0 as n Ñ 8 : (2.7)

The spacesW m; 2pJ ; X 0; : : : ; X m q are de�ned in a similar fashion, where nowJ 1 in
(2.7) is replaced byJ . The spacesCm pJ ; X 0; : : : ; X m q are de�ned by

Cm pJ ; X 0; : : : ; X m q:� Cm pJ; X 0q X Cm � 1pJ; X 1q X � � � X C1pJ; X m � 1q X C0pJ; X m q;

where the topology is de�ned by uniform convergence of functions and their derivatives
on compact subsets ofJ . The spacesCm

b pJ ; X 0; : : : ; X m q of bounded di�erentiable
functions are de�ned in an analogous manner, where now the convergence is uniform
over J itself.

Lemma 2.2.1. One has the continuous embeddings

W m; 2pJ ; X 0; : : : ; X m qãÑ Cm � 1
b pJ ; X 0; : : : ; X m � 1q;

W m; 2
loc pJ ; X 0; : : : ; X m qãÑ Cm � 1pJ ; X 0; : : : ; X m � 1q:

Furthermore, the embeddings

W m; 2pJ ; X 0; : : : ; X m q ãÑ W m � 1;2pJ ; X 0; : : : ; X m � 1q; with J bounded;
W m; 2

loc pJ ; X 0; : : : ; X m q ãÑ W m � 1;2
loc pJ ; X 0; : : : ; X m � 1q; for any J

are compact.
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Proof. We give a sketch here, for more details we refer to [3]. The �rst two state-
ments are a consequence Morrey's inequality. This relies on the integral representation
Uptq � Upt0q �

³ t
t 0

BsUpsqds, which is well-de�ned since the spacesX i are separable.
The compact embeddings follow from the Rellich�Kondrachov theorem for vector-
valued Sobolev spaces. Here one uses thatX i are seperable Banach spaces and the
embeddingsX i ãÑ X i � 1 are compact.

Let A f;g;c : X 1 Ñ X 0 be the nonlinear operator de�ned by

A f;g;c pu; vqpxq:�
�

� vpxq
� upxq � f px; upxqq � cvpxq � gpx; pu; vqq




for pu; vq PX 1. We stress here that the termgpx; pu; vqqdepends on the functionsu
and v, and not on the point pupxq; vpxqq. We assumef : 
 � R Ñ R is of classCm

with m ¥ 1, and g : 
 � X 0 Ñ R is Cm (in the Fréchet sense), andc ¡ 0. At each
point in the development of the theory we will point out exactly how big m needs to
be, but we already want to point out that all theorems hold for m ¥ 4. The nonlocal
term g will typically be a very small term. Additional restrictions on f and g will be
formulated in the next section. For brevity we shall write A instead of A f;g;c whenever
this does not give rise to ambiguity.

We will study the behaviour of the dynamical system

Bt U � A f;g;c pUq � 0; U PW 1;2
loc pJ ; X 0; X 1q: (TWE)

Note that U � p u; vq is a solution of (TWE) if and only if v � B t u, and

B2
t u � cBt u � � u � f px; uq � gpx; pu; Bt uqq � 0 on J � 
 ;

and for each t P J the boundary condition B pupt; �qq � 0 is satis�ed. Unless men-
tioned otherwise, we assume thatJ � R . Note that as a consequence of the nonlocal
perturbation g (TWE) is in general not a PDE.

Conditions on f , g, and c

Henceforth we shall assume thatpf; g q PCm p
 � R q � Cm p
 � X 0q and c ¡ 0 satisfy
the following hypotheses.

(f1) There exists Cf ¥ 0 such that f satis�es the growth bounds

sup
x P


|f px; uq| ¤ Cf p1 � | u|pq;

where 1 ¤ p   8 if dim 
 � 1, and 1 ¤ p ¤ 3 if dim 
 � 2.

(f2) There exist some� 1   �   1 and C1
f ¥ 0 such that f satis�es

|F px; uq| ¤ C1
f �

�
2

f px; uqu:

Here F px; uq �
³u
0 f px; sqds.
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As an alternative to (f2) we can also consider (see also Remark 2.2.3)

(f2 1) There exist some� 1   �   1 and C1
f ¥ 0 such that f satis�es

|F px; uq| ¤ C1
f �

�
2

f px; uq|u|:

When dealing with Neumann or periodic boundary conditions, we need an additional
restriction on the nonlinearity, given by (f3).

(f3) When considering Neumann or periodic boundary data, assumef satis�es the
superlinear growth condition

lim inf
|u |Ñ8

inf
x P


�
�
�
�
f px; uq

u

�
�
�
� ¡ 0:

Besides these restrictions onf we need to put a few restrictions ong:

(g1) There exists a constantC0;g such that

sup
x P
 ; U PX 0

|gpx; U q| ¤ C0;g ;

and for eachk P t1; : : : ; mu there exists a constantCk;g such that

sup
x P
 ; U PX 0

}D k gpx; U q}L ppR � X 0 qk ;R q ¤ Ck;g :

(g2) The perturbation g satis�es the Lipschitz condition

sup
x P
 ; u PH 1

B p
 q
|gpx; u; vq| ¤

c

2
a

Volp
 q
}v}L 2 p
 q:

Note the dependence of the Lipschitz constant on the wave speedc.

(g3) The perturbation g satis�es

Dgpx; u; 0q � 0 for all x P 
 ; u PH 1
B p
 q:

Remark 2.2.2. We stress here that both the dimensional restrictiond � dim 
 ¤ 2
and the growth restriction (f1) are merely technical. The dimensional restriction en-
sures that the Sobolev embeddingH 2pJ � 
 q ãÑ C0pJ � 
 q holds, where J € R
is a domain. This fact is used in order to obtain the compactness results in Sec-
tion 2.3. The choice of p in Hypothesis (f1) ensures that the Sobolev embedding
H 1pJ � 
 q ãÑ L 2ppJ � 
 q holds. Consequently, the growth bound onf ensures that
the map A f;g;c : X 1 Ñ X 0 is indeed well-de�ned, bounded, and continuous (see [7]).
Both these conditions can be relaxed by replacing all the spacesH k � W k; 2 by W k;q

spaces, for appropriately chosenq. Since we mainly want to convey the idea that
Floer theory can be applied to travelling wave problems in(RDE) , we have chosen to
stick with the Hilbert space theory in order to reduce the technicality of the estimates,
which tend to complicate the spirit of the arguments. l
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Remark 2.2.3. Conditions (g1)�(g3) could seem restrictive, but recall that the non-
linear term g is only introduced to put the Equation (TWE) into �general position�
(i.e. to achieve transversality). In the application of the theory we are eventually
interested in the case whereg � 0, hence conditions (g1)�(g3) are not particularly
restricting.

On the other hand, conditions (f1)�(f3) clearly put restrictions on the types of
nonlinearities to which the theory is applicable. Examples (but not exhausting all
possibilities) of such nonlinearities aref � f odd ;� and f � f even;� which where intro-
duced in Equations(2.2) and (2.3). Then clearly Hypotheses (f1) and (f3) are satis�ed.
The appropriate choice between Hypotheses (f2) and (f21) and the corresponding value
of � 1   �   1 can be summarised as follows:

� � � � � �

f odd ;� (f2) �   � 2{pp � 1q � ¡ 2{pp � 1q
f even;� (f21) �   � 2{pp � 1q � ¡ 2{pp � 1q

As was already indicated in the introduction, the di�erence between the various choices
of f is also re�ected in the possible dynamics, a fact which we will return to once we
discuss applications of the theory in Section 2.10. l

Conditions on the nonautonomous equation

In order to develop continuation of the Floer homology groups, we need to allowpf; g; cq
to depend explicitly on t; i.e. consider a nonautonomous version of (TWE). We shall
assume thatt-dependentpf; g; cq PCm pR � 
 � R q� Cm pR � 
 � X 0q� Cm pR ; p0; 8qq
satisfy the following hypotheses.

(n1) For eacht PR , the triple pf pt; �; �q; gpt; �; �q; cptqqsatisfy Hypotheses (f1)�(f3) and
(g1)�(g3), with the constants Cf , C1

f , � , and Ck;g uniform in t PR .

(n2) There exists an ` ¡ 0 and t-independent triples pf � ; g� ; c� q, pf � ; g� ; c� q, such
that # �

f pt; �; �q; gpt; �; �q; cptq
�

�
�
f � ; g� ; c�

�
for t ¤ � `;

�
f pt; �; �q; gpt; �; �q; cptq

�
�

�
f � ; g� ; c�

�
for t ¥ � `:

The �nal hypothesis makes use of a su�ciently small constant � . How small this �
should really be depends on� , inf t PR cptq, and `, and will be dictated by Theorem 2.3.3
and Theorem 2.3.5.

(n3) There exist � ¥ 0 su�ciently small, and C2
f ¥ 0, such that

|Bt F pt; x; u q| ¤ C2
f � � |F pt; x; u q|:

2.2.2 Auxiliary de�nitions

The energy/Lyapunov functional

Recall from Hypothesis (f2) that F : 
 � R d Ñ R is chosen such thatF p�; 0q � 0,
and r u F px; uq � f px; uq. By Hypothesis (f1) and the continuity of the embedding
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H 1p
 qãÑ L p� 1p
 q, it follows that the induced Nemytskii operator

F : H 1p
 q Ñ L 1p
 q; upxq ÞÑF px; upxqq

is bounded andC1, see e.g. [7]. Consequently, we can thus de�ne the energy functional
Ef PC1pX 0; R q by

Ef pu; vq �
»



�

1
2

|vpxq|2 �
1
2

|r upxq|2 � F px; upxqqdx:

Here | � | denotes the Euclidean norm. When the choice off is clear from the context,
we shall sometimes abbreviateEf by E.

Note that, in light of the continuous embedding W 1;2
loc pR ; X 0; X 1q ãÑ C0pR ; X 0q,

the map

Ef : W 1;2
loc pR ; X 0; X 1q Ñ C0pR q; U ÞÑEf pUp�qq

is C1. Let A consist of all U � p u; Bt uq that solve (TWE). Elliptic regularity the-
ory combined with Hypothesis (f1) implies that in particular A € Cm pR ; X 0; X 1q.
Therefore Ef restricts to a continuous map

Ef : A Ñ Cm pR q; U ÞÑEf pUp�qq:

Remark 2.2.4. Details on the regularity of A can be found in the proof of Theo-
rem 2.3.1. Although step 1 of the proof depends on the regularity of the mapEf , steps
2 until 4 do not rely on such properties ofEf . The argument given in steps 2 until 4
of the proof can be modi�ed to show that A € Cm pR ; X 0; : : : ; X m q wheneverf is of
classCm . l

The derivative of Ef along U PA has the form

dEf pUptqq
dt

�
»




�
� B 2

t upt; x q � � upt; x q � f px; upt; x qq



Bt upt; x qdx

� � c}Bt upt; �q}2L 2 p
 q � x gp�; Uptqq; Bt upt; �qyL 2 p
 q:

Hypothesis (g2) then implies that

dEf pUptqq
dt

¤ �
c
2

}Bt upt; �q}2L 2 p
 q; (2.8)

thus Ef is a Lyapunov function for (TWE).

Remark 2.2.5. In fact, from our regularity theory (Section 2.3) and the unique con-
tinuation theorem (Theorem 2.4.3) it will follow that Ef is a strict Lyapunov function.
That is, inequality (2.8) is strict unless Bt uptq � 0 for all t. l
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Stationary solutions and hyperbolicity

Denote by Spf q € X 1 the collection of stationary solutions (also referred to as
rest points) of (TWE), i.e. S � A � 1

f p0q. Given �8 ¤ a ¤ b ¤ 8 , we de�ne
Sb

apf q :� Spf q X E� 1
f pra; bsq. Whenever the choice off is clear from the context,

it will be suppressed in the notation.

Given Z � p z;0q PSpf q, we will see in Section 2.3 (more speci�cally, see Theo-
rem 2.3.6) that the Nemytskii operator

f : H 1
B p
 q Ñ L 2p
 q; upxq ÞÑf px; upxqq

is m times continuously di�erentiable near z wheneverf : 
 � R Ñ R is of classCm .
In particular, the operator A : X 1 Ñ X 0 is di�erentiable near Z . By Hypothesis (g3)
the linearised operator looks like

DA pZ q: X 1 Ñ X 0;

DA pZ q �
�

0 � 1
� � f u px; zq � c



:

To do spectral theory we shall consider the linear extension of this operator to the
complexi�ed Banach spacesX k

C :� X k � iX k . We will say that Z is hyperbolic if
the linearised operator DA pZ q, considered as an unbounded operator onX 0

C with
domain DpDA pZ qq � X 1

C , has its spectrum disjoint from the imaginary axis, i.e.
� pDA pZ qq XiR � H . Denote by Shyp pf q the collection of all hyperbolic rest points.
A nonlinearity f for which all rest points are hyperbolic shall be calledregular.

Note that DA pZ q is a compact perturbation of the operator pu; vq ÞÑ p�v; � uq,
hence it is Fredholm of index0. Hence, ifZ is hyperbolic, the inverse function theorem
can be applied, thus ensuring that hyperbolic rest points are isolated inX 1. Later
on, in Section 2.8, we will see that hyperbolicity can always be acquired by a slight
perturbation of the nonlinearity f .

Connecting orbits and transversality

A solution U of (TWE) is called a connecting orbit if there exist Z � P Spf � q,
Z � P Spf � q such that }Uptq � Z � }X 0 Ñ 0 as t Ñ �8 . We will later on see that
any bounded solution of (TWE) is in fact either an equilibrium or a connecting orbit.
Also note that, in light of the existence of the Lyapunov function Ef , connecting orbits
in the autonomous equation are heteroclinic orbits, i.e.Z � � Z � . Thus (TWE) is a
gradient-like system.

We need to introduce another technical condition. A connecting orbitU is said to
be transversal provided that the linearised operatorBt � DA pUptqq(which according
to Theorem 2.3.6 is well-de�ned) is surjective when considered as an operator from
W 1;2pR ; X 0; X 1q to L 2pR ; X 0q.

In Section 2.5 it is shown that there is a natural way to assign an index to con-
necting orbits between hyperbolic rest points. Equation (TWE) is said to satisfy the
transversality condition up to order k if all connecting orbits of index at most k are
transversal. In Section 2.8 we will see that, wheneverf is of classCm , transversality
up to order m � 1 can always be obtained by choosing generic nonlocal perturbations
g. Such ag shall then be calledregular.
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2.3 Regularity and compactness

In this section we will see that the collection of solutions of (TWE) is locally compact.
The relatively compact neighborhoods are determined by sub-superlevel sets of the
energy functional. These results, in a way, replace the Palais�Smale condition which
appears in classical Morse theory, and will form one of the cornerstones in de�ning
the Floer boundary operator.

Throughout this section we let J � p j � ; j � q, where �8 ¤ j �   j � ¤ �8 . Given
numbers a; bPR , de�ne

A b
apJ; f; g; cq:�

$
&

%
U PW 1;2

loc pJ ; X 0; X 1q :
Bt U � A f;g;c pUq � 0 on J;

a ¤ lim inf t Õ j � Ef pt; �;�qpUptqq;
lim supt × j �

Ef pt; �;�qpUptqq ¤ b

,
.

-
;

where Ef is as de�ned in Section 2.2.2. Note that whenf , g, and c are independent
of t and Hypothesis (g2) is satis�ed, then the setA b

apJ; f; g; cq consists of all solutions
to (TWE) whose energy remains betweena and b. Whenever the choices off , g, and
c are clear we shall suppress them from the notation. We will also writeA b

a instead
of A b

apR ; f; g; cq.

2.3.1 Compactness of A b
apJ; f; g; cq with Dirichlet boundary data

The autonomous case

We have the following compactness result.

Theorem 2.3.1. Consider Dirichlet boundary data. Let pf; g q be of classCm , with
m ¥ 1. Suppose Hypotheses (f1), either (f2) or (f21), (g1), and (g2) are satis�ed.
Then for any J � p j � ; j � q € R and J 1 € J 1 € J , the set A b

apJ; f; g; cq
�
�
J 1 is bounded

in Cm
b pJ 1; X 0; : : : ; X m q and compact in W m; 2

loc pJ 1; X 0; : : : ; X m q.

Here A b
apJ; f; g; cq

�
�
J 1 �

 
U|J 1 : U PA b

apJ; f; g; cq
(
. Note that we cannot obtain com-

pactness ofA b
apJ; f; g; cq itself, since solutions may blow up ast approachesj � or j � .

However, if J � R we do retrieve compactness of the full spaceA b
apR ; f; g; cq.

Proof of Theorem 2.3.1. The proof is split into four steps. In the �rst step we
will use Hypotheses (g1), (g2) and either (f2) or (f21) to obtain a local H 1 bound on
the solutions. In the second step we combine these bounds together with Hypothe-
sis (f1) and a regularity argument to obtain a local L 8 bound. This argument does
not immediately extend to higher degrees of regularity, since the Nymetskii operator
induced by f potentially does not possess the required regularity. To circumvent this
problem, in the third step a new nonlinearity rf is constructed which possesses the
required regularity, in such a way that solutions of the original Equation (TWE) are
also solutions of the equation with this new nonlinearity. In the fourth and �nal step,
the desired compactness result are derived from the preceding steps.

Step 1. We will �rst construct a convenient family of test functions. Let

� :�
1
2

mint inf J 1 � j � ; j � � supJ 1u:
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Then let ' 0 : R Ñ R be a C2 function such that suppp' 0q € r� �; � s, and ' 0ptq ¥ 0
for all t PR , and ' 0ptq ¥ C1;' ¡ 0 for t P r� � {2; � {2s, and |' 1ptq| ¤ C2;' ' ptq1{2 for all
t PR , for someC2;' ¡ 0. For any � PJ 1 we then de�ne ' � ptq:� ' 0pt � � q. Note that
the de�nition of � ensures thatsuppp' � q € J .

Fix any U � p u; Bt uq PA b
apJ; f; g; cq. We shall henceforth identify u with the R -

valued function on J � 
 given by upt; x q � uptqpxq. Pick any � P J 1, and for the
moment abbreviate ' � by ' . Letting Q � J � 
 , we now list some estimates.

(a) Observe that sinceU � p u; Bt uq is a solution to (TWE) and Hypothesis (g2) is
satis�ed, estimate (2.8) holds, hence

»

Q
|Bt u|2 dx dt ¤ �

2
c

»

J

dEpUptqq
dt

dt ¤
2
c

pb� aq: (2.9)

(b) Note that
»

Q
' |r u|2 dx dt � 2

»

J
' ptqEpUptqqdt � 2

»

Q
' |Bt u|2 dx dt � 2

»

Q
'F px; uqdx dt:

(2.10)
By Hypothesis (g2) and sinceJ is connected,t ÞÑEpUptqqis a monotone function,
so that in particular EpUptqq ¤ b for all t PJ . Therefore the �rst term in (2.10) is
bounded from above. By estimate (2.9) the second term in (2.10) is also bounded
from above. Hence

»

Q
' |r u|2 dx dt ¤ C � 2

»

Q
' |F px; uq|dx dt;

where C ¥ 0 is independent ofU PA b
apJ; f; g; cq. We will now continue estimat-

ing the last term.

(c) If f satis�es Hypothesis (f2), using the fact that U � p u; Bt uqsolves (TWE) and
partial integration we obtain

2
»

Q
' |F px; uq|dx dt ¤ 2C1

f � �
»

Q
'f px; uqu dx dt

� 2C1
f � �

»

Q
'

�
B2

t u � � u � cBt u � gpx; U ptqq
�
u dx dt

� 2C1
f � �

»

Q
' 1uBt u � '

�
|Bt u|2 � | r u|2 � cuBt u � gpx; U ptqqu

�
dx dt

¤ 2Cf � | � |
»

Q
' |Bt u|2 dx dt � | � |

»

Q
' |r u|2 dx dt

� | � |
»

Q
p|' 1| � c' q|u||Bt u| dx dt � | � |

»

Q
' |gpx; U ptqq||u| dx dt:

(2.11)

We will now bound the last two terms in (2.11). In light of Cauchy's inequality,
for any � ¡ 0 there exists a0   C�   8

»

Q
' |gpx; U ptqq||u| dx dt ¤ �

»

Q
' |u|2 dx dt � C�

»

Q
' |gpx; U ptqq|2 dx dt:
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Using Hypothesis (g1), the last term can be estimated from above by some
constant rC� . Now recall that |' 1ptq| ¤ C2;' ' ptq1{2. Hence, by again using
Cauchy's inequality, for any � ¡ 0 there exists a0   C�   8 such that

»

Q
p|' 1| � c' q|u||Bt u| dx dt ¤

»

Q

�
' 1{2|u|

��
pC2;' � c' 1{2q|Bt u|

�
dx dt

¤ �
»

Q
' |u|2 dx dt

� C�

»

Q
pC2;' � c' 1{2q2|Bt u|2 dx dt

¤ �
»

Q
' |u|2 dx dt � rC�

»

Q
|Bt u|2 dx dt;

where rC� � C� }C2;' � c' 1{2}2
L 8 pR q.

Combining these estimates with (2.11), we obtain

2
»

Q
' |F px; uq|dx dt ¤ 2Cf � rC� � | � |p1 � rC� q

»

Q
|Bt u|2 dx dt

� | � |
»

Q
' |r u|2 � p � � � q' |u|2 dx dt:

(2.12)

Using estimate (2.9) the �rst integral is bounded from above by a constant which
is independent of U P A b

apJ; f; g; cq. Hence we have found that there exists a
constant C�;�;� independent ofU PA b

apJ; f; g; cq such that

2
»

Q
' |F px; uq|dx dt ¤ C�;�;� � | � |

»

Q
' |r u|2 � p � � � q' |u|2 dx dt: (2.13)

(c 1) If on the other hand Hypothesis (f21) holds, we still get the same estimate as
above. Care needs to be taken to avoid the non-di�erentiability ofu ÞÑ |u| around
u � 0, which prevents us from applying integration by parts. As a workaround,
we �rst select a function � P C1pR q such that � puq � | u| for |u| ¥ 1, and
|� puq| ¤ 1 for |u| ¤ 1, and |� 1puq| ¤ 1 for all u. For example, one can consider

� puq �

#
1
2 u2 � 1

2 if |u| ¤ 1;
|u| if |u| ¥ 1:

Then, after updating the constant C1
f , we have

|F px; uq| ¤ C1
f �

�
2

f px; uq� puq:
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Then we estimate

2
»

Q
' |F px; uq|dx dt ¤ 2C1

f � �
»

Q
'f px; uq� puqdx dt

¤ 2C1
f � | � |

»

Q
' |� 1puq||Bt u|2 � ' |� 1puq||r u|2 dx dt

� | � |
»

Q
p|' 1| � c' q|� puq||Bt u| dx dt � | � |

»

Q
' |gpx; U ptqq||� puq|dx dt

¤ 2C1
f � | � |

»

Q
' |Bt u|2 � ' |r u|2 dx dt

� | � |
»

Q
p|' 1| � c' q|u||Bt u| dx dt � | � |

»

Q
' |gpx; U ptqq||u| dx dt

� | � |
»

Q | u |¤ 1

p|' 1| � c' q|� puq||Bt u| dx dt

� | � |
»

Q | u |¤ 1

' |gpx; U ptqq||� puq|dx dt;

where Q|u |¤ 1 � tp t; x q PQ : |upt; x q| ¤ 1u. Now by using that |� puq| ¤ 1 for
|u| ¤ 1, and the observation that the L 2-norm of Bt u is bounded by a constant
independent ofU PA b

apJ; f; g; cq, we see that the last two integrals in the above
estimate are bounded by a constant independent ofU PA b

apJ; f; g; cq. Therefore,
proceeding as before we again arrive at estimate (2.12), and consequently (2.13).

Combining all these estimates, we obtain the following gradient bound. For any
U � p u; Bt uq PA b

apJ; f; g; cq we have

»

Q
' |Bt u|2 � ' |r u|2 dx dt ¤ C�;�;� � | � |

»

Q
' |r u|2 � p � � � q' |u|2 dx dt; (2.14)

where C�;�;� ¥ is independent ofU PA b
a .

Now we use the Dirichlet boundary data to apply Poincaré's inequality (with con-
stant CP p
 q), which yields

»

Q
' |Bt u|2 � ' |r u|2 dx dt ¤ C�;�;� � | � |

�
1 � p � � � qCP p
 q

� »

Q
' |r u|2 dx dt:

By choosing�; � ¡ 0 su�ciently small and using the fact that 0 ¤ | � |   1, the integral
on the right-hand side can be absorbed into the left-hand side. Finally, we use that
' ptq � ' � ptq ¥ C1;' ¡ 0 for t P r� � � {2; � � � {2s to obtain

»

Q �

|Bt u|2 � | r u|2 dx dt ¤ C for all U � p u; Bt uq PA b
apJ; f; g; cq: (2.15)

Here Q� � r � � � {2; � � � {2s � 
 . Note that the only way that this constant depends
on � is via }' � }W 1; 8 pR q and Volpsuppp' � qq, which are in fact independent of � .
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Step 2. For any U � p u; Bt uq PA b
apJ; f; g; cq, note that

B2
t p' � uq � � p' � uq � ' 2

� u � 2' 1
� Bt u � c' � Bt u � ' � f px; uq � ' � gpx; U q:

By Gårding's inequality (see e.g. [39]) applied to the Laplacian� t;x � B 2
t � � , and

writing H k � H k pQq as a shorthand, we have

}' � u}H k � 2 ¤ C
�
}' 2

� u � 2' 1
� Bt u � c' � Bt u � ' � f px; uq � ' � gpx; U q}H k � } ' � u}H k

�

¤ C
�
}' 2

� u}H k � } ' � u}H k � 2}' 1
� Bt u}H k � c} ' � Bt u}H k

� } ' � f px; uq}H k � } ' � gpx; U q}H k

�
:

(2.16)

We note here that by shift invariance of � t;x the constant C can in be chosen inde-
pendent of � PJ 1.

First we consider the casek � 0. Using (2.15) and Hypothesis (g1) we obtain
an upper bound for the �rst four terms and the last term. Hypothesis (f1) implies
that the Nemytskii operator f : L 2ppQ� q Ñ L 2pQ� q is bounded and continuous, hence
by the Sobolev embeddingH 1pQ� q ãÑ L 2ppQ� q the map f : H 1pQ� q Ñ L 2pQ� q is
bounded and continuous, see [7]. Again using (2.15), we see that also the �fth term in
(2.16) is bounded above by some constant. Note that this upper bound is independent
of � P J 1 and U P A b

apJ; f; g; cq. Since ' � ptq ¥ C1;' ¡ 0 for t P r� � � {2; � � � {2s, we
�nd that there exists some constant M such that

}u}H 2 pQ � q ¤ M for all � PJ 1; pu; Bt uq PA b
apJ; f; g; cq:

Using a Sobolev embedding it then follows that the set

D :�
 

u|J 1� 
 : pu; Bt uq PA b
apJ; f; g; cq

(

is bounded in C0
b pJ 1 � 
 q.

Step 3. Estimate (2.16) cannot be directly employed fork ¥ 1, since it is not clear
whether the Nemytskii operator f : H k � 1pQ� q Ñ H k pQ� q is bounded (indeed, (f1)
only ensures that the Nemytskii operator is bounded andC0 for k � 0). To circumvent
this problem we will consider modi�ed nonlinearities rf . Set

� :� sup
uPD

}u}L 8 pJ 1� 
 q;

which in light of step 2 is a �nite number. The de�nition of � implies that if rf is
another nonlinearity which coincides with f on 
 � r� �; � s, then clearly

Bt Uptq � A rf pUptqq � 0 and Erf pUptqq � Ef pUptqq;

for any U PA b
apJ; f; g; cq; t PJ 1. Hence A b

apJ; f; g; cq
�
�
J 1 € A b

apJ 1; rf ; g; cq.

Let � P C8 pR q be such that � puq � 1 for |u| ¤ � and � puq � 0 for |u| ¥ 2� . Now
set

rf px; uq:� � puqf px; uq � p 1 � � puqqu3:
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Then rf satis�es Hypotheses (f1)�(f3) and (g1)�(g3). Furthermore, rf induces a bounded
Cm � k Nemytskii operator from H k � 1pQ� q into H k pQ� q, see [7]. After choosing a fur-
ther subinterval J 2 € J 2 € int J 1, the argument from steps 1 and 2 can be repeated to
obtain estimate (2.16), now with f replaced by rf , and this time for � PJ 2. Inductively
we can then obtain a bound for}' � f px; uq}H k with k P t0; : : : ; mu. Consequently, there
exists some constantM such that

}u}H m � 2 pQ � q ¤ M for all � PJ 2; pu; Bt uq PA b
apJ 1; rf ; g; cq; (2.17)

in particular this estimate holds for pu; Bt uq PA b
apJ; f; g; cq.

Step 4. Henceforth without loss of generality replaceJ 2 by J 1 in (2.17). Note
then that (2.17) combined with a Sobolev embedding implies that A b

apJ; f; g; cq
�
�
J 1

is bounded in the topology of Cm
b pJ 1; X 0; : : : ; X m q. By compactness of the embed-

ding H m � 2pQ� qãÑ H m � 1pQ� q it follows that A b
apJ; f; g; cq

�
�
J 1 is relatively compact in

W m; 2
loc pJ 1; X 0; : : : ; X m q. Moreover, Hypotheses (f1) and (g1) imply that the nonlinear

operator
Bt � Ap�q: W m; 2

loc pJ 1; X 0; : : : ; X m q Ñ L 2
loc pJ 1; X 0q

is continuous. Hence the limit point U of a sequencepUn qn in A b
apJ; f; g; cq

�
�
J 1 is

a solution of (TWE) on J 1. To see that such a limit point has an extension to a
solution of (TWE) on J , apply steps 1 through 3 with J 1 replaced by J 2, where
J 1 € J 2 € J 2 € J . We then �nd that Un converges over a subsequence toU1 in
W m; 2

loc pJ 2; X 0; : : : ; X m q, and U1 solves (TWE) on J 2. By uniqueness of the limits one
has U1|J 2 � U. Since this holds for any suchJ 2, we �nd that U P A �8

�8 pJ; f; g; cq
�
�
J 1.

By continuity of the energy functional E : W m; 2
loc pJ ; X 0; X 1q Ñ C0pJ q we �nd that

in fact U P A b
apJ; f; g; cq

�
�
J 1. Hence A b

apJ; f; g; cq
�
�
J 1 is compact in W m; 2

loc pJ 1; X 0; X 1q.
This proves the theorem.

Remark 2.3.2. Note that the estimates in the proof of Theorem 2.3.1 do not depend
explicitly on pf; g; cq, but only on the constants appearing in Hypotheses (f1)�(f3)
and (g1)�(g3). Hence, if ppf n ; gn ; cn qqn is a sequence of triplets satisfying Hypotheses
(f1)�(f3) and (g1)�(g3), with contants uniform in n, then step 1 through 3 of the
proof shows that the sets A b

apJ; f n ; gn ; cn q
�
�
J 1 are bounded in Cm

b pJ 1; X 0; : : : ; X m q,
uniformly in n. Supposepf; g; cq is another triples satisfying Hypotheses (f1)�(f3) and
(g1)�(g3), and pf n ; gn ; cn q Ñ pf; g; cq as n Ñ 8 , where the convergence takes place in
Cm

loc p
 � R q� Cm
b p
 � X 0q�p 0; 8q . For eachn select a solutionUn PA b

apJ; f n ; gn ; cn q.
Then a slight adaption of step 4 of the proof shows that there exists a subsequence
pUn k qk of pUn qn and a solution U P A b

apJ; f; g; cq such that Un k Ñ U as k Ñ 8 ,
with convergence inW m; 2

loc pJ 1; X 0; : : : ; X m q. The same result applies when considering
di�erent boundary conditions and/or the nonautonomous equations. l

The nonautonomous case

For t-dependentpf; g; cq we have the following compactness result.

Theorem 2.3.3. Consider Dirichlet boundary data. Given � P p� 1; 1q,  ¡ 0, and
` ¡ 0, there exists � � � p�; ; ` q ¡ 0 for which the following is true. Let pf; g; cq
be of classCm (m ¥ 1) for which Hypotheses (n1)�(n3) are satis�ed with the chosen
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constants � , `, � , and inf t PR cptq ¥  . Fix J � p j � ; j � q € R , and J 1 € J 1 € J with
r� `; ` s € J 1. Then the set A b

apJ; f; g; cq
�
�
J 1 is bounded in Cm

b pJ 1; X 0; : : : ; X m q and
compact in W m; 2

loc pJ 1; X 0; : : : ; X m q.

Proof. The argument from the autonomous case cannot be directly applied to the
nonautonomous case, because along a solutionU of the nonautonomous equation
the energy t ÞÑEf pt; �;�qpUptqq may increase. This is the reason why we introduce
Hypothesis (n3). Conceptually, this condition allows us to extract an a priori bound
for the amount the energy can increase along a solutionU, provided that the energy
is asymptotically bounded ast Ñ j � .

We will now explain in detail how the proof of Theorem 2.3.1 can be adapted for the
nonautonomous case. First note that, since the problem is autonomous outsidep� `; ` q,
there is no loss of generality in assuming thatJ 1 � p� ` � "; ` � "q, where" ¡ 0 is small
enough so thatJ 1 € J . Indeed, suppose the conclusion of the theorem holds for this
choice ofJ 1, so that in particular A b

apJ; f; g; cq
�
�
J 1 is bounded in Cm

b pJ 1; X 0; : : : ; X m q.
Hypothesis (n1) then ensures that the mapt ÞÑEf pt; �;�qpUptqqis bounded for t P J 1,
with a bound which is uniform in U P A b

apJ; f; g; cq
�
�
J 1. In particular, there exists an

M ¥ 0 such that

|Ef � pUp̀ qq � Ef � pUp� `qq| ¤ M for all U PA b
apJ; f; g; cq:

Now consider J 1 € J 1 € J chosen arbitrarily. De�ne intervals J � :� p j � ; � `q and
J 1

� :� J 1Xpj � ; � ` � "q; here we need the" ¡ 0 in order to ensure that J 1
� € J � . Then

A b
apJ; f; g; cq

�
�
J 1

�
€ A b

a� M pJ � ; f � ; g� ; c� q
�
�
J 1

�
:

Similarly, with J � :� p `; j � q and J 1
� :� J 1X p` � "; j � q it holds that

A b
apJ; f; g; cq

�
�
J 1

�
€ A b� M

a pJ � ; f � ; g� ; c� q
�
�
J 1

�
:

For J 1
� the conclusion of the theorem thus follows from the analogous result for the

autonomous case. The result for generalJ 1 then follows by combining the results for
the autonomous and nonautonomous parts.

Henceforth assumeJ 1 � p� ` � "; ` � "q. Compared to the proof of Theorem 2.3.1 we
will use a slightly modi�ed test function ' P C2pR q, namely, assume0 ¤ ' ptq ¤ 1 for
all t PR , and ' ptq � 1 for t PJ 1, and suppp' q € J is compact, and|' 1ptq| ¤ C2;' ' ptq1{2

for all t PR , for someC2;' ¡ 0. Then, using Hypothesis (n3), it follows that

|Bt F pt; x; u q| ¤ C2
f 1supp p' qptq � � ' ptq|F pt; x; u q|: (2.18)

Here we used that ' ptq � 1 for t P p� `; ` q and that the left-hand side vanishes for
|t| ¥ `, in light of Hypothesis (n2).

We will now point out how estimates (a)�(c) from step 1 of the proof of Theo-
rem 2.3.1 can be modi�ed to the nonautonomous case. Throughout these estimates,
let U � p u; Bt uq PA b

apJ; f; g; cq.
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(a) Note that by Hypotheses (n1) and (n3) the map t ÞÑEf pt; �;�qpUptqqis C1, and

dEf pt; �;�qpUptqq
dt

� �x cptqBt upt; �q; Bt upt; �qyL 2 p
 q � B sEf ps; �;�qpUptqq
�
�
s� t

� x gpt; �; Uptqq; Bt upt; �qyL 2 p
 q

¤ �
1
2

xcptqBt upt; �q; Bt upt; �qyL 2 p
 q � B sEf ps; �;�qpUptqq
�
�
s� t

¤ �

2

}Bt upt; �q}2L 2 p
 q �
»



| BsF ps; x; upt; x qq|s� t | dx:

(2.19)

Here the penultimate inequality holds since for eacht the pair pgpt; �; �q; cptqq
satis�es Hypothesis (g2). Therefore, using (2.18),

»

Q
|Bt u|2 dx dt ¤ �

2


»

J

dEf pt; �;�qpUptqq
dt

dt

�
2


»

Q
| BsF ps; x; upt; x qq|s� t | dx dt

¤
2


�
b� a � C2

f Volpsuppp' q � 
 q
�

� �
2


»

Q
' |F pt; x; u q|dx dt:

(2.20)

(b) Estimate (2.19) implies that

dEf pt; �;�qpUptqq
dt

¤
»



| BsF ps; x; upt; x qq|s� t | dx;

so that

Ef pt; �;�qpUptqq ¤ b�
» t

j �

»



| BsF ps; x; upt; x qq|s� t | dx dt

¤ b�
»

Q
| BsF ps; x; upt; x qq|s� t | dx dt

¤ b� C2
f Volpsuppp' q � 
 q � �

»

Q
' |F pt; x; u q|dx dt;

where we again used (2.18). Hence
»

J
' Ef pt; �;�qpUptqqdt ¤ C � � } ' }L 1 pR q

»

Q
' |F pt; x; u q|dx dt

for some constantC ¥ 0 independent of U P A b
apJ; f; g; cq. Plugging this into

(2.10) and combining with (2.20), after increasing the constantC we �nd
»

Q
' |r u|2 dx dt ¤ C � 2C1;�

»

Q
' |F pt; x; u q|dx dt;

where

C1;� :� �
�

2


} ' }L 8 pR q � } ' }L 1 pR q



� 1:
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(c) If for each t the function f pt; �; �q satis�es Hypothesis (f2), the same computation
as in the autonomous case leads to estimate (2.12). Combining this with estimate
(2.20) results in

2
»

Q
' |F pt; x; u q|dx dt ¤ C�;�;� � �

2|� |p1 � rC� q


»

Q
' |F pt; x; u q|dx dt

� | � |
»

Q
' |r u|2 � p � � � q' |u|2 dx dt;

for someC�;�;� independent ofU PA b
apJ; f; g; cq. Consequently,

2
»

Q
' |F pt; x; u q|dx dt ¤ C2;� C�;�;� � | � |C2;�

»

Q
' |r u|2 � p � � � q' |u|2 dx dt;

where

C2;� �
�

1 � �
|� |p1 � rC� q




 � 1

:

The modi�cations needed in (c1) are similar to those made for (c).

Combining these estimates, we obtain
»

Q
' |Bt u|2 � ' |r u|2 dx dt ¤ C � 2C3;�

»

Q
' |F pt; x; u q|dx dt

¤ C� ;�;�;� � | � |C2;� C3;�

»

Q
' |r u|2 � p � � � q' |u|2 dx dt;

where C3;� � �  � 1} ' }L 8 pR q � C1;� , and C; C� ;�;�;� ¥ 0 are some constants indepen-
dent of U P A b

apJ; f; g; cq. Now observe that for � ¡ 0 su�ciently small (depending
upon � ,  , and ` only) we have |� |C2;� C3;�   1. Therefore, if Hypothesis (n3) is
satis�ed with a small enough � , one can proceed as in the autonomous case to ar-
rive at estimate (2.15). Steps 2, 3, and 4 in the proof of 2.3.1 are also valid for the
nonautonomous case. Hence the theorem is proven.

2.3.2 Compactness of A b
apJ; f; g; cq with Neumann or periodic

boundary data

The autonomous case

When dealing with Neumann or periodic boundary conditions, the question of com-
pactness becomes more delicate. We can no longer use Poincaré's inequality in order
to bound the L 2-norm of u in terms of the L 2-norm of r u. To obtain such a bound,
we will need the superlinear growth condition (f3) on f .

Theorem 2.3.4. Consider Neumann or periodic boundary data. Letpf; g qbe of class
Cm , with m ¥ 1. Assume Hypotheses (f1)�(f3), (g1), and (g2) are satis�ed. Then
for any J � p j � ; j � q € R and J 1 € J 1 € J , the set A b

apJ; f; g; cq
�
�
J 1 is bounded in

Cm
b pJ 1; X 0; : : : ; X m q and compact in W m; 2

loc pJ 1; X 0; : : : ; X m q.
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Proof. First note that we can split Hypothesis (f3) into four cases:

lim inf
|u |Ñ8

inf
x P


f px; uq
|u|

¡ 0; lim inf
|u |Ñ8

inf
x P


f px; uq
u

¡ 0;

lim sup
|u |Ñ8

sup
x P


f px; uq
|u|

  0; lim sup
|u |Ñ8

sup
x P


f px; uq
u

  0:

We will assume that the �rst case holds; the proof for the other three cases goes in a
similar fashion. There exist " ¡ 0 and K ¥ 0 such that

" |u|2 ¤ f px; uq|u| for all x P 
 ; |u| ¥ K:

Let � PC1pR qbe as de�ned in estimate (c1) in the proof of Theorem 2.3.1. Then there
exists a constantM such that

" |u|2 ¤ M � f px; uq� puq for all x P 
 ; |u| ¥ K:

Fix any U � p u; Bt uq PA b
apJ; f; g; cq. For a.e. t we have

"}upt; �q}2L 2 p
 q � "
»

t x P
 : |upt;x q|  K u
|upt; x q|2 dx � "

»

t x P
 : |upt;x q|¥ K u
|upt; x q|2 dx

¤ p"K 2 � M qVolp
 q �
»

t x P
 : |upt;x q|¥ K u
f px; upt; x qq� pupt; x qqdx

¤

�

"K 2 � M � sup
x P
 ; |v |¤ K

|f px; vq� pvq|

�

Volp
 q

� x f p�; upt; �q; � pupt; �qqyL 2 p
 q:

Now multiply this inequality by the test function ' from Theorem 2.3.1 and integrate
over t P J . First we note that computations similar to the ones in the proof of
Theorem 2.3.1 yield

»

J
' ptqxf p�; upt; �q; � pupt; �qqyL 2 p
 q dt ¤ C� �

»

Q
' |r u|2 dx dt � �

»

Q
' |u|2 dx dt

for any � ¡ 0. We then �nd that

"
»

Q
' |u|2 dx dt ¤ CK;� �

»

Q
' |r u|2 dx dt � �

»

Q
' |u|2 dx dt;

where CK;� is independent of U � p u; Bt uq PA b
apJ; f; g; cq. Choosing � su�ciently

small, the last integral can be absorbed into the left hand side. Thus we obtain the
desired bound

»

Q
' |u|2 dx dt ¤ C1 � C2

»

Q
' |r u|2 dx dt for any U � p u; Bt uq PA b

apJ; f; g; cq:

This estimate can now replace the Poincaré inequality in the proof of Theorem 2.3.1.
The remainder of the proof of Theorem 2.3.1 remains valid without further modi�ca-
tions.
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The nonautonomous case

In the nonautonomous case we can now readily combine the ideas from the preceding
paragraphs to conclude the following.

Theorem 2.3.5. Consider Neumann or periodic boundary data. Given� P p� 1; 1q,
 ¡ 0, and ` ¡ 0, there exists � � � p�; ; ` q ¡ 0 for which the following is true. Let
pf; g; cq be of classCm (m ¥ 1) for which Hypotheses (n1)�(n3) are satis�ed with the
chosen constants� , `, � , and inf t PR cptq ¥  . Fix J � p j � ; j � q € R , and J 1 € J 1 € J
with r� `; ` s € J 1. Then the set A b

apJ; f; g; cq
�
�
J 1 is bounded in Cm

b pJ 1; X 0; : : : ; X m q
and compact in W m; 2

loc pJ 1; X 0; : : : ; X m q.

2.3.3 Regularity of the map Bt � A f;g;c p�q

Consider the map

Bt � A f;g;c p�q: W 1;2
loc pJ ; X 0; X 1q Ñ L 2

loc pJ ; X 0q:

Smoothness ofg and Hypothesis (g1) imply that the map U ÞÑ p0; gpx; U ptqqqinduces a
smooth map fromW 1;2

loc pJ ; X 0; X 1qinto L 2
loc pJ ; X 0q. Hence that the regularity class of

this map is the same as that of the Nemytskii operatorf : H 1pJ 2 � 
 q Ñ L 2pJ 2 � 
 q, for
bounded subsetsJ 2 € J . As we already remarked in the proofs of the compactness the-
orems, Hypothesis (f1) implies that the Nemytskii operator f : H 1pJ � 
 q Ñ L 2pJ � 
 q
is bounded and continuous, but in general does not possess additional regularity. How-
ever, the failure to be more regular only stems from the behaviour off pt; x; u qfor large
u. Since we have seen thatA b

apJ; f; g; cq
�
�
J 1 is bounded inC1

b pJ 1; X 0; X 1q, the map does
have additional regularity near solutions of (TWE). For clarity these observations are
summarised in form of a theorem.

Theorem 2.3.6. Supposef is of classCm , with m ¥ 1. Given J � p j � ; j � q € R ,
and J 1 € J 1 € J , and a; bPR , the maps

A f;g;c p�q: X 1 Ñ X 0

and
Bt � A f;g;c p�q: W 1;2

loc pJ 1; X 0; X 1q Ñ L 2
loc pJ 1; X 0q

are bounded and of classCm in neighbourhoods ofSb
apf qand A b

apJ; f; g; cq
�
�
J 1, respec-

tively.

2.3.4 Energy bounds

The following lemma shows that the energy is bounded from below on the collection
S of stationary solutions. Observe that by the implicit function theorem hyperbolic
stationary points are isolated in S with respect to the topology of X 1. Hence combining
this energy bound with our compactness result shows that if (TWE) is hyperbolic,
then for arbitrary a PR the collection Sa

�8 is a �nite set. We will need this fact later
on when de�ning the Floer boundary operator.

Lemma 2.3.7. Suppose either Hypothesis (f2) or (f21) is satis�ed. There exists a
constant M PR such that EpZ q ¥ M wheneverZ PS. In particular, Sa

�8 is �nite for
hyperbolic nonlinearities f .
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Proof. We will �rst prove the statement when Hypothesis (f2) is satis�ed. For any
Z � p z;0q PS, we then have

EpZ q ¥
»




1
2

|r zpxq|2 � | F px; zpxqq|dx

¥
»




1
2

|r zpxq|2 �
�
2

f px; zpxqqzpxqdx � C1
f Volp
 q

¥
»




1
2

|r zpxq|2 �
|� |
2

f px; zpxqqzpxqdx � C1
f Volp
 q

�
»




1
2

|r zpxq|2 �
|� |
2

� zpxqzpxqdx � C1
f Volp
 q

�
»




1 � | � |
2

|r zpxq|2 dx � C1
f Volp
 q

¥ � C1
f Volp
 q;

where we used that0 ¤ | � |   1.

When on the other hand Hypothesis (f21) holds, we let � PC1pR q be as de�ned in
estimate (c1) in the proof of Theorem 2.3.1. Then, after updating the constantC1

f , we
have

|F px; uq| ¤ C1
f �

�
2

f px; uq� puq;

and consequently it again holds that

EpZ q ¥
»




1 � | � ||� 1pzpxqq|
2

|r zpxq|2 dx � C1
f Volp
 q ¥ � C1

f Volp
 q:

2.4 Unique continuation

The initial value problem associated with (TWE) is ill-posed. However, in this section
we will show that if a solution through some initial value exists, then it must be
unique. This implies that time shifting de�nes a dynamical system on the space of all
heteroclinic solutions to (TWE), and this dynamical system posesses a strict Lyapunov
function given by the energy functional. For second order elliptic equations such a
uniqueness result is relatively well known; it follows for example from Aronszajn's
unique continuation theorem (see [10, 11]). However, the nonlocal term appearing in
(TWE) prohibits application of this theory. Therefore we present a new continuation
result, tailored towards (TWE).

2.4.1 Carleman estimates

Here we generalise the Carleman estimates (see [27]) for the Laplacian. More precisely,
instead of only considering compactly supported functions, we allow for Dirichlet, Neu-
mann or periodic boundary conditions in the variables which are not being controlled
by the weight function. We can do so at the expense of having the lower bound on
the weight � depend on}upt; �q}L 2 p
 q and }r upt; �q}L 2 p
 q.

For notational convenience we writer t;x � pB t ; r q and � t;x � B 2
t � � .
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Lemma 2.4.1. Let ' ptq :� t � t2{2. For each 0   "   1 there exists C ¡ 0 so that
the following holds. For eachu P H 3pR � 
 q with B pupt; �qq � 0 for each t P R , and
supppuq € p� "; " q � 
 one has the followingCarleman estimate: there exists� 0puq ¡ 0
such that for all � ¥ � 0puq one has

� 4}e� ' u}2
L 2 pR � 
 q � � }e� ' r t;x u}2

L 2 pR � 
 q ¤ C}e� ' � t;x u}2
L 2 pR � 
 q:

Furthermore, if ru P H 3pR � 
 q is another function satisfying the above mentioned
hypotheses, and for allt PR one has

}r rupt; �q}L 2 p
 q

} rupt; �q}L 2 p
 q
¤

}r upt; �q}L 2 p
 q

}upt; �q}L 2 p
 q
;

then � 0pruq ¤ � 0puq.

Proof. Let us abbreviate } � } � } � } L 2 pR � 
 q and x�; �y � x� ; �yL 2 pR � 
 q. Set v � e� ' u
and observe that

}e� ' Bt u}2 � }B t v � � 9'v }2 ¤ 2}Bt v}2 � 2}� 9'v }2 ¤ 2}Bt v}2 � 2p1 � "q2� 2}v}2:

Hence it is su�cient to see that for all v PH 3pR � 
 qwith the property that B pvq � 0
and supppvq € p� "; " q � 


� 4}v}2 � � }r t;x v}2 ¤ C}Pv}2 for all � ¥ � 0puq; (2.21)

where P � e� ' � t;x e� � ' .

We now decomposeP into a symmetric part and an anti-symmetric part:

P � PS � PA ;

PS � � t;x � � 2p1 � tq2 � �;

PA � � 2� p1 � tqBt :

Then
}Pv}2 � } PSv}2 � } PA v}2 � xr PS ; PA sv; vy

where r�; �s denotes the commutator bracket. At this point we used that v is of class
H 3, so that it lies in the domain of de�nition of rPS ; PA s.

We are now ready to make the estimates. Note that

}PSv}2 � } � t;x v}2 � 2x� t;x v; p� 2p1 � tq2 � � qvy � }p � 2p1 � tq2 � � qv}2

¥ 2x� t;x v; p� 2p1 � tq2 � � qvy � }p � 2p1 � tq2 � � qv}2

� 2� }r t;x v}2 �
1
2

}PA v}2 � 2� 2}p1 � tqr v}2 � 4xBt v; � 2p1 � tqvy

� � 4}p1 � tq2v}2 � 2� 3}p1 � tqv}2 � � 2}v}2

¥
p1 � "q4

2
� 4}v}2 � 2� }r t;x v}2 �

1
2

}PA v}2

� 2� 2p1 � "q2}r v}2 � 4xBt v; � 2p1 � tqvy
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for � ¥ 2p1 � "q2{p1 � "q4. Here we used thatsupppvq € p� "; " q � 
 . Hence

}PSv}2 � } PA v}2 ¥
p1 � "q4

2
� 4}v}2 � 2� }r t;x v}2

� 2� 2p1 � "q2}r v}2 � 4xBt v; � 2p1 � tqvy:
(2.22)

To estimate the last term in (2.22), note that

rPS ; PA s � � 4� B2
t � 4� 3p1 � tq2;

Hence

� 4xBt v; � 2p1 � tqvy � � 4x� 1{2Bt v; � 3{2p1 � tqvy

¥ � 2� }Bt v}2 � 2� 3}p1 � tqv}2

� 2� xB2
t v; vy � 2� 3}p1 � tqv}2

� �
1
2

xrPS ; PA sv; vy:

Therefore, since

xrPS ; PA sv; vy � 4� }Bt v}2 � 4� 3}p1 � tqv}2 ¥ 0;

we �nd that

}Pv}2 ¥
p1 � "q4

2
� 4}v}2 � 2� }r t;x v}2 � 2� 2p1 � "q2}r v}2: (2.23)

To get rid of the last term in (2.23) we need to take au-dependent lower bound� 0.
Since}v} � 0 implies }r v} � 0, for a �xed v we can always �nd � 0 ¥ 2p1� "q2{p1� "q4

such that

p1 � "q4

2
� 4}v}2 � 2p1 � "q2� 2}r v}2 ¥

p1 � "q4

4
� 4}v}2 for all � ¥ � 0: (2.24)

If ru is as in the hypotheses of the lemma, andrv � e� ' ru, then since the exponential
factors through the inequalities, also

}r rvpt; �q}
}rvpt; �q}

¤
}r vpt; �q}
}vpt; �q}

for all t P R . Therefore, if � 0puq denotes the smallest constant� 0 for which (2.24)
holds, it is readily seen that � 0pruq ¤ � 0puq. Hence

}Pv}2 ¥
p1 � "q4

4
� 4}v}2 � 2� }r t;x v}2 for all � ¥ � 0puq;

from which (2.21) follows.

2.4.2 Continuation for an integro-di�erential inequality

The following lemma is in a sense an integrated version of Aronszajn's continuation
theorem.
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Lemma 2.4.2. Let J € R be an open interval, and letu PH 3pJ � 
 qwith the prop-
erty that B pupt; �qq � 0 for all t P J . Assume that it satis�es the integro-di�erential
inequality »



|� t;x upt; x q|2 dx ¤ C

»



|upt; x q|2 � | r t;x upt; x q|2 dx; (2.25)

for almost every t in some neighbourhood oft0, for a certain t0 P J . Assume further-
more that u satis�es the following decay conditions aroundt0:

» t 0 � �

t 0 � �

»



|upt; x q|2 dx dt � Op� 5q as � Ó0;

» t 0 � �

t 0 � �

»



|Bt upt; x q|2 dx dt � Op� 3q as � Ó0:

(2.26)

Then u � 0 in a neighbourhood oft t0u � 
 .

Proof. The strategy is as follows. First we note there is no loss of generality in
assuming that t0 � 0. We localise on the left side of the hyperplanet � 0. The
Carleman estimates are still valid for these localised solutions, at the cost of some error
terms. One of the error terms stems from the behaviour of our localised solution away
from t � 0. This error term can be made to decay at an exponential rate, precisely
because the localised solution vanishes on the right side of the hyperplanet � 0. The
other error terms stem from the behaviour of the localisation neart � 0. To deal with
these terms, we actually consider a sequence of localisations. The decay conditions
(2.26) allow us to take the limit in which the error terms disappear. Combining this
extension of the Carleman estimates with estimate (2.25), we are left with a family of
exponentially weighted inequalities, which forces the localisation to be zero neart � 0.
This just means that our original function must be zero for small negative t. Then
considering a time reversal, the same must be true for small positivet.

We will now �rst construct the sequence of localisations. Let " ¡ 0 be su�ciently
small such that p� "; " q € J , and let ' be as in Lemma 2.4.1. Let0   `   " {2 be
such that ' is increasing onr� 2`; 0s, and such that (2.25) holds for a.e.t P p� 2`; 2`q.
Given 0   �   `, let � � PC3pR q be such that � � ptq � 0 for t R r� 2`; 0s, and � � ptq � 1
for t P r� `; � � s. Furthermore, we demand that |Bk

t � � ptq| � Op� � k q uniformly for
t P r� �; 0s and k P t0; 1; 2u, and also that B� � � ptq � 0 for t P r� 2`; � `s. Now set
V� pt; x q :� � � ptqupt; x q. Then V� P H 3pR � 
 q, and moreoverB pV� pt; �qq � 0 for each
t PR , and supppV� q € p� "; " q � 
 , hence the Carleman estimates apply toV� .

We will again abbreviate } � } � } � } L 2 pR � 
 q. Observe

}� � e� ' Bt u}2 � } e� ' Bt V� � 9� � e� ' u}2

¤ 2}e� ' Bt V� }2 � 2} 9� � e� ' u}2

¤ 2}e� ' Bt V� }2 � 2
» � `

� 2`

»



| 9� � |2e2� ' |u|2 dx dt

� 2 sup
� � ¤ t ¤ 0

| 9� � ptq|2
» 0

� �

»



|u|2 dx dt

¤ 2}e� ' Bt V� }2 � 2e2� ' p� ` q sup
� 2` ¤ t ¤� `

| 9� � ptq|
» � `

� 2`

»



|u|2 dx dt � Op� 3q;
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where we used the decay condition (2.26) and the monotonicity of' . Thus we have
¸

|� |¤ 1

}� � e� ' B� u}2 ¤ 2
¸

|� |¤ 1

}e� ' B� V� }2 � C1e2� ' p� ` q � Op� 3q: (2.27)

HereC1 depends on}u} but is independent of � and � . We use the multi-index notation
� � p � 0; : : : ; � dq PN d� 1

0 , and |� | � � 0 � � � � � � d, and

B� � B � 0
t B� 1

x 1 � � � B� d
x d :

In a similar fashion, we compute

}e� ' � t;x V� }2 ¤ 3}� � e� ' � t;x u}2 � 3}2 9� � e� ' Bt u}2 � 3} :� � e� ' u}2

¤ 3}� � e� ' � t;x u}2 � 3
» � `

� 2`

»



e2� ' p|2 9� � Bt u|2 � | :� � u|2qdx dt

� 12 sup
� � ¤ t ¤ 0

| 9� � ptq|2
» 0

� �

»



|Bt u|2 dx dt

� 3 sup
� � ¤ t ¤ 0

| :� � ptq|2
» 0

� �

»



|u|2 dx dt

¤ 3}� � e� ' � t;x u}2 � C2e2� ' p� ` q � Op� q;

(2.28)

where we again used the decay condition (2.26) and the monotonicity of' . The
constant C2 depends on}u} and }Bt u} but is independent of � and � .

Combining the estimates from (2.27) and (2.28) with the Carleman estimates from
Lemma 2.4.1, we �nd that

�
¸

|� |¤ 1

}� � e� ' B� u}2 ¤ C3}� � e� ' � t;x u}2 � C3p1 � � qe2� ' p� ` q � Op� q � Op� � 3q (2.29)

for all � ¥ � 0pV� q. Since |V� pt; x q|{|r V� pt; x q| � | V� 1pt; x q|{|r V� 1pt; x q| for any two
0   �; � 1   `, from Lemma 2.4.1 it follows that the lower bound � 0 :� � 0pV� q on � is
independent of � . Therefore, using the dominated convergence theorem, we can send
� to 0 in Equation (2.29), and obtain

�
¸

|� |¤ 1

}� 0e� ' B� u}2 ¤ C3}� 0e� ' � t;x u}2 � C3p1 � � qe2� ' p� ` q; (2.30)

uniformly in � ¥ � 0. Here

� 0ptq �

#
1 for t P r� `; 0s;
� 1ptq for t R r� `; 0s:

Using (2.25) we have

}� 0e� ' � t;x u}2 ¤ C
»

R
|� 0ptq|2e2� ' pt q

»



|upt; x q|2 � } r t;x upt; x q}2 dx dt

� C}� 0e� ' u}2 � C}� 0e� ' r t;x u}2:
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Combining this inequality with (2.30) yields

�
¸

|� |¤ 1

}� 0e� ' B� u}2 ¤ C4

¸

|� |¤ 1

}� 0e� ' B� u}2 � C3p1 � � qe2� ' p� ` q for all � ¥ � 0:

After increasing � 0 if need be, the sum over|� | ¤ 1 on the right hand side can be
absorbed by the left hand side, hence

�
¸

|� |¤ 1

}� 0e� ' B� u}2 ¤ C5p1 � � qe2� ' p� ` q for all � ¥ � 0:

Since� 0 � 1 on r� `; 0s and ' is increasing onr� `; 0s, this implies that

}u}2
L 2 prt � ;0s� 
 q ¤ C5

1 � �
�

e2� p' p� ` q� ' pt � qq Ñ 0 as � Ñ 8 ;

for any t � P p� `; 0s. Henceu � 0 on p� `; 0s � 
 .

2.4.3 Uniqueness of the IVP

Theorem 2.4.3. Let J € R be an open interval, assumef is of classC3, and suppose
U; V P W 1;2

loc pJ ; X 0; X 1q are both solutions of (TWE) . Suppose that Upt0q � Vpt0q
for somet0 PJ . Then Uptq � Vptq for t PJ .

Proof. Let J 1 € J 1 € J be a bounded open interval such thatt0 PJ 1. Let us introduce
the set

Z pJ 1q:�
 
t PJ 1 : }Uptq � Vptq}X 0 � 0

(
:

By assumption Z pJ 1q � H . By the regularity theory from Section 2.3 we know that
U; V P C3pJ 1; X 0; : : : ; X m q, henceZ pJ 1q is closed inJ 1. Thus by connectedness ofJ 1

we can conclude thatZ pJ 1q � J 1 if we are able to prove that Z pJ 1qis open inJ 1. Since
J can be written as the union of bounded open intervalsJ 1 € J 1 € J , the conclusion
of the theorem will then follow.

Pick any t � P Z pJ 1q. With U � p u; Bt uq and V � p v; Bt vq, we consider their
di�erence W � p w; Bt wq :� U � V . We will prove that w is zero in a neighbourhood
of t t � u � 
 . To do so, we shall invoke Lemma 2.4.2. We thus have to check thatw
satis�es the hypotheses of said lemma.

By the regularity theory of Section 2.3, w P H 3pJ 1 � 
 q, and B pwpt; �qq � 0 for
eacht PJ 1, and w satis�es

� t;x w � f px; vq � f px; uq � cBt w � gpx; V q � gpx; U q

�
» 1

0
Bsf px; u � swqds � cBt w �

» 1

0
Bsgpx; U � sWqds

� � pt; x qw � cBt w � LptqrW ptqs:

Here � : J 1 � 
 Ñ R is given by

� pt; x q � �
» 1

0
f u px; upt; x q � swpt; x qqds;
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and note that by the regularity results from Section 2.3 this � is a continuous function.
Furthermore, L : J 1 Ñ LpX 0; L 2p
 qqis given by

�
Lptq�

�
pxq � �

» 1

0
DU gpx; U ptq � sWptqq� ds:

We note here that this integral is indeed well de�ned, since the map

s ÞÑI psq:� DU gpx; U ptq � sWptqq

is continuous from r0; 1s to LpX 0; L 2p
 qqwith its uniform operator topology. Hence
s ÞÑI psq is absolutely continuous and therefore strongly measurable, and since by
Hypothesis (g1) one has

³1
0 }I psq}L ds   8 , it follows that I is Bochner integrable. By

the regularity results from Section 2.3 we know thatU and V form continuous curves
in X 0, hencet ÞÑLptq is continuous. Hence}Lptq}L pX 0 ;L 2 p
 qq ¤ C uniformly for t in
a neighbourhood oft � , and consequentlyw satis�es an inequality of the form (2.25).

All that is left is to check that w satis�es the decay conditions (2.26) aroundt � . Let
� ¡ 0 be su�ciently small such that rt � � �; t � � � s € J 1. Sincef is of classC3, it follows
from Section 2.3 that W � p w; Bt wq PC3

b prt � � �; t � � � s; X 0; : : : ; X 3q, hence in partic-
ular w PC4

b prt � � �; t � � � s; L 2p
 qq. Now consider the function � : pt � � �; t � � � q Ñ R
given by

� ptq �
»



|wpt; x q|2 dx:

It is C4 and the �rst three derivatives are given by

� 1ptq � 2
»



wpt; x qBt wpt; x qdx;

� 2ptq � 2
»



wpt; x qB2

t wpt; x qdx � 2
»



|Bt wpt; x q|2 dx;

� 3 ptq � 2
»



wpt; x qB3

t wpt; x qdx � 6
»



Bt wpt; x qB2

t wpt; x qdx:

Since wpt � ; �q � B t wpt � ; �q � 0, we have� pkqpt � q � 0 for k P t0; : : : ; 3u. By the mean
value theorem it follows that |� ptq| ¤ C1� 4, hence

» t � � �

t � � �

»



|wpt; x q|2 dx dt ¤ C� 5 for |t � t � | ¤ �:

A similar computation shows that

» t � � �

t � � �

»



|Bt wpt; x q|2 dx dt ¤ C� 3 for |t � t � | ¤ �:

Hence Lemma 2.4.2 applies, proving thatw � 0 in a neighbourhood of t t � u � 
 .
Therefore Uptq � Vptq for t in a neighbourhoodE € J 1 of t � . HenceE € Z pJ 1q, and
since this holds for anyt � PZ pJ 1q it follows that Z pJ 1q is open inJ 1, thus proving the
theorem.
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2.5 Fredholm theory

Let L consist of all L PLpX 1; X 0q of the form

L �
�

0 � 1
� � L 1 L 2;



:

where L 1 P LpH 1
B p
 q; L 2p
 qqand L 2 P LpL 2p
 qq. Let Lhyp consist of thoseL P L

which are hyperbolic, i.e. � pLq X iR � H .

In this section we will study Fredholm properties of the linear operator

DL : W 1;2pR ; X 0; X 1q Ñ L 2pR ; X 0q;

DL W � B t W � LptqW;

where L P C0pR ; Lq is such that the limits L � � lim t Ñ�8 Lptq exist in the uniform
operator topology on LpX 1; X 0q, and L � P Lhyp . The study of Fredholm properties
of this class of operators is motivated by the following lemma.

Lemma 2.5.1. Let Z � PSpf � qand Z � PSpf � qbe hyperbolic rest points of (TWE) ,
and supposeU is a path connectingZ � with Z � . Then the linearisation Bt � DA f;g;c pUq
of (TWE) along U is Fredholm, with index given by indpDL c;f q, where

L c;f ptq �
�

0 � 1
� � f u pt; x; u pt; x qq � cptq



:

Proof. Note that the linearisation of (TWE) along U takes the form

Bt W � L c;f ptqW � K ptqW; (2.31)

where

K ptq �
�

0 0
B1gpx; U ptqq B2gpx; U ptqq



:

Here B1gpx; pu; vqq �
Bgpx; pu; vqq

Bu
and B2gpx; pu; vqq �

Bgpx; pu; vqq
Bv

. For each t,

K ptq P LpX 0q, hence K ptq : X 1 Ñ X 0 is a compact map. Furthermore, we have
K PC0pR ; LpX 1; X 0qqand }K ptq}L pX 1 ;X 0 q Ñ 0 as t Ñ �8 by Hypothesis (g3). This
implies that the multiplication operator K : W 1;2pR ; X 1; X 0q Ñ L 2pR ; X 0q is com-
pact, see [85]. Therefore the Fredholm properties of (2.31) are the same as those of
DL c;f .

The Fredholm properties which will be derived allow us to assign a (normalised)
Morse index to hyperbolic rest points, even though the operatorsDA c� ;f � ;g � pZ � qand
DA c� ;f � ;g � pZ � q are strongly inde�nite.

2.5.1 Fredholm alternative for DL

Before discussing the Fredholm alternative forDL , let us �rst consider a resolvent
estimate for the operator Lptq.
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Lemma 2.5.2. Let L P C0pR ; Lq such that the limits L � � lim t Ñ�8 Lptq exist in
the uniform operator topology on LpX 1; X 0q. Then one has the following resolvent
estimate: there exist M ¡ 0, R0 ¡ 0 such that

}� pLptq � i� q� 1}L pX 0 q ¤ M for t PR ; |� | ¥ R0:

Proof. First consider the unbounded operatorP on X 0 with domain DpPq � X 1,
given by

P �
�

0 � 1
� 0



:

Note that i� R� pPq whenever� PR r t 0u, and

pP � i� q� 1 �
�

i� � 1
�
1 � p � � � 2q� 1

�
p� � � 2q� 1

�p � � � 2q� 1 � i� p� � � 2q� 1



:

Now, since

}p� � � q� 1}L pL 2 p
 q;H k
B p
 qq ¤

C
�

1 � d
�
�; � p� q

�

 p2� kq{2

for k P t0; 1; 2u, we �nd that

}pP � i� q� 1}X 0 ¤
C

1 � | � |
for � PR r t 0u:

Now let K ptq be de�ned by

K ptq:�
�

0 0
L 1ptq L 2ptq



;

so that Lptq � P � K ptq. Note that K ptq is a bounded operator onX 0 depending
continuously on t, i.e. K P C0pR ; LpX 0qq. Using a perturbative argument (see e.g.
[65]) one has that

i� R� pLptqq when }K ptq}L pX 0 q}pP � i� q� 1}L pX 0 q   1; (2.32)

and for such � one has

}pLptq � i� q� 1}L pX 0 q ¤
1

1 � } K ptq}L pX 0 q}pP � i� q� 1}L pX 0 q
}pP � i� q� 1}L pX 0 q:

We have already argued that }pP � i� q� 1}L pX 0 q � Op|� |� 1q as |� | Ñ 8 . Hence for
each �xed t P R , condition (2.32) is satis�ed for |� | su�ciently big, say |� | ¥ R0ptq.
SinceK depends continuously ont, and K ptq converges ast Ñ �8 , the constant R0

can be chosen uniformly int.

Combining this lemma with the results from [83], we obtain the following theorem
(see Appendix 2.A for details).

Theorem 2.5.3. Let L PC0pR ; Lqbe such thatLptq Ñ L � ast Ñ �8 in the uniform
operator topology on LpX 1; X 0q, where L � P Lhyp . Then the map DL is Fredholm
from W 1;2pR ; X 0; X 1q to L 2pR ; X 0q, and its index depends on the endpointsL � , L �

only.
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This allows us to de�ne a relative index:

� : Lhyp � Lhyp Ñ Z;

� pL � ; L � q � indpDL q:

The relative index has the following transitivity property.

Lemma 2.5.4. Let L � ; L � ; L  PLhyp . Then

� pL � ; L � q � � � pL � ; L � q (antisymmetry) ;
� pL � ; L  q � � pL � ; L � q � � pL � ; L  q (cyclicity) :

The proof of the lemma uses an algebraic trick similar to the one employed in [85].
See Appendix 2.A for details.

2.5.2 Computing the index

Consider L PC0
b pR ; Lq with lim t Ñ�8 Lptq PL hyp , given by

Lptq �
�

0 � 1
� � L 1ptq � cptq



: (2.33)

Here we assumec P C8 pR ; p0; 8qq, and L 1 P C0pR ; LpH 1
B p
 q; L 2p
 qqq, and for each

t P R the operator L 1ptq is symmetric when considered as an unbounded operator on
L 2p
 q. Consider the operator

	 L 1 : W 1;2pR ; H 1
B p
 q; H 2

B p
 qq Ñ L 2pR ; L 2p
 qq;

	 L 1 w � B t w � � w � L 1ptqw:

The following lemma relates the Fredholm index of the elliptic operatorDL with that
of the parabolic operator 	 L 1 .

Lemma 2.5.5. Let L , L 1 be as in(2.33). Then DL and 	 L 1 are Fredholm operators,
and

indpDL q � indp	 L 1 q:

Proof. The Fredholm property of DL was discusses in Theorem 2.5.3. Moreover,
Theorem 2.A.1 is also applicable to the operator	 L 1 , thus establishing the Fredholm
property of that operator as well. To relate the two indices we will make use of spectral
�ows.

Loosely speaking, the spectral �owSFpAqof a curve of (densely de�ned unbounded)
operators t ÞÑAptq is an algebraic count of the number of eigenvalues ofAptq that
cross the imaginary axis ast increases from�8 to �8 . More precisely, we de�ne

SFpAq:� �
¸

t �

¸

i

sgnRe� 1
i pt � q:

Here t � are thoset where a spectral crossing takes place, i.e.� pApt � qq XiR � H , and
t ÞÑ� i ptq are di�erentiable curves de�ned near t � which parametrise the spectrum,
i.e. � pAptqq �

”
i t � i ptqufor t near t � . This de�nition only makes sense if there is no
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ambiguity in counting the crossings of eigenvalues: the operatorsAptqshould have pure
point spectrum near the imaginary axis, there should be �nitely many crossings, the
crossings should be transverse toiR , the crossing eigenvalues should be algebraically
simple. This is generically achieved by perturbing the curvet ÞÑAptq of operators.

Recall from [85] that we can choose a perturbationS1 PC0pR ; LpH 2
B p
 q; L 2p
 qqq,

with lim t Ñ�8 }Sptq}L pX 1 ;X 0 q � 0, such that SFp�p � � L 1 � S1qqis well-de�ned, and

indp	 L 1 q � SFp�p � � L 1 � S1qq:

Furthermore, one can ensure that for anyt PR the operator S1ptq is symmetric when
considered as an unbounded operator onL 2p
 q, and given " ¡ 0 (to be speci�ed in
the next paragraph), supt PR }S1ptq}L pX 1 ;X 0 q   " .

Now let

Sptq �
�

0 0
S1ptq 0



:

Suppose for the moment thatSFp�p L � Sqqis well-de�ned. It then follows from [83]
that, provided that supt PR }Sptq}L pX 1 ;X 0 q is su�ciently small, one has

indpDL q � SFp�p L � Sqq:

The proof of the lemma is then completed if we can show that

SFp�p L � Sqq � SFp�p � � L 1 � S1qq:

We will do so by demonstrating that any spectral crossing of�p � � L 1 � S1q is in
one-to-one correspondence with a spectral crossing of�p L � Sq. This then also shows
that SFp�p L � Sqqis indeed well-de�ned.

Note that � P � p�p Lptq� Sptqqqif and only there exists a nonzero vectorpu; vq PX 1

such that #
� �u � v � 0;
� � u � L 1ptqu � S1ptqu � cptqv � �v � 0:

This can only happen if � 2 � cptq� P � p�p � � L 1ptq � S1ptqqq. Because the operator
�p � � L 1ptq � S1ptqqis self-adjoint, it has real-valued spectrum. Sincecptq ¡ 0, the
only � P iR which can satisfy � 2 � cptq� P R is � � 0. Collecting these observations,
we conclude that eigenvalues of�p Lptq � Sptqqwhich cross the imaginary axis ast
increases must do so through the origin. Furthermore, if an eigenvalue of�p Lptq� Sptqq
crosses the imaginary axis (i.e. the origin) from left to right ast increases, then (since
cpt � q ¡ 0) an eigenvalue of�p � � L 1ptq � S1ptqqpasses the origin from left to right as
t increases, and vice versa. From this we conclude that the spectral �ow of�p L � Sq
is well-de�ned for generic S1, and

SFp�p L � Sqq � SFp�p � � L 1 � S1qq:

Combined with our previous observations this complete the proof.

2.5.3 Normalised Morse indices

Given a regular nonlinearity f satisfying Hypothesis (f1), and m0 P Z, we de�ne a
normalised Morse index� f pZ q of Z � p z;0q PSpf q as

� f pZ q:� m0 � mf pzq; where mf pzq:� #
�
� p� � f u px; zqq X p0; 8q

�
: (2.34)
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See Remark 2.5.7 after the next theorem for the rationale behind the sign convention.
Whenever the choice of nonlinearity f is clear from the context we shall drop the
subscript.

Theorem 2.5.6. Let Z � P Spf � q and Z � P Spf � q be hyperbolic rest points of
(TWE) , and supposeU is a path connectingZ � with Z � . Then

indpBt � DA f;g;c pUqq � � f � pZ � q � � f � pZ � q:

Proof. De�ne the multiplication operator

L 1ptq: H 1
B p
 q Ñ L 2p
 q; wpxq ÞÑf u px; upt; x qqwpxq:

Combining Lemmata 2.5.1 and 2.5.5, we �nd

indpBt � DA f;g;c pUqq � indp	 L 1 q:

From [85] it follows that

indp	 L 1 q � mf � pz� q � mf � pz� q:

Combined with the de�nition of � f this concludes the proof.

Remark 2.5.7. The reason for choosing a minus sign in the de�nition of the nor-
malised Morse index is to ensure that the index can only decrease along heteroclinic
connections. One can drop the minus sign in(2.34) and arrive at a cohomology theory
instead. l

2.6 Exponential decay

In this section we will show that a solution of (TWE) which converges in forward
time (or similarly, in backward time) towards some hyperbolic �xed point, will in fact
converge at an exponential rate.

Theorem 2.6.1. Let f be of classC4. Suppose Hypotheses (f1)�(f3) and (g1)�(g3)
are satis�ed. Let Z be a hyperbolic rest point of (TWE) . Then there exist constants
C; ; " ¡ 0 such that the following holds. Let U be a solution of (TWE) on J � r � 0; 8q
for which it holds that lim t Ñ8 }Uptq � Z }X 0 � 0. Then

}U � Z }W 1; 2 ppT;T � 1q;X 0 ;X 1 q ¤ Ce�  pT � T0 q for all T ¥ T0 � 1;

where T0 ¥ � 0 � 1 is chosen such that}UpT0q � Z }X 0   " .

A similar statement holds for solutions U of (TWE) on J � p�8 ; � � 0swhich converge
towards a hyperbolic rest point in backward time.

Proof of Theorem 2.6.1. First note that from Lemma 2.5.2, the unique continua-
tion Theorem 2.4.3 (using that f is C4), and [80], the following follows: there exists
 ¡ 0 and K ¡ 0 such that any W PC0pJ ; X 1q X C1pint J ; X 0; X 1q which satis�es

Bt W � DA pUqW � 0
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and supt PJ }W ptq}X 0   8 , satis�es the exponential decay estimate

}W ptq}X 0 ¤ Ke �  |t � � |}W p� q}X 0 for t ¥ � ¥ � 0: (2.35)

See Appendix 2.B for details.

We have U P C4
b pJ ; X 0; X 1; : : : ; X 4q, henceW :� B t U satis�es the uniform bound

supt PJ }W ptq}X 0   8 and alsoBt W � DA pUqW � 0 on J . From (2.35) it then follows
that W PL 1pJ ; X 0q, and for any t; T0 PJ with t ¥ T0 we have

}Uptq � Z }X 0 �

�
�
�
� �

» 8

t
W psqds

�
�
�
�

X 0

¤
» 8

t
}W psq}X 0 ds

¤
K


e�  |t � T0 |}W pT0q}X 0 :
(2.36)

Now let

L Z : W 1;2pR ; X 0; X 1q Ñ L 2pR ; X 0q;

L Z W � B t W � DA pZ qW:

By hyperbolicity of Z this operator has a continuous inverse; this follows by combining
Lemma 2.5.2 and the results from [82]. Let� 0 P C8

c pR q be such that � 0ptq � 1 for
t P r0; 1s and � 0ptq � 0 for t R r� 1; 2s. Then set � T ptq :� � 0pt � Tq. Now �x T0; T P J
such that rT � 1; T � 2s € rT0; 8q (i.e. T ¥ T0 � 1). Note that

L Z p� T ptqpUptq � Z qq � 9� T ptq
�
Uptq � Z

�
� � T ptq

�
Bt Uptq � DA pZ qpUptq � Z q

�

� 9� T ptq
�
Uptq � Z

�

� � T ptq
�
DA pZ qpUptq � Z q � p ApUptqq � ApZ qq

�

� � T ptq
�
Bt Uptq � ApUptqq

�
� � T ptqApZ q

� 9� T ptq
�
Uptq � Z

�

� � T ptq
�
DA pZ qpUptq � Z q � p ApUptqq � ApZ qq

�

� 9� T ptq
�
Uptq � Z

�

� � T ptq
�

0
f u px; zqpuptq � zq � f px; uq � f px; zq




� � T ptq
�

0
gpx; U ptqq



;

(2.37)

where U � p u; Bt uq and Z � p z;0q.

Since the mapf : H 1p
 q Ñ L 2p
 q is di�erentiable near z we have
�
�
�
�

�
0

f u px; zqpuptq � zq � f px; uq � f px; zq


 �
�
�
�

X 0

� op}Uptq � Z }X 0 q as t Ñ 8 :

By Hypotheses (g1), (g2), and a mean value estimate, we �nd that for all t P J one
has

�
�
�
�

�
0

gpx; U ptqq


 �
�
�
�

X 0

�

�
�
�
�

» 1

0

d
ds

gpx; Z � spUptq � Z qqds

�
�
�
�

L 2 p
 q

¤ C1;g

a
Volp
 q}Uptq � Z }X 0 :
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Combining these observations with estimate (2.37), we �nd that

}L Z p� T ptqpUptq � Z qq}X 0 � Op}Uptq � Z }X 0 q for t PJ; uniform in T:

Sincesuppp� T q € rT0; 8q we can now apply estimate (2.36) to obtain

}L Z p� T ptqpUptq � Z qq}X 0 ¤ Ce�  |t � T0 |}W pT0q}X 0 ;

for some constantC which is independent ofT. By invertibility of L Z we then �nd

}U � Z }W 1; 2 ppT;T � 1q;X 0 ;X 1 q ¤ } � T � pU � Z q}W 1; 2 pR ;X 0 ;X 1 q

¤ } L � 1
Z }} L Z p� T � pU � Z qq}L 2 pR ;X 0 q

¤
C}L � 1

Z }


e�  |T � T0 |}W pT0q}X 0 :

The above estimate already proves the exponential decay of the single solution
U towards Z . Next, we will argue why the constant }W pT0q}X 0 � }B t UpT0q}X 0

can be bounded independently ofU, as long asT0 is chosen big enough such that
UpT0q lies in some givenX 0-neighbourhood of Z . Let a :� EpZ q, and choose any
b ¡ a. From Section 2.3 it follows that A b

apJ; f; g; cq
�
�
r� 0 � 1;8q is bounded in the norm

topology on C1
b pr� 0 � 1; 8q ; X 0; X 1q. Denote this upper bound by M . By continu-

ity of E : X 0 Ñ R , there exists some" ¡ 0 such that if T0 ¥ � 0 � 1 is such that
}UpT0q � Z }X 0   " , then a ¤ EpUpT0qq ¤ b. If we de�ne rUptq :� Upt � � 0 � 1 � T0q,
then rU P A b

apJ; f; g; cq
�
�
r� 0 � 1;8q , hence

}Bt UpT0q}X 0 � }B t rUp� 0 � 1q}X 0 ¤ M:

2.7 Moduli spaces

At this point we are ready to de�ne the moduli spaces of heteroclinic orbits. Given
two hyperbolic rest points Z � ; Z � PShyp , we de�ne

M pZ � ; Z � q:�
"

U PW 1;2
loc pR ; X 0; X 1q :

U solves (TWE)
lim t Ñ�8 }Uptq � Z � }X 0 � 0

*

We will now discuss two useful modes of convergence on this space, and the interplay
between these two. For conciseness we will do this only for the autonomous case.
We refer to Remark 2.7.7 at the end of this section for details on how to adapt the
arguments to the nonautonomous setting.

2.7.1 The manifold structure

Let Z P C1pR ; X 0; X 1q be such that Z ptq � Z � for t ¤ � 1 and Z ptq � Z � for t ¥ 1.
We then de�ne the a�ne space of paths between Z � and Z �

PpZ � ; Z � q:� Z � W 1;2pR ; X 0; X 1q:
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In light of the exponential decay of solutions towards hyperbolic rest points we have the
inclusion M pZ � ; Z � q € PpZ � ; Z � q. Therefore, if we introduce the nonlinear operator

� Z � ;Z � : PpZ � ; Z � q Ñ L 2pR ; X 0q;

� Z � ;Z � pUq � B t U � ApUq;

we �nd that
M pZ � ; Z � q � � � 1

Z � ;Z �
p0q:

The linearisation of � Z � ;Z � around any U PPpZ � ; Z � q is Fredholm with index given
by indpd� Z � ;Z � pUqq � � pZ � q � � pZ � q. This index is independent of the chosen
U PPpZ � ; Z � q, thus � Z � ;Z � is a Fredholm map with indp� Z � ;Z � q � � pZ � q � � pZ � q.

Recall from Section 2.2.2 the de�nition of transversality up to order k. We now
assume that the transversality condition up to order � pZ � q � � pZ � q is satis�ed. If the
nonlinearity f is of classCm , then the map � Z � ;Z � is of classCm in a neighbourhood
of M pZ � ; Z � q(recall Theorem 2.3.6), hence the implicit function theorem implies that
M pZ � ; Z � q with the topology inherited from PpZ � ; Z � q is again a Cm manifold of
�nite dimension � pZ � q � � pZ � q.

Since we study the autonomous case, time translationss ÞÑUp� � sq induce an
R -action on M pZ � ; Z � q. We will denote the equivalence class ofU P M pZ � ; Z � q
with respect to this R -action by rUs, and write

xM pZ � ; Z � q:� M pZ � ; Z � q{R

for the quotient space.

Lemma 2.7.1. Assume the transversality condition up to order � pZ � q � � pZ � q is
satis�ed. Then the space xM pZ � ; Z � qis aCm manifold of dimension� pZ � q� � pZ � q� 1.

Proof. We verify that the R -action of time translations on M pZ � ; Z � q is Cm , free,
and proper. The lemma then follows from the quotient manifold theorem [69]. The
Cm smoothness of the action, where we considerM pZ � ; Z � q to be endowed with the
topology inherited from PpZ � ; Z � q, follows from the regularity results stated in Sec-
tion 2.3. Since the energy functionalE is strictly decreasing with time translations, see
also Remark 2.2.5, the action is free. Finally, properness follows from the compactness
estimates in Section 2.3.

2.7.2 Geometric convergence

In generalM pZ � ; Z � qwill not be compact in the topology of PpZ � ; Z � q; just consider
a sequence of time translations of a nonconstant solution, this cannot have a convergent
subsequence in this topology. In order to better understand exactly howM pZ � ; Z � q
fails to be compact, we introduce the notion of geometric convergence.

De�nition 2.7.2. Let Z0; : : : ; Zk � 1 be hyperbolic stationary solutions of (TWE) .
Pick any

prU0s; rU1s; : : : ; rUk sq PxM pZ0; Z1q � xM pZ1; Z2q � � � � � xM pZk ; Zk � 1q:

We will call such a k-tuple prV0s; : : : ; rVk sqa k-fold broken orbit.
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E

(a) Convergence towards a broken trajectory.

2

1 1

1 1

Z �

Y Y 1

Z �

(b) Noncompact connected component of dimension
2 of M pZ � ; Z � q.

Figure 2.2: Analysis of the moduli spaces M pZ � ; Z � q in the autonomous setting.

Given prUn sqn € xM pZ0; Zk � 1q, we will say that prUn sqn converges geometrically to
the k-fold broken orbit prV0s; : : : ; rVk sqif the following holds. For each j P t0; : : : ; ku
there exists a sequencepsj;n qn € R so that

Un p� � sj;n q Ñ Vj in W 1;2
loc pR ; X 0; X 1q; as n Ñ 8 ;

and this k-fold broken orbit is maximal in the sense that for each sequenceps1
n qn € R

and V 1 such that Un p� � s1
n q Ñ V 1 in W 1;2

loc pR ; X 0; X 1q as n Ñ 8 it holds that
rV 1s P trV0s; : : : ; rVn su. In this case we will also write

rUn s ; prV0s; : : : ; rVk sq as n Ñ 8 :

See also Figure 2.2(a).

To arrive at the main result regarding geometric convergence, we will �rst discuss
a property which was already hinted at in the introduction. First, given a solution U
of (TWE), denote by � pUqthe set of accumulation points of the sequencepUp� � � qq� ,
where � Ñ �8 , in the topology of W 1;2

loc pR ; X 0; X 1qSimilarly, let ! pUqdenote the set
of accumulation points of the sequencepUp�� � qq� where� Ñ 8 . In other words, these
are the � - and ! -limit sets of the shift dynamics on the set of solutions to (TWE).

Lemma 2.7.3 (Gradient-like behaviour). Let pf; g; cq be a t-independent triple
satisfying (f1)�(f3) and (g1)�(g3). Let U be a bounded solution of (TWE) . Then the
limit sets � pUq and ! pUq are both nonempty and connected, and� pUq; ! pUq € S.
Moreover, if � pUq X ! pUq � H , then U is a stationary solution of (TWE) . If in
addition we assume that f is regular, then � pUq and ! pUq each consist of a single
point, hence any bounded solution of (TWE) is either a rest point or a heteroclinic
orbit.

Proof. Let U PW 1;2
loc pR ; X 0; X 1qbe a solution of (TWE) with supt PR }Uptq}X 0   8 .

Then there exist a; b P R such that a ¤ EpUptqq ¤ b for all t P R . Endow A b
a

with the topology inherited from W 1;2
loc pR ; X 0; X 1q. Then note that time translation

s ÞÑUp� � sq de�nes a continuous dynamical system onA b
a . The compactness results

from Section 2.3 imply that the � - and ! -limit sets of any U P A b
a are nonempty.

The dynamical system also posesses a Lyapunov function given byLpUq � EpUp0qq,
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with E as de�ned in Section 2.2.2. In light of Theorem 2.4.3 this Lyapunov function is
stricly decreasing along nonstationary trajectories. Since the Lyapunov function must
be constant on the limit sets, this implies that � pUq; ! pUq € Sb

a . Futhermore, this
implies that � pUq X ! pUq � H when U is a nonstationary solution of (TWE).

If we in addition assume that f is regular, the hyperbolicity implies that Sb
a is

totally disconnected. On the other hand, since� pUq and ! pUq are the limit sets of a
continuous dynamical system, they are both connected. Hence each of these limit sets
must consist of a single point.

With this settled, a standard argument shows that xM pZ � ; Z � q is compact up
to broken orbits. Roughly speaking, any sequencepUn qn € M pZ � ; Z � q must have
some convergent subsequence by the results from Section 2.3, and by Lemma 2.7.3 the
limit point must then again belong to some moduli spaceM pZ i ; Z j q. If Z i � Z � or
Z j � Z � , using the energy functional E de�ned in Section 2.2.2 we can then �nd a
sequenceptn qn € R such that the time-translated sequencepUn ptn � �qq n converges
over a subsequence towards a limit point in yet another moduli spaceM pZk ; Z l q. This
iterative procedure must terminate after a �nite number of steps, since hyperbolicity
implies there are only a �nite number of rest points with bounded energy. See Fig-
ure 2.2(a), and also [90] for additional details. Note that in this reference only gradient
�ows are considered, but the particular argument only relies on the existence of a strict
Lyapunov function. Summarizing, we have the following result.

Theorem 2.7.4. Consider (TWE) with t-independentpf; g; cq. Suppose all rest points
of (TWE) are hyperbolic. Then the space xM pZ � ; Z � q is compact up to broken or-
bits, i.e., for each prUn sqn € xM pZ � ; Z � q there exists a k P N 0, intermediate points
Z1; : : : ; Zk PS, a broken orbit

prV0s; rV1s; : : : ; rVk � 1s; rVk sq PxM pZ � ; Z1q � xM pZ1; Z2q � � � � �

� � � � � xM pZk � 1; Zk q � xM pZk ; Z � q;

and a subsequenceprUn j sqj such that

rUn j s ; prV0s; : : : ; rVk sq as j Ñ 8 :

See also Figure 2.2(a).

2.7.3 Relating the modes of convergence

The following theorem highlights an important link between geometric convergence
and the topology inherited from PpZ � ; Z � q. An important consequence will be that
for generic choices off and g one can count index1 orbits.

Theorem 2.7.5. Consider (TWE) with t-independent pf; g; cq. Let Z � and Z � be
hyperbolic rest points of (TWE) , and suppose xM pZ � ; Z � q is compact up to 0-fold
broken orbits. Then xM pZ � ; Z � q is sequentially compact in the quotient topology
inherited from PpZ � ; Z � q. In particular, if � pZ � q � � pZ � q � 1, then xM pZ � ; Z � q is
sequentially compact.



54 CHAPTER 2. FLOER HOMOLOGY FOR TRAVELLING WAVES IN RDE

Proof. Without loss of generality we can assumeEpZ � q   EpZ � q; because otherwise
either M pZ � ; Z � q � H (if Z � � Z � ) or M pZ � ; Z � q � t Z � u (if Z � � Z � ). Select any
prUn sqn € xM pZ � ; Z � q. For each n �x a representative Un of rUn s. By assumption we
may �nd a subsequencepU1

n qn , a sequenceptn qn € R , and a limit point V0 PM pz� ; z� q
such that U1

n p� � tn q Ñ V0 in W 1;2
loc pR ; X 0; X 1q as n Ñ 8 . After replacing U1

n by
U1

n p� � tn q, i.e. choosing a di�erent representative forrU1
n s, we may as well assume that

U1
n Ñ V0 in W 1;2

loc pR ; X 0; X 1q as n Ñ 8 . To ease on notation, we shall henceforth
denote the subsequencepU1

n qn by just pUn qn .

We claim that Un ptq converges uniformly in n towards Z � as t Ñ �8 , i.e.

@" ¡ 0 DT0 ¡ 0 @n PN @t ¥ T0 : }Un ptq � Z � }X 0 ¤ ": (2.38)

Suppose for the moment that this is true. Choosing" as small as needed, we may now
apply the exponential decay Theorem 2.6.1 to �nd � 0 ¡ 0, C ¡ 0, and T0 ¡ 0 such
that

}Un � V0}W 1; 2 ppT;T � 1q;X 0 ;X 1 q ¤ } Un � Z � }W 1; 2 ppT;T � 1q;X 0 ;X 1 q

� } V0 � Z � }W 1; 2 ppT;T � 1q;X 0 ;X 1 q

¤ Ce� � 0 T

for all T ¥ T0. Consequently,

}Un � V0}W 1; 2 pR r r� T;T s;X 0 ;X 1 q Ñ 0 as T Ñ 8 ; uniformly in n PN :

Since we also have thatUn Ñ V0 in W 1;2
loc pR ; X 0; X 1q as n Ñ 8 , we in particular �nd

that for each T ¡ 0 it holds that

}Un � V0}W 1; 2 pp� T;T q;X 0 ;X 1 q Ñ 0 as n Ñ 8 :

Together these estimates imply that }Un � V0}W 1; 2 pR ;X 0 ;X 1 q Ñ 0 as n Ñ 8 , so that

Un Ñ V0 in PpZ � ; Z � q as n Ñ 8 . Hence xM pZ � ; Z � q is compact in the quotient
topology inherited from PpZ � ; Z � q.

It remains to prove the claim (2.38). We will only discuss the uniform convergence
towards Z � � p z� ; 0qast Ñ 8 ; the case fort Ñ �8 is obtained analogously. We shall
�rst show that }Bt un ptq}L 2 p
 q Ñ 0 uniformly in n as t Ñ 8 , where Un � p un ; Bt un q.
Assume on the contrary that we can �nd a sequenceptk qk € R with tk Ñ 8 , pnk qk € N
with nk Ñ 8 , and " ¡ 0 such that

}Bt un k ptk q}L 2 p
 q ¡ " for all k PN : (2.39)

Recall from Section 2.3 that M pZ � ; Z � q is uniformly bounded in C1
b pR ; X 0; X 1q.

From this we obtain the following equicontinuity condition: there exists an M P R
such that

�
�
�
�}Bt wpsq}2L 2 p
 q � }B t wptq}2L 2 p
 q

�
�
�
� ¤

» s

t

�
�B� }Bt wp� q}2L 2 p
 q

�
� d�

� 2
» t

s
|xB2

t wp� q; Bt wp� qyL 2 p
 q| d�

¤ 2
» t

s
}B2

t wp� q}L 2 p
 q}Bt wp� q}L 2 p
 q d�

¤ M |s � t|
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for all s; t P R and W � p w; Bt wq PM pZ � ; Z � q. Combining this with (2.39), we may
�nd � ¡ 0 such that

}Bt un k psq}2L 2 p
 q ¥ "2{2 whenever |tn k � s| ¤ �:

In turn, this gives

EpUn k ptk qq � Epun k ptk � � qq � �
» t k � �

t k

B� EpUn k p� qqd�

¥
c
2

» t k � �

t k

}Bt un k p� q}2L 2 p
 q d�

¥ c�" 2{4 � : "0:

Sincet ÞÑEpUn k ptqqis a decreasing function, this �nally implies that for all k

EpUn k ptk qq � EpZ � q ¥ "0:

But we can �nd s0 P R such that EpV0ps0qq � EpZ � q � "0{2, and sincetk Ñ 8 we
then �nd that for k large enough

EpUn k ps0qq � EpZ � q ¥ EpUn k ptk qq � EpZ � q ¥ "0:

However, Un k Ñ V0 in W 1;2
loc pR ; X 0; X 1q, so in particular EpUn k ps0qq Ñ EpV0ps0qq.

Hence the left hand side of the last inequality tends to"0{2 as k Ñ 8 over a subse-
quence, which is impossible since"0 ¡ 0. From this contradiction we conclude that
}Bt un ptq}L 2 p
 q Ñ 0 uniformly in n as t Ñ 8 .

Next, we will show that from this it also follows that }un ptq � z� }H 1 p
 q Ñ 0
uniformly in n ast Ñ 8 , thus completing the proof of (2.38). Suppose on the contrary
that we can �nd a sequenceptk qk € R with tk Ñ 8 , pnk qk € N with nk Ñ 8 , and
" ¡ 0 such that

}un k ptk ; �q � z� }H 1 p
 q ¡ " for all k PN :

From Section 2.3 we know that, after selecting a further subsequence, we have the
convergenceUn k ptk � �q Ñ W � p w; Bwq in W 1;2

loc pR ; X 0; X 1q as k Ñ 8 . The assumed
inequality ensures that w � z� . Yet since }Bt un ptq}L 2 p
 q Ñ 0 uniformly in n as
t Ñ 8 , it holds that Bt w � 0. Since M pZ � ; Z � q is assumed compact up to0-fold
broken orbits, we thus must haveW � Z � . Hence for any � ¡ 0 and s0 ¡ 0 we can
choosek large enough so that

EpZ � q   EpZ � q ¤ EpUn k ptk qq �
�
2

¤ EpUn k ps0qq �
�
2

¤ EpV0ps0qq � �:

However, EpV0ps0qq Ñ EpZ � q as s0 Ñ 8 . So we �nd that for any � ¡ 0 we have
EpZ � q   EpZ � q ¤ EpZ � q � � . Hence EpZ � q � EpZ � q, in contradiction with the
assumption that EpZ � q   EpZ � q.

2.7.4 The glueing map

The following �glueing theorem� allows us to understand the structure of the boundary
of the two-dimensional moduli spaces.



56 CHAPTER 2. FLOER HOMOLOGY FOR TRAVELLING WAVES IN RDE

Theorem 2.7.6. SupposeZ0, Z1, Z2 are hyperbolic stationary solutions of (TWE) ,
where� pZ0q � � pZ1q� 1 � � pZ2q� 2. Assume the transversality condition up to order
2 is satis�ed. Let pU; Vq PM pZ0; Z1q � M pZ1; Z2q. Then there exists an immersion

# : rT0; 8q Ñ M pZ0; Z2q;

T ÞÑU# T V;

such that rU# T Vs ; prUs; rVsqas T Ñ 8 . Moreover, any sequence inxM pZ0; Z2q
which converges geometrically towardsprUs; rVsqeventually lies within the range of
rU# Vs.

The ideas in this construction are fairly standard, see e.g. [12, 46, 89, 90]. We will
only give a sketch here. First de�ne a pre-glueing map

�
U# 0

T V
�
ptq:�

�
1 � �

�
t
T




Upt � 2Tq � �

�
t
T



Vpt � 2Tq;

where � P C8 pR q is such that 0 ¤ � ¤ 1, � ptq � 0 for t ¤ � 1, and � ptq � 1 for t ¥ 1.
Note that U# 0

T V PPpZ0; Z2q, and U# 0
T V converges geometrically towardsprUs; rVsq

asT Ñ 8 . However, the pre-glueing is in general not a solution of (TWE), but a brief
computation yields

�
� � Z 0 ;Z 2 pU# 0

T Vq
�
�

L 2 pR ;X 0 q Ñ 0 as T Ñ 8 ;

which suggest there must be a true solution nearby the pre-glueing. The aim is to �nd
this true solution using a contraction mapping argument.

De�ne

FT : W 1;2pR ; X 0; X 1q Ñ L 2pR ; X 0q;

FT p q � � Z 0 ;Z 2 pU# 0
T V �  q:

By hyperbolicity and transversality, the maps D � Z 0 ;Z 1 pUq and D� Z 1 ;Z 2 pVq are sur-
jective Fredholm operators, hence they have bounded right inversesM 01 and M 12

respectively. We then patch these operators together to obtain an �approximate right
inverse� for DF T p0q:

M T :� � �
T � 2T M 01� � 2T � �

T � � �
T � � 2T M 12� 2T � �

T :

Here � a denotes the operator induced by time translationt ÞÑt � a, and � �
T PC8 pR qis

such that � �
T ptq2 � � �

T ptq2 � 1, � �
T ptq � 0 for t ¤ � T, � �

T ptq � � �
T p� tq, � �

T ptq � � �
1 pt{Tq.

This is an approximate right inverse in the sense thatDF T p0q�M T Ñ I in LpL 2pR ; X 0qq
as T Ñ 8 . In turn, this implies the existence of a true right inverse GT of DF T p0q;
in addition the operator norm of GT can be bounded independent ofT. This allows
us to de�ne a Newton-like operator

NT : W 1;2pR ; X 0; X 1q Ñ imgpGT q;

NT � GT �
�
DF T p0q � FT

�
:

Since FT p0q Ñ 0 as T Ñ 8 and the norm of GT can be bounded independent ofT,
this operator turns out to be a contraction for T large enough. Consequently, there
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exists an" ¡ 0 such that, for large T, there exists a unique T PB " p0qXimgpGT qsuch
that FT p T q � 0. Furthermore, one can show that} T }W 1; 2 pR ;X 0 ;X 1 q Ñ 0 as T Ñ 8 .
Hence, if we set

U# T V :� U# 0
T V �  T ; (2.40)

then U# T V PM pZ0; Z2q and rU# T Vs; prUs; rVsqas T Ñ 8 .

2.7.5 The geometric picture

Now assume that both f and g are regular. Pick any Z � ; Z � P S which satisfy the
index bound � pZ � q� � pZ � q ¤ 2. SupposeM pZ � ; Z � q � H , and pick U PM pZ � ; Z � q.
Then

� pZ � q � � pZ � q � dim kerpD � Z � ;Z � pUqq ¥ 0:

Hence transversality implies that the Morse index can never increase along orbits.

We now combine the various results from this chapter to get a detailed picture of
geometric properties of the trajectory spaces. We present this in the following list.

� pZ � q � � pZ � q. Assume that M pZ � ; Z � q � H . In this case M pZ � ; Z � q is a 0-
dimensional manifold, i.e. a discrete set. IfU PM pZ � ; Z � q, then s ÞÑUps��q de�nes
a continuous curve in M pZ � ; Z � q. This curve has to be constant sinceM pZ � ; Z � q
is discrete. HenceU is t-independent, and sinceUptq Ñ Z � as t Ñ �8 , we �nd
that Z � � Z � . We conclude that the space of index0 trajectories M pZ � ; Z � q is a
�nite set.

� pZ � q � � pZ � q � 1. Let prUn sqn € xM pZ � ; Z � q and suppose that this sequence
converges geometrically towards ak-fold broken orbit, rUn s ; prV0s; : : : ; rVk sq. Since
the index can never increase along orbits, we �nd that all except one of theVj 's is
of index 0. But as we just saw, index0 orbits are stationary solutions, hence all but
one of theVj 's equal eitherZ � or Z � . SoprUn sqn converges geometrically to a0-fold
broken orbit, i.e. an element of xM pZ � ; Z � q itself. From this and Theorem 2.7.4 we
deduce that xM pZ � ; Z � q is compact up to 0-fold broken orbits. We then conclude
from Theorem 2.7.5 that xM pZ � ; Z � q is sequentially compact in the quotient topol-
ogy. We also know that xM pZ � ; Z � q is a 0-dimensional manifold with this quotient
topology. Consequently xM pZ � ; Z � q is a �nite set. This means that modulo time
shifts, M pZ � ; Z � q consists of �nitely many trajectories.

� pZ � q � � pZ � q � 2. Let O be a connected component ofM pZ � ; Z � q. Arguing as
above, we �nd that O is either compact up to 0-fold broken orbits, or compact up
to 1-fold broken orbits.

We can also study pO :� O{R , the 1-dimensional manifold obtained by dividing out
the time shifts. SinceM pZ � ; Z � q is obtained as a regular level0 set via the implicit
function theorem, it is a manifold without boundary. Therefore also O and hence pO
are manifolds without boundary. It follows from the classi�cation of 1-dimensional
spaces that pO is homeomorphic to eitherS1 or p0; 1q. The former corresponds to the
case wherepO is compact up to 0-fold broken orbits. In the latter case, we obtain
a 1-parameter family prUssqsPp0;1q € pO such that rUss ; prV �

0 s; rV �
1 sqas s Ó0 and

rUss ; prV �
0 s; rV �

1 sqas s Ò1. These broken orbits prV �
0 s; rV �

1 sqand prV �
0 s; rV �

1 sq
are distinct, otherwise we would have two sequences which are separated by open
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Figure 2.3: Geometric closures of index 1 connected component of M pZ � ; Z � q in the nonautonomous
setting. Double arrow heads indicate autonomous trajectories, single arrow heads indicate nonau-
tonomous trajectories, numbers indicate their indices.

sets, yet converging geometrically to the same1-fold broken trajectory. However, the
latter is impossible in light of the glueing theorem. See Figure 2.2(b) for a schematic
depiction of this situation.

Remark 2.7.7. In this section we analyzed the geometry of (the compacti�cation
of) the moduli spaces in the autonomous case. We now indicate how this analysis
can be adapted to the nonautonomous case. The main technical di�erence is that
one needs the compactness estimates for the nonautonomous case, as given in Sec-
tion 2.3. The other di�erence is the lack of translational invariance of (TWE) . In
this case we can therefore only use the classi�cation of1-dimensional manifolds when
the index di�erence is � pZ � q � � pZ � q � 1. What one obtains is, much the same as
in the autonomous setting, that any connected component ofM pZ � ; Z � q is either
compact, or can be compacti�ed by two pairs of broken trajectories. Here, a nonau-
tonomous trajectory can break into either one of the following (using notation as in
Hypothesis (n2))

� a concatenation of an index 0 nonautonomous trajectory which corresponds to
pf; g; cq, and an index 1 autonomous trajectory corresponding topf � ; g� ; c� q, or

� a concatenation of an index 1 autonomous trajectory which corresponds to
pf � ; g� ; c� q, and an index 0 nonautonomous trajectory corresponding topf; g; cq.

Hence, accounting for multiplicity, there are three possible boundaries for any noncom-
pact connected component ofM pZ � ; Z � q when � pZ � q � � pZ � q � 1, see Figure 2.3,
and [90] for more detail. l

2.8 Generic properties

In this section we show that for generic choices off and g, all rest points are hyperbolic
and connecting orbits up to order m � 1 are transversal. In other words, we will show
that regular f and g are generic. Thus, the results from the preceding sections apply
in generic cases.
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2.8.1 Hyperbolicity

As already indicated, hyperbolicity of all rest points of (TWE) can always be achieved
by perturbing the nonlinearity f . We shall now �rst construct a space from which our
generic perturbations of the nonlinearity can be chosen. Since we will apply the Sard�
Smale theorem to a map de�ned on this space, it must be constructed in such a way
that it is a Banach manifold.

Given m P N , let Cm
0 p
 � R q consist of those functions' 0 P Cm

b p
 � R q such
that limuÑ�8 ' 0px; uq � 0 uniformly in x P 
 , and ' 0|B
 � R � 0. Equipped with the
norm inherited from Cm

b p
 � R q, this becomes a separable Banach space. Now letF m

consist of those functions' of the form

' px; uq � e�| u |2
' 0px; uq; where ' 0 PCm

0 p
 � R q:

De�ne a norm on F m by setting }' }F m :� } ' 0}C m
b

. As such, F m is isometric to
Cm

0 p
 � R q, hence F m is a separable Banach space. Note that the rapid decay of
' PF m implies that f � ' satis�es Hypotheses (f1)�(f3) whenever f does.

Recall that a subset of a topological space is called residual if it can be written as
the countable intersection of open and dense subsets. SinceF m is a Baire space, any
residual subset ofF m is also dense inF m .

Theorem 2.8.1. Fix a nonlinearity f P Cm p
 � R q, with m ¥ 1, satisfying Hy-
potheses (f1)�(f3). Then there exists a residual setF m

reg € F m such that for each
' PF m

reg Equation (TWE) with the perturbed nonlinearity f � ' has only hyperbolic
rest points.

Proof. Given a nonlinearity f , for notational convenience we will write A f instead of
A f;g;c (the construction of F m

reg will in fact be independent of g and c). Consider the
map

	 : F m � X 1 Ñ X 0;

	 p'; Z q � A f � ' pZ q:

Note that this 	 is of classCm .

We claim that 0 is a regular value of 	 , i.e. for any p ; Z q P	 � 1p0q the linear
operator D 	 p ; Z q PLpF m � X 1; X 0q has a continuous right inverse. Assume with-
out loss of generality that 	 � 1p0q � H , and pick any p'; Z q P 	 � 1p0q. For any
p ; W q PF m � X 1, one has

D 	 p'; Z qp ; W q � DA f � ' pZ qW � B pZ q ;

where

B pZ q pxq �
�

0
 px; zpxqq



; where Z � p z;0q:

Note that by the Rellich-Kondrachov theorem the operator DA f � ' pZ qis a compact
perturbation of pu; vq ÞÑ p�v; � uq PLpX 1

C ; X 0
C q. The latter is Fredholm of index 0,

henceDA f � ' pZ q is also Fredholm of index0. HenceD 	 p'; Z q is the direct sum of a
Fredholm map and a bounded map, therefore the existence of a bounded right inverse
will follow from surjectivity of D 	 p'; Z q.
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Note that img D	 p'; Z q • img DA f � ' pZ q is �nite codimensional, and conse-
quently D � p ; z q has closed range. It thus su�ces to see thatimg D	 p'; Z q is dense
in X 0. For this, we note that by the compactness results from Section 2.3 the function
z is continuous and uniformly bounded. Thus with  de�ned by  px; uq � � pxq� puq,
where we choose� PC8

c p
 q and � PC8
c pR q with � puq � 1 on supppzq, it follows that

B pZ q � p 0; � q. Hencet 0u � C8
c p
 q € img D	 p'; Z q. Also, because of the shape of

DA f � ' pZ q, there exists a subspaceE € L 2p
 qsuch that H 1
B p
 q� E € img D	 p'; Z q.

From this we see that img D	 p'; Z q is dense inX 0, thus showing that 0 is a regular
value of 	 .

Let Z PSpf � ' q be a stationary solution of (TWE) with nonlinearity f � ' . We
claim that DA f � ' pZ qis surjective precisely whenZ is a hyperbolic solution of (TWE).
Indeed, for any� PC it follows by the Rellich-Kondrachov theorem that DA f � ' pZ q� �
is a compact perturbation of DA f � ' pZ q, hence Fredholm of index0. Therefore the
spectrum ofDA f � ' pZ qconsists solely of eigenvalues. Consequently,� P � pDA f � ' pZ qq
if and only if � 2 � c� P � ppPq, where P � � � f u px; zq � ' u px; zq as an unbounded
operator on L 2p
 qC with domain DpPq � H 2

B p
 qC . As suchP is symmetric, hence it
has real-valued point spectrum; i.e.� ppPq € R . If � � i� P iR r t 0u, then � 2 � c� RR ,
thus proving that iR r t 0u X � pDA pZ qq � H . From this the claim follows.

Now let F m
reg consist of those' P F m for which 0 is a regular value of 	 p'; �q.

We will now argue that F m
reg is residual in F m . By the implicit function theorem,

Z :� 	 � 1p0q is a Cm manifold. Let � : Z Ñ F m be the restriction to Z of the
projection � 1 : F m � X 1 Ñ F m , i.e. � � � 1|	 � 1 p0q, and note that this is a Cm map.
Moreover note that ' is a regular value of� � � 1|	 � 1 p0q if and only if 0 is a regular
value of 	 p'; �q � 	 |� � 1

1 p' q. Pick any ' PF m , and note that ' is a regular value of� 1.
The linearisation of 	 |� � 1

1 p' q � 	 p'; �q around Z equalsDA f � ' pZ q, hence the former
map is Fredholm of index 0. Then also � is Fredholm of index 0. Consequently, the
Sard�Smale theorem [92] implies that the regular values of� are residual in F m , thus
proving the claim.

2.8.2 Transversality

We will show here that there is an abundance ofg for which the transversality condition
up to order m � 1 is satis�ed. To do so we must �rst introduce a separable Banach
manifold Gm pcq from which our perturbations g can be chosen.

The following lemma indicates how we can build localised perturbationsg. We
stress that the proof of the lemma relies heavily on the unique continuation theorem
(Theorem 2.4.3).

Lemma 2.8.2. Fix any  P C8
c pR q with

³8
0  ptqdt � 0. Supposef is of classC4

and suppose Hypothesis (f1)�(f3) are satis�ed. Let U be a non-stationary bounded
solution of (TWE) . For any " ¡ 0 and t � PR , de�ne � " PC1

b pR q by

� " ptq:� " � 1 
�
" � 1}Uptq � Upt � q}X 0

�
:

Set C :� 2}Bt Upt � q}� 1
X 0

³8
0  ptqdt. Then for any � PC0pR q one has

lim
" Ñ 0

C � 1
»

R
� ptq� " ptqdt � � pt � q:
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Proof. Let a ¡ 0 be such that suppp q € r� a; as. Given " ¡ 0, consider the function
� �

" : rt � ; 8q Ñ r 0; 8q , de�ned by � �
" ptq :� " � 1}Uptq � Upt � q}X 0 . Note that, for

t P pt � ; 8q ,
d
dt

� �
" ptq �

1
"

xBt Uptq; Uptq � Upt � qyX 0

}Uptq � Upt � q}X 0
;

where x�; �yX 0 denotes the Hilbert space inner product onX 0. We claim that there
exists � ¡ 0 and "0 ¡ 0 such that

(1)
d
dt

� �
" ptq ¡ 0 for t P pt � ; t � � � q and 0   " ¤ "0, and

(2) � �
" ptq ¥ a for any t P rt � � �; 8q and 0   " ¤ "0.

To see why (1) holds, note that

d
dt

� �
" ptq �

1
"

B
Bt Uptq;

Uptq � Upt � q
t � t �

F

X 0�
�
�
�
Uptq � Upt � q

t � t �

�
�
�
�

X 0

Ñ
1
"

}Bt Upt � q}X 0 as t Ót � :

SinceU is assumed to be non-stationary, the unique continuation Theorem 2.4.3 (here
we use that f is C4) ensures that }Bt Upt � q}X 0 ¡ 0. Hence, by continuity, there must
exist a � ¡ 0 such that claim (1) holds (with any " ¡ 0).

We will now consider claim (2). Let � ¡ 0 be as in the preceding paragraph, and
suppose an"0 such that claim (2) holds does not exist. Then we would be able to �nd
sequencesptn qn € r t � � �; 8q and p"n qn € p0; 8q with "n Ñ 0 as n Ñ 8 , such that
� �

" n
ptn q   a for all n. Hence}Uptn q � Upt � q}X 0   a"n Ñ 0 as n Ñ 8 .

We claim that the sequenceptn qn is convergent, with limn Ñ8 tn � t � . This is
obviously in contradiction with the construction of the sequence, hence this will prove
claim (2). To see why tn Ñ t � as n Ñ 8 , we �rst note that ptn qn must be bounded.
Indeed, since we assumeU to be bounded, Lemma 2.7.3 implies that it is a connect-
ing orbit. Hence if we could �nd an unbounded subsequencept1

n qn of ptn qn , then
Upt1

n q Ñ Z P Spf q. But by assumption Uptn q Ñ Upt � q, hence Upt � q � Z . The
unique continuation Theorem 2.4.3 would then imply that Uptq � Z for all t P R ,
which contradicts our assumption that U is non-stationary. We have thus proved that
ptn qn is bounded. Given any subsequence, select a further subsequencept1

n qn which is
convergent, sayt1

n Ñ t8 PR . Then Upt8 q � limn Ñ8 Upt1
n q � Upt � q, hence if t8 � t �

the unique continuation Theorem 2.4.3 would imply that U is periodic. However, such
behaviour is excluded by the gradient-like structure of (TWE). Hence t8 � t � , which
proves that ptn qn is convergent, with limn Ñ8 tn � t � . This proves claim (2).

The implicit function theorem now ensures the existence of a family of maps
t �
" : r0; aq Ñ r t � ; t � � � q (with 0   " ¤ "0), which restrict to C1 di�eomorphisms

from p0; aq onto their image, such that

� �
" � t �

" � idr0;aq;

�
t �
"

� � 1
pt � q � 0;
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and
� �

"

�
rt � ; 8q r t �

" pr0; aqq
�

X r0; aq � H :

Furthermore, since � �
" ptq Ñ 8 as " Ñ 0 when t � t � , and � �

" pt � q � 0, it follows that
t �
" psq Ót � as " Ñ 0.

Similarly, we de�ne maps � �
" : p�8 ; t � s Ñ r0; 8q by � �

" ptq:� " � 1}Uptq � Upt � q}X 0 .
The same argument as above proves the existence of a familyt �

" : r0; aq Ñ p�8 ; t � s
with the same properties as the mapst �

" .

At this point we are prepared to compute the limit of � " as " Ñ 0. Fix any
� PC0pR q. Then, since� " ptq � 0 for t Rt �

" pr0; aqq Yt �
" pr0; aqq, one has

»

R
� ptq� " ptqdt �

»

R r t 0u
� ptq� " ptqdt �

»

t �
" pp0;aqq

� ptq� " ptqdt �
»

t �
" pp0;aqq

� ptq� " ptqdt

�
» a

0
� pt �

" psqq� " pt �
" psqq

dt �
" psq
ds

ds �
» a

0
� pt �

" psqq� " pt �
" psqq

dt �
" psq
ds

ds:

Consider for example the last integral. Filling in the de�nition of � " gives
» a

0
� pt �

" psqq� " pt �
" psqq

dt �
" psq
ds

ds �
» a

0
� pt �

" psqq psq
}Upt �

" psqq � Upt � q}X 0

xBt Upt � q; Upt �
" psqq � Upt � qyX 0

ds:

Sincet �
" psq Ót � as " Ñ 0, we have

� pt �
" psqq Ñ � pt � q

as " Ñ 0, and

}Upt �
" psqq � Upt � q}X 0

xBt Upt � q; Upt �
" psqq � Upt � qyX 0

�

�
�
�
�
Upt �

" psqq � Upt � q
t �
" psq � t �

�
�
�
�

X 0B
Bt Upt � q;

Upt �
" psqq � Upt � q
t �
" psq � t �

F

X 0

Ñ }B t Upt � q}� 1
X 0

as " Ñ 0. Using the dominated convergence theorem it follows that
» a

0
� pt �

" psqq� " pt �
" psqq

dt �
" psq
ds

ds Ñ
C
2

� pt � q as " Ñ 0:

Similarly, we �nd that
» a

0
� pt �

" psqq� " pt �
" psqq

dt �
" psq
ds

ds Ñ
C
2

� pt � q as " Ñ 0:

This concludes the proof of the lemma.

Let rGm consist of all g PCm
b p
 � X 0q which vanish on X 0

S :� 
 � p H 1
B p
 q � t 0uq.

Equipped with the Cm
b p
 � X 0q-norm rGm becomes a Banach space. We now construct

a suitable separable subspace ofrGm . Fix  P C8
c pR q as in Lemma 2.8.2. Consider

g P rGm of the form

gpx; U q � ' pxq 
�

1
"

}U � U0}X 0



; (2.41)
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where ' P C8 p
 q, U0 P X 0 r X 0
S , and " ¡ 0 is su�ciently small (depending on U0).

Denote by Gm the smallest closed subspace ofrGm which contains all maps of this form.
SinceCm

b p
 q, R , and X 0 are all separable, and the map

Cm
b p
 q � R � X 0 Ñ rGm ;

p'; "; U 0q ÞÑg

is continous, the spaceGm is a separable Banach space.

Now let Gm pcq consist of thoseg PGm for which

sup
x P
 ; u PH 1

B p
 q
|gpx; u; vq|  

c

2
a

Volp
 q
}v}L 2 p
 q whenever v � 0:

Note that Gm pcq is an open subspace ofGm . Also remark that any g PGm pcq satis�es
Hypotheses (g1)�(g3).

Theorem 2.8.3. Let f be of classCm with m ¥ 4 and suppose Hypotheses (f1)�
(f3) are satis�ed. Furthermore, assume that each stationary solution of (TWE) is
hyperbolic. Then there exists a residual setGm

reg € Gm pcq such that for any g P Gm
reg

the transversality condition up to order m � 1 is satis�ed.

Proof. Fix Z � ; Z � PS with � pZ � q � � pZ � q ¤ m � 1, and consider the map

	 Z � ;Z � : Gm pcq � PpZ � ; Z � q Ñ L 2pR ; X 0q;

	 Z � ;Z � pg; Uq � B t U � A f;g;c pUq:

Here PpZ � ; Z � q is the a�ne space de�ned in Section 2.7. With the aid of Theo-
rem 2.3.6 we see that	 Z � ;Z � is of classCm in a neighbourhood of	 � 1

Z � ;Z �
p0q.

We will argue that 0 is a regular value of	 Z � ;Z � . Assume without loss of generality
that 	 � 1

Z � ;Z �
p0q � H , and pick any pg; Uq P	 � 1

Z � ;Z �
p0q. Then

D 	 Z � ;Z � pg; Uqp; V q � DU 	 Z � ;Z � pg; UqV � B pUq;

where B pUq PLpGm ; L 2pR ; X 0qqis given by

B pUq �
�

0
 p�; Uq



:

We know from Section 2.5 that DU 	 Z � ;Z � pg; Uq PLpW 1;2pR ; X 0; X 1q; L 2pR ; X 0qqis
Fredholm of index � pZ � q � � pZ � q. Therefore D 	 Z � ;Z � pg; Uq has a bounded right
inverse as soon as it is surjective. Furthermore,img D	 Z � ;Z � pg; Uq is �nite codimen-
sional hence closed inL 2pR ; X 0q. So it su�ces to check that img D	 Z � ;Z � pg; Uq is
dense inL 2pR ; X 0q.

Select anyp� 1; � 2q P pimg D	 Z � ;Z � pg; UqqK . Then
B�

� 1

� 2



; DU 	 Z � ;Z � pg; UqV

F

L 2 pR ;X 0 q
� 0 for all V PW 1;2pR ; X 0; X 1q; (2.42)

B�
� 1

� 2



; B pUq

F

L 2 pR ;X 0 q
� 0 for all  PGm : (2.43)
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Set � �
1 ptq:� x � 1ptq; �yH 1

B p
 q and � �
2 ptq:� x � 2ptq; �yL 2 p
 q, so that � �

1 PL 2pR ; H 1
B p
 q� q

and � �
2 P L 2pR ; L 2p
 q� q. Combining Equation (2.42) with the regularity results from

[83] show that

p� �
1 ; � �

2 q PW 1;2pR ; H 2
B p
 q� � H 1

B p
 q� ; H 1
B p
 q� � L 2p
 q� q

and
p� �

1 ; � �
2 q Pker

�
� B t � DA f;g;c pUq�

�
;

which means that
#

�B t � �
1 � � � � �

2 � f 1p�; uq� � �
2 � B 1gp�; Uq� � �

2 � 0
�B t � �

2 � � �
1 � c� �

2 � B 2gp�; Uq� � �
2 � 0:

(2.44)

The adjoints are to be considered as the dual operators of bounded operators between
appropriately chosen Banach spaces. More precisely, they are the adjoints of the
operators

� : H 2
B p
 q Ñ L 2p
 q; f 1p�; uq: H 1

B p
 q Ñ L 2p
 q;

B1gp�; pu; vqq �
Bgp�; pu; vqq

Bu
: H 1

B p
 q Ñ L 2p
 q;

and �nally

B2gp�; pu; vqq �
Bgp�; pu; vqq

Bv
: L 2p
 q Ñ L 2p
 q:

We shall be using this observation later on.

Equation (2.43) implies that for all  PGm it holds that
»

R

»



 px; U ptqq� 2pt; x qdx dt � 0:

In particular, consider  �  " of the form

 " px; V q:� ' pxq 
�

1
"

}V � Upt0q}X 0



;

with t0 P R , ' P C8
c p
 q, and  as in (2.41). Since� �

2 P W 1;2pR ; H 1
B p
 q� ; L 2p
 q� q it

follows that � �
2 PC0

b pR ; L 2p
 q� q, hence the map

t ÞÑ
»



' pxq� 2pt; x qdx

is continuous. By Lemma 2.8.2

0 � lim
" Ñ 0

" � 1
»

R

»



 " px; U ptqq� 2pt; x qdx dt �

2
» 8

0
 psqds

}Bt Upt0q}X 0

»



' pxq� 2pt0; xqdx:

This holds for all t0 PR and ' PC8
c p
 q, hence� 2 � 0. Consequently, Equation (2.44)

implies that � 1 � 0 as well. This shows thatpimg D	 Z � ;Z � pg; UqqK � t 0u, henceE is
dense inL 2pR ; X 0q, as desired.
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By the implicit function theorem the regular level set Z :� 	 � 1
Z � ;Z �

p0q is a Cm

smooth submanifold of Gm pcq � PpZ � ; Z � q. The projection � : Z Ñ Gm pcq is Cm

smooth and Fredholm of indexindp� q � � pZ � q � � pZ � q ¤ m � 1. Applying the Sard�
Smale theorem [92] to this map (here we use thatm ¥ maxt 0; indp� qu � 1) and using
a transversality argument similar to the one in the proof of Theorem 2.8.1 we �nd a
residual subsetGm

regpc; Z � ; Z � q € Gm pcq such that for each g P Gm
regpc; Z � ; Z � q orbits

connecting Z � and Z � are transversal. Now set

Gm
regpcq:�

£

Z � ;Z � PS
� pZ � q� � pZ � q¤ m � 1

Gm
regpc; Z � ; Z � q:

By the compactness results from Section 2.3 and hyperbolicity of the rest points, this
is a countable intersection, henceGm

regpcq is residual.

2.9 The travelling wave homology

2.9.1 The homology for generic perturbations

Given N € X 0, denote by BInv pN ; f; g; cq the set of all points Uptq PX 0, with t PR ,
where U is a solution of (TWE) for which Uptq P N for all t P R , and for which
supt PR }Uptq}X 0   8 . We will call BInv pN ; f; g; cq the bounded invariant set of N . In
light of Lemma 2.7.3, if f is a regular nonlinearity the set BInv pN ; f; g; cqwill consists
solely of stationary solutions and connecting orbits. The setN shall be called an
isolating neighbourhoodif

(1) N is closed inX 0,

(2) BInv pN ; f; g; cq € int N , i.e. N isolates the rest points and connecting orbits.

Note that our de�nition of an isolating neighbourhood di�ers from the usual one since
we allow N to be unbounded. LetSpN; f q:� Spf qXN , and given a normalised Morse
index � , de�ne

Sk pN; f q:� t Z PSpN; f q : � f pZ q � ku:

An isolating neighbourhoodN shall be called�nitely generating provided that for each
k P Z, the set Sk pN; f q is �nite. Note that this notion is independent of the chosen
normalised Morse index� .

The chain complex will depend on the choices of a �nitely generating isolating
neighbourhoodN , a triplet pf; g; cq satisfying Hypotheses (f1)�(f3) and (g1)�(g3) and
for which f and g are both regular (henceforth pf; g; cq shall also be called aregular
triplet ), the chosen boundary data B , and the chosen normalised Morse index� .
Assumef and g are at leastC4 smooth; this ensures that all the results from preceding
sections can be applied in this setting.

De�ne the graded Z2-module

C :�
à

n PZ

Cn ; where Cn :�
à

X PSn pN;f q

Z2xX y:



66 CHAPTER 2. FLOER HOMOLOGY FOR TRAVELLING WAVES IN RDE

Since the chain groupsCn are �nitely generated, we can de�ne a homomorphism
Bn : Cn Ñ Cn � 1 by declaring its action on the generators ofCn as follows: for each
X PSn pN; f q, we set

Bn X :�
¸

Y PSn � 1 pN;f q

i pX; Y qY;

where

ipX; Y q:� #
!

rUs P xM pX; Y q : Uptq PN for all t PR
)

pmod 2q:

From Section 2.7 we know that xM pX; Y q is a �nite collection, hence the number
ipX; Y q is well-de�ned. The sum in the de�nition of Bn is always �nite since N is
�nitely generating.

We now arrive at one of our main theorem.

Theorem 2.9.1. One hasBn � Bn � 1 � 0, and consequently,

HTW n pN; f; g; c q:� Hn pC� ; B� q �
ker Bn

img Bn � 1

is well-de�ned.

Proof. The homomorphism Bn � Bn � 1 counts (modulo 2) the 1-fold broken orbits,
consisting of two index 1 orbits, which are entirely contained in N . We have seen
that 1-fold broken orbits consisting of two index 1 orbits are always the limit of a
1-parameter family of index 2 orbits, and therefore always appear in pairs. SinceN
is an isolating neighbourhood,1-parameter families of solutions with �xed endpoints
are trapped by N , hence pairs of 1-fold broken orbits are also trapped byN . Since all
counting is done modulo 2, it follows that Bn � Bn � 1 � 0.

We will call HTW � pN; f; g; c q the travelling wave homology.

2.9.2 Invariance

We now want to study what happens to the chain complex and the homology if we
perturb N , f , g, or c. First we introduce conditions under which perturbations of N
do not change the homology. We will then show that the homology is independent of
the choice ofg, thus allowing the de�nition of HTW � pN; f; c q. Finally, we give criteria
under which a homotopy t ÞÑ pf t ; ct qinduces an isomorphism on the level of homology.

Perturbing N

Let N , f , g, and c satisfy the same conditions as in the previous section. Clearly
the construction of the homology does not depend explicitly onN , but only on
BInv pN ; f; g; cq. If rN is another isolating neighbourhood with the property that
BInv pN ; f; g; cq � BInv prN ; f; g; cq, then HTW � prN; f; g; c q is well-de�ned and we have
the identity HTW � pN; f; g; c q � HTW � prN; f; g; c q.
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Independence of g

Begin by �xing a regular nonlinearity f which satis�es Hypotheses (f1)�(f3). Also �x
c ¡ 0. AssumeN € X 0 is a �nitely generating isolating neighbourhood for pf; 0; cq.
SinceN is �nitely generating, the set

Ef pSpN; f qq �
¤

kPZ

Ef pSk pN; f qq

is countable, hence the set of regular energy levels

E regpN; f q:� R r Ef pSpN; f qq

is dense inR . Then, for eachE PE regpN; f q, the set

N E :� N X E� 1
f pp�8 ; Esq

is also a �nitely generating isolating neighbourhood for pf; 0; cq.

Recall from Section 2.8 the de�nition of the spaceGm pcq. Denote by Bp� q the set
of those g P Gm pcq for which }g}C m

b p
 � X 0 q   � . The following lemma now guarantees
that N E remains an isolating neighbourhood when we consider small perturbations in
g.

Lemma 2.9.2. Let N , f , and c be as described above. Then for eachE PE regpN; f q
there exists � E ¡ 0 such that the following is true: for any curve t ÞÑgt with values
in Bp� E q which is constant on p�8 ; � 1q and on p1; 8q , the set N E is an isolating
neighbourhood for the nonautonomous Equation(TWE) associated withpf; g t ; cq.

Proof. Suppose the claim is false. Then one could �nd aE P E regpN; f q, a sequence
p� n qn with limn Ñ8 � n � 0, and a sequence of curvest ÞÑgn

t with values in Bp� n qwhich
are constant for t P p�8 ; � 1q and for t P p1; 8q , such that the following holds: for
eachn there is a bounded solutionUn to the nonautonomous equation associated to
pf; g n

t ; cq such that Un ptq PN E for all t PR , but Un ptn q P BN E for a certain tn .

Combining Lemmata 2.3.7 and 2.7.3 it follows that there exists anM ¥ E such
that |Ef pUn ptqq| ¤ M for all n P N and t P R . As discussed in Remark 2.3.2 one
then �nds that Un p� � tn q converges inW 1;2

loc pR ; X 0; X 1q over a subsequence to a
bounded solutionU of the autonomous equation associated withpf; 0; cq. This solution
is entirely contained in N E , but Up0q P BN E . Since E was chosen to be a regular
energy level, this contradicts the assumption thatN is an isolating neighbourhood for
(TWE) with pf; 0; cq.

Let us �x, for the moment, a value E P E regpN; f q and a corresponding� E ¡ 0
as dictated by Lemma 2.9.2. SinceBp� E q is open in Gm pcq, it follows from Theo-
rem 2.8.3 that the collection Bregp� E qof regular g PBp� E q is dense inBp� E q. For each
g P Bregp� E q, the triplet pf; g; cq is regular, and N E is a �nitely generating isolating
neighbourhood forpf; g; cq. Hence, the homologyHTW � pN E ; f; g; cq is well-de�ned.

The isomorphism induced by homotopies of g. Let � ÞÑg� be a smooth ho-
motopy between regular endpoints in Bp� E q, i.e. � ÞÑ g� P C8 pr0; 1s; Bp� E qq and
g0; g1 P Bregp� E q. After choosing a suitable reparameterisationt ÞÑ� ptq, we obtain
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a curve t ÞÑg� pt q which satis�es Hypotheses (n1)�(n3). Henceforth we shall write gt

instead of g� pt q.

Denote by Ck the k-th chain group associated withf and the isolating neighbour-
hood N E . De�ne a homomorphism

 1;0
k : Ck Ñ Ck ;

by de�ning it on a generator X 0 of Ck to be

 1;0
k pX 0q �

¸

X 1 PSk pN;f q

i 1;0pX 0; X 1qX 1:

Here i 1;0pX 0; X 1qcounts (modulo 2) the number of heteroclinic orbits U of the nonau-
tonomous Equation (TWE) associated with pf; g t ; cq, with Uptq PN for all t PR , and
lim t Ñ�8 Uptq � X 0, and lim t Ñ8 Uptq � X 1.

Lemma 2.9.3. The map  1;0
k is well-de�ned and satis�es

Bk pN E ; f; g 1; cq �  1;0
k �  1;0

k � 1 � Bk pN E ; f; g 0; cq; (2.45)

where Bk pN E ; f; g i ; cq : Ck Ñ Ck � 1 denotes the boundary operator associated with
the chosen quadruplepN E ; f; g i ; cq.

Proof. By Lemma 2.3.7 and sinceN is �nitely generating we know that the sum
appearing in the de�nition of  1;0

k is �nite. The fact that i 1;0pX 0; X 1q itself is well-
de�ned relies on the compactness results we have obtained for the nonautonomous
equation, together with a detailed analysis of the manifold structure of the moduli
space. For this one �rst has to repeat the analysis from Section 2.7 for the nonau-
tonomous equation. We refer to Remark 2.7.7 and note that the essential ingredients
are compactness, transversality, and glueing for the nonautonomous equation, together
with the fact that N E is an isolating neighbourhood for the dynamics.

The fact that (2.45) holds follows entirely out of the geometry of the moduli space
of index 1 nonautonomous solutions. See Figure 2.3 towards the end of Section 2.7,
but also [90]. The case depicted in Figure 2.3(a), corresponding solely to the term
Bk pN E ; f; g 1; cq �  1;0

k in the left hand side of (2.45), results in no net contribution
as we count with Z2 coe�cients. Likewise, the situation described by Figure 2.3(b)
corresponds solely to the right hand side of (2.45) and has no net contribution. The
last case, depicted in Figure 2.3(c), yields the identity (2.45).

Note that Lemma 2.9.3 implies that  1;0
k induces a homomorphism	 1;0

k on the
homology groups. To verify that 	 1;0

k is indeed an isomorphism, independence of the
chosen homotopyg� has to be checked. To do so, one choses a 2-parameter family
g�;� P Bp� E q, and considers the parameter dependent moduli spaceM � pZ � ; Z � q,
consisting of pairs

p� � ; U� � q PM � pZ � ; Z � q;

where U� � belongs to the moduli spaceM pZ � ; Z � q for the nonautonomous Equa-
tion (TWE) corresponding to pf; g � pt q;� � ; cq. The analysis of this parameter depen-
dent moduli space is much the same as the work in Section 2.7, with the exception
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that there are more cases to distinguish in the compacti�cation. We refer to [90] for
a concise description, the conclusion of which is that on the level of homology the
homomorphism 	 1;0

k is independent of the chosen homotopyg� . Combined with a
glueing argument, this yields the relation

	 2;0
k � 	 2;1

k � 	 1;0
k ;

which in particular shows that 	 1;0
k is an isomorphism. We summarise this discussion

in the following theorem.

Theorem 2.9.4. Given g0; g1 PBregp� E q, the homomorphism

	 1;0
� : HTW � pN E ; f; g 0; cq Ñ HTW � pN E ; f; g 1; cq

is independent of the choice of homotopy� ÞÑg� betweeng0 and g1. Furthermore,

(1) if g0 � g1, then 	 1;0
� is the identity, and

(2) for any three g0; g1; g2 PBregp� E q one has	 2;0
� � 	 2;1

� � 	 1;0
� .

In particular, 	 1;0
� is an isomorphism.

We will refer to this isomorphism as the canonical isomorphism.

The limit as E Ñ 8 and g Ñ 0. For each k PZ, de�ne

Ecrit pkq:� max t Ef pX q : X PSk pN; f q Y Sk � 1pN; f qu:

The maximum is attained since N is �nitely generating. Pick regular energy levels
E0 ¡ Ecrit pkqand E1 ¡ Ecrit pkq, and let g PBregpmint � E 0 ; � E 1 uq. Let U be a connect-
ing orbit of (TWE) associated with pf; g; cq, with lim t Ñ�8 Uptq � X whereX is a rest
point with index � f pX q � k � 1 or � f pX q � k. Then Ef pUptqq ¤ Ecrit pkq for all t PR ,
hence if U is trapped by N E 0 then it is also trapped by N E 1 , and vice versa. Thus
Bk pN E 0 ; f; g; cq � B k pN E 1 ; f; g; cq and Bk � 1pN E 0 ; f; g; cq � B k � 1pN E 1 ; f; g; cq. Hence
there is a canonical isomorphism

HTW k pN E 0 ; f; g; cq � HTW k pN E 1 ; f; g; cq; for g PBregpmint � E 0 ; � E 1 uq:

For any two rg0; rg1 PBregpmint � E 0 ; � E 1 uq, the following diagram commutes:

HTW k pN E 0 ; f; g 0; cq

HTW k pN E 0 ; f; rg0; cq HTW k pN E 0 ; f; rg1; cq

HTW k pN E 1 ; f; rg0; cq HTW k pN E 1 ; f; rg1; cq

HTW k pN E 1 ; f; g 1; cq



70 CHAPTER 2. FLOER HOMOLOGY FOR TRAVELLING WAVES IN RDE

Here each of the arrows denote one of the canonical isomorphisms. It follows that the
isomorphism betweenHTW k pN E 0 ; f; g 0; cqand HTW k pN E 1 ; f; g 1; cq, which is de�ned
via the commuting diagram, is independent of the intermediate point rg0. Denote this
isomorphism by � pE 1 ;g1 q;pE 0 ;g1 q

k .

Thus HTW k pN E ; f; g; cq is independent, up to a canonical isomorphism, ofE
and g, as E Ñ 8 and g Ñ 0. We then de�ne HTW k pN; f; c q as the isomorphism
class of HTW k pN; f; g; c q, for small generic g. To formalise the notion of de�ning
HTW k pN; f; c q up to natural isomorphism, we use the inverse limit over the isomor-
phisms � pE 1 ;g1 q;pE 0 ;g1 q

k and set

HTW k pN; f; c q:� limÐÝ HTW k pN E ; f; g; cq:

Continuation in f and c

Suppose a curvet ÞÑ pf t ; ct q with regular endpoints pf � ; c� q and pf � ; c� q satis�es
Hypotheses (n1)�(n3). In addition, assume N € X 0 is a �nitely generating isolating
neighbourhood for the dynamics associated with the autonomous Equation (TWE)
corresponding topf � ; 0; c� qand pf � ; 0; c� q, as well as being an isolating neighbourhood
the nonautonomous Equation (TWE) corresponding to pf t ; 0; ct q. We will call such an
N stable with respect tot ÞÑ pf t ; ct q. By repeating the construction from the preceding
section, but with the constant f and c replaced by their t-dependent analogues, one
�nds the following theorem.

Theorem 2.9.5. A curve t ÞÑ pf t ; ct q which satis�es Hypotheses (n1)�(n3), which
has regular endpointspf � ; c� q and pf � ; c� q, and for which N is stable, induces an
isomorphism of homologies:

HTW � pN; f � ; c� q � HTW � pN; f � ; c� q:

Classes of isomorphic homologies when N � X 0

Let us now consider the special case whereN � X 0. Clearly this means that N is
stable with respect to any homotopy between regular endpointspf � ; c� q and pf � ; c� q
for which X 0 is �nitely generating. Thus pX 0; f � ; c� q and pX 0; f � ; c� q will have
isomorphic homologies whenever there exists a curvet ÞÑ pf t ; ct q connecting pf � ; c� q
with pf � ; c� q and satisfying Hypotheses (n1)�(n3). A �rst thing to note is that any
two c� ; c� ¡ 0 can be connected via such a path (keepingf �xed). In fact, the
induced isomorphism will then be independent of the chosen homotopy betweenc�

and c� (this can be veri�ed by considering two-parameter families ofc ¡ 0, similar to
how independence of the chosen patht ÞÑgt is veri�ed). Thus, for f for which X 0 is
�nitely generating, we can de�ne

HTW � pf q:� limÐÝ HTW � pX 0; f; c q;

wherelimÐÝ is the inverse limit over the isomorphisms induced by homotopies ofc. In the
remainder of this subsection we give a concrete description of a class of nonlinearities
f for which the homology remains unchanged.

Let f � , which will function as a reference point for our perturbations, be of class
Cm (with m ¥ 4) and satisfy Hypotheses (f1)�(f3). Recall that Hypotheses (f3) was
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only needed when considering Neumann or periodic boundary data, in order to arrive
at the compactness results from Section 2.3. In contrast to this, even when considering
Dirichlet boundary data we will now demand that f � satis�es the superlinear growth
condition (f3). This will help in the construction of allowed perturbations from f � , as
we will see shortly hereafter. Considerf of the form

f px; uq � � pxqf � px; uq � hpx; uq; (2.46)

where � PCm
b p
 q, and h PCm p
 � R q,

inf
x P


� pxq ¡ 0;

and

lim sup
|u |Ñ8

sup
x P


�
�
�
�

hpx; uq
f � px; uq

�
�
�
� � 0:

Lemma 2.9.6. Any f of the form (2.46) satis�es Hypotheses (f1)�(f3).

Proof. It is obvious that f will satisfy Hypotheses (f1) and (f3). Checking whether
(f2) or (f21) are satis�ed takes slightly more e�ort. Let us assume that f � satis�es (f2),
the argument for the other case is completely similar. We shall prove thatf then also
satis�es (f2), i.e., we need to show that

|� pxqF� px; uq � H px; uq| ¤ C �
�
2

p� pxqf � px; uq � hpx; uqqu; (2.47)

for some constantsC ¥ 0, and � 1   �   1. Here H px; uq :�
³u
0 hpx; uqds. First note

that, by dividing by � pxqand updating the values ofC and hpx; uq, it su�ces to prove
(2.47) for � � 1.

Suppose for the moment that

lim sup
|u |Ñ8

sup
x P


�
�
�
�
H px; uq
F� px; uq

�
�
�
� � 0: (2.48)

Then for each " ¡ 0 we can �nd C" ¡ 0 such that

|F� px; uq � H px; uq| ¤ C" � p 1 � "q
� �

2
f � px; uqu;

where � � is the value of � for which f � satis�es Hypothesis (f2). Then note that
Hypotheses (f2) and (f3) taken together imply that � � f � px; uqu is strictly positive for
|u| large. Combining this observation with the assumption that h � opf � qas |u| Ñ 8 ,
uniformly in x, gives

� �

2
f � px; uqu ¤ rC" � p 1 � "q

� �

2
pf � px; uq � hpx; uqqu:

Combined with the penultimate estimate this shows that f satis�es Hypothesis (f2),
with � arbitrarily close to � � .

We still need to see why (2.48) holds, i.e. thatH � opf � qas |u| Ñ 8 , uniformly in
x. As we have already seen that Hypotheses (f2) and (f3) together imply thatf � px; uq
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does not change signs for|u| large. Therefore, to prove (2.48) we can replacef � by |f � |,
and can thus assume thatf � px; uq ¡ 0 for all x and u. Since h � opf � q as |u| Ñ 8 ,
uniformly in x, for each " ¡ 0 we can �nd K ¥ 0 such that for all |u| ¥ K we have

|H px; uq| ¤ "F � px; uq �
1
2

» K

� K
|hpx; sq|ds �

"
2

» K

� K
f � px; sqds:

Hypothesis (f3) ensures thatinf x P
 F� px; uq Ñ 8 as |u| Ñ 8 . Hence given any" ¡ 0
and K ¥ 0 we can �nd L ¥ K such that for any x P 
 and |u| ¥ L one has

1
2

» K

� K
|hpx; sq|ds �

"
2

» K

� K
f � px; sqds ¤ "f � px; uq:

Hence |H px; uq| ¤ 2"F � px; uq for all |u| ¥ L . Since " ¡ 0 was chosen arbitrarily, we
arrive at (2.48).

We will call a curve t ÞÑf t PCm pR ; Cm p
 � R qq, where f t is of the form

f t px; uq � � t pxqf px; uq � ht px; uq;

an "-perturbation of f � provided that

(1) it is constant for t P p�8 ; 1q and for t P p1; 8q ,

(2) suppt;x qPR � 
 |1 � � t pxq|   " and suppt;x qPR � 
 |Bt � t pxq|   " , and

(3) |ht px; uq| ¤ "p1 � | f � px; uq|qfor all t PR , px; uq P
 � R .

Lemma 2.9.7. There exists a su�ciently small " ¡ 0 such that any "-perturbation
of f � satis�es Hypotheses (n1)�(n3).

Proof. Properties (2) and (3) from the de�nition of " -perturbations ensure that the
estimates made in the proof of Lemma 2.9.6 can be made uniformly int. Hence
Hypothesis (n1) is satis�ed. By de�nition (according to property (1)) " -perturbations
also satisfy (n2).

Left to check is that Hypothesis (n3) holds when" is chosen su�ciently small, i.e.
that

|Bt � t pxqF px; uq � B t H t px; uq| ¤ C � � |� t pxqF px; uq � H t px; uq|;

for someC ¥ 0 and su�ciently small � . Here H t px; uq �
³u
0 ht px; sqds. As noted in

the proof of Lemma 2.9.6, for eacht the function H t is opF q as |u| Ñ 8 , uniformly in
x, and in light of property (3) from the de�nition of " -perturbations, these estimates
are also uniform in t. Thus it su�ces to see that

|Bt � t pxqF px; uq � B t H t px; uq| ¤ C � � |� t pxqF px; uq|:

Since by assumption|Bt � t pxq|   " and |1 � � t pxq|   " , given any � ¡ 0 we can �nd
" ¡ 0 such that

|Bt � t pxqF px; uq| ¤
�
2

|� t pxqF px; uq|:
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Furthermore, since for eacht we haveH t � opF q as |u| Ñ 8 , uniformly in x, we also
have Bt H t � opF q as |u| Ñ 8 , uniformly in x. Hence in particular, for any given
� ¡ 0 there exists aC ¥ 0 such that

|Bt H t px; uq| ¤ C �
�
2

|� t pxqF px; uq|:

This proves that Hypothesis (n3) holds, and the constant � can be made arbitrary
small by choosing" su�ciently small.

Combining Lemmata 2.9.6 and 2.9.7 with Theorem 2.9.5 shows that any two non-
linearities (regular and for which X 0 is �nitely generating) which can be connected
via an "-perturbation have isomorphic homologies.

Denote by � pf � q the set of all nonlinearities f of the form (2.46). Endow � pf � q
with the topology of Cm

loc p
 � R q. Let � regpf � q consist of all thosef P � pf � q which
are regular; in light of Theorem 2.8.1 � regpf � q is dense in� pf � q. Finally, denote by
� �n pf � q the set of thosef P � regpf � q for which X 0 is �nitely generating. Now note
that any two nonlinearities f 0; f 1 P � pf � q can be connected via a concatenation of
�nitely many "-perturbations. However, these"-perturbations can only be inducing
isomorphisms of homologies if the endpoints of each of the individual" -perturbations
can be chosen to be elements of� �n pf � q. Hence we arrive at the following theorem.

Theorem 2.9.8. Fix arbitrary f 0; f 1 P � �n pf � q and supposef 0 and f 1 belong to the
same path-component ofcl� pf � q� �n pf � q. Then

HTW � pf 0q � HTW � pf 1q:

Remark 2.9.9. In the examples in Section 2.10 we consider nonlinearitiesf � which
are homogeneous inu. For these nonlinearities it follows that � �n pf � q � � regpf � q, and
sincecl� pf � q� �n pf � q � � pf � qis path-connected, it follows that any two f 0; f 1 P � regpf � q
have isomorphic homologies. It remains an open question whether any regularf which
satis�es Hypotheses (f1)�(f3) automatically has X 0 as a �nitely generating isolating
neighbourhood. If this turns out to be true, it follows that any two regular nonlinear-
ities f 0; f 1 P � regpf � q induce isomorphic homologies. One can then proceed to de�ne
the homology for any nongeneric nonlinearityf � as the inverse limit over � regpf � q. l

2.9.3 Direct sum property

We conclude this section with an algebraic property of the travelling wave homology
which will come in useful when applying the theory to concrete problems.

Lemma 2.9.10. Let f be a regular nonlinearity and c ¡ 0. Let N € X 0 be a �nitely
generating isolating neighbourhood for the dynamics associated withpf; 0; cq. Suppose
V1; V2 € X 0 are isolating neighbourhoods for the dynamics associated withpf; 0; cq,
such that

BInv pN ; f; 0; cq � BInv pV1; f; 0; cq Y BInv pV2; f; 0; cq

and
BInv pV1; f; 0; cq X BInv pV2; f; 0; cq � H :

Then
HTW � pN; f; c q � HTW � pV1; f; c q ` HTW � pV2; f; c q:
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Proof. Note that without loss of generality we may assumeV1 X V2 � H . Fix any
k PZ and E ¡ Ecrit pkq. We claim that, for any g PBregp� qwith 0   � ¤ � E su�ciently
small, any bounded solution U of the dynamics of (TWE) associated with pf; g; cq,
and for which Uptq PN E for all t P R , has either Uptq P int V E

1 for all t P R , or
Uptq Pint V E

2 for all t PR . Suppose this is not the case. Then one can �nd a sequence
of pgn qn with gn Ñ 0 as n Ñ 8 , bounded solutions Un of (TWE) associated with
pf; g n ; cq and such that Un ptq PN E for all t P R , and a sequenceptn qn € R such
that Un ptn q Rint V E

1 Y int V E
2 for all n PN . As discussed in Remark 2.3.2,Un p� � tn q

converges over a subsequence to a solutionU8 of (TWE) corresponding to pf; 0; cq. But
then U8 p0q Rint V E

1 Y int V E
2 , and sinceEf pU8 p0qq ¤ E, also U8 p0q Rint V1 Y int V2.

However,U8 ptq PN for all t PR . Hence we have constructed a solutionU8 of (TWE)
corresponding topf; 0; cq which is isolated by N , but not isolated by either V1 or V2.
This is in contradiction with the hypotheses of the lemma.

We conclude that wheneverg PBregp� qand 0   � ¤ � E is su�ciently small, the sets
N E , V E

1 , and V E
2 are isolating neighbourhoods for the dynamics of (TWE) associated

with pf; g; cq, and

BInv pN E ; f; g; cq � BInv pN E ; f; g; cq Y BInv pN E ; f; g; cq:

Hence the critical groups satisfy the direct sum propertyC� pN E q � C� pV E
1 q` C� pV E

2 q
(hereC� pN qdenotes the chain group corresponding to a given isolating neighbourhood
N ) and the boundary operatorBk pN E ; f; g; cqfactorises through this direct sum. Hence

HTW k pN E ; f; g; cq � HTW k pV E
1 ; f; g; cq ` HTW k pV E

2 ; f; g; cq:

This is true for any E su�ciently large and g su�ciently small, hence the conclusion
of the lemma follows.

2.10 Applications

In this section we will �rst compute the travelling wave homology for various classes
of nonlinearities, and �nally give some examples of how this information can be used
to derive conclusions about the existence of travelling waves.

In this section we consider nonlinearitiesf odd ;� and f even;� as introduced in (2.2)
and (2.3). It was already pointed out in Remark 2.2.3 that these nonlinearities satisfy
Hypotheses (f1)�(f3). We will compute the travelling wave homologies for these non-
linearities of this form, after which we will show how this information can be used to
prove existence of travelling waves in reaction-di�usion equations.

Theorem 2.10.1. For any regular nonlinearity f � f odd ;� or f � f even;� , the set
N � X 0 is a �nitely generating isolating neighbourhood. There exists a k0 P Z
(depending on the chosen normalised Morse index� ) such that

HTW k pf odd ;� q �
"

Z2 if k � k0;
0 otherwise:

Furthermore,

HTW � pf odd ;� q � 0;

HTW � pf even;� q � 0;

HTW � pf even;� q � 0:
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Proof. We begin with verifying that X 0 is �nitely generating for each of the non-
linearities, so that the homologies are indeed well-de�ned. We will in fact show that
� �n pf q � � regpf q. This also shows that, in light of Theorem 2.9.8, all the nonlinearities
in � regpf q have isomorphic homologies.

When either f � f odd ;� , or f � f even;� , or f � f even;� , this is true because the set
of solutions z of "

� z � f p�; zq � 0 on 
 ;
B pzq � 0 on B


is compact in H 2
B p
 q (see e.g. [45]), henceSpf q is �nite for regular f . Consequently

we �nd that � �n pf q � � regpf q.

When f � f odd ;� the set Spf q will typically not be �nite. Assume that f is
regular, and recall from the de�nition of the normalised Morse index that there exists
a constant m0 such that for the index of a rest point Z � p z;0q PSpf q we have the
following identity:

� f pZ q � m0 � mf pzq; (2.49)

where mf is the classical Morse index

mf pzq:� #
�
� p� � f u px; zqq X p0; 8q

�
:

For any given k P Z, a classical result from Bahri and Lions (see [14], but also [55,
56, 84, 101, 102]) then gives us a priori bounds on theL 8 norm of rest points Z
with a given morse index mf pzq ¤ k. In light of (2.49) this gives L 8 bounds on Z
with a given index � f pZ q ¥ k. Thus Sk pX 0; f q is �nite for each k, i.e. X 0 is �nitely
generating for f . Thus we again �nd that � �n pf q � � regpf q.

We now proceed to the actual computation of the various homologies. Computation
of the homology for f odd ;� requires a di�erent technique from the computation of the
homology for f odd ;� , but these approaches work for any boundary condition. The
homology for the nonlinearities f even;� and f even;� can be computed using the same
technique, but in this case the chosen approach depends on the boundary data.

Computation for f odd ;� . By Theorem 2.9.8,

HTW � pf odd ;� q � HTW � pf " q;

where
f " px; uq � �| u|p� 1u � "u:

For " ¥ 0, supposez is a solution of
"

� z � f " px; zq � 0 on 
 ;
B pzq � 0 on B
 :

(2.50)

Then »



|r z|2 � | z|p� 1 � " |z|2 dx � �

»




�
� z � f " px; zq

�
z dx � 0:

Hence the only solutionz of (2.50) is z � 0. Moreover, for " ¡ 0 su�ciently small this
rest point is hyperbolic, so that

HTW k pf " q �
"

Z2 if k � � f " p0q;
0 otherwise:
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Computation for f odd ;� . By Theorem 2.9.8,

HTW � pf odd ;� q � HTW � pf � q;

where
f � px; uq � | u|p� 1u � �u � ' � px; uq:

Here ' � is chosen such that any solutionz PH 2
B p
 qof � z � f � p�; zq � 0 is hyperbolic,

and }Bu ' � }L 8 p
 � R q ¤ 1. Such ' � exist in light of Theorem 2.8.1. Note that if z is a
solution of � z � f � p�; zq � 0, then for the linearisation one has

� �
Bf �

Bu
p�; zq � � � p|z|p� 1 � � � B u ' � px; zq© � � � � 1;

where �©� denotes the partial ordering on L 2p
 q induced by the cone of positive
operators onL 2p
 q. It then follows from the min-max characterisation of eigenvalues
of self-adjoint operators (see e.g. [39]) that

mf � pzq ¥ #
�
� p� � � � 1q X p0; 8q

�
:

So for any Z � p z;0q PSpf � q it follows that

� f � pZ q � m0 � mf � pzq ¤ m0 � #
�
� p� � � � 1q X p0; 8q

�
:

The right hand side tends to �8 as � Ñ 8 . Hence, for each givenk we can choose�
su�ciently large so that Sk pX 0; f � q � H , and thereforeHTW k pf � q � 0.

Computation for f even ;� , Dirichlet boundary data. By Theorem 2.9.8,

HTW � pf even;� q � HTW � pf �; � q;

where
f �; � px; uq � � � |u � 1|p:

We will argue that for � ¡ 0 su�ciently large, there is no solution to the equation
� z � f �; � p�; zq � 0. Let us now �rst discuss the case wheref �; � � f �; � . Suppose
z PH 2

B p
 q is a solution of
� z � f �; � px; zq � 0: (2.51)

Then z is subharmonic, and zero onB
 , hence by the maximum principle z ¤ 0. So

f �; � px; zq �
�

� | z � 1|p� 2pz � 1q
��

� pz � 1q
�

¤ � pz � 1q ¤ �z:

Furthermore, z � 0 is clearly not a solution of (2.51). Thus z also satis�es
$
''&

''%

� z � �z ¥ 0 on 
 ;
z � 0 on 
 ;
z ¤ 0 on 
 ;
z � 0 on B
 :

(2.52)

Let � 1 be the fundamental eigenvalue of� with Dirichlet boundary data, and let ' 1 be
a corresponding eigenfunction. Recall (see e.g. [39]) that� 1   0 and we may assume
that ' 1pxq ¡ 0 for all x P int 
 . Now multiply (2.52) by ' 1 and integrate to obtain

0 ¤
»



' 1� z � �' 1z dx �

»



z� ' 1 � �' 1z dx � p � 1 � � q

»



' 1z dx: (2.53)
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Since z ¤ 0 and z � 0 on 
 , and ' 1 ¡ 0 on int 
 , the last integral must be strictly
negative. But then p� 1 � � q

³

 ' 1z dx   0 for � ¡ � � 1, contradicting inequality (2.53).

Hence there can be no solution of (2.51) whenever� ¡ � � 1. Similarly, for � ¡ � � 1

there are no solutions of� z� f �; � p�; zq � 0 with Dirichlet boundary conditions. Hence
for � ¡ � � 1 we haveHTW � pf �; � q � 0.

Computation for f even ;� , Neumann or periodic boundary data. By Theo-
rem 2.9.8,

HTW � pf even;� q � HTW � pf � q;

where
f � px; uq � �| u|p � 1:

Now if z PH 2
B p
 q were a solution of� z � f � pzq � 0, one would �nd that

Volp
 q ¤ �
»



f � pzqdx � 	

»



� z dx:

But by Stokes' theorem and the chosen boundary data, the last integral equals0. Hence
� z � f � pzq � 0 does not have any solutions with Neumann or periodic boundary data.
Therefore, HTW � pf � q � 0.

With the homologies computed, we can now apply this information to prove exis-
tence of travelling wave solutions of (RDE).

Theorem 2.10.2. Consider any wave speedc � 0, and let k ¥ 1. Then the following
holds:

� If f � f odd ;� and (TWE) has at least2k distinct hyperbolic stationary solutions,
then (RDE) has at leastk distinct travelling wave solutions of wave speedc. More
precisely, to each given hyperbolic stationary solutionZ (but with the possible
exception of at most one of them), there corresponds at least one travelling wave
U such that � pUq � t Z u or ! pUq � t Z u (but it is possible that ! pUq resp. � pUq
consist of non-hyperbolic stationary solutions).

� If either f � f odd ;� , or f � f even;� , or f � f even;� , and (TWE) has at least
2k � 1 distinct hyperbolic stationary solutions, then (RDE) has at least k dis-
tinct travelling wave solutions of wave speedc. More precisely, to each given
hyperbolic stationary solution Z , there corresponds at least one travelling wave
U such that � pUq � t Z u or ! pUq � t Z u (but it is possible that ! pUq resp. � pUq
consist of non-hyperbolic stationary solutions).

Furthermore, in each of these cases there exists at least one more stationary solution
(which might be non-hyperbolic).

Proof. Let us �rst discuss the case wheref � f odd ;� . Fix any c ¡ 0. Let S1 consist
of the 2k given hyperbolic stationary solutions of (TWE).

Suppose there exist two pointsZ1; Z2 PS1, such that for both of them there exist
no connecting orbit which converges toZ i in either forward or backward time. This
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Figure 2.4: Detection of a travelling wave with given wave speed c. When the index of the stationary
solution Z does not coincide with the full homology, a heteroclinic orbit U connecting Z to another,
unknown, stationary solution must exist. Direction of propagation of the travelling wave depends on
whether Z is the � - or ! -limit set of U.

means that both t Z1u and t Z2u are connected components ofBInv pX 0; f; 0; cq. Hence
we can �nd mutually disjoint isolating neighbourhoods V1, V2, and N such that

t Z1u � BInv pV1; f; 0; cq; t Z2u � BInv pV2; f; 0; cq;

and

BInv pX 0; f; 0; cq � BInv pV1; f; 0; cq Y BInv pV2; f; 0; cq Y BInv pN ; f; 0; cq:

We claim we can choose a small perturbationf " of f such that

(1) f " is regular,

(2) V1, V2, and N are isolating neighbourhoods for (TWE) associated withpf " ; 0; cq,
and

(3) BInv pX 0; f " ; 0; cq � BInv pV1; f " ; 0; cq Y BInv pV2; f " ; 0; cq Y BInv pN ; f; 0; cq.

Indeed, setf " :� f � ' " , where ' " is an arbitrarily chosen ' " PF m
reg with }' " }F m ¤ "

(recall that F m
reg and } � } F m are de�ned in Section 2.8.1). The �rst property then

follows from Theorem 2.8.1. The fact that the other two properties hold for su�ciently
small choices of" follows from an argument identical to the one used in the proof of
Lemma 2.9.10.

In light of Theorem 2.10.1, the isolating neighbourhoodX 0 is �nitely generating for
f " (hence so are the isolating neighbourhoodsN , V1, and V2), and HTW � pX 0; f " ; cq is
of rank 1. SinceV1 and V2 each contain exactly one hyperbolic stationary solution of
the unperturbed Equation (TWE) associated with pf; 0; cq, it follows from the implicit
function theorem that (after choosing a su�ciently small perturbation and shrinking
the neighbourhoodsV1 and V2) they each contain exactly one hyperbolic stationary
solution of the perturbed Equation (TWE) associated with pf " ; 0; cq. Hence both
HTW � pV1; f " ; cq and HTW � pV2; f " ; cq are of rank 1.

By invariance and the direct sum property (Lemma 2.9.10) of the homology,

HTW � pX 0; f " ; cq � HTW � pV1; f " ; cq ` HTW � pV2; f " ; cq ` HTW � pN; f " ; cq:
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We have arrived at a contradiction, since the homology on the left hand side has
rank 1, while the homology on the right hand side has rank at least2. From this we
conclude that one of theZ i must have a corresponding bounded solutionU of (TWE)
associated to the triplet pf; 0; cq, such that either � pUq � t Z i u or ! pUq � t Z i u. See
also Figure 2.4.

For simplicity of the argument, say Z1 is the point which is not isolated, and U
converges towards it in backward time, i.e.,� pUq � t Z1u. From Lemma 2.7.3 it follows
that ! pUq consists of stationary solutions of (TWE), which can either be another one
of the hyperbolic stationary solutions, or (a family of) non-hyperbolic solution(s). In
the �rst case (that is, t Z3u � ! pUq is hyperbolic), set S2 :� S1 r t Z1; Z3u. In the
latter case (that is, ! pUq consists of non-hyperbolic solutions), setS2 :� S1 r t Z1u.
By repeating the preceding argument with Z1 and Z2 replaced by points rZ1; rZ2 PS2,
we prove the existence of another connecting orbit which is distinct from the one
previously found. We can iterate this procedurek times, at which point the iteration
terminates since we can no longer guarantee that# Sk ¥ 2.

In the other cases, when eitherf � f odd ;� , or f � f even;� , or f � f even;� , a similar
argument shows that the existence of a single isolated rest pointZ is already excluded.
This again relies on the direct sum property, combined with the fact that for these
nonlinearities the full homology HTW � pX 0; f; c q is of rank 0.

2.A Fredholm theory

Let L and Lhyp be as de�ned in Section 2.5. In this appendix we will �ll in some
details about the Fredholm theory for the operator

DL : W 1;2pR ; X 0; X 1q Ñ L 2pR ; X 0q;

DL W � B t W � LptqW;

where L P C0pR ; Lq is such that the limits L � � lim t Ñ�8 Lptq exist in the uniform
operator topology on LpX 1; X 0q, and L � PLhyp .

2.A.1 Fredholm alternative for DL

We will use the results from [83]. Let us �rst cite a simpli�ed version of the main
result from said article.

Theorem 2.A.1 ([83]). Let H be a Hilbert space andW € H a normed space. Let
pLptqqt PR be a family of unbounded operators onH with common domain W . Assume
that the following holds:

(1) W is a Banach space and the embeddingW ãÑ H is continuous, compact, and
dense.

(2) L PC0pR ; LpW; H qq.

(3) There are operatorsL � ; L � PGLpW; H q such that

lim
t Ñ8

}Lptq � L � }L pW;H q � lim
t Ñ�8

}Lptq � L � }L pW;H q � 0:
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(4) For every t PR Y t�8u there exist constantsC0ptq ¡ 0 and R0ptq ¡ 0 such that

}� pLptq � i� q� 1}L pH q ¤ C0ptq for all � PR ; |� | ¥ R0ptq:

(5) � pL � q X iR � H .

Then the operator Bt � Lptq is Fredholm from W 1;ppR ; H; W q to L ppR ; H q for every
p P p1; 8q .

Note that, in contrast to the classical Robbin-Salamon theorem [85], the operators
Lptqdo not have to be symmetric. In fact, the spectrum may cross the imaginary axis,
as long as we remain in control of the resolvent as per property (4).

In our case,W � X 1 and H � X 0. It is then obvious that properties (1), (2), (3),
and (5) hold. The fact that also property (4) is satis�ed is the content of Lemma 2.5.2.

Theorem 2.A.1 combined with Lemma 2.5.2 shows thatDL is a Fredholm operator.
The index is independent of the particular choice of the pathL , but only depends on
the hyperbolic limits L � , L � . To see why, let L 1 P C0pR ; Lq be another curve with
Lptq Ñ L � as t Ñ �8 , convergence in the uniform operator topology onLpX 1; X 0q.
Then for each t PR

Lptq � L 1ptq �
�

0 0
L 1ptq � L 1

1ptq L 2ptq � L 1
2ptq



;

note that this is a bounded operator from X 0 to X 0 and therefore compact opera-
tor from X 1 to X 0. Moreover, L � L 1 P C0pR ; LpX 1; X 0qq, and Lptq � L 1ptq Ñ 0
as t Ñ �8 . Hence the induced multiplication operator L � L 1 is compact from
W 1;ppR ; X 0; X 1q to L 2pR ; X 0q, see [83]. Consequently,indpDL q � indpDL 1q.

Summarising these observations, we have the following theorem.

Theorem 2.A.2. Let L P C0pR ; Lq be such that Lptq Ñ L � as t Ñ �8 in the
uniform operator topology on LpX 1; X 0q, where L � P Lhyp . Then the map DL is
Fredholm from W 1;2pR ; X 0; X 1q to L 2pR ; X 0q, and its index only depends on the
endpoints L � , L � .

This allows us to de�ne a relative index:

� : Lhyp � Lhyp Ñ Z;

� pL � ; L � q � indpDL q:

2.A.2 Transitivity

We now prove Lemma 2.5.4.

Lemma 2.A.3. Let L � ; L � ; L  PLhyp . Then

� pL � ; L � q � � � pL � ; L � q (antisymmetry) ;
� pL � ; L  q � � pL � ; L � q � � pL � ; L  q (cyclicity) :
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Proof. This proof is an adaption of the argument given in [85]. First we note that
the antisymmetry follows from the cyclicity. Indeed, since � pL � q X iR � H and
Lemma 2.5.2 is applicable, the operator

DL � � B t � L � : W 1;2pR ; X 0; X 1q Ñ L 2pR ; X 0q

is invertible, see [82] for details. Consequently,

� pL � ; L � q � � pL � ; L � q � � pL � ; L � q � indpDL � q � 0:

To prove the cyclicity we �rst choose paths L �� ; L � PC0pR ; Lqwith the properties
that L �� ptq � L � for t ¤ � 1, L �� ptq � L � for t ¥ 1, L � ptq � L � for t ¤ � 1,
L � ptq � L  for t ¥ 1. Moreover, given T ¥ 0 let L � PC0pR ; Lq be de�ned by

L � ptq �

#
L �� pt � T � 1q for t ¤ 0;
L � pt � T � 1q for t ¥ 0:

Consider the operators

M � B t �
�

L �� 0
0 L �



;

N � B t �
�

L � 0
0 L �



:

These are bounded Fredholm operators from

X :� W 1;2pR ; X 0; X 1q � W 1;2pR ; X 0; X 1q

to
Y :� L 2pR ; X 0q � L 2pR ; X 0q:

Then indpM q � � pL � ; L � q� � pL � ; L  qand indpN q � � pL � ; L  q� � pL � ; L � q � � pL � ; L  q.
Hence we need to prove thatindpM q � indpN q.

Let � P C8 pR q be such that � ptq � 0 for t ¤ � 1, and � ptq � � {2 for t ¥ 1, and
de�ne

Rptq �
�

cosp� pt{Tqq sinp� pt{Tqq
� sinp� pt{Tqq cosp� pt{Tqq



:

Then R induces automorphisms of bothX and Y. Hence we can conjugateN with R
without changing the Fredholm index. Computing the conjugate yields

pR� 1NRqptq � B t � I ptq � J ptq � K ptq

where

I ptq �
� 1ptq

T

�
0 � 1
1 0



;

J ptq �
�

cos2p� pt{TqqL � ptq � sin2p� pt{TqqL � 0
0 cos2p� pt{TqqL � � sin2p� pt{TqqL � ptq



;
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K ptq � cosp� pt{Tqqsinp� pt{Tqq
�

0 L � ptq � L �

L � ptq � L � 0



:

SinceI Ñ 0 in the uniform operator topology on LpX ; YqasT Ñ 8 , continuity of the
Fredholm index implies that after choosing T su�ciently large,

indpN q � indpR� 1NRq � indpBt � J � K q:

Observe that L � ptq � L �� pt � T � 1q for �8   t ¤ T, so that

cos2p� pt{TqqL � ptq � sin2p� pt{TqqL � ptq

� L �� pt � T � 1q � sin2p� pt{Tqq
�
L � � L �� pt � T � 1q

�

for all t PR . SinceL �� pt � T � 1q � L � for t ¥ � T, in fact

cos2p� pt{TqqL � ptq � sin2p� pt{TqqL � ptq � L �� pt � T � 1q:

Using a similar computation for the other nonzero entry in J ptq one sees that

J ptq �
�

L �� pt � T � 1q 0
0 L � pt � T � 1q



:

Similarly one can verify that K ptq � 0 for all t P r� T; Ts (and henceK ptq � 0 for all
t PR ).

Let S PLpYqbe the shift operator SpU; Vqptq � p Upt � T � 1q; Vpt � T � 1qq. Note
that S is an automorphism of Y and restricts to an automorphism of X . So we can
let S act on LpX ; Yq via conjugation. Note that S commutes with Bt , and

S� 1JS �
�

L �� 0
0 L �



;

so that S� 1pBt � J qS � B t � S� 1JS � M . Hence

indpN q � indpS� 1R� 1NRSq � indpS� 1pBt � J qSq � indpM q;

thus concluding the proof.

2.B Exponential dichotomy along heteroclinic orbits

Here we give some details as to why the linearisation of (TWE) along heteroclinic
orbits possesses an exponential dichotomy. We begin with citing a simpli�ed version
of the main theorem from [80].

Theorem 2.B.1 ([80]). Let X 0 be a re�exive Banach space, andL : DpLq Ñ X 0

a closed, possibly unbounded operator such thatX 1 :� DpLq is dense inX 0. Let
X 1 be equipped with the graph norm of L , i.e., }u}X 1 � p} u}2

X 0 � } Lu }2
X 0 q1{2. Let

J � r � 0; 8q and suppose thatB PC0pJ; LpX 0qqis Lipschitz continuous. Consider the
abstract di�erential equation

Bt W ptq � p L � B ptqqW ptq � 0; W PC0pJ ; X 1q X C1pint J ; X 0; X 1q: (2.54)

Assume that the following four conditions are satis�ed.
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(1) There exists a constantC such that

}pL � i� q� 1}L pX 0 q ¤
C

1 � | � |
(2.55)

for all � P R . Assume that there is a projection P� P LpX 0q such that L � 1

and P� commute. Furthermore, assume there exists a constant� ¡ 0 such that
Re�   � � for � P � pLP � q and Re� ¡ � for � P � pLp1 � P� qq.

(2) It holds that }B ptq}L pX 0 q Ñ 0 as t Ñ 8 .

(3) The operator L has compact resolvent.

(4) The only solution W of (2.54) such that supt PJ }W ptq}X 0   8 and W p0q � 0 is
the trivial solution W � 0.

Then (2.54) has an exponential dichotomy inX 0 on the interval J with rate  , for
any 0 ¤    � . In particular, there exists K ¡ 0 such that if W is a solution of (2.54)
with supt PJ }W ptq}X 0   8 , it holds that

}W ptq}X 0 ¤ Ke �  |t � � |}W p� q}X 0 for t ¥ � ¥ � 0:

We need to check that this theorem applies to our linearised equation. Suppose Hy-
potheses (f1)�(f3) and (g1)�(g3) are satis�ed. Let U be a solution of (TWE) such that
Uptq Ñ Z in X 0 as t Ñ 8 , where Z PS is a hyperbolic rest point. De�ne J � r 0; 8q .
We decompose

DA pUptqq � L � B ptq;

where L � DA pZ � q PLpX 1; X 0q, and

B ptq �
�

0 0
f u px; upt; x qq � f u px; zpxqq 0



�

�
0 0

B1gpx; U ptqq B2gpx; U ptqq



:

Here B1gpx; pu; vqq:�
Bgpx; pu; vqq

Bu
and B2gpx; pu; vqq:�

Bgpx; pu; vqq
Bv

.

Let us now construct the projections needed in condition (1) of Theorem 2.B.1.
First, let t � n un be the eigenvalues (counting multiplicity) of � � f u px; zpxqq, arranged
in decreasing order. Let k0 be such that � k0 � 1   0   � k0 , let kc be such that
� k c � 1   c2{4 ¤ � k c , and let kdef denote the number of eigenvalues which are equal to
c2{4.

Let p' n qn be an orthonormal basis for H 1
B p
 q consisting of eigenfunctions for

� � f u p�; zq, arranged so that ' n is an eigenfunction corresponding to the eigenvalue
� n . Then L has eigenvalues

� �
n � �

c
2

�
1
2

a
c2 � 4� n ;

with corresponding eigenfunctions	 �
n given by

	 �
n �

�
' n

� � �
n ' n



:
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Direct computations show that these eigenfunctions are orthogonal inX 0. If � n � c2{4
(i.e. when kdef ¥ 1 and kc � kdef ¤ n ¤ kc), then � �

n � � c{2 is a defective eigenvalue
of L and a corresponding generalised eigenfunction is given by

r	 n �
�

0
' n



:

Also, note that for 1 ¤ n ¤ kc, we have

Re	 �
n �

�
' n
c
2 ' n



and Im 	 �

n �
�

0
	 1

2

a
4� n � c2 ' n



:

De�ne

E � :� span
�

 
Re	 �

n ; Im 	 �
n : n ¥ 1

(
Y

 
Re	 �

n ; Im 	 �
n : 1 ¤ n ¤ k0

(

Y
!

r	 n : � n � c2{4
) 


and
E � :� span

 
	 �

n : n ¥ k0 � 1
(

:

Denote by E � and E � the closure ofE � and E � in X 0.

We claim that X 0 � E � ` E � . First note that if pan qn P`2pN q, then
° 8

n � k c � 1 an 	 �
n

converges inX 0. Indeed,

�
�
�
�
�

j¸

n � i

an 	 �
n

�
�
�
�
�

2

X 0

�

�
�
�
�
�

j¸

n � i

an ' n

�
�
�
�
�

2

H 1
B p
 q

�

�
�
�
�
�

j¸

n � i

an � �
n ' n

�
�
�
�
�

2

L 2 p
 q

�
j¸

n � i

�
1 � | � �

n |2} ' n }2
L 2 p
 q

�
|an |2; (2.56)

and we need to check that the right hand side tends to zero asi; j Ñ 8 . Note that,
since}' n }H 1

B p
 q � 1,

� � n } ' n }2
L 2 p
 q � } r ' n }2

L 2 p
 q � x f u p�; zq' n ; ' n yL 2 p
 q ¤ 1 � } f u p�; zq}L 8 p
 q;

and since� � n Ñ 8 as n Ñ 8 it follows that }' n }L 2 p
 q Ñ 0 as n Ñ 8 . Then, since

� � n } ' n }2
L 2 p
 q � } ' n }2

H 1
B p
 q � } ' n }2

L 2 p
 q � x f u p�; zq' n ; ' n yL 2 p
 q

� 1 � xp 1 � f u p�; zqq' n ; ' n yL 2 p
 q;

we see that � � n } ' n }2
L 2 p
 q � 1 as n Ñ 8 (here �� � denotes asymptotic equivalence

of sequences). Since|� �
n |2 � � � n as n Ñ 8 , it now follows that the right hand side

in (2.56) tends to 0 as i; j Ñ 8 . An identical computation shows that pan qn P `2pN q,
then

° 8
n � k c � 1 an 	 �

n converges inX 0. Thus E � � E � contains elements of the form

�
x
y



�

k c¸

n � 1

an

�
' n
c
2 ' n



�

k c � kdef¸

n � 1

bn

�
0

1
2

a
4� n � c2 ' n



�

k c¸

n � k c � kdef � 1

bn

�
0

' n




�
8̧

n � k c � 1

an

�
' n

� �
n ' n



�

8̧

n � k c � 1

bn

�
' n

� �
n ' n



;
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where pan qn ; pbn qn P `2pN q. To see why any px; yq P X 0 is of this form, write
x �

° 8
n � 1 cn ' n and y �

° 8
n � 1 dn ' n , wherepcn qn P`2pN qand p}' n }L 2 p
 qdn qn P`2pN q.

Set
$
''''''''''''''''&

''''''''''''''''%

$
&

%

an � cn

bn � �
c

a
4� n � c2

cn �
2

a
4� n � c2

dn
n ¤ kc � kdef ;

#
an � cn

bn � �
c
2

cn � dn
kc � kdef � 1 ¤ n ¤ kc;

$
'&

'%

an �
� �

n

� �
n � � �

n
cn �

1
� �

n � � �
n

dn

bn � �
� �

n

� �
n � � �

n
cn �

1
� �

n � � �
n

dn

n ¥ kc � 1:

Note that, as n Ñ 8 ,
�
�
�
�

� �
n

� �
n � � �

n

�
�
�
�

2

�
1
4

and

�
�
�
�

1
� �

n � � �
n

�
�
�
�

2

� �
1

4� n
�

1
4

}' n }2
L 2 p
 q:

Hencepan qn ; pbn qn P`2pN q, and since

an ' n � bn ' n � cn ' n ; and an � �
n ' n � bn � �

n ' n � dn ' n ;

this proves that px; yq PE � � E � . SinceE � and E � are orthogonal in X 0, it follows
that E � X E � � t 0u. Thus X 0 � E � ` E � .

Let P� be the projection onto E � along E � . Then P� commutes with L � 1. The
construction of the sets E � ensures that Re�   � � for � P � pAP � q and Re� ¡ �
for � P � pAp1 � P� qq. Finally, estimate (2.55) is a special case of the result from
Lemma 2.5.2. Hence condition (1) of Theorem 2.B.1 is satis�ed.

Note that B P C1pJ; LpX 0qqand }B ptq}L pX 0 q Ñ 0 as t Ñ 8 , henceB is Lipschitz
continuous. Thus condition (2) of Theorem 2.B.1 is also satis�ed. Since the embedding
X 1 ãÑ X 0 is compact,L has compact resolvent. Hence condition (3) of Theorem 2.B.1
is satis�es.

To ensure condition (4) of Theorem 2.B.1 is satis�ed we need to assume that the
nonlinearity f is of classC4. Recalling from Section 2.3 that U PC4

b pR ; X 0; : : : ; X 3q,
we see that

B PC3pint J; LpX 0qq XC2pint J; LpX 1qq XC1pint J; LpX 2qq XC0pJ; LpX 3qq:

Elliptic regularity theory implies that w P C4pint J; L 2p
 qq(where W � p w; Bt wq).
Together with the mean value theorem this ensures that ifW p0q � 0, then w satis�es
the decay estimates (2.26) from Lemma 2.4.2 aroundt � 0. Hence by Lemma 2.4.2,
wptq � 0 and henceW ptq � 0 for t in a neighbourhood of0. By an argument similar
to the proof of Theorem 2.4.3 one then �nds that W � 0.

The preceding discussion shows that the linearised equation posesses an exponential
dichotomy on X 0 with some rate  ¡ 0 on the time interval J � r � 0; 8q , provided
that the nonlinearity f is of classCm with m ¥ 4.





Chapter 3

Spatial Hamiltonian identities for
nonlocally coupled systems

3.1 Introduction

Di�erential equations of the gradient form ut � � rE puq or of the Hamiltonian form
ut � J rE puq arise throughout mathematical modelling from maximal energy dissi-
pation �rst principles, or from least action principles, respectively. Mathematically,
the energy E is simply a function de�ned over a �nite or in�nite-dimensional space.
The associated gradient and Hamiltonian �ows are di�erential equations with equi-
libria given by the critical points of the energy. Energies over in�nite-dimensional
spaces are usually de�ned on function spaces through integrals of nonlinear functions
of state variables and their derivatives. Critical points then solve Euler�Lagrange
equations, commonly of elliptic type. Dependence of the energy on derivatives of the
state variables encodeslocal interactions, often derived in various types of continuum
limits. We are interested here in cases where this continuum limit retainsnonlocal
interaction terms. More speci�cally, we are interested in the somewhat speci�c class
of energiesE that contain nonlocal interaction term of the form

¼
SpupxqqT K px � yqSpupyqqdy dx; x; y PR ; up�q PR d;

modelling phenomena such as long-range interactions of agents in social interaction,
between particles through nonlocal force �elds, or of neurons, labeled in a feature
spacex through synaptic connections. In all those cases, the convolution structure
embodies the modelling assumption of translational invariance of physical space. We
are concerned here with critical points of the energyE, possibly up to actions of the
underlying translation symmetry group. Such critical points, interpreted as solutions
in physical space, are referred to as solitary waves, excitation pulses, waves trains,
or travelling fronts, depending on the modelling context. We refer to [17, 18, 19, 34,
35, 91] for examples from material sciences, [36, 37, 79, 97] for examples from �uid
dynamics, and [38, 81, 99, 100] for examples from neurobiology.

For local equations, dynamical systems methods have provided powerful tools to the
study of such coherent structures. One therefore casts the Euler�Lagrange equations,
which are simply systems of higher-order ordinary di�erential equations, as dynamical

87
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systems in the spatial variable x, which is then considered as a time-like variable,
trying to describe the set of bounded solutions, including periodic, heteroclinic, and
homoclinic solutions. The dynamical systems tools can then be thought of aspointwise
methods, exploiting the geometry of the �spatial phase space� through tools including
phase plane analysis with the Poincaré�Bendixson theorem, centre manifold reduction
and normal form techniques, bifurcation and geometric singular perturbation theory,
or topological index theory.

For nonlocal equations, much of this pointwise technology is not immediately avail-
able. As the main obstacle, nonlocal interactions in space typically generate forward-
and backward delay terms in the time-like spatial variable and it is often not clear
how a pointwise formulation as a dynamical system in a phase space can be recovered.
Much of the previous work has therefore focused on variational or perturbative tech-
niques, although even those may sometimes bene�t from pointwise estimates. More
recently, certain dynamical systems techniques have been made available for the study
of nonlocal equations. A �rst approach casts systems with �nite-range interactions as
ill-posed dynamical systems on an in�nite-dimensional phase space, much like elliptic
equations posed on a cylinder, and uses dynamical systems techniques, in particular
invariant manifolds, to study the dynamics; see for instance [57, 59, 60, 72]. A dif-
ferent avenue evokes dynamical systems techniques without ever setting up a phase
space for a pointwise description, but rather adapting techniques from dynamical sys-
tems by reducing to basic functional analytic aspects; see [43] for geometric singular
perturbation techniques, [42] for centre manifold reductions, and [87] for bifurcation
methods.

The present work can be viewed as continuing this latter approach, providing a
framework for exploiting Hamiltonian and symplectic concepts. Indeed, for pointwise
functionals, the Euler�Lagrange equations inherit a Hamiltonian structure, viewing the
integral of the energy density as an action functional, and the energy density as the
Lagrangian. Using Legendre transform in the case of dependence on gradients, only,
one readily �nds the associated Hamiltonian for the Euler�Lagrange equation. Such a
procedure is slightly more involved for functionals containing higher-order derivatives.
We show how to formulate the Euler�Lagrange equations in a symplectic framework,
identifying symplectic structure, Hamiltonian and more general conserved quantities
starting from Noether's theorem and a non-local integration-by-parts calculation. In
the case of travelling-wave equations, conserved quantities turn into Lyapunov func-
tions.

Hamiltonian formalisms for in�nite-dimensional systems are of course not new.
They had been exploited also for ill-posed, elliptic equations; see for instance [53,
67, 76]. For nonlocal equations based on the fractional Laplacian, an extension to an
additional spatial dimension using the Dirichlet-to-Neumann operator on the half space
allows one to cast the nonlocal equation as a local equation, again obtaining conserved
quantities through a local Hamiltonian formalism [25, 26]. We are not aware of cases
where such identities have been derived in the presence of �truly� nonlocal interactions.

Besides providing a systematic and elegant framework to formulate equations, a
Hamiltonian formalism provides useful tools for the analysis. We therefore provide
a somewhat lengthy list of applications that illustrate how the formalism here can
be put to work. In these examplesK : R Ñ Mat d� dpR q will always be a curve of
symmetric matrix convolution kernels, that is, K pr q � K p� r q and K pr q � K pr qT ,
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with su�ciently rapid decay as r Ñ �8 .

Example 3.1.1 (Nonlocal Allen�Cahn). Let F : R d Ñ R be a di�erentiable map,
and consider the energy

Epuq:�
1
4

¼ �
upxq � upyq

� T
K px � yq

�
upxq � upyq

�
dy dx �

»
F pupxqqdx:

Then the formal gradient �ow ut � � r L 2 Epuq is the nonlocal analogue of the Allen�
Cahn equation, as introduced in [19] as a model for phase transition,

ut � � � 0u �
»

K px � yqupt; yqdy � r F puq;

where � 0 �
³

K pxqdx. Typically, the interaction kernel K in these models is alge-
braically localised and positive, and the potential F exhibits multiple local minima.
With the travelling wave ansatz upt; x q � up� q, � � x � ct, we obtain the integro-
di�erential equation

� cu1 � � � 0u � K � u � r F puq: (3.1)
l

Example 3.1.2 (Neural �eld equation). Neural �eld equation, introduced in [99,
100],

ut � � u �
»

K px � yqSpupt; yqqdy; (3.2)

model interactions of neurons through nonlocal synaptic connections. Typically, one
thinks of x as a feature space, grouping neurons by function and/or location, and
S : R d Ñ R d as a smooth sigmoidal input function, triggering �ring of a neuron
above a threshold value. The sign of the interaction kernelK encodes inhibitory
versus excitatory connections. Sign changes inK can lead to complex stationary
patterns and have been proposed as a template for short-term memory functions.

In the speci�c case that DSpuq is positive de�nite for all u P R d, we assume that
there exists a mapE : R d Ñ R so that r Epuq � DSpuqu. We then consider the
energy

Epuq:�
»

Epupxqqdx �
1
2

¼
SpupxqqT K px � yqSpupyqqdy dx;

and write Equation (3.2) as

ut � �
�
DSpuqT

� � 1
r L 2 Epuq:

Hence, the neural �eld equation can formally be written as the gradient �ow of E on
a Hilbert manifold M modelled overL 2, where the Riemannian metric is given by

gu pv; wq � x v; DSpuqwyL 2 ; where v; w PTu M :

With the travelling wave ansatz upt; x q � up� q, � � x � ct in (3.2), we obtain

� cu1 � � u � K � Spuq: l
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In both of these examples the original equation is a gradient �ow. By analogy
to examples from local partial di�erential equations, one expects in such a situation
that the equations governing travelling waves have a gradient-like structure. In a slight
alteration, the next example starts out with a Hamiltonian system. The travelling wave
equation now inherits a variational structure, and one expects to �nd a Hamiltonian
system from the Euler�Lagrange equations.

Example 3.1.3 (Whitham type equation). Consider the energy

Epuq:�
�
3

»
u3 dx �

1
2

¼
upxqK px � yqupyqdy dx;

where� PR is a parameter andu : R Ñ R . The Hamiltonian equation ut � J r L 2 Epuq
with J � �B x is Whitham's equation, introduced in [97] as a model for shallow water
waves with weak dispersion,

ut � 2�uu x �
»

K px � yquy pt; yqdy � 0; (3.3)

where

K pxq �
»

R
eix�

d
tanhp� q

�
d�:

This model incorporates a generic second-order nonlinearity as found in the KdV
approximation, but replaces the dispersive terms in the KdV equation by a convolution
operator which models the full frequency dispersion found in linear surface water
waves in �nite depth. Making the travelling wave ansatz upt; x q � up� q, � � x � ct,
Equation (3.3) becomes �

�
2

u2 � cu � K � u

 1

� 0;

hence
�u 2 � cu � K � u � �;

for some� PR . l

A shared property of these �rst three examples is invariance under the shift map
u ÞÑup� � � q, a symmetry which we will see gives rise to a Hamiltonians and Lyapunov
functions. This translation symmetry is broken in the next example, which however
does possess a rotation symmetry. In this case, the Hamiltonian formalism gives rise
to a conserved quantity analogous to an angular momentum.

Example 3.1.4 (Nonlocal NLS). Let Spuq � f p|u|2q, f : R Ñ R di�erentiable,
� PR , and consider the energy

Epuq:� �
1
2

»
|ux |2 dx �

�
2

»
|u|2 �

1
2

¼
SpupxqqK px � yqSpupyqqdy dx;

and extend r L 2 Epuq linearly to complex valued functions u : R Ñ C. The Hamilto-
nian �ow ut � i r L 2 Epuq is the nonlocal nonlinear Schrödinger (nonlocal NLS) equa-
tion,

� iu t � uxx � �u � DSpuqK � Spuq: (3.4)
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We study here the e�ect of a (propagating) parameter jump type inhomogeneity
� � � px � ctq which, after rescaling, can be assumed to satisfy

� p� q �

#
0 if � ¤ � `;
1 if � ¥ `;

for some value of` ¡ 0. Substituting the ansatz upt; x q � eicx {2Apx � ctq in (3.4), we
obtain

A2 �
�

� p� q �
c2

4



A � DSpAqK � SpAq � 0:

Note that, assuming S is at least quadratic, the medium supports a band of small-
amplitude plane wave solutions only for � ¥ `, when 0   | c|   2, but not for � ¤ � `.
We will study here how the parameter jump a�ects this band near � � �8 . We refer
to [53, 71, 78, 88] for more (elaborate) examples of wavenumber (or angle) selection
at interfaces. l

Note that in these examples we dealt with the energy functionals, gradient �ows
and Hamiltonian �ows only formally in that integrals may not converge on typical
solutions of interest.

Outline of main results. We describe our main results informally and outline the
remainder of the chapter. We are concerned with variational problems of the form

»
L

�
x; upxq; u1pxq; K � Spuqpxq



dx ; minimise;

and the associated Euler�Lagrange equations. We are interested in conserved quan-
tities, that is, in nontrivial maps C : C1pR ; R dq Ñ C0pR ; R dq that map solutions of
the Euler�Lagrange equations to constant functions. We therefore establish a non-
local analogue of Noether's theorem, allowing us to derive conserved quantities from
symmetries of the Euler�Lagrange equation. Key ingredient to the proof is a nonlocal
�integration by parts� formula,

» b

a
Au � v dx � Bpup� � � qq|b� � a �

» b

a
u � A t v dx;

where A is a nonlocal operator,A t denotes its formal adjoint, and B should be inter-
preted as �boundary data�. Speci�c assumptions and statements, as well as limitations
in terms of regularity are contained in Section 3.2.

In Section 3.3, we consider translation invariant Euler�Lagrange equations

� B x r v pu; u1q � r u Epu; u1q � DSpuqT K � Spuq � 0: (3.5)

Through our Noether theorem, the shift invariance leads to a conserved quantity which
is itself equivariant with respect to the shift action. This naturally leads to a Hamil-
tonian, that is, a map H : C1pR ; R dq Ñ R such that

d
d�

H
�
up� � � q

�
� 0 for any solution u of (3.5), (3.6)
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and a (degenerate) symplectic form! which allows us to conclude, at least formally,
that the shift action on the set of solutions of the Euler�Lagrange equation is the
Hamiltonian �ow of H .

Remark 3.1.5. We reiterate that we are considering Hamiltonian and symplectic
structures in the spatial variable. To appreciate this, take, for example, the nonlocal
wave equation

utt � � u � K � u � f puq;
�
upt; x q; ut pt; x q

�
Ñ p0; 0q as x Ñ �8 : (3.7)

This equation has atemporal shift symmetry, and the dynamics are Hamiltonian with
respect to the canonical symplectic structure. Since(3.7) also has aspatial shift
symmetry, the momentum

ppuq �
»

R
ut ux dx;

is conserved by thetemporal dynamics. This conserved momentump is not the con-
served quantity described in (3.6), as we are concerned with quantities which are
conserved underspatial shifts of the stationary solutions. The interplay between spa-
tial and temporal Hamiltonian structures has been further pursued, at least for local
equations, using multisymplectic structures, see [22, 23, 24]. l

To give a speci�c example here, Equation (3.1) withc � 0 is Hamiltonian with

Hpuq �
�

F puq �
1
2

u � � 0u �
1
2

u � K � u

 �

�
�
�
x � 0

�
1
2

»

x   0

»

y¡ 0
upxq �K px � yqu1pyq � u1pxq �K px � yqupyqdy dx;

whilst the symplectic form reads

! pv; wq �
»

x   0

»

y¡ 0
vpxq �K px � yqwpyq � wpxq �K px � yqvpyqdy dx:

Inspecting this example, one quickly notes that ! is in general degenerate: if the
kernel has support suppK € r� 1; 1s and v has support suppv € R r r� 1; 1s, then
! pv; wq � 0, for any w. We are however able to show that! is locally non-degenerate
on a centre manifold, giving a (non-canonical) symplectic structure and reduced Hamil-
tonian vector �elds and thereby extending the results from [42].

Section 3.4 considers the e�ect of (spatially) dissipative terms, such as equations
of the form

� B x r v pu; u1q � r u Epu; u1q � DSpuqT K � Spuq � � puqu1; (3.8)

where � : R d Ñ Mat d� dpR q takes it values in the cone of positive de�nite matrices.
Shift invariance now leads to a Lyapunov function, L : C1pR ; R dq Ñ R , such that

d
d�

L
�
up� � � q

�
¤ 0 for any solution u of (3.8),



3.2. SYMMETRIES AND CONSERVED QUANTITIES 93

with equality only for constant u. A speci�c example is (3.1) , with c � 0, and

Lpuq �
�

F puq �
1
2

u � � 0u �
1
2

u � K � u

 �

�
�
�
x � 0

�
1
2

»

x   0

»

y¡ 0
upxq �K px � yqu1pyq � u1pxq �K px � yqupyqdy dx:

As a consequence, all bounded solutions are either constant or heteroclinic with respect
to the shift action.

Finally, Section 3.5 discusses several applications, elaborating on the four exam-
ples presented here in the introduction. We prove a local bifurcation results for
small-amplitude periodic and homoclinic solutions of Example 3.1.1 using Hamilto-
nian centre-manifold reduction; we establish the existence of travelling fronts for Ex-
ample 3.1.2 exploiting a Lyapunov function and Conley index theory, extending results
in [38] where positivity of K was required; and we establish local bifurcation of peri-
odic and solitary waves for Example 3.1.3, providing alternative geometric proofs for
results in [36, 37]. Finally, we establish selection of wavenumbers through parameter
jumps in Example 3.1.4.

3.2 Symmetries and conserved quantities

We formulate a setup and state our nonlocal version of Noether's theorem.

3.2.1 Variational setup

Nonlocal variational problems. We will throughout rely on the following assump-
tion on the convolution kernel. K : R Ñ Mat d� dpR q.

Hypothesis (K). The map K is symmetric, meaning

K pr q � K p� r q; and K pr q � K pr qT :

We assumeK P L 1pR ; Mat d� dpR qq, that is, K ij P L 1pR ; R q for all 1 ¤ i; j ¤ d.
Moreover, »

R
p1 � | r |q }K pr q}dr   8 :

Now let S PC2pR d; R dq and de�ne the nonlinear operator

N puqpxq:� K � Spuqpxq �
»

R
K px � yqSpupyqqdy:

Then N is (formally) di�erentiable, with

DN puqrvspxq � K � pDSpuqvqpxq �
»

R
K px � yqDSpupyqqvpyqdy;

and formal L 2-adjoint

DN puqt rwspxq:� DSpupxqqT K � wpxq � DSpupxqqT
»

R
K px � yqwpyqdy:
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Let the Lagrangian L PC2pR � R d � R d � R d; R qbe given as a functionL � Lpx; u; v; nq;
from Section 3.3 onward we will impose further restrictions onL . For a; b P R , the
�truncated action� A b

a : C2
b pR ; R dq Ñ R is de�ned through

A b
apuq:�

» b

a
L

�
x; upxq; u1pxq; K � Spuq

�
dx:

Here Ck
b pR ; R dq denotes the space ofCk functions whose �rst k derivatives are uni-

formly bounded. Note that for �nite a, b the integral is convergent. We shall also
write A to denote the map pu; a; bq ÞÑA b

apuq.

Now consider the nonlocal equation

r u Lpx; u; u1; K � Spuqq � Bx r v Lpx; u; u1; K � Spuqq

� DSpuqT K � r n Lpx; u; u1; K � Spuqq � 0: (3.9)

Note that, formally, Equation (3.9) is the Euler�Lagrange equation of the action func-
tional A 8

�8 . We will not attempt to make this statement rigorous, since the integral
will typically not converge.

De�nition 3.2.1 (Regularity of solutions). We consider solutions of (3.9) which
are of classCR , where R � 1 if r v L � 0, and R � 2 otherwise.

Remark 3.2.2. If r v L � 0, taking R � 2 corresponds to considering strong solutions
of (3.9). On the other hand, if r v L � 0, (3.9) is well-de�ned on functions of class
L 8 . However, the proof of Theorem 3.2.5 fails foru P L 8 without further regularity
assumptions. In fact, the conclusion of the Noether theorem is in general not valid
for solutions of (3.9) lacking regularity; see Remark 3.2.6. We therefore restrict our
attention to solutions of classC1. We will give examples of bootstrap arguments that
establish the required regularity in some cases in Sections 3.3 and 3.4. l

Remark 3.2.3. When R � 1, it su�ces to consider L and S of classC1. We will
then extend the domain of A b

a to C1
b pR ; R dq. l

Symmetry. Let G be a Lie subgroup ofGL pdq� R , acting on functions u : R Ñ R d

via the canonical representation

g  u :� ' �
�
Au

�
; for g � p A; � q PG:

Here ' � is de�ned by

' � upxq:� upx � � q; for all x PR :

By slight abuse of notation, we will use the same notation for the action ofG on
various function spaces. We also letG act on R by

g  x :� x � �; where g � p A; � q PG; x PR :

Let g � TeG be the Lie algebra of G. Formally, de�ne the induced action on
functions u : R Ñ R d by

u� :�
d
d�

expep� � q  u

�
�
�
�
� � 0

; where � Pg:
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Note that, when G contains the translations t I du � R , we have u� P CR � 1
b pR ; R dq

wheneveru PCR
b pR ; R dq. Similarly, we de�ne the induced action on R by

1� :�
d
d�

expep� � q  1

�
�
�
�
� � 0

; where � Pg:

De�nition 3.2.4. A group G is called the global symmetry group of (3.9) if it is the
maximal Lie subgroup of GL pdq � R for which

A
�
g  pu; a; bq

�
� A

�
u; a; b

�
; for all pu; a; bq PCR

b pR ; R dq � R 2; g PG:

Similarly, the Lie algebra g is called the local symmetry algebra of(3.9) if it is maximal
and

DApu; a; bqpu� ; 1� ; 1� q � 0; for all pu; a; bq PCR
b pR ; R dq � R 2; � Pg:

3.2.2 Noether's theorem for nonlocal equations

Noether's theorem in the classical setting relates symmetries and conserved quantities;
see for example [73]. We extend this result here to our class of nonlocal equations given
by (3.9).

Theorem 3.2.5 (Noether). Let g be the local symmetry algebra of (3.9). For any
given � Pg, we de�ne the function C� : CR

b pR ; R dq Ñ C0
b pR ; R q by

C� puqpxq:� L
�
x; upxq; u1pxq; K � Spuqpxq

�
1� � r v Lpx; u; u1; K � Spuqq �u� � B� p' x uq:

Here

B� puq:�
¼

Q

� px; yq � � py; xqdx dy; with Q :� p�8 ; 0q � p 0; 8q (3.10)

and
� px; yq:� r n L

�
x; u; u1; K � Spuq

� �
�
x � K px � yq

�
DSpuqu�

� �
�
y :

Then x ÞÑC� puqpxq is constant, for any u PCR
b pR ; R dq which solves(3.9).

Proof. Note that the integrand of A b
apexpep� � q  uq is C1 with respect to � , hence we

can di�erentiate under the integral sign. We �nd

0 � DApu; a; bqpu� ; a� ; b� q �
d
d�

Apexpep� � q  pu; a; bqq

�
�
�
�
� � 0

� L
�
x; upxq; u1pxq; K � Spuqpxq

�
1�

�
�b
x � a

�
» b

a
r u Lpx; u; u1; K � Spuqq �u� � r v Lpx; u; u1; K � Spuqq �u1

� dx

�
» b

a
r n L

�
x; u; u1; K � Spuq

�
� K � DSpuqu� dx:

(3.11)
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Upon integration by parts, we �nd

» b

a
r v Lpx; u; u1; K � Spuqq �u1

� dx � r v Lpx; u; u1; K � Spuqq �u�
�
�b
x � a

�
» b

a
Bx r v Lpx; u; u1; K � Spuqq �u� dx: (3.12)

Inserting this back into (3.11), and using that u solves (3.9), we �nd

0 � L
�
x; upxq; u1pxq; K � Spuqpxq

�
1�

�
�b
x � a � r v Lpx; u; u1; K � Spuqq �u�

�
�b
x � a

�
» b

a
r n L

�
x; u; u1; K � Spuq

�
� K � DSpuqu� dx

�
» b

a
DSpuqT K � r n L

�
x; u; u1; K � Spuq

�
� u� dx:

(3.13)

We will now express the last integral as a boundary term, that is, we need to �nd
a map B� such that

» b

a
r n L

�
x; u; u1; K � Spuq

�
�K � DSpuqu� � DSpuqT K � r n L

�
x; u; u1; K � Spuq

�
�u� dx

� B� p' buq � B� p' auq:

This can be interpreted as a nonlocal analogue of Green's formula, similar to the
nonlocal vector calculus developed in [54]. We note that the cited work cannot be
applied directly, because the integrand

r n L
�
x; u; u1; K � Spuq

�
� K � DSpuqu� � DSpuqT K � r n L

�
x; u; u1; K � Spuq

�
� u�

is not integrable over R . We note that

» b

a
r n L

�
x; u; u1; K � Spuq

�
�K � DSpuqu� � DSpuqT K � r n L

�
x; u; u1; K � Spuq

�
�u� dx

�
» b

a

»

R
� px; yq � � py; xqdy dx:

The geometric rationale for the transformation of the integral into boundary terms is
depicted in Figure 3.1. Let spx; yq:� � px; yq� � py; xq. We now decompose the iterated
integral into three integrals over the domains
 a � p a; bq�p�8 ; aq, 
 0 � p a; bq�p a; bq,
and 
 b � p a; bq � p b;8q . Let 	 : R 2 Ñ R 2 be the re�ection around the diagonal:
	 px; yq � p y; xq. Then 	 � 1p
 0q � 
 0 and s � 	 � � s, hence

¼


 0

� px; yq � � py; xqdx dy �
¼

	 � 1 p
 0 q

s � 	 d x dy � �
¼


 0

sdx dy � 0:

Moreover, if we let Q� :� p�8 ; � q � p �; 8q , then

	 � 1p
 aq � Qa r pQa X Qbq; 
 b � Qb r pQa X Qbq:
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The conditions imposed onK in Hypothesis (K) ensure that s is integrable over Q� ,
for each � PR . Indeed, reparameterizingQ0 by

x � p r � sq{2; r   0;
y � p s � r q{2; r   s   � r;

we �nd
¼

Q �

}K px � yq}dx dy �
¼

Q 0

}K px � yq}dx dy �
1
2

»

r   0

»

|s| | r |
}K pr q}dsdr

�
»

r   0
|r |}K pr q}dr �

1
2

»

R
|r |}K pr q}dr;

(3.14)

which is �nite by assumption.

We now have
¼


 a

sdx dy �
¼

Q a

s � 	 d x dy �
¼

Q a X Q b

s � 	 d x dy

� �
¼

Q a

sdx dy �
¼

Q a X Q b

sdx dy;

and ¼


 b

sdx dy �
¼

Q b

sdx dy �
¼

Q a X Q b

sdx dy:

Therefore,
¼

pa;bq� R

sdx dy �
¼


 a

sdx dy �
¼


 b

sdx dy �
¼

Q b

sdx dy �
¼

Q a

sdx dy:

Then note that
¼

Q �

sdx dy �
¼

Q 0

spx � �; y � � qdx dy � B� p' � uq:

The last identity follows because the action of� commutes with the R -action of ' � .
After collecting the various terms, the claimed result follows.

Remark 3.2.6. We note here that the Noether theorem is in general not valid for
discontinuous solutions. As an example, consider the stationary nonlocal Allen�Cahn
equation

0 � dp� u � K � uq � f apuq; (3.15)

whereK is a positive, smooth kernel with
³

K pxqdx � 1, d ¡ 0 is a coupling constant,
and f apuq � up1� uqpu � aq. The results from [5, 19] show that for0   d   1{4, there
exist open intervals pa� pdq; a� pdqq € p0; 1q such that the following holds. For any
a P pa� pdq; a� pdqq, Equation (3.15) has a solution u with precisely one jump discon-
tinuity, and such that lim x Ñ�8 upxq � 1, lim x Ñ8 upxq � 0. The conserved quantity
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�

a b x

y
I b

a
�

�
a b x

y

�

� a b x

y

�

� a b x

y

B� p' auq

B� p' buq

Figure 3.1: Transformation of I b
a :�

´

 0

spx; y qdV into boundary terms B� p' � uq
�
�b
� � a . From left to

right, we show the original domain of integration, then the square pa; bq2 can be removed by skew
symmetry of the integrand, then, using the skew symmetry, the domain of integration is transformed.
On the right, the resulting di�erence of integrals coincides with the di�erence of the boundary terms,
adding and subtracting the checkered region.

corresponding to the translational symmetry in (3.15) is given by C� puqpxq � Hp' x uq,
where

Hpuq �
�

d
2

u2 � Fapuq �
d
2

uK � u

 �

�
�
�
x � 0

�
d
2

¼

Q

K px � yq
�

upxqu1pyq � u1pxqupyq



dx dy;

with Fapuq �
³u
0 f apsqds. But Hp0q � � Fap0q � � Fap1q � Hp1q for a � 1{2. In

particular, Theorem 3.2.5 does not hold in this case of a discontinuous solution. l

3.3 Hamiltonian equations

We further pursue the Noetherian formalism developed in Section 3.2 to interpret the
conserved quantity associated with the translations as the Hamiltonian and construct
the symplectic structure that formally associates the Hamiltonian with the vector
�eld generating the translations in Section 3.3.1. The symplectic structure may well
be degenerate and the Hamiltonian structure is understood only formally. Section
3.3.2 shows that the symplectic structure is automatically non-degenerate on �nite-
dimensional centre manifolds as constructed in [42].

3.3.1 Symplectic formalism

In the remainder of this chapter, we restrict attention to a somewhat smaller class of
Lagrangians, satisfying the following hypothesis.

Hypothesis (L). The Lagrangian L is of the form

Lpu; v; nq � Epu; vq �
1
2

Spuq �n;

where E PC2pR d � R d; R q.

The corresponding Euler�Lagrange equation (3.9) is of the form

� B x r v Epu; u1q � r u Epu; u1q � DSpuqT K � Spuq � 0: (3.16)
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De�ne the function H by

Hpuq:� �
�

Epu; u1q � r v Epu; u1q �u1 �
1
2

Spuq �K � Spuq

 �

�
�
�
x � 0

�
1
2

¼

Q

Spupxqq �K px � yqDSpupyqqu1pyq � Spupyqq �K px � yqDSpupxqqu1pxqdx dy;

where Q :� p�8 ; 0q � p 0; 8q is the upper left quadrant as in Theorem 3.2.5. We note
that the symmetry group G of (3.16) contains the pure translations t I du � R . Let
� � p 0; 1q Pg, so that u� � u1 and 1� � � 1. Then Hp' � uq � C� puqp� q, where C�

is the conserved quantity obtained in Theorem 3.2.5. An immediate consequence of
Theorem3.2.5 is then the following.

Corollary 3.3.1 (Integral of motion). The quantity H is conserved under the shift
action ' � on the solutions of (3.16), that is,

d
d�

Hp' � uq � 0; for any u solving (3.16):

SinceH corresponds to the translational symmetry of (3.16) it is natural to think
of H as the Hamiltonian of the system (3.16). This raises the question whether the
shift dynamics is Hamiltonian in a suitable sense. It turns out that this is the case, at
least formally, via a symplectic formalism.

Geometric setup. Before we introduce the relevant structures, let us brie�y moti-
vate the formalism we have in mind. SayM is a translation invariant set of functions
u : R Ñ R d solving (3.16), and suppose that in some suitable topologyM comes
equipped with the structure of a smooth manifold. A presymplectic form ! is a closed
2-form on M , i.e., for eachu PM it de�nes a skew-symmetric bilinear form on Tu M .
If in addition ! is nondegenerate, it is called a symplectic form. One can then de�ne
the Hamiltonian �ow X �

H on the domain of de�nition of DH, by solving

B� X �
H � VH � X �

H ; where � DHpuq � ! u
�
VH puq; �

�
:

The aim is to �nd ! such that VH puq � u1, so that the shift symmetry X �
H puq � ' � u

is retrieved from the Hamiltonian �ow of H .

The construction of a symplectic manifold pM ; ! q consisting of solutions of (3.16)
is, in general, an open question. We will address this question further in Section
3.3.2, where such a manifold is constructed for small amplitude solutions near (linear)
centre �xed points. Instead of pursuing this matter further, in the current section we
take M to be a function space, say,C1

b pR ; R dq. Since solutions of (3.16) only form a
small subset ofC1

b pR ; R dq, in general it seems unlikely that here exists a symplectic
structure de�ned on all of C1

b pR ; R dq such that the Hamiltonian �ow of H is the shift
action ' � . Instead we look for a presymplectic structure! on C1

b pR ; R dq such that

� DHpuq � ! u pu1; �q; for any u solving (3.16):

We will describe such a structure in the next paragraph. If one obtains a manifold
M consisting of solutions of (3.16), the presymplectic structure is expected to restrict
to a symplectic structure on M . This is exempli�ed by the centre manifold theory in
Section 3.3.2.



100 CHAPTER 3. SPATIAL HAMILTONIAN IDENTITIES

Presymplectic structure. In order to de�ne an exact presymplectic structure on
C1

b pR ; R dq, we start with de�ning a 1-form � on C1
b pR ; R dq. For u PC1

b pR ; R dq, de�ne
� n

u : Tu C1
b pR ; R dq Ñ R by

� n
u pvq:�

¼

Q

vpxq �DSpupxqqT K px � yqSpupyqqdx dy; (3.17)

where v PTu C1
b pR ; R dq � C1

b pR ; R dq and Q � p�8 ; 0q � p 0; 8q . In light of Hypothe-
sis (K), the integral is convergent, cf. (3.14). Note that � n is C1 in both u and v. Set
! n :� d� n , that is,

! n
u pv; wq:� Du r� n

u pvqspwq � Du r� n
u pwqspvq; v; w PTu C1

b pR ; R dq � C1
b pR ; R dq:

For readers familiar with exterior calculus we note that this expression follows from
the usual invariant formula for exterior derivatives [69], which involves Lie derivatives
along vector �elds, by considering vector �elds obtained by constant extensions of the
tangent vectors v and w, which is possible since our base manifold is a vector space.

A brief computation shows that

! n
u pv; wq �

¼

Q

vpxq �Axy puqwpyq � vpyq �Ayx puqwpxqdx dy;

where
Axy puq:� DSpupxqqT K px � yqDSpupyqq:

Thus we have de�ned an exact 2-form! n on C1
b pR ; R dq.

We de�ne another 1-form � loc
u : Tu C1

b pR ; R dq Ñ R by

� loc
u pvq � �

�
r v Epu; u1q �v


 �
�
�
�
x � 0

; v PTu C1
b pR ; R dq � C1

b pR ; R dq: (3.18)

Then de�ne a 2-form ! loc
u :� d� loc

v , that is,

! loc
u pv; wq:�

�
w � r 2

v Epu; u1qv1 � v � r 2
v Epu; u1qw1

� w � r u r v Epu; u1qv � v � r u r v Epu; u1qw

 �

�
�
�
x � 0

:

De�nition 3.3.2 (Exact presymplectic structure). Associated with (3.16), de-
�ne the exact presymplectic structure ! on C1

b pR ; R dq as

! :� d� � ! n � ! loc ; where � :� � n � � loc ;

with � n , � loc given in (3.17), (3.18), respectively.

Lemma 3.3.3 (Formal Hamiltonian dynamics). Let u P CR
b pR ; R dq be a solu-

tion of (3.16). For any v PTu C1
b pR ; R dq � C1

b pR ; R dq we have

� DHpuqv � ! u pu1; vq: (3.19)
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Proof. Let u PCR
b pR ; R dq, v PTu C1

b pR ; R dq � C1
b pR ; R dq be arbitrary. Note that

Hpuq � �
�

Epu; u1q � r v Epu; u1q �u1 �
1
2

Spuq �K � Spuq

 �

�
�
�
x � 0

�
1
2

¼

Q

Spupxqq �K px � yqDSpupyqqu1pyqdx dy

�
1
2

¼

Q

Spupyqq �K px � yqDSpupxqqu1pxqdx dy

� �
�

Epu; u1q �
1
2

Spuq �K � Spuq

 �

�
�
�
x � 0

� � loc
u pu1q

�
1
2

� n
u pu1q �

1
2

¼

Q

Spupxqq �K px � yqDSpupyqqu1pyqdx dy:

To evaluate the last term, let K " PC8 pR ; Mat d� dpR qq, " ¡ 0 be such that K " satis�es
Hypothesis (K), and in addition,

»

R
p1 � | r |q |K 1

" pr q|dr   8 ; lim
" Ñ 0

}K " � K }L 1 pR ;Mat d � d pR qq � 0:

Using integration by parts, the last term is transformed

1
2

¼

Q

Spupxqq �K " px � yqDSpupyqqu1pyqdx dy

�
1
2

»

x   0

»

y¡ 0
Spupxqq �K " px � yqBy Spupyqqdx dy

� �
1
2

Spuq �K " � p� � Spuqq

�
�
�
�
x � 0

�
1
2

»

x   0

»

y¡ 0
Spupxqq �

�
By K " px � yq

�
Spupyqqdy dx

� �
1
2

Spuq �K " � p� � Spuqq

�
�
�
�
x � 0

�
1
2

»

y¡ 0

»

x   0
Spupxqq �

�
Bx K " px � yq

�
Spupyqqdx dy

� �
1
2

Spuq �K " � p� � Spuqq

�
�
�
�
x � 0

�
1
2

Spuq �K " � p� � Spuqq

�
�
�
�
x � 0

�
1
2

»

y¡ 0

»

x   0
DSpupxqqu1pxq �K " px � yqSpupyqqdy dx

where � � pxq � 0 for x   0, � � pxq � 1 for x ¥ 0, and � � � 1 � � � . Letting " Ñ 0
in the �nal identity, we obtain

1
2

¼

Q

Spupxqq �K px � yqDSpupyqqu1pyqdx dy

�
1
2

�
Spuq �K � p� � Spuqq � Spuq �K � p� � Spuqq


 �
�
�
�
x � 0

�
1
2

� n
u pu1q; (3.20)
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and thereby we obtain the fundamental relation betweenH and � � � loc � � n ,

Hpuq � �
�

Epu; u1q � Spuq �K � p� � Spuqq

 �

�
�
�
x � 0

� � u pu1q:

For the derivative we now obtain the expression

� DHpuqv �
�

r u Epu; u1q �v � r v Epu; u1q �v1

 �

�
�
�
x � 0

� Du
�
� loc

u pu1q
�
v

�
�

DSpuqT K � p� � Spuqq �v � Spuq �K � p� � DSpuqvq

 �

�
�
�
x � 0

� Du
�
� n

u pu1q
�
v:

(3.21)

Recalling the de�nition of ! loc � d� loc , we have

Du
�
� loc

u pu1q
�
v � ! loc

u pu1; vq � Du
�
� loc

u pvq
�
u1 � � loc

u pv1q:

Now note that

Du
�
� loc

u pvq
�
u1 � � loc

u pv1q � �
�

Bx r v Epu; u1q �v � r v Epu; u1q �v1

 �

�
�
�
x � 0

;

hence

�
r u Epu; u1q �v � r v Epu; u1q �v1


 �
�
�
�
x � 0

� Du
�
� loc

u pu1q
�
v

�
�

� B x r v Epu; u1q � r u Epu; u1q

 �

�
�
�
x � 0

� vp0q � ! loc
u pu1; vq: (3.22)

Computations similar to (3.20) show

Du
�
� n

u pvq
�
u1 � � n

u pv1q �
�

DSpuqT K � p� � Spuqq �v � Spuq �K � p� � DSpuqvq

 �

�
�
�
x � 0

:

SinceDu
�
� n

u pu1q
�
v � ! n

u pu1; vq � Du
�
� n

u pvq
�
u1 � � n

u pv1q, it follows that

�
DSpuqT K � p� � Spuqq �v � Spuq �K � p� � DSpuqvq


 �
�
�
�
x � 0

� Du
�
� n

u pu1q
�
v

�
�

DSpuqT K � Spuq

 �

�
�
�
x � 0

� vp0q � ! n
u pu1; vq: (3.23)

Combining (3.21), (3.22), and (3.23), we obtain

� DHpuqv � ! u pu1; vq

�
�

� B x r v Epu; u1q � r u Epu; u1q � DSpuqT K � Spuq

 �

�
�
�
x � 0

� vp0q:

From this the claimed result readily follows.
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Remark 3.3.4. In general, ! is degenerate as a2-form on C1
b pR ; R dq. To illustrate

this, consider the following example. Suppose the kernel has compact support, say,
suppK € r� 1; 1s. Let v have support suppv € R r r� 1; 1s. Then ! u pv; �q � 0, and
this is true for any u. This degeneracy can be interpreted in several ways. First, when
(formally) deriving (3.19), we notice that the relation holds with u1 ÞÑu1 � � as long
as supp� € R r r� 1; 1s, such that the evolution equation is posed onr� 1; 1s, only,
in the sense that the Hamiltonian formalism gives conditions on this interval, only.
This is most apparent in the oversimpli�ed case of K pxq � � px � 1q � � px � 1q, for
which the equation decouples into a family of two-term recursions. Clearly, bounded
solutions can be found by solving an initial value problem with initial conditions given
on x P r� 1; 1q. The Hamiltonian equation on this interval can then be used to continue
solutions beyond the interval. For equations including derivatives, for instance equa-
tions for breathers in nonlinear chains of oscillators, the resulting equations can still
be viewed as evolution equations on an interval [61], which is however ill-posed. In our
point of view, we understand dynamics as shifts on the set of bounded solutions with-
out attempting to pose an initial-value problem. The Hamiltonian equation, formally
derived here, would almost always be ill-posed. The absence of strong degeneracies for
in�nite-range kernels hints in this sense at the fact that no simple reduced formulation
as a possibly ill-posed initial-value problem is avilable. l

3.3.2 Local nondegeneracy of ! � centre manifold reduction

We start this section with a brief summary of how the result from [42] can be applied
to equations of the form (3.16), to obtain a �nite dimensional centre manifold M 0,
with the key property that all small solutions of (3.16) are contained in M 0. Since!
is typically degenerate on the ambient function space, our setup is somewhat di�erent
than the one considered in [76]. Nevertheless, we will show that the restriction of!
to M 0 is locally nondegenerate, by explicit computations on the tangent spaceT0M 0.
Consequently, the centre manifoldM 0 naturally comes equipped with a symplectic
structure ! , under which the induced Hamiltonian �ow of H is the shift �ow ' � .

Construction of the centre manifold. We will now summarise how the result
from [42] can be applied to equations of the form (3.16). To do so, the Equation
(3.16) needs to be recast in the formT u � F puq � 0, posed on weighted Sobolev
spaces allowing for exponential growth, whereT u � u � J � u for some (not necessarily
symmetric) J . Given � PR , 1 ¤ p ¤ 8 , k PN Y t 0u, let

W k;p
� pR ; R dq:�

!
u PL p

loc pR ; R dq : e� xx yBj
x upxq PL ppR ; R dq; 0 ¤ j ¤ k

)
;

L p
� pR ; R dq:� W 0;p

� pR ; R dq;

were xxy :�
?

1 � x2. From Morrey's inequality we have, for any k P N Y t 0u,
1   p ¤ 8 , and � ¤ 0, and suitable constantsCk;p;� that

}u}C k
b pR ;R d q ¤ Ck;p;� sup

� PR
} ' � u}W k � 1 ;p

� pR ;R d q: (3.24)

We impose the following restriction upon (3.16).

Hypothesis (C1). The zero function is a solution of (3.16), that is,

r u Ep0; 0q � DSp0qT � 0Sp0q � 0; with � 0 :�
»

R
K pr qdr:
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In addition, we impose a local ellipticity condition. De�ne the principal symbol
� p : C Ñ Mat d� dpR q of (3.16) at u � 0 through

� pp� q:� � r 2
v Ep0; 0q� 2 � r 2

u Ep0; 0q � D 2Sp0qT � 0Sp0q: (3.25)

Let us also introduce the full symbol � : C Ñ Mat d� dpR q of (3.16) at u � 0, de�ned
through

� p� q:� � pp� q � DSp0qT pK p� qDSp0q; where pK p� q:�
»

R
e� �x K pxqdx: (3.26)

The exponential decay ofK ensures that pK p� q is analytic in a strip around iR . Note
that the linearisation of (3.16) at u � 0 takes the form

� ppBx qu �
�
DSp0qT KDS p0q

�
� u � 0;

and � p� qpup� q � 0 is the (complex) Fourier transform of this equation.

Hypothesis (C2). We assume that det � pp� q � 0 for all � P iR . Furthermore, if
Epu; vq is not constant in v, we require that the map

� ÞÑ |� |2}� ppi� q� 1}; with � PR ;

is uniformly bounded.

Our last hypothesis is concerned with smoothness of the pointwise evaluations and
localisation of the kernel.

Hypothesis (C3). (1) The kernel K is exponentially localised, i.e., for some� 0 ¡ 0
we haveK PW 1;1

� 0
pR ; Mat d� dpR qq.

(2) The function S is of classCk � R � 2, k ¥ 2.

(3) The function E is of classCk � 2R � 1 smooth, k ¥ 2.

Here R P t1; 2u is as in De�nition 3.2.1.

Now now recast Equation (3.16) in the form T u � F puq � 0, where

T u :� u � � ppBx q� 1
�
DSp0qT KDS p0q

�
� u;

and

F puq:� � ppBx q� 1
�

�
�
r 2

v Epu; u1q � r 2
v Ep0; 0q

�
u2

�
�
r u r v Epu; u1q � r u r v Ep0; 0q

�
u1

�
�
r u Epu; u1q � r 2

u Ep0; 0qu
�

�
�
DSpuqT K � Spuq � D 2Sp0qT � 0Sp0qu � p DSp0qT KDS p0qq �u

�



:

(3.27)

Note that ellipticity of � ensures that F is locally Ck � R � 1� r on W r; 8 pR ; R dq, for
R ¤ r ¤ k � R � 1. Our hypotheses ensure that the mapsT and F satisfy Hypothe-
ses (H1) and (H2) from [42]. As usual, the global centre manifold is only de�ned for
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su�ciently small nonlinearities F . A local centre manifold is then de�ned by modi-
fying the original nonlinearity F outside of a small neighborhood of0. We want to
point out that in this setting, this modi�cation can be made without destroying the
variational structure. Indeed, de�ne smooth cuto� functions � " : R Ñ R by setting

� 1pxq:�

#
1 if |x| ¤ 1;
0 if |x| ¥ 2;

and
� " pxq:� � 1px{"q:

Then we replace the functionsE and S in (3.16) by E " pu; vq:� � " p|pu; vq|qEpu; vqand
S" puq :� � " puqSpuq, respectively. Now let F " be as in (3.27), with E and S replaced
by E " and S" . For su�ciently small " ¡ 0, such a modi�ed nonlinearity will satisfy
the smallness assumptions needed in the centre manifold theorem.

The construction of the centre manifold itself can then be summarised as follows.
First, chooser such that R ¤ r ¤ k � R � 1. We will expand the centre manifold as
a subspace ofW r; 2

� � pR ; R dq. One setsE0 :� kerpT q € W r; 2
� � pR ; R dq for 0   �   � 0.

To avoid trivial situations, we will assume E0 � t 0u. It follows from the exponentially
localised behaviour ofK that E0 is �nite dimensional, independent of � for su�ciently
small � , and the dimension is given by the algebraic count of the number of solutions
(counting multiplicity) of the characteristic equation

det � p� q � 0; where � � i` P iR : (3.28)

Here � is the full symbol de�ned in (3.26).

One has the freedom to choose a projectionQ : W r; 2
� � pR ; R dq Ñ W r; 2

� � pR ; R dq
onto E0. This projection should be equivariant with respect to the shift map ' � .
Furthermore, the projection Q has to be constructed in a way which is independent of
the weight � ¡ 0. We remark that such a projection always exists, and the particular
choice does not in�uence the abstract results in this section and the next, however
from a computational viewpoint certain choices can be favorable. Then there exists a
� ¡ 0 and a Ck � R � 1� r smooth map

	 : E0 Ñ ker Q € W r; 2
� � pR ; R dq; 	 p0q � 0; D 	 p0q � 0;

such that the graph
M 0 :� t u0 � 	 pu0q : u0 PE0u

consists of the solutionsu P W r; 2
� � pR ; R dq to the modi�ed equation T u � F " puq � 0.

The map 	 commutes with the shift map, 	 � ' � � ' � 	 . Furthermore, any solution
u P W r; 2

� � pR ; R dq of Equation (3.16), which is su�ciently small, in the sense that
}u}C R � 1

b pR ;R d q   " , is contained in M 0, simply because such au will solve the modi�ed
equation T u � F " puq � 0. Conversely, in light of inequality (3.24), if u P M 0 whose
entire orbit

 puq:�
¤

� PR

t ' � uu

is su�ciently small in W r; 2
� � pR ; R dq, it follows that u solves (3.16).
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Symplectic structure on the centre manifold. We next construct an explicit
basis forE0 in which we establish nondegeneracy of! 0 restricted to E0. Let � 1; : : : ; � n

denote the roots of the characteristic Equation (3.28), which lie in the upper half plane,
that is � j � i` j with ` j ¥ 0. Given 1 ¤ j ¤ n, let  j :� dim ker � p� j q, and choose a
real basisej; 1; : : : ; ej; j for ker � p� j q. We now impose the following restriction upon
� .

Hypothesis (C4). For each 1 ¤ j ¤ n and 1 ¤ k ¤  j , there exists anj;k P N such
that

� p� qej;k �
1

nj;k !
� pn j;k qp� j qp� � � j qn j;k ej;k � O

�
|� � � j |n j;k � 1

�
as � Ñ � j :

Given 1 ¤ k ¤  j and 0 ¤ l ¤ nj;k � 1, de�ne

 j;k;l pxq:� x l
�
cos

�
` j x

�
� sin

�
` j x

��
ej;k :

Then de�ne the conjugate vector  �
j;k;l by

 �
j;k;l pxq:�

#
xn j;k � l � 1

�
cos

�
` j x

�
� sin

�
` j x

��
ej;k if nj;k is even;

xn j;k � l � 1
�
cos

�
` j x

�
� sin

�
` j x

��
ej;k if nj;k is odd:

Lemma 3.3.5. The system of vectors

B :�
 
 j;k;l ;  �

j;k;l : 1 ¤ j ¤ n; 1 ¤ k ¤  j ; 0 ¤ l ¤ nj;k � 1
(

is a basis forE0.

Proof. Note that by symmetry of K , if � j � 0 for some1 ¤ j ¤ n, then nj;k is even,
for each1 ¤ k ¤  j . Hence the vectors always come in pairsp j;k;l ;  �

j;k;l q, with  j;k;l

and  �
j;k;l linearly independent. Taking the distributional complex Fourier transform

of T  j;k;l , we get

� pp� j q {T  j;k;l �

#
� pl qp� j qej;k if l is even;
� i � pl qp� j qej;k if l is odd:

Hence, by Hypothesis (C4), we have j;k;l P E0, and, similarly, we �nd  �
j;k;l P E0.

We note that � j :� nj; 1 � � � � � nj;k is the algebraic multiplicity of the root � j of the
characteristic Equation (3.28). Sincedim E0 is given by the number of roots of (3.28),
counting multiplicity, we conclude that the system of vectors B forms a basis forE0.

The vectors  j;k;l ,  �
j;k;l turn out to be each other's symplectic dual. In preparation

to proving this fact, we have the following useful lemma.

Lemma 3.3.6. Fix p; q PN Y t 0u. Supposef : R 2 Ñ R is of the form

f px; yq � gpx � yq � hpx � yq; where g; h PL 2
� � pR ; R q;

with g and h of the form

gpr q � � gp� r q; hpr q � hp� r q; if p � q is even;
gpr q � gp� r q; hpr q � � hp� r q; if p � q is odd:
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Then
¼

Q

�
xpyqf px; yq � xqypf py; xq



K px � yqdx dy � Cp;q

»

R
r p� q� 1gpr qK pr qdr;

where

Cp;q :�
p� 1qq

2p� q

¸

0¤ m ¤ p
0¤ n ¤ q

�
p
m


�
q
n



� m;n

m � n � 1
;

� m;n :�

#
p� 1qm � 1 if m � n is even;
0 if m � n is odd:

In particular,
¼

Q

�
xpyq � xqyp



K px � yqdx dy � Cp;q pK pp� q� 1qp0q:

Proof. De�ne s : R 2 Ñ R 2 by spx; yq � �p y; xq, i.e., re�ection in the anti-diagonal.
Let s� denote the induced action on functionsF : R 2 Ñ R , de�ned through the
pullback relation s� F � F � s. Then

s� 1pQq � Q; s�
�
xqypf px; yq

�
� � xpyqgpx � yq � xpyqhpx � yq:

Therefore,

¼

Q

�
xpyqf px; yq � xqypf py; xq



K px � yqdx dy

� 2
¼

Q

xpyqgpx � yqK px � yqdx dy: (3.29)

We now reparameteriseQ by px; yq � ppr � sq{2; ps � r q{2q where r   0, r   s   � r ,
and compute,
¼

Q

xpyqgpx � yqK px � yqdx dy

�
1

2p� q� 1

»

r   0

»

|s| | r |
ps � r qpps � r qqgpr qK pr qdsdr

�
1

2p� q� 1

»

r   0

»

|s| | r |

� p¸

m � 0

�
p
m



r p� m sm


� p¸

n � 0

�
q
n



p� r qq� n sn



gpr qK pr qdsdr

�
p� 1qq

2p� q� 1

¸

0¤ m ¤ p
0¤ n ¤ q

�
p
m


�
q
n



p� 1qn

»

r   0

� »

|s| | r |
sm � n ds

�

r p� q� m � n f pr qK pr qdr

�
p� 1qq

2p� q

¸

0¤ m ¤ p
0¤ n ¤ q

�
p
m


�
q
n



� m;n

m � n � 1

»

r   0
r p� q� 1gpr qK pr qdr:
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By de�nition of Cp;q we thus �nd
¼

Q

xpyqgpx � yqK px � yqdx dy �
1
2

Cp;q

»

R
r p� q� 1gpr qK pr qdr:

Combined with (3.29), the claim follows.

For future reference, we now collect the hypothesis from this section.

Hypothesis (C ! ). Assume Hypotheses (C1), (C2), (C3), and (C4) are satis�ed.

We are now prepared to show that the centre manifold is locally symplectic.

Theorem 3.3.7 (Symplectic centre manifold). Assume Hypothesis (C! ) holds,
and R ¤ r ¤ k � R � 1. Then the following holds.

(1) The centre manifold M 0 € W r; 2
� � pR ; R dq is Ck � R � 1� r smooth, and the �ow ' �

is Ck � R � 1� r smooth on M 0.

(2) The Hamiltonian H and presymplectic form ! � d� have Ck � R � 1� r smooth
restrictions to M 0.

(3) The presymplectic form ! is locally nondegenerate, hence symplectic.

Consequently, there exists� ¡ 0, " ¡ 0 so that if u P W r; 2
� � pR ; R dq solves(3.16), and

}upxq}C R � 1
b pR ;R d q   " , then u PM 0. Furthermore, there exists an open neighborhood

0 PO € M 0 on which the Hamiltonian �ow X �
H , given by

B� X �
H � VH � X �

H ; where � DHpuq � ! u
�
VH puq; �

�
;

is de�ned for small � . Moreover, if R ¤ r ¤ k � R � 2, we have VH puq � u1 and
X �

H puq � ' � u for all u PO.

Proof. We unfold a scale of centre manifolds

M r
0 € W r; 2

� � pR ; R dq; for R ¤ r ¤ k � R � 1:

Then M r
0 is a Ck � R � 1� r smooth manifold. In particular, the manifold M k � R � 1

0 is C2

smooth, but the �ow ' � is only C0. Of course, givenu PM k � R � 1
0 , the curve � ÞÑ' � u

is Ck � R � 1� r as a map fromR into W r; 2
� � pR ; R dq. Now we let

� r;k � R � 1 : W k � R � 1
� � pR ; R dqãÑ W r; 2

� � pR ; R dq

denote the natural inclusion between Sobolev spaces. Then, it follows that' � is a
Ck � R � 1� r smooth map in the inherited topology on

� r;k � R � 1pM k � 1
0 q € W r; 2

� � pR ; R dq:

It follows from the local uniqueness of the centre manifold that

� r;k � R � 1pM k � R � r � 1
0 q � M r

0;
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hence in particular it is Ck � R � 1� r smooth. In particular, on M 0 € W R; 2
� � pR ; R dq the

�ow ' � will always be at least C1 smooth.

Concerning the extensions ofH and ! � d� . we �rst recall that the modi�ed
equation T u � F " puq � 0 is again of the form (3.16). Hence associated with the
modi�ed equation we obtain Hamiltonians H " , and presymplectic structures! " � d� " .
We have Hpuq � H " puq, and ! u � ! "

u , whenever u satis�es }upxq}C R � 1
b pR ;R d q   " .

Since the centre manifold only contains relevant information about (3.16) for small
amplitude solutions, we may thus without loss of generality replaceH and ! � d�
with their localised counterparts.

Note that in the de�nition of � and ! we have worked with spaces of uniformly
bounded functions, but the centre manifoldM 0 is naturally unfolded in the exponen-
tially weighted space W r; 2

� � pR ; R dq. Repeating the de�nition of � n and ! n , but this
time using functions from W r; 2

� � pR ; R dq, one readily �nds that the constructions are
still valid, provided that the maps

px; yq ÞÑSpupxqq �K px � yqDSpupyqqvpyq;

px; yq ÞÑvpxq �DSpupxqqT K px � yqDSpupyqqwpyq

are integrable over px; yq P Q, for any u; v; w P W r; 2
� � pR ; R dq. This is clearly the

case for the localised nonlinearities. Consequently,� and ! then extend to Ck � R � 1� r

structures on W r; 2
� � pR ; R dq. Similarly, we �nd that H extends to aCk � R � 1� r smooth

function on W r; 2
� � pR ; R dq.

Since ! u dependsCk � R � 1� r smoothly on the base point u P M 0, it su�ces to
check whether ! 0 is nondegenerate onT0M 0 � E0. Suppose �rst that nj;k is even.
Then, with the help of Lemma 3.3.6, we have

! n
0

�
 j;k;l ;  �

j;k;l

�
� Cl;n j;k � l � 1ej;k � DSp0qT

� »

R
r n j;k cosp̀ j r qK pr qdr



DSp0qej;k

�
1
2

Cl;n j;k � l � 1ej;k � DSp0qT
�

pK pn j;k qp� j q � pK pn j;k qp� � j q
	

DSp0qej;k

� Cl;n j;k � l � 1ej;k � DSp0qT pK pn j;k qp� j qDSp0qej;k

� Cl;n j;k � l � 1ej;k �
�

� pn j;k qp� j q � � pn j;k q
p p� j q



ej;k ;

where we used that pK p� q � pK p� � q. One observes that

! loc
0

�
 j;k;l ;  �

j;k;l

�
� � pn j;k q

p p� j q � 0 whenever nj;k ¥ 3:

For nj;k � 2, a case-by-case examination shows that

! loc
0

�
 j;k;l ;  �

j;k;l

�
� Cl;n j;k � l � 1ej;k � � pn j;k q

p p� j qej;k ;

Consequently, by Hypothesis (C4),

! 0
�
 j;k;l ;  �

j;k;l

�
� Cl;n j;k � l � 1ej;k � � pn j;k qp� j qej;k � 0:
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Similarly, when nj;k is odd, we have

! n
0

�
 j;k;l ;  �

j;k;l

�
� Cl;n j;k � l � 1ej;k � DSp0qT

� »

R
r n j;k sinp̀ j r qK pr qdr



DSp0qej;k

� � iC l;n j;k � l � 1ej;k �
�

� pn j;k qp� j q � � pn j;k q
p p� j q



ej;k :;

and
! loc

0

�
 j;k;l ;  �

j;k;l

�
� � iC l;n j;k � l � 1ej;k � � pn j;k q

p p� j qej;k ;

so that, again,

! 0
�
 j;k;l ;  �

j;k;l

�
� � iC l;n j;k � l � 1ej;k � � pn j;k qp� j qej;k � 0:

This shows that ! 0 is nondegenerate.

We obtain an open neighborhood0 P O € W r; 2
� � pR ; R dq on which ! is nondegen-

erate. We then obtain a Hamiltonian �ow X �
H on O, induced by H via the symplectic

form ! . If R ¤ r ¤ k � R � 2, the �ow ' � on M 0 is di�erentiable, so that u1 PTu M 0

for any u P O. Consequently, in light of Lemma 3.3.3, we haveVH puq � u1 and
X �

H puq � ' � u for all u PO.

As a cautionary note, we want to point out here that the vectors  j;k;l ,  �
j;k;l are,

in general, not in Darboux normal form, as the following example illustrates.

Example 3.3.8. Let K : R Ñ R be a kernel for which

� pr qp0q � 0; � p4qp0q � 0; for 0 ¤ r ¤ 3;

and suppose
pK p6qp0q � 0:

Basis vectors forE0 are then

 l pxq:� x l ;  �
l pxq:� x3� l ; for 0 ¤ l ¤ 3;

One then readily �nds

! 0
�
 2;  3

�
� ! 0

�
 �

1 ;  �
0

�
� ! 0

�
 2;  �

0

�
� ! 0

�
 �

1 ;  3
�

� C2;3 pK p6qp0q � 0: l

Symplectic structure on a parameter dependent centre manifold. Suppose
that K � K � , E � E � , and S � S� depend on parameters� � p � 1; : : : ; � sq P p�"1; "1qs.
We then impose the following conditions.

Hypothesis (C � ). (1) In � � 0, hypothesis (C1) is satis�ed, that is,

r u E0p0; 0q � DS0p0qT � 0S0p0q � 0:

(2) Hypothesis (C2) holds, uniformly in � . More precisely, let � pp� ; � q denote the
principal symbol corresponding to the parameter value� . We demand that
det � pp� q � 0 for all � P iR and � P p� "1; "1qs. Furthermore, if for some
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parameter � P p� "1; "1qs the map E � pu; vq is not constant in v, we require that
the map

p�; � q ÞÑ |� |2}� ppi� ; � q� 1}; with � PR ; � P p� "1; "1qs;

is uniformly bounded.

(3) Hypothesis (C3) holds, with all estimates uniform in � .

(4) Hypothesis (C4) holds for � � 0.

(5) The maps K � , E � , and S� dependCk � 4 smoothly on the parameter � .

As before, one then localises the nonlinearitiesE � and S� , and recasts the modi�ed
equation into the form T� u � F "

� puq � 0, where

T� u � u � � ppBx ; � q� 1
�
DS� p0qT KDS � p0q

�
� u:

Then let E0 :� ker T0 and choose a projectionQ : W R; 2
� � pR ; R q Ñ W R; 2

� � pR ; R q onto
E0, as before. After shrinking "1 if necessary, one then obtains a map

	 : E0 � p� "1; "1qs Ñ ker Q;

with 	 p0; 0q � Du 	 p0; 0q � 0, such that

M 0p� q:� t u0 � 	 pu0; ; � q : u0 PE0u; with � P p� "1; "1qs;

consists precisely of the solutionsu PW R; 2
� � pR ; R dq of the modi�ed equation

T� u � F "
� puq � 0:

Conversely, if u P W R; 2
� � pR ; R dq is a solution of (3.16) corresponding to a parameter

value |� |   "1, and }u}C R � 1
b

  " , it follows that u PM 0p� q. Thus, we have obtained a
local reduction of the parameter dependent Equation (3.16). Furthermore, the results
from Theorem 3.3.7 extend to the parameter dependent setting. Hence, we obtain
Hamiltonians H � and local symplectic forms! � � d� � on M 0p� q, which are Ck in
u P M 0p� q as well asCk smooth in the parameter � . The Hamiltonian �ow of any
such H � coincides with shift action ' � on M 0p� q.

3.4 Dissipative equations

We adapt our formalism to travelling-wave equations, where the variational structure
induces a gradient-like structure. Section 3.4.1 contains the general formalism and
Section 3.4.2 contains adaptations to local centre manifolds.

3.4.1 Gradient-like behaviour

Let � P C0
b pR d; Mat d� dpR qqtake its values in the cone of positive de�nite d � d-

matrices. Formally consider the equationut � � � puq� 1r L 2 A 8
�8 puq, which is a gradi-

ent �ow on a Hilbert manifold M modelled overL 2pR ; R dq, with Riemannian metric
given by

gu pv; wq:� x v; � puqwyL 2 pR ;R d q; where v; w PTu M :
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We make the travelling wave ansatzupt; x q � up� q, � � x � ct, with c � 0. This leads
to an equation of the form

� B x r v Epu; u1q � r u Epu; u1q � DSpuqT K � Spuqq � c� puqu1; (3.30)

We will consider CR smooth solutions, whereR � 1 if r v L � 0, or R � 2 otherwise.

Since (3.30) is obtained by considering a gradient �ow in a comoving frame, we
expect (3.30) to be a gradient-like system. Indeed, this turns out to be the case. De�ne
the Lyapunov function L by

Lpuq:� �
�

Epu; u1q � r v Epu; u1q �u1 �
1
2

Spuq �K � Spuq

 �

�
�
�
x � 0

�
1
2

¼

Q

Spupxqq �K px � yqDSpupyqqu1pyq � Spupyqq �K px � yqDSpupxqqu1pxqdx dy:

We then have the following result.

Lemma 3.4.1 (Lyapunov function). The quantity L is monotone under the shift
action ' � on solutions u of (3.30),

Lp' buq � Lp' auq � � c
» b

a
� puqu1 � u1dx; �8   a ¤ b   8 :

Proof. We note that the symmetry group G of (3.30) contains the pure translations
t I du � R . Let � � p 0; 1q Pg, so that u� � u1 and 1� � � 1. Then Lp' � uq � C� puqp� q,
where C� is the conserved quantity corresponding to� . Inspecting the proof of Theo-
rem 3.2.5, we note that the Euler�Lagrange equation (3.9) is used in (3.13), only. Ifu
in turn solves (3.30), we obtain

� c
» b

a
� puqu1 � u� dx � L

�
x; upxq; u1pxq; K � Spuqpxq

�
1�

�
�b
x � a

� r v Lpx; u; u1; K � Spuqq �u�
�
�b
x � a

�
» b

a
r n L

�
x; u; u1; K � Spuq

�
� K � DSpuqu� dx

�
» b

a
DSpuqT K � r n L

�
x; u; u1; K � Spuq

�
� u� dx:

The remainder of the proof of Theorem 3.2.5 transfers without changes, resulting in
the desired expression

C� puqpbq � C� puqpaq � �
» b

a
� puqu1 � u� dx:

We now impose the following additional conditions upon the LagrangianL .

Hypothesis (G). (1) The functions E and S are CR � 1 smooth.

(2) For all u, v, either r v Epu; vq � 0, or r 2
v Epu; vq is invertible. Here r 2

v L denotes
the Hessian with respect to the variablev.



3.4. DISSIPATIVE EQUATIONS 113

De�nition 3.4.2 ( � - and ! -limit sets). Given N € CR
loc pR ; R dq, we de�ne � pN q

to be the � -limit set of N with respect to the shift dynamics on CR
loc pR ; R dq. Thus,

� pN q consists of the accumulation points oft ' � u : �   0; u PN u. Similarly, the
! -limit set ! pN q is de�ned as the set of accumulation points of the forward orbits
t ' � u : � ¡ 0; u PN u.

Theorem 3.4.3 (Gradient-like behaviour). Assume Hypothesis (G) is satis�ed.
Supposeu P CR

b pR ; R dq is a solution of (3.30), bounded in the CR � 1
b pR ; R dq-norm.

Then both � puq and ! puq are nonempty and consists solely of constant functions.
Furthermore, � puq X ! puq � H , unlessu is itself constant.

Proof. Let u be a bounded solution of (3.30) and consider the orbit

O :�
¤

� PR

t ' � uu:

By assumption, the setO is bounded inCR � 1
b pR ; R dq. Using the Hypothesis (G), an el-

liptic bootstrapping argument allows us to conclude that O is bounded inCR � 1
b pR ; R dq.

Therefore, by the Arzelà�Ascoli theorem, O is precompact in CR
loc pR ; R dq.

Now note that, since K PL 1pR ; Mat d� dpR qq, the map

u ÞÑK � Spuq : E X CR
loc pR ; R dq ÞÑCR

loc pR ; R dq

is continuous, for any bounded subsetE € CR
b pR ; R dq. Consequently, the map

u ÞÑ �Bx r v Epu; u1q � r u Epu; u1q � DSpuqT K � Spuqq � c� puqu1

is continuous from E X CR
loc pR ; R dq into C0

loc pR ; R dq. Hence, in particular, the accu-
mulation points of O in CR

loc pR ; R dqare againCR
b pR ; R dq-bounded solutions of (3.30).

We denote the closure ofO in CR
loc pR ; R dq by O.

We are now in a setup where we have a continuous �owp' � q� PR on a compact
metric spaceO, where the �ow possesses a weak Lyapunov functionL . Compactness
of O ensures that ! puq is nonempty. SinceL is monotone along the �ow, it follows
that it is constant on ! puq. The ! -limit set is �ow invariant, that is, if v P ! puq then
' � v P ! puq for all � PR . SinceL is constant on ! puq, we have

d
d�

Lp' � vq � � c� pvqv1p� q �v1p� q � 0; for all � PR :

This tells us that ! puqconsist solely of constant functions. The same argument applies
to � puq. Clearly, if u is not constant, then

Lp! puqq � lim
� Ñ�8

Lp' � uq   lim
� Ñ�8

Lp' � uq � Lp� puqq;

hence in that case� puq and ! puq must be disjoint.

3.4.2 Extension to the centre manifold

We now consider c � 0 as a parameter in (3.30), and we expand a parameter de-
pendent centre manifold around c � 0. We allow for the maps K , E , S to de-
pend on additional parameters � P p� "1; "1qs as well. De�ne the principal symbol
� p : C � p� "1; "1qs� 1 Ñ Mat d� dpR q of (3.30) at u � 0 by

� pp� ; c; � q :� � r 2
v E � p0; 0q� 2 � c� p0q� � r 2

u E � p0; 0q � D 2S� p0qT � 0S� p0q; (3.31)



114 CHAPTER 3. SPATIAL HAMILTONIAN IDENTITIES

where � 0 :�
³
R K 0pr qdr . Likewise, the full symbol � : C � p� "1; "1qs� 1 Ñ Mat d� dpR q

of (3.30) at u � 0 is de�ned by

� p� ; c; � q :� � pp� ; c; � q � DS� p0qT pK � p� qDS� p0q: (3.32)

We then require the following.

Hypothesis (C2 1). We demand that for all � P iR and pc; � q P p�"1; "1qs� 1 the
nondegeneracy conditiondet � pp� ; c; � q � 0 is satis�ed. Furthermore, the map

p�; c; � q ÞÑ |� |} � ppi� ; c; � q� 1}; with � PR ; pc; � q P p�"1; "1qs� 1;

has to be uniformly bounded. If for some� P p� "1; "1qs� 1 the map E � pu; vq is not
constant in v, we require that the map

p�; c; � q ÞÑ |� |2}� ppi� ; c; � q� 1}; with � PR ; pc; � q P p�"1; "1qs� 1;

is uniformly bounded.

Note that this is essentially a localised version of Hypothesis (G). Thus, under Hy-
pothesis (C21), we �nd that small amplitude solutions of (3.30) exhibit gradient-like
behaviour.

In addition to Hypothesis (C21), we require that Hypothesis (C� ) is satis�ed. We
then obtain an unfolding of a parameter dependent centre manifoldM 0pc; � q, for
|c|; |� |   "1. Analogous to Theorem 3.3.7, the Lyapunov functionsL � can be restricted
Ck smoothly to M 0pc; � q.

3.5 Applications

We study the four Examples 3.1.1�3.1.4 with the methods developed in the previous
three chapters.

3.5.1 Periodic stationary patterns in nonlocal Allen�Cahn
equations

Recall from Example 3.1.1 the stationary nonlocal Allen�Cahn equation

� � 0u � K � u � r F puq � 0; (3.33)

where u : R Ñ R d, which possesses a variational structure, with Lagrangian

Lpu; nq � Epuq �
1
2

u � n; E puq � �
1
2

u � � 0u � F puq:

Hamiltonian dynamics. Formally, (3.33) exhibits a Hamiltonian structure, with
Hamiltonian given by

Hpuq �
�

F puq �
1
2

u � � 0u �
1
2

u � K � u

 �

�
�
�
x � 0

�
1
2

¼

Q

upxq �K px � yqu1pyq � u1pxq �K px � yqupyqdx dy;
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where Q � p�8 ; 0q � p 0; 8q , and the presymplectic structure is given by

! pv; wq �
¼

Q

vpxq �K px � yqwpyq � wpxq �K px � yqvpyqdx dy:

Centre manifold reduction. Assume that the kernel K is exponentially localised,
and that the nonlinearity F PCk � 3, k ¥ 2. Moreover, suppose the following.

Hypothesis (Nondegenerate zero solution). We have

r F p0q � 0; and det
�
� 0 � r 2F p0q

�
� 0:

The principal symbol � p (3.25) and full symbol � (3.26) are

� pp� q � � � 0 � r 2F p0q; � p� q � pK p� q � � 0 � r 2F p0q:

Let i` 1; : : : ; i` N ; � i` 1; : : : ; � i` N denote the roots, repeated according to multiplicity,
of the characteristic equation

det � p� q � 0; where � P iR : (3.34)

We then impose the following restriction.

Hypothesis (Nonresonant eigenvalues). The roots of the characteristic equation
(3.34) are nonresonant, that is, there exists no0 � n PZN such that p̀ 1; : : : ; `N q�n � 0.

Under these conditions, Hypothesis (C! ) from Section 3.3 is satis�ed. We note that
dim ker � p� i q � 1 for all 1 ¤ i ¤ N . Choose0 � ei Pker � p� i q, for each 1 ¤ i ¤ N . A
basis for E0 :� ker T is now given by

 i pxq � sinp̀ i xqei ;  �
i pxq � cosp̀ i xqei ; 1 ¤ i ¤ N:

We choose a suitable projectionQ onto E0 € W 1;2
� � pR ; R dq as in the centre manifold

theorem, for example, an orthogonal projection in a weightedL 2 metric. We obtain
a centre manifold M 0 € W 1;2

� � pR ; R dq as the graph of aCk map 	 : E0 Ñ ker Q. On
the centre subspaceE0 we obtain a Hamiltonian H and local symplectic form w

H pu0q:� H
�
u0 � 	 pu0q

�
; wu 0 pv; wq:� !

�
v � D 	 pu0qv; w � D 	 pu0qw

�
:

for u0; v; w P E0. Locally, we obtain the induced Hamiltonian �ow � �
H on E0, de�ned

by
B� � �

H � VH � � �
H ; where � DH pu0q � wu 0 pVH pu0q; �q:

The �ow of � �
H is conjugated, via the mapid � 	 , to the �ow of ' � on M 0.

Existence of periodic solutions. We note that

VH pu0q � B � Q
�
' � u0 � ' � 	 pu0q

� �
�
� � 0 � Q

�
u1

0 � B � ' � 	 pu0q|� � 0

�
;

where we use that the �ow  � on M 0 is di�erentiable. Consequently,

DVH p0qw � Q
�
w1 � B � ' � D	 p0qw|� � 0

�
� w1; for any w PE0;
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where we used thatD 	 p0q � 0. Hence

DVH p0q � B x : E0 Ñ E0:

We then see that the eigenvalues and their algebraic multiplicity of the linearisation
DVH p0q coincide with the roots of (3.34). The non-resonance condition then allows
us to apply the Lyapunov centre theorem, see [2]. The theorem states that for each
1 ¤ i ¤ N , there exists a family ui;s

0 P E0, s P p0; "q, of small periodic solutions of the
Hamiltonian �ow � �

H , such that

lim
sÑ 0

sup
� PR

}� �
H pui;s

0 q}E0 � 0; lim
sÑ 0

periodpui;s
0 q �

2�
` i

:

In light of inequality (3.24), the corresponding periodic orbits

ui;s :� ui;s
0 � 	 pui;s

0 q

on M 0 will be of small amplitude, hence solutions of the unmodi�ed Equation (3.33).

In a similar spirit to the result from Section 3.5.3, when a pair of eigenvalues
coalesce, under suitable Krein signature and nondegeneracy conditions, the birth of
a homoclinic orbit through a Hamiltonian-Hopf bifurcation could be detected. It
is conceivable that, under suitable smoothness and twist assumptions, existence of
invariant tori could be established in a KAM type theorem.

3.5.2 Travelling fronts in neural �eld equations

Recall the equation for travelling waves in the neural �eld equation from Example 3.1.2,

� cu1 � � u � K � S� puq: (3.35)

We consider here the scalar case,u : R Ñ R , S� : R Ñ R , and c � 0. The
convolution kernel K is assumed to be symmetric and exponentially localised, that is,
K pr q � K p� r q and K P W 1;1

� 0
pR ; R q for a su�ciently small � 0 ¡ 0. Furthermore, we

assume that

� 0 :�
»

R
K pr qdr � 0:

The parameter dependent nonlinearity should be of the following form.

Hypothesis (Supercritical pitchfork bifurcation). The map S� is assumed to
be Ck � 3 smooth, k ¥ 2, and of the form

S� puq � u
�
� � � � 1

0 � �u 2
�

� O
�

u2
�
|� | � | u|

� 2
	

; as pu; � q Ñ p0; 0q;

with � ¡ 0.

With this assumption, the constant solutions of (3.35) undergo a supercritical pitchfork
bifurcation as � passes through0.
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Gradient-like behaviour. De�ne smooth cuto� functions � " : R Ñ R by setting

� 1pxq:�

#
1 if |x| ¤ 1;
0 if |x| ¥ 2;

and
� " pxq:� � 1px{"q:

Then de�ne a modi�ed nonlinearity s� by

s� puq:� � " puqS� puq � "
�
1 � � " puq

�
u: (3.36)

Choosing" ¡ 0 su�ciently small, we have, for some "1 ¡ 0,

s1
� puq   0; for all u PR ; � P p� "1; "1q:

Then, for small amplitude solutions, (3.35) is equivalent to

� cs1
� puqu1 � � s1

� puqu � s1
� puqK � s� puq: (3.37)

This is of dissipative form as in Equation (3.30), with

L � pu; nq � E � puq �
1
2

s� puqn; where E � puq � �
» u

0
s1

� pr qr dr;

� puq � � s1
� puq:

Hence, by Lemma 3.4.1 we obtain a Lyapunov function

L � puq � �
�

E � puq �
1
2

s� puqK � s� puq

 �

�
�
�
x � 0

�
1
2

¼

Q

K px � yq
�

s� pupxqqs1
� pupyqqu1pyq � s� pupyqqs1

� pupxqqu1pxq



dx dy: (3.38)

In light of Theorem 3.4.3, solutions of the modi�ed Equation (3.37) have gradient-
like behaviour. Since the modi�ed Equation (3.37) locally coincides with the original
Equation (3.35), we conclude that for small values of� , small amplitude solutions of
(3.35) (with c � 0) exhibit gradient-like behaviour.

Centre manifold reduction. The principal and full symbol from (3.31) and (3.32),
respectively, are

� pp� ; c; � q �
�
� � � � 1

0

��
c� � 1

�
; � p� ; c; � q �

�
� � � � 1

0

��
c� � 1

�
�

1
2

�
� � � � 1

0

� 2 pK p� q:

We readily see that Hypothesis (C� ) is satis�ed.

Note that � � 0 is always a double root of the characteristic equation� p� ; 0; 0q � 0.
Now impose the following restriction upon K .

Hypothesis (Unfolding of the kernel). Assume that

� p� ; c; � q � p � 2 � c� � � qdp� ; c; � q;

where dp� ; c; � q � 0 for all � P iR and |c|; |� |   "1, for some"1 ¡ 0.
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A basis for E0 :� ker T0;0 is now given by

e0pxq � 1; e1pxq � x:

We de�ne the projection Q onto E0 by

Qu :� up0qe0 � u1p0qe1:

This projection extends to W 2;2
� � pR ; R dq, independent of � ¡ 0. We will unfold a

parameter dependent centre manifoldM 0pc; � q € W 2;2
� � pR ; R dq as the graph of a map

	 : E0 � p� "1; "1q2 Ñ ker Q:

We henceforth identify E0 with R 2, via the map

pA; B q ÞÑu0 � Ae0 � B e1:

Through pullback along the map id � 	 , the shift map ' � on M 0pc; � q induces a
parameter dependent smooth �ow � �

c;� on R 2. The function � c;� : R 2 Ñ R de�ned
by

� c;� pA; B q:� L �
�
u0 � 	 pu0; c; � q

�
; u0 � Ae0 � B e1;

is a Lyapunov function for the �ow � �
c;� , wheneverc � 0.

Existence of travelling fronts. We will make use of Conley index theory, see
for example [77] for an overview. First, to compute the index we will employ the
Conley continuation theorem along the parameter� . This relies on the existence of an
isolating neighborhood, uniform in the parameter � . To obtain such a neighborhood,
we compute

� c;� pA; B q � �
1
4

�A 4 �
1
4

� 2

� 2
0

B 2 � o
� �

A2 � | B |
� 2

	
� O

� �
|c| � | � |

��
|A| � | B |

� 2
	

as pA; B; c; � q Ñ p0; 0; 0; 0q; see Appendix 3.A.1 for details. We then impose the
following restriction upon K .

Hypothesis (Positive second moment). We require � 2 ¡ 0.

Using the expansion of� c;� , we then �nd that there exists a neighborhood 0 PV € R 2

such that for any � P p� "1; "1q the �ow � �
c;� is transverse to BV . We again refer to

Appendix 3.A.1 for details of this construction. We can now employ the Conley
continuation theorem, which states that

HCk
�
V; � �

c;� 1

�
� HCk

�
V; � �

c;� 2

�
; for any � 1; � 2 P p� "1; "1q:

For �   0, the set V contains precisely one stationary point of the �ow � �
c;� ,

namely, pA; B q � p 0; 0q. It then follows from the gradient-like behaviour that

HCk
�
V; � �

c;�

�
� HCk

�
tp0; 0qu; � �

c;�

�
; for �   0:

For small � ¡ 0, the set V contains precisely three stationary points of the �ow � �
c;� ,

say, pA; B q � p 0; 0q and pA; B q � p A �
� ; 0q. Suppose however that it does not contain
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a heteroclinic solution betweenp0; 0q and one of the pointspA �
� ; 0q, pA �

� ; 0q. Then, in
light of the gradient-like behaviour of (3.37), we �nd that the invariant set contained
in V is

InvpVq � tp 0; 0qu YI; where tp0; 0qu XI � H :

Here, the set I could consist of only pA �
� ; 0q and pA �

� ; 0q, or it could contain a hete-
roclinic between them. By additivity of the Conley index, for � ¡ 0 we would then
have

HCk
�
V; � �

c;�

�
� HCk

�
tp0; 0qu; � �

c;�

�
` HCk

�
I; � �

c;�

�
:

Combining these results, we would �nd that

HCk
�
tp0; 0qu; � �

c;� �

�
� HCk

�
tp0; 0qu; � �

c;�

�
` HCk

�
I; � �

c;�

�
: (3.39)

Now let us without loss of generality assume thatc ¡ 0. Our hypothesis on the
destabilisation of 0 then implies that p0; 0q is stable for �   0, and a saddle for� ¡ 0.
But then, for small � ¡ 0 we have

HCk
�
tp0; 0qu; � �

c;� �

�
�

#
Z2 if k � 0;
0 otherwise;

HCk
�
tp0; 0qu; � �

c;�

�
�

#
Z2 if k � 1;
0 otherwise:

This contradicts (3.39). We may therefore conclude, the existence of at least one
heteroclinic point pA; B q � p Ah ; Bh q for any given small positive wave speedc ¡ 0
and small � ¡ 0, such that the heteroclinic orbit

”
� � �

c;� pAh ; Bh q is contained in
V , and connectsp0; 0q with one of the points pA �

� ; 0q, pA �
� ; 0q. The de�nition of the

trapping region V ensures that the heteroclinic

uh � Ah e0 � Bh e1 � 	 pAh ; Bh ; c; � q

satis�es
sup
� PR

} ' � uh }W 1; 2
� � pR ;R d q  

"
C0;2;� �

:

Hence by inequality (3.24) we have}uh }C 0
b pR ;R d q   " , so that uh is a solution of the

unmodi�ed Equation (3.35).

If, in addition, we assume that s� is an odd function for each � P p� "1; "1q, we
have the Z2-symmetry upxq ÞÑ �upxq in (3.37). Consequently A �

� � � A �
� , hence

� c;� pA �
� q � � c;� pA �

� q, so that there cannot exist a heteroclinic orbit connectingpA �
� ; 0q

and pA �
� ; 0q. Furthermore, by symmetry considerations, there must then exist at least

two heteroclinic solutions u�
h of (3.35) for small c � 0, � ¡ 0, one connectingp0; 0q

with pA �
� ; 0q, and one connectingp0; 0q with pA �

� ; 0q.

Similar results can be obtained for the vector-valued neural �eld equation, adapting
the assumptions:

(1) For any u, the linearisation DSpuq is positive de�nite.

(2) There exists a function E : R d Ñ R such that r Epuq � � DSpuqu.

(3) The full symbol � pu; c; � q satis�es Hypothesis (C4).
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3.5.3 Solitons and periodic waves in Whitham type equations

We recall from Example 3.1.3 that travelling waves upt; x q � up� q, � � x � ct in
Whitham type equation

ut � 2�uu x �
»

K px � yqux pt; yqdy � 0

satisfy �
�u 2 � cu � K � u


 1

� 0:

Integrating and assuming u Ñ 0 at in�nity, one obtains

�u 2 � cu � K � u � 0: (3.40)

The question of existence of homoclinic and periodic solutions to (3.40) is considered
in for example [36, 37] using a variational approach. We present here an alternative
proof for the existence of small amplitude homoclinics and periodic solutions, using
the Hamiltonian formalism for nonlocal equations. A classical choice for the kernel is
(see [97])

K pxq �
»

R
eix�

d
tanhp� q

�
d�: (3.41)

Unfortunately, the formulation of the results in [42, 44] does not allow for the kind
of mild singularity at the origin that this kernel exhibits. Although, upon inspection,
these assumptions there could in fact be weakened to include such singularities, we will
restrict ourselves here to Whitham type equations where the kernel satis�es Hypothesis
(C3). The problem (3.40) can be written in the slightly more general form

K � u � F 1
cpuq � 0; (3.42)

for some parameter dependent potentialFc : R Ñ R . Motivated by (3.40) and (3.41),
we impose the following restrictions uponK and Fc.

Hypothesis (Critical wave speed). There exists a c� � 0 so that the following
holds.

(1) The kernel K satis�es

pK p� q � c � p� � 2 � c � c� qdp� ; cq; with pK p� q �
»

R
e� �x K pxqdx;

where dp� ; cq � 0 for all � P iR and |c � c� |   "1, for some"1 ¡ 0.

(2) The nonlinearity Fc is Ck � 3 smooth, k ¥ 2, and of the form

Fcpuq � �
1
2

cu2 �
1
3

�u 3 � O
�

u2
�
|u| � | c � c� |

� 2
	

; as pu; cq Ñ p0; c� q;

for some� � 1{3.

A quick calculation shows that the speedc� is the group velocity of linear waves near
u � 0.



3.5. APPLICATIONS 121

Hamiltonian dynamics. Equation (3.42) has a variational structure, with La-
grangian, Hamiltonian, and presymplectic structure,

L cpu; nq � Fcpuq �
1
2

un;

H cpuq � �
�

Fcpuq �
1
2

uK � u

 �

�
�
�
x � 0

�
1
2

¼

Q

K px � yq
�

upxqu1pyq � u1pxqupyq



dx dy;

! pv; wq �
¼

Q

K px � yq
�

vpxqwpyq � wpxqvpyq



dx dy;

(3.43)

with Q � p�8 ; 0q � p 0; 8q .

Centre manifold reduction. Assume that the kernel K is exponentially localised.
The principal and full symbol � p and � from (3.25) and (3.26), are

� pp� ; cq � � c; � p� ; cq � pK p� q � c;

thus satisfying Hypothesis (C� ) near c � c� . A basis for E0 :� ker T0 and a projection
Q onto E0 are

e0pxq � 1; e1pxq � x; Qu :� up0qe0 � u1p0qe1:

The projection extends to W 2;2
� � pR ; R dq, for all � ¡ 0. We will unfold a parameter

dependent centre manifoldM 0pc � c� q € W 2;2
� � pR ; R dq as the graph of a map

	 : E0 � p� "1; "1q Ñ ker Q:

and choose coordinates inE0 via

pA; B q ÞÑu0 � Ae0 � B e1:

Through pullback along the map id � 	 , the shift map ' � on M 0pc � c� q induces a
parameter dependent smooth �ow � �

c on R 2. The function H c : R 2 Ñ R de�ned by

H cpA; B q:� H c
�
u0 � 	 pu0; c � c� q

�
; u0 � Ae0 � B e1;

is the Hamiltonian for the �ow � �
c . The corresponding symplectic formr! pA;B q;c on R 2

is de�ned via the pullback relation

r! pA;B q;cpv; wq:� !
�
v � Du 	 pu0; c � c� qv; w � Du 	 pu0; c � c� qw

�
:

where v; w PR 2.

We note that a parameter independent centre manifold can be expanded around
� � � � for each c ¥ 0. Hence the centre manifold exists for allc P p� "1; 8q and �
close to� � , and the �ow of small amplitude u PM 0pc; � � � � q is Hamiltonian, for all
c ¥ c� .
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Asymptotic expansion of H c. By expanding the centre manifold and the Hamil-
tonian, one computes

H cpA; B q �
1 � 3�

6
A3 �

1
2

pc � c� qA2 �
1
4

� 2B 2

� O
�
A4 � | B |3 � | A|B 2 � | A|3|B | � | c � c� |p|A|3 � | AB | � B 2q � | c � c� |2A2

�

as pA; B; cq Ñ p0; 0; c� q; see Appendix 3.A.2 for a detailed computation. We de�ne
the truncated Hamiltonian

rH cpA; B q �
1 � 3�

6
A3 �

1
2

pc � c� qA2 �
1
4

� 2B 2:

In the following, we discuss the reduced �ow for the case� 2 ¡ 0, as is the case when
K is of the form (3.41). The case� 2   0 yields similar results.

Existence of solitons for c ¡ c� . For c ¡ c� , the geometry of the level set
!

pA; B q : rH cpA; B q � rH cp0; 0q
)

dictates the existence of a homoclinic pointpAh ; 0q in the modi�ed �ow r� �
c on R 2,

de�ned through

B� r� �
c � V€H c

� r� �
c ; where � D rH cpuq � r! pA;B q;cpV€H c

pA; B q; �q:

De�ne the homoclinic orbit

r c
h :� t 0u Y

¤

� PR

 
r� �

c pAh ; 0q
(
:

One readily estimates

distp0; r c
h q � O p|c � c� |q as c Ñ c� :

Consequently, the unperturbed Hamiltonian vector �eld VH c is a C1-small pertur-
bation of V€H c

. Furthermore, note the homoclinic intersects the planeB � 0 trans-
versely. By the reversible symmetrypA; B q ÞÑ pA; � B q, inherited from the symmetry
upxq ÞÑup� xq, the homoclinic will persist in the unperturbed system, for small |c� c� |.
The smallness of the orbit r c

h , combined with inequality (3.24), implies the existence
of a homoclinic uc

h to 0 in the full system (3.42).

Periodic waves. In the regime c ¡ c� , it follows that the homoclinic orbit is shad-
owed by periodic orbits. More precisely, using [95], we see that there exists a family
uc;s , s P p0; "q of periodic orbits, such that

lim
sÑ 0

dist
�
uc;s ; � c

h

�
� 0; lim

sÑ 0
periodpuc;s q � 8 ;

where
� c

h :�
¤

� PR

 
' � uc

h

(
:
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For parameter valuesc   c� , the linearisation of the Hamiltonian �ow at 0 has eigen-
values � i

a
|c � c� |. Arguing as in Section 3.5.1, one proves the existence of a family

uc;s PM 0, s P p0; "q, of periodic solutions of (3.42), such that

lim
sÑ 0

}uc;s }C 0
b pR ;R d q � 0; lim

sÑ 0
periodpuc;s q �

2�
a

|c � c� |
:

We remark here that similar results could have been obtained without the Hamil-
tonian structure, but instead relying on local bifurcation analysis using reversibility,
only.

3.5.4 Wavenumber selection in NLS

Recall from Example 3.1.4 the triggered nonlinear, nonlocal Schrödinger equation

A2 �
�

� pxq �
c2

4



A � DSpAqK � SpAq � 0: (3.44)

Here Spuq � f p|u|2q and we assume� satis�es

� pxq �

#
0 if x ¤ � `;
1 if x ¥ `;

for some value of` ¡ 0. Using the canonical identi�cation C � R 2, we rewrite (3.44)
into a system of real equations,

A2 �
�

� pxq �
c2

4



A � DspAqT k � spAq � 0: (3.45)

where A : R Ñ R 2,

spuq:�
�

f p|A|2q
f p|A|2q



; kpr q:�

�
K pr q 0

0 K pr q



:

Then (3.45) has a variational structure, with Lagrangian

Lpx; u; v; nq � Epx; u; vq �
1
2

spuq �n;

Epx; u; vq � �
1
2

|v|2 �
1
2

�
� pxq �

c2

4



|u|2:

Symmetry and conserved quantity. In this case, the symmetry group of (3.45)
is G � Op2q � t 1u. The Lie algebra g � op2q � t 0u consists of matrices� of the form

� � �
�

0 1
� 1 0



; � PR ; (3.46)

acting on functions u : R Ñ R 2 via left multiplication. Hence the conserved quantity
C� puq as de�ned in Theorem 3.2.5 is of the form

C� puqpxq � r v Epx; u; u1q �u� � B � p' x uq:
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Sinceu ÞÑSpuq is invariant under the G-action on u, we have

DSpuqu� �
d
d�

S
�

expep� � q  u



� 0:

HenceB� p' x uq � 0. Thus
C� puq � � u1pxq ��u pxq:

Note that this quantity is independent of c and � .

Restriction on wavenumbers. We consider the behaviour of (3.45) with a con-
stant potential � , that is,

A2 � �A � DSpAqK � SpAq � 0; (3.47)

where we will have � � � c2{4 near x � �8 and � � 1 � c2{4 near x � �8 . Plane
wavesApxq � expepx� q  A0, with � Pop2q and A0 PR 2zt0u, solve

}� }2 � � � 2� 0f 1
�
|A0|2

�
f

�
|A0|2

�
; (3.48)

with � 0 �
³
R K pr qdr . Now supposeA PC2

b pR ; R 2qsolves (3.45) and connects to plane
wavesA � , that is, � pAq � A � and ! pAq � A � , with � and ! as in De�nition 3.4.2.
SinceA � are planar waves, we haveA1

� � � � A �
0 , hence

C� pA � qpxq � �| � � A �
0 |2:

SinceC� puq must be constant, it must hold that

� | � � A �
0 |2 � lim

x Ñ�8
C� pAqpxq � lim

x Ñ8
C� pAqpxq � �| � � A �

0 |2: (3.49)

Now if, for example,

2� 0f 1
�
|a|2

�
f

�
|a|2

�
 

c2

4
; for all a PR ;

it follows from (3.48) that A � � 0. Hence, in light of (3.49), either � � � 0 or A �
0 � 0.

Likewise, if

2� 0f 1
�
|a|2

�
f

�
|a|2

�
 

c2

4
� 1; for all a PR ;

we haveA � � 0 and therefore either � � � 0 or A �
0 � 0. In both cases, we �nd the

selection of the wavenumber � � 0 for nontrivial plane waves compatible with the
parameter step, based on conservation of the angular momentum associated with the
gauge symmetry.

3.6 Discussion

We considered a class of nonlocal equations, where the nonlocal contribution is in the
form of a symmetric convolution operator. With the aid of a nonlocal analogue of
Green's formula, we derived conserved quantities out of symmetries of the equation.
For translation symmetries up�q ÞÑup� � � q, the associated conserved quantity can
be interpreted as the Hamiltonian of the nonlocal system, generating the �dynamics�
through a symplectic formalism, at least formally, but rigorously on centre manifolds.
We also established gradient-like dynamics when dissipative terms, for instance ad-
vection terms from a travelling-wave ansatz, are added. We comment here on possible
generalisations and limitations to our approach.
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More general nonlocal operators. The speci�c form of a bilinear form composed
of pointwise evaluation and convolution is clearly unnecessarily restrictive. Generali-
sations could include multilinear convolution, singular integral, or pseudo-di�erential
operators. It is conceivable that the Noether theorem extends to such equations. In-
teresting, more general, examples of symmetries would then be nonlocal symmetries
arising through scale invarianceupxq ÞÑ� p� qup� p� qxq. Particular examples in this
direction are nonlocal operators based on fractional powers of the Laplacian. Based
on a local formulation, Hamiltonian identities have been derived in this case [25] and
exploited in existence and uniqueness proofs [48]. The present techniques point to-
wards generalisations beyond the particular, scale-invariant fractional Laplacian with
its interpretation as a local operator in an extended half space.

In�nite-dimensional systems. In this chapter we considered nonlocal equations
where u : R Ñ R d, only. Natural generalisations would extend to u : R Ñ X , where
X is a Hilbert or Banach space. Extending the Noether theorem does not appear to
cause any di�culties and leads to generalised Hamiltonian identities as in [53]. We
caution however that results based on centre manifold reduction or Fredholm theory
would require an extension of [44].

Global Hamiltonian dynamics. It would be interesting and quite useful to �nd
conditions on the kernel K and the underlying function spaces, such that! is non-
degenerate, without restricting to a centre manifold. This would put the nonlocal
equations in the context of Hamiltonian PDEs, as considered for example in [68], pos-
sibly allowing for global Lyapunov centre theorems and KAM theory. A �rst step in
this direction could be an extension of centre manifold theory [42] to neighborhoods
of periodic solutions, comparable to [74], where new questions arise, both in terms
of regularity constraints necessary for the reduction procedure and in terms of the
reduced dynamics.

3.A Computations on the centre manifold

3.A.1 Neural �eld equations

Constructing a trapping region

We construct a small neighborhoodV of p0; 0q for which the �ow of � �
c;� is transverse

to the boundary BV , for a �xed c � 0, but uniform in � P p� "1; "1q, small. First, we
formally expand

	 pA; B; c; � q �
¸

i;j;k;l ¥ 1

A i B j ck � l  i;j;k;l ; where  i;j;k;l Pker Q:

The tangency Du 	 p0; 0; 0; 0q � 0 implies  1;0;0;0 �  0;1;0;0 � 0. For c � � � 0,
Equation (3.37) is invariant under the map upxq ÞÑ �upxq. From this it follows that
	 pA; B; 0; 0q � � 	 p� A; � B; 0; 0q, such that  2;0;0;0 �  0;2;0;0 �  1;1;0;0 � 0.

In order to compute the Taylor expansion � c;� pA; B q, we consider the boundary
term in (3.38),

B� puq �
1
2

¼

Q

K px � yq
�

s� pupxqqs1
� pupyqqu1pyq � spupyqqs1

� pupxqqu1pxq



dx dy:
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Formally, we let
B� puq �

¸

i;j;k;l ¥ 1

A i B j ck � l bi;j;k;l :

First note that

s� puqs1
� pvqw � � � 2

0 uw � �� � 1
0 u3w � 3�� � 1

0 uv2w

� O
� �

|u| � | v|
� 4

|w| � | � ||u||w|
	 (3.50)

as pu; v; w; � q Ñ p0; 0; 0; 0q. In the following, we use the notations

Ppu; vq:�
1
2

¼

Q

K px � yq
�

upxqvpyq � vpxqupyq



dx dy;

� m :�
»

R
r m K pr qdr:

(3.51)

We now compute terms up to orderO
� �

A2 � | B |
� 2

	
in the expansion ofB� .

Terms of order Op|A| � | B |q. From (3.50) we see that the expansion ofB does
not contain linear terms, henceb1;0;0;0 � b0;1;0;0 � 0:

Terms of order OpA2q. At order OpA2q we obtain

b2;0;0;0 � � � 2
0 Ppe0; e1

0q � � � 2
0 Ppe0; 0q � 0:

Terms of order OpB 2q. At order OpA2q we �nd, using Lemma 3.3.6,

b0;2;0;0 � � � 2
0 Ppe1; e1

1q �
1
2

� � 2
0 C1;0� 2 � �

1
4

� 2

� 0
:

Terms of order Op|AB |q. At order Op|AB |q we �nd, using Lemma 3.3.6 and
� 1 � 0 due to K being even,

b1;1;0;0 � � � 2
0

�
Ppe0; e1

1q � Ppe1; e1
0q



� � � 2

0 Ppe0; e1
1q �

1
2

� � 2
0 C0;0� 1 � 0:

Terms of order Op|A|3q. At order Op|A|3q we have, using that  2;0;0;0 � 0,

b3;0;0;0 � � � 2
0 Ppe0;  1

2;0;0;0q � � � 2
0 Ppe0; 0q � 0:

Terms of order OpA2|B |q. At order OpA2|B |q we �nd, using that  2;0;0;0 � 0,
 1;1;0;0 � 0,

b2;1;0;0 � � � 2
0

�
Ppe1;  1

2;0;0;0q � Pp 2;0;0;0; e1
1q � Ppe0;  1

1;1;0;0q � Pp 1;1;0;0; e1
0q



� 0:

Terms of order OpA4q. Finally, at order OpA4q we obtain

b4;0;0;0 � � � 2
0 Pp 2;0;0;0;  1

2;0;0;0q � 2�� � 1
0 Ppe3

0; e1
0q � 6�� � 1

0 Ppe0; e2
0e1

0q � 0:
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We conclude that

B� puq � �
1
4

� 2

� 0
B 2 � o

� �
A2 � | B |

� 2
	

� O
� �

|c| � | � |
��

|A| � | B |
� 2

	

as pA; B; c; � q Ñ p0; 0; 0; 0q.

It remains to compute the expansion of the term

�
�

E � puq �
1
2

s� puqK � s� puq

 �

�
�
�
x � 0

in (3.38). Since ijkl Pker Q, one has ijkl p0q �  1
ijkl p0q � 0, hence

�
�

E � puq �
1
2

s� puqK � s� puq

 �

�
�
�
x � 0

� � E � pAq �
1
2

s� pAqK � s� puq|x � 0 :

Sinceu solves (3.37), one has

K � s� puq|x � 0 �
�
u � cu1

� �
�
x � 0 � A � cB: (3.52)

With this one readily computes that

�
�

E � puq �
1
2

s� puqK � s� puq

 �

�
�
�
x � 0

� �
1
4

�A 4 � O
�

|A|3
�
|� | � | A|

� 2
� | c||A||B |

	
;

as pA; B; c; � q Ñ p0; 0; 0; 0q.

Combining these calculations, we obtain

� c;� pA; B q � �
1
4

�A 4 �
1
4

� 2

� 2
0

B 2 � o
� �

A2 � | B |
� 2

	
� O

� �
|c| � | � |

��
|A| � | B |

� 2
	

;

as pA; B; c; � q Ñ p0; 0; 0; 0q. Interestingly, (3.52) is the only place in the computation
of this expansion where we used thatM 0 consists of solutions of (3.37). Furthermore,
we did not need to compute the Taylor expansion of	 itself.

We now require that p0; 0q is a local maximum of � c;� by imposing the following
restriction upon K .

Hypothesis (Positive second moment). We demand that � 2 ¡ 0.

Let "; " 1 ¡ 0 be as dictated by the parameter dependent centre manifold theorem,
and �x c P p� "1; "1qr t 0u. Given � 1 ¡ 0, de�ne

V :�
"

pA; B q PR 2 :

�
�
�
�
1
4

�A 4 �
1
4

� 2

� 2
0

B 2

�
�
�
�   � 1

*
:

We choose� 1 su�ciently small, so that
�
� u0pxq � 	 pu0qpxq

�
�

W 1; 2
� � pR ;R d q  

"
C0;2;� �

; for pA; B q PV; u0 � Ae0 � B e1;

and the gradient of � c;0 is inward pointing along BV . Here C0;2;� � is the constant
from inequality (3.24). Since � c;� is monotone along the �ow for c � 0, we �nd that
after decreasing� 1 and "1 if needed, for any� P p� "1; "1q the �ow � �

c;� is transverse to
BV .
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3.A.2 Whitham type equations

Expanding the Hamiltonian

Asymptotic expansion of 	 . We formally expand 	 as

	 pA; B; c � c� q �
¸

i;j;k ¥ 1

A i B j pc � c� qk  i;j;k ; where  i;j;k Pker Q:

The tangencyDu 	 p0; 0; 0q � 0 implies  1;0;0 �  0;1;0 � 0. Here we compute the terms
of order O

��
|c � c� ||A| � A2

�
in the expansion of 	 .

Terms Op|c � c� ||A|q. Collecting terms of order Op|c � c� ||A|q, we �nd that

c�  1;0;1 � K �  1;0;1 � e0;  1;0;1 Pker Q:

Substituting the ansatz  1;0;1pxq � � 1;0;1x2 � ' 1;0;1 with ' 1;0;1 P E0 and evaluating
at x � 0 leads to the compatibility condition � 1;0;1� 2 � 1. Hence we �nd that
 1;0;1pxq � � � 1

2 x2 � ' 1;0;1. Then Qp 1;0;1q � ' 1;0;1, and ' 1;0;1 � 0.

Terms of order OpA2q. At quadratic order in A, we �nd

c�  2;0;0 � K �  2;0;0 � � � e0;  2;0;0 Pker Q:

Substituting the ansatz  2;0;0pxq � � 2;0;0x2 � ' 2;0;0 with ' 2;0;0 P E0 and evaluating
at x � 0 leads to the compatibility condition � 2;0;0� 2 � � � . Hence we �nd that
 2;0;0pxq � � �� � 1

2 x2� ' 2;0;0. Then Qp 2;0;0q � ' 2;0;0, from which we �nd ' 2;0;0 � 0.

Asymptotic expansion of H c. We now compute the Taylor expansion ofH cpA; B q.

First, we consider the boundary term in (3.43), that is,

Bcpuq �
1
2

¼

Q

K px � yq
�

upxqu1pyq � u1pxqupyq



dx dy: (3.53)

Formally, we set
Bcpuq �

¸

i;j;k ¥ 1

A i B j pc � c� qk bi;j;k :

In the following, we let P and � m be as de�ned in (3.51). We now compute the
expansion ofB� .

Terms of order OpA2q. At order OpA2q we obtain

b2;0;0 � Ppe0; e1
0q � 0:

Terms of order OpB 2q. At order OpA2q we �nd, using Lemma 3.3.6,

b0;2;0 � Ppe1; e1
1q �

1
2

C1;0� 2 � �
1
4

� 2:

Terms of order Op|AB |q. At order Op|AB |q we �nd, using Lemma 3.3.6 and
� 1 � 0 due to K being even,

b1;1;0 �
1
2

Ppe0; e1
1q �

1
2

C0;0� 1 � 0:



3.A. COMPUTATIONS ON THE CENTRE MANIFOLD 129

Terms of order Op|A|3q. At order Op|A|3q, we have

b3;0;0 � Ppe0;  1
2;0;0q � �

�
� 2

C0;1� 2 � �
�
2

:

Terms of order OpA2|B |q. At order OpA2|B |q, we �nd, using � 3 � 0 due to K
being even,

b2;1;0 � Pp 2;0;0; e1
1q � Ppe1;  1

2;0;0q �
1
2

C2;0� 3 �
�
� 2

C1;1� 3 � 0:

Terms of order Op|c � c� |A2q. The �rst nonzero parameter dependent term is

b1;0;1 � Ppe0;  1
1;0;1q �

1
� 2

C0;1� 2 �
1
2

:

We conclude that

Bcpuq � �
�
2

A3 �
1
2

pc � c� qA2 �
1
4

� 2B 2

� O
�
A4 � | B |3 � | A|B 2 � | A|3|B | � | c � c� |p|A|3 � | AB | � B 2q � | c � c� |2A2

�

as pA; B; cq Ñ p0; 0; c� q. It remains to compute the expansion of the term

�
�

Fcpuq �
1
2

uK � u

 �

�
�
�
x � 0

in (3.43). Since ijk Pker Q, one has ijk p0q �  1
ijk p0q � 0, hence

�
�

Fcpuq �
1
2

uK � u

 �

�
�
�
x � 0

� � FcpAq �
1
2

A K � u|x � 0 :

Using the fact that u solves (3.42), we obtain

K � u|x � 0 � � F 1
cpAq � cA � �A 2 � O

�
|A|

�
|A| � | c � c� |

� 2
	

;

as pA; cq Ñ p0; c� q, hence

�
�

Fcpuq �
1
2

uK � u

 �

�
�
�
x � 0

� � FcpAq �
1
2

AF 1
cpAq �

1
6

�A 3 � O
�

A2
�
|A| � | c � c� |

� 2
	

as pA; cq Ñ p0; c� q.

Combining these calculations, we have obtained the expansion

H cpA; B q �
1 � 3�

6
A3 �

1
2

pc � c� qA2 �
1
4

� 2B 2

� O
�
A4 � | B |3 � | A|B 2 � | A|3|B | � | c � c� |p|A|3 � | AB | � B 2q � | c � c� |2A2

�

as pA; B; cq Ñ p0; 0; c� q.





Chapter 4

Large fronts in nonlocally coupled
systems using Conley�Floer theory

4.1 Introduction

Evolution equations ut � Apuq arise throughout mathematical modelling. Here the
vector �eld A may be given on �nite or in�nite dimensional spaces. Vector �elds on
in�nite-dimensional spaces are usually de�ned on function spaces through nonlinear
functions of state variables and their spatial derivatives. Such vector �elds are often
obtained from a phenomenological point of view, where the spatial derivatives encode
local interactions. Rigorous derivation of such models as a continuum limit of micro-
scopic laws can be daunting and requires that coupling between spatial sitesx and
y is only short-ranged. In this chapter we consider cases where this coupling may
be long-ranged, so that the continuum limit retains nonlocal interaction terms. More
speci�cally, we consider here the class of evolution equations

ut � N � Spuq � r F puq; upt; x q PR d;

where � denotes convolution in the spatial variable x, with either a continuous or
discrete matrix-valued kernel N . The convolution structure embodies the modelling
assumption of translational invariance of physical space. In this chapter we are con-
cerned with front-type solutions in these equations. We develop an index theory, the
Conley�Floer homology, which captures front-type solutions for these nonlocal equa-
tions in a topologically robust manner, by encoding fronts in the boundary operator
of a chain complex. For simplicity we consider 1D fronts only, and assumex P R .
Conceptually, our methods generalise to higher dimensions and can deal with multidi-
mensional fronts, comparable to Chapter 2 and [15], although compactness estimates
appear to become much more delicate.

We refer to [4, 38, 81, 99, 100] for examples of nonlocal models in neurobiology,
and [17, 18, 19, 34, 35, 91] for examples of nonlocal models in material sciences. As a
guiding principle, we present two examples of nonlocal equations to which our results
are applicable.

Example 4.1.1 (Neural �eld equations). Voltage-based neural �eld equations [4,

131
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38],

Bt ui � � ui �
d¸

j � 1

N ij � � j puj q; 1 ¤ i ¤ d; (4.1)

model interactions of d thin layers of neurons through nonlocal synaptic connections.
Here ui represents the average membrane potential of neurons in layeri . Typically,
one thinks of the �spatial variable� x as a feature space, grouping neurons by function
and/or location. The threshold � i : R Ñ R is a smooth sigmoidal input function,
which models the triggering of axonal �ring of neurons in layer i with membrane
potential above a threshold value.

The interaction kernels N ij px � yq encode connections between neurons in layeri
at site x and in layer j at site y. The sign of N ij encodes inhibitory versus excita-
tory connections. Sign changes inN ij can lead to complex stationary patterns. We
make the somewhat speci�c assumption that the interaction kernels encode symmetric
coupling, both in feature space and between layers, i.e.,

N ij pxq � N ij p� xq; and N ij � N ji : (4.2)

Switching to vector notation, with the travelling wave ansatz upt; x q � up� q,
� � x � ct in (4.1), we obtain

cu1 � N � � puq � u � 0; up�q PR d:

Note that now both di�erentiation and the convolution operator act upon the spatial
variable. l

Example 4.1.2 (Nonlocal reaction-di�usion). A di�erent class of examples are
nonlocal reaction-di�usion equations of the gradient form

ut � N � u � r F puq;

where the matrix-valued interaction kernel N may be continuous, discrete, or a com-
bination of these two, and is assumed to be symmetric, as in(4.2). Equations of
this type appear, for example, as models for phase transition [19], and as amplitude
equations in neural �eld models [21]. Typically, the potential F exhibits multiple local
minima. With the travelling wave ansatz upt; x q � up� q, � � x � ct, we obtain the
integro-di�erential equation

cu1 � N � u � r F puq � 0; up�q PR d:

Again, both di�erentiation and the convolution operator act upon the spatial vari-
able. l

For local equations, dynamical systems methods have provided powerful tools to
the study of nonlinear waves. One casts the governing equations as a dynamical sys-
tem in the spatial variable x, which is then considered as a time-like variable, trying to
describe the set of bounded solutions, including periodic, heteroclinic, and homoclinic
solutions. The dynamical systems tools can then be thought of as pointwise methods,
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exploiting the geometry of the �spatial phase space�. Such ideas where already ex-
ploited by Conley, using index theory to study global bifurcations of travelling waves
in local reaction-di�usion equations on the real line [30, 31].

For nonlocal equations, much of the pointwise methods are not readily available.
In fact, it is often not clear how a pointwise formulation as a dynamical system in a
phase space can be recovered, since the nonlocal interactions in space typically gen-
erate forward- and backward delay terms in the time-like spatial variable. Much of
the previous work has therefore relied on variational or perturbative techniques. More
recently, certain dynamical systems techniques have been made available for the study
of nonlocal equations. A �rst approach casts systems with �nite-range interactions as
ill-posed dynamical systems on an in�nite-dimensional phase space, much like elliptic
equations posed on a cylinder, and uses dynamical systems techniques, in particular
invariant manifolds, to study the dynamics; see for instance [57, 59, 60, 72]. A di�erent
avenue evokes dynamical systems techniques without ever setting up a phase space for
a pointwise description, but rather adapting techniques from dynamical systems by
reducing to basic functional analytic aspects; see [43] for geometric singular pertur-
bation techniques, [42] for centre manifold reductions, [87] for bifurcation methods,
Chapter 3 and [16] for Hamiltonian identities. The present work can be viewed as
a continuation of this latter approach, providing a framework for topological index
theory applicable to nonlocally coupled systems.

4.1.1 Outline of main results

Our theory is applicable to Examples 4.1.1 and 4.1.2 withc � 0, i.e., travelling fronts.
After rescaling the spatial variable x, we may assume without loss of generality that
c � 1. These examples then �t within a more general class of equation of the type

u1 � � puq � 0; � puq � r gSpuqT N rSpuqs � r gF puq: (4.3)

Here u : R Ñ R d, and N denotes a convolution-type operator with continuous and/or
discrete kernels, i.e.,

N rvspxq �
»

R
N pyqvpx � yqdy �

¸

j PZ

N j vpx � � j q;

where the kernels are symmetric and exponentially localised. We emphasise that both
the di�erential as well as the nonlocal operation N act on the same variablex. The
nonlinear maps S and F are de�ned through pointwise evaluation. The di�erential
r g denotes the gradient with respect to a Riemannian metricg. Precise conditions
will be formulated in Section 4.2.

Let us point out that to cast Example 4.1.1 into this setup, after rescaling so that
c � 1, we chooseSpuq � p � 1pu1q; : : : ; � dpudqqand de�ne g by setting, for each u PR d,

gu pv1; v2q:�
@
v1; DSpuqv2

D
; v1; v2 PTu R d � R d;

so that r gSpuq � id. Consequently, we chooseF so that r gF puq � � u; such a
potential F exists in light of the diagonal structure of g. For Example 4.1.2 we simply
set Spuq � u and let g be the �at metric on R d.

The travelling front solutions of Examples 4.1.1 and 4.1.2 now correspond to solu-
tions u to (4.3) with upxq Ñ z� as x Ñ �8 , where z� � z� . Denote by � � the shift
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action, de�ned through � � upxq � upx � � q, for � PR . Let � be the set of all uniformly
bounded solutions to (4.3), with the topology inherited of, say, C1

loc pR ; R dq. Since
(4.3) is left invariant by the shift action, shifts formally de�ne a dynamical system on
� , where heteroclinic orbits in this system correspond to travelling front solutions.

In this chapter we develop an index theory, the Conley�Floer homology, for this
shift dynamical system. The construction of the homology follows the recipe of Morse�
Floer homology, but with a slight twist. That is, we do notobtain a variational formu-
lation for heteroclinic solutions of (4.3) and use these heteroclinics as the generators
of the homology, as one familiar with Morse theory might expect. Instead, we en-
code heteroclinic solutions of (4.3) in the boundary operator of an appropriate chain
complex.

Chain complex. We note that restricting � to the constant functions yields a vector
�eld on R d which may be written as r gh, where the potential h is given by

hpzq �
1
2

Spzq � rN Spzq � F pzq; rN �
»

R
N pxqdx �

¸

j PZ

N j :

Note that to obtain this variational structure, we have used the imposed symmetry
(4.2) of rN . The critical points of h are in 1-to-1 correspondence with the constant
solutions of (4.3). Assuming these are all nondegenerate, we take the critical points
of h to be the generators of the homology, graded using the classical Morse index of
h. In Section 4.3 we relate these indices with Fredholm properties of (4.3), along with
presenting various other functional properties of (4.3). Moreover, in Section 4.5 it is
shown that solutions of (4.3) satisfy uniform bounds on kinetic energy and possess
a gradient-like dichotomy. This allows us to de�ne the boundary operator B of the
homology as thebinary count of isolated heteroclinic solutionsof (4.3). The gradient-
like dichotomy is one of the essential ingredients in deriving the fundamental relation
Bn Bn � 1 � 0. We thus obtain a chain complex

� � � Cn Cn � 1 � � �
Bn � 1 Bn Bn � 1

We may perform this construction whilst restricting our attention to solutions of (4.3)
which lie within certain subsets E € L 8 pR ; R dq, which have nice isolating properties
for (4.3); we refer to these sets asisolating trajectory neighbourhoods, which are de�ned
in Section 4.4.4.

Transversality. There is one large caveat. The counting of heteroclinic solutions
of (4.3), needed in order to de�ne the boundary operatorB and verify Bn Bn � 1 � 0,
is only de�ned under certain abstract perturbations of (4.3). In the setting of Morse
theory, where one has a global �ow on a phase space, this condition corresponds to
the transverse intersection of stable and unstable manifolds. By analogy, we refer to
abstract perturbations of (4.3) which make the boundary operator well-de�ned over
an isolating trajectory neighbourhood E as E-transverse perturbations. Fundamental
is the equivariance of these perturbations with respect to translationsu ÞÑ� � u, as
the translation invariance of (4.3) should be retained.

One of the main technical contributions of this chapter is the derivation of a generic
class of perturbations 	 of (4.3), equivariant with respect to translation, which are
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E-transverse. These perturbations appear as an additive term in (4.3), leading to the
perturbed equation

u1 � � puq � 	 puq � 0; � puq � r gSpuqT N rSpuqs � r gF puq: (TWN)

It appears that the mechanism behind these perturbations does not rely on the speci�cs
of (4.3). We are therefore of the conviction that such perturbations may �nd a wide
range of applications in other Floer-type theories.

These perturbations are de�ned in Section 4.2. In Section 4.4.3 we derive estimates
which allow us to control the size of 	 puq in terms of the kinetic energy of u. These
are essential to ensure uniform bounds on the kinetic energy and the gradient-like di-
chotomy of (4.3) over E , derived in Section 4.5, is retained by (TWN) for su�ciently
small 	 , a condition we refer to asE-tameness of	 . The E-tameness of small per-
turbations 	 is proven in Section 4.6, along with the the genericity ofE -tranverse
perturbations. This then accumulates into the following result, which paraphrases
Theorem 4.6.5 and Theorem 4.7.1.

Theorem. There exists a generic class ofE-transverse perturbations 	 of (4.3). For
each such perturbation	 , the boundary operator Bn satis�es the fundamental relation

Bn Bn � 1 � 0:

Consequently, the Conley�Floer homology groups for(TWN)

HFn pE; � ; 	; Z2q:�
ker Bn

img Bn � 1

are well-de�ned.

The homology satis�es various continuation principles, as is typical for Morse�
Floer theories. In particular, up to isomorphism, the homology is independent of the
perturbation 	 . Furthermore, the homology is invariant under homotopies of� which
are stable with respect toE . These results are collected in Section 4.7.

Multivalued dynamics and Morse isomorphism. In Section 4.8 we interpret �
as a multivalued vector �eld on R d, and de�ne isolating blocks for these multivalued
vector �elds. Roughly speaking, these are compact manifolds with cornersB € R d so
that the multivalued vector �eld � is transverse toBB . The boundary then decomposes
as BB � B B � Y BB � Y BB0, where � is pointing inwards (respectively, outwards) on
BB � (respectively, on BB � ), and curves away from B at the corners BB0. Such an
isolating block induces an isolating trajectory neighbourhoodEpB q, which consists of
all maps u : R Ñ int B .

In the absence of nonlocal coupling,� becomes the single-valued vector �eldr gF ,
for which isolating blocks B are well known, and in applications, easily constructed
using Lyapunov functions. When, in the transverse direction onBB , the nonlocal
coupling term r Sp�qT N rSp�qsis (when interpreted as a multivalued vector �eld) uni-
formly smaller than r gF , the set B is an isolating block for the nonlocal equation, as
well. We can then formulate a Morse isomorphism (paraphrasing Theorem 4.8.3).
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Theorem. Suppose that, in the transverse direction onBB , the nonlocal coupling
term r Sp�qT N rSp�qsis (when interpreted as a multivalued vector �eld) uniformly
smaller than r gF . Then

HF � pEpB q; �; Z2q � H� pB; BB � ; Z2q;

where H� denotes the relative singular homology withZ2 coe�cients.

This result indicates the Conley�Floer homology may be interpreted an extension of
the homological Conley index to multivalued vector �elds.

In applications the set of bounded solutions� is often compact. In that case a
global Conley�Floer homology may be de�ned as the Conley�Floer homology associ-
ated with arbitrary large isolating blocks B . A similar Morse isomorphism holds for
the global Conley�Floer homology, but this time the nonlocal coupling term only has
to be �small at 8 � when compared to r gF ; see Theorem 4.8.7.

Forcing theorems. By construction of the Conley�Floer homology, when (part of)
the chain groups are known, we can exploit the relationBn Bn � 1 � 0 to prove existence
and multiplicity of heteroclinic solutions, �rstly, in the perturbed Equation (TWN),
and secondly, using compactness arguments, also in the unperturbed Equation (4.3).
We refer to results of this type as forcing theorems. The following Morse inequality is
an example of such a result (paraphrasing Theorem 4.9.1).

Theorem. Let E be an isolating trajectory neighbourhood for (4.3). Then

2 � #
 

heteroclinic solutions of (4.3) in E , modulo translation
(

¥ #
 

nondegenerate constant solutions of(4.3) in E
(

� rank HF � pE; �; Z2q:

Each of these bounded solutionsu is a heteroclinic, accumulating onto constant solu-
tions of (4.3) as x Ñ �8 . Furthermore, at least one of the limits of upxq as x Ñ �8
or x Ñ 8 is nondegenerate.

Finally, in Section 4.9.2 we return to Examples 4.1.1 and 4.1.2. We compute
the Conley�Floer homology explicitly for speci�c nonlinearities S and F . For the
neural �eld equations consisting of d layers and symmetric interaction kernel, as in
Example 4.1.1, the Conley�Floer homology computes the reduced homology of ad-
sphere, hence it is always of rank1. For the nonlocal reaction-di�usion equations in
Example 4.1.2 with superlinear growth of }r F }, the rank of the homology can be
any natural number, and is determined by the asymptotics of the potential F . This
allows us to derive existence and multiplicity of travelling front solutions. A typical
application is depicted in Figure 4.1.

Outline of this chapter. In Section 4.2 we specify restrictions upon� under which
our theory works. The perturbations 	 are de�ned in this section, as well. Section 4.3
collects various functional analytic results about (TWN). In Section 4.4 we derive
properties of solutions to (TWN) which do not rely on the gradient-like structure.
These include compactness, asymptotics, and kinematic estimates on	 puq. Isolating
trajectory neighbourhoods are also de�ned in this section. A Lyapunov function for
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z1

?

c

uz2

z3

zk � 1

zk

Figure 4.1: For each wave speed c � 0, the existence of k nondegenerate constant solutions z1 ; : : : ; zk ,
where k ¡ rank HF � pE; �; Z 2q, forces existence of a travelling front u, modelling the propagation
(with linear wave speed c) of a spatially homogeneous state z� into an unstable spatially homogeneous
state z� . At least one of these states ( z� or z� ) is one of the speci�ed states z1 ; : : : ; zk , whilst the
other state ( z� or z� , respectively) may be degenerate.

(TWN) is derived in Section 4.5, under a technical assumption on	 , which we refer to
asE-tameness. Using this Lyapunov function we obtain uniform bounds on the kinetic
energy and a gradient-like dichotomy for (TWN). We then introduce the moduli spaces
of heteroclinic solutions, under the hypothesis that the perturbation 	 is E-tame and
E-transverse. The genericity ofE -tame and E-transverse perturbations 	 is veri�ed
in Section 4.6. Section 4.7 contains the de�nition of the Conley�Floer homology as
well as various continuation results. Isolating blocks for multivalued vector �elds and
a Morse isomorphism are discussed in Section 4.8. Finally, Section 4.9 contains the
derivation of a Morse inequality and various examples of applications.

4.2 Problem setup

The goal of this section is to provide a concise description of the restrictions we put
upon the various parameters occurring in (TWN). More precisely, we specify condi-
tions on the nonlocal operator N and the local nonlinear mapsS, F , and the Rie-
mannian metric g, all occurring in the de�nition of � . We also construct the spaces
of perturbations 	 .

4.2.1 Description of the class of equations

Throughout this chapter, we denote by | � | the Euclidean norm on Fd, where F � R
or F � C. We write Mat n 1 � n 2 pFqfor the space ofn1 � n2 matrices with coe�cients in
the �eld F, and denote by} � } the operator norm on Mat n 1 � n 2 pFq. Norms on function
spaces, consisting of functions taking values onFd or Mat n 1 � n 2 pFq, will always be
de�ned in terms of these norms.

We now specify restrictions upon the function

� puq:� r gSpuqT N rSpuqs � r gF puq

appearing in (TWN). Typically, in the applications we have in mind, the linearisation
DSpuq is positive de�nite. Consequently, we could choose the Riemannian metric
gu pv1; v2q �

@
v1; DSpuqv2

D
for v1; v2 P Tu R d � R d, so that Equation (TWN) reduces

to
u1 � N rSpuqs � r gF puq � 0:
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We allow for other types mapsS and Riemannian metricsg as well, since it gives more
�exibility once we wish to compute the homology groups.

The map S is assumed to map fromR d into R D , for some �intermediate dimension�
D . The nonlocal operator N acts on mapsR Ñ R D . The local term F is a potential
on R d, and g is a Riemannian metric onR d. The g-gradient of S is de�ned element-
wise, thus, the term r gSpuq is a D � d matrix whose i th row is given by r gSi puqT ,
where S � p S1; : : : ; SD q.

Hypothesis ( N ). The nonlocal operatorN decomposes into continuous and discrete
convolution operators

N rvspxq �
»

R
N pyqvpx � yqdy �

¸

j PZ

N j vpx � � j q:

Here N : R Ñ Mat D � D pR q, N j PMat D � D pR q and � j PR are such that

(1) N pxq � N p� xq, and N pxq � N pxqT ,

(2) N j � N � j and � j � � � � j , and N j � N T
j ,

(3) there exists � 0 ¡ 0 such that
»

R
e� 0 |x |}N pxq}dx   8 ;

¸

j PZ

e� 0 |� j |}N j }   8 :

We now de�ne the matrix rN by

rN :�
»

R
N pxqdx �

¸

j PZ

N j :

Then N rzs � rN z for any constant z PR d.

Hypothesis ( S, g, F ). We impose the following restrictions uponS, g and F .

(1) The function S : R d Ñ R D is C4.

(2) The Riemannian metric g on R d is C3 and trivialisable. More precisely, there
exists a C3 smooth map G : R d Ñ Mat d� dpR q, such that for each u P R d the
matrix Gpuq is positive de�nite, and g is de�ned by

gu pv1; v2q:�
@
v1; Gpuqv2

D
; v1; v2 PTu R d � R d:

(3) The function F : R d Ñ R is C4.

With the choice of the Riemannian metric g comes a natural notion of kinetic
energy.

De�nition 4.2.1 (Kinetic energy). The kinetic energy of u P W 1;2
loc pR ; R dq is de-

�ned by

Ekin puq:�
1
2

»

R
gupx q

�
u1pxq; u1pxq

�
dx;

which may be in�nite.
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Finally, we remark here that the class of nonlinearities� is chosen in such a way
that, formally, � is the gradient of a functional H in the L 2 inner product induced by
g, where H is given by

H puq �
1
2

»

R
Spupxqq �N rSpuqspxqdx �

»

R
F pupxqqdx;

but we caution that (TWN) should not be thought of as a formal gradient �ow of H ,
since the derivative appearing in (TWN) acts on the spatial variable x.

4.2.2 Constant solutions and the Morse function h

De�ne h : R d Ñ R by

hpzq:�
1
2

Spzq � rN Spzq � F pzq; rN �
»

R
N pxqdx �

¸

j PZ

N j :

Denote by crit phq :�
 
z PR d : Dhpzq � 0

(
the set of critical points of h. The per-

turbations 	 , which we de�ne in the next subsection, are assumed to be uniformly
small, and vanish in a neighbourhood ofcrit phq. Hence it follows that critical points
z Pcrit phq correspond to the constant solutions of (TWN).

De�nition 4.2.2 (Hyperbolicity). A critical point z P crit phq is said to be hyper-
bolic if the Hessian matrix Hessg hpzq is nondegenerate. The maph is said to be a
Morse function if all critical points are hyperbolic.

By the Thom transversality theorem any h can be made into a Morse function by
arbitrarily small perturbations of F . Throughout Sections 2�7 we will assume the
following hypothesis.

Hypothesis. We assume the maph is a Morse function.

Towards the end of Section 4.7, after constructing the Conley�Floer homology, we will
drop this hypothesis on h.

De�nition 4.2.3 (Morse index). Given a hyperbolic critical point z Pcrit phq of h,
de�ne its Morse index mh pzq as the dimension of the maximal subspaceE � „ R d on
which the HessianHessg hpzq is negative de�nite.

4.2.3 Construction of perturbations 	

We begin with a construction of functions  � ;� : C0
loc pR ; R dq Ñ C0

loc pR ; R dq which
will form a basis for the space of perturbations	 h .

The spatial localiser � `;z . We �rst de�ne a family of cuto� functions on R . Given
` PN and � ¡ 0, let � `;� : R Ñ R be given by

� `;� pyq:�

#
e� ` � 1 r1� p2y{ � � 3q2 s� 1

�   y   2�;
0 otherwise;
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We also de�ne � `; 8 � 0. Note that � `;� is smooth, and lim ` Ñ8 � `;� pyq � 1p�; 2� qpyq.

Now de�ne � : crit phq Ñ p0; 8s by

� pzq:�
1
3

inf
z1Pcrit phq

z1� z

|z1 � z|; z Pcrit phq; (4.4)

with the convention that the in�mum over an empty set equals 8 . Sinceh is assumed
to be a Morse function, the critical points crit phq form a discrete subset ofR d, hence
� pzq ¡ 0. For given ` PN and z Pcrit phq, de�ne � `;z : R d Ñ R by

� `;z puq:� � `;� pzqp|u � z|q:

This construction is made such that that the support of � `;z puq is bounded away from
crit phq by a distance � pzq. It will be useful to identify � `;z with the induced smooth
map

� `;z : C0
loc pR ; R dq Ñ C0

loc pR ; R q; upxq ÞÑ� `;z pupxqq:

The basic perturbations  � ;� . Let

� h :� tp `; z1; z2q PN � crit phq � crit phq : z1 � z2u:

For a given � � p � 1; � 2q PR 2 and � � p `; z1; z2q P� h , we now de�ne a basic perturba-
tion  � ;� : C0

loc pR ; R dq Ñ C0
loc pR ; R q by

 � ;� puq|x :� � `;z 1 puq|x � � 1
� `;z 2 puq|x � � 2

:

It will also be convenient to de�ne  � : C0
loc pR ; R dq Ñ C0

loc pR 2; R q by

 � puq|� :� � `;z 1 puq|� 1
� `;z 2 puq|� 2

;

so that
 � ;� puq|x �  � puq|px;x q� � :

Some intuition. At this stage we can motivate the usefulness of this class of
perturbations. Figure 4.2 gives a graphical depiction of the situation. Suppose
u P C1

loc pR ; R dq is a solution of (TWN) such that upxq Ñ z� as x Ñ �8 , where
z� P crit phq. Then the curve x ÞÑupxq must tranverse the annulus with inner and
outer radii � pz� q and 2� pz� q centred at z� , so that as ` Ñ 8 , the spatial localiser
� `;z � puqconverges to an indicator function with compact and nonempty support. Like-
wise, the spatial localiser� `;z � puqconverges to an indicator function with compact and
nonempty support. Let

xL :� ess inf
�

supp
�
� `;z � puq

��
; and xR :� ess sup

�
supp

�
� `;z � puq

��
:

Then, given x0 PR and su�ciently small " ¡ 0, let

� 1px0; "q :� x0 � xL � "; � 2px0; "q :� x0 � xR � ":

It follows that

lim
` Ñ8

 p̀ ;z � ;z � q;p� 1 px 0 ;" q;� 2 px 0 ;" qqpuq � 1px 0 � ";x 0 � " q;
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so that
1
2"

 p̀ ;z � ;z � q;p� 1 px 0 ;" q;� 2 px 0 ;" qqpuq á � x 0

as ` Ñ 8 and " Ñ 0. Therefore, if u is a solution of (TWN) in the unperturbed case
	 � 0, which is singular in the sense that the set of all bounded solution of (TWN)
lacks regularity (with respect to some appropriately chosen topology) in the vicinity
of u, we can smoothen the singularity by adding a perturbation	 which approximates
a delta peak nearu. A precise argument will be postponed to Section 4.6.

Spaces of perturbations 	 . We now de�ne a module of perturbations 	 by taking
R d-linear combinations of the basic perturbations � ;� . If � h � H , Equation (TWN)
has at most 1 constant solution. In that case we will not require any perturbation,
and set 	 � 0. Henceforth assume� h � H . Given a map � : � h � R 2 Ñ R d, we
de�ne

	 puq:�
¸

� P� h

¼

R 2

� p�; � q � ;� puqd� (4.5)

and

}	 } 	 h :�
¸

� �p `;z 1 ;z2 qP� h

¼

R d

`3e� 0 |� |
�

|� p�; � q| � } D � � p�; � q}



d�;

where � 0 is as in Hypothesis (N ). We note that

sup
uPC 0

loc pR ;R d q
} � ;� puq}L 8 pR ;R q ¤ 1:

Hence, whenever}	 } 	 h   8 , the sum and integrals in (4.5) converge inC1
loc pR ; R dq, in

the sense of Bochner integration, with rates of convergence uniform inu PC0
loc pR ; R dq.

We now de�ne a vector space	 h of perturbations, consisting of all maps	 of the
form (4.5) with }	 } 	 h   8 . Then p	 h ; } � } 	 h q is a separable Banach space.

It will also be convenient to introduce the notation � � p� q :� � p�; � q, and then
de�ne 	 � : C0

loc pR ; R dq Ñ C1
loc pR ; R dq by

	 � puq|x :� � � �  � puq|px;x q �
¼

R 2

� p�; px; x q � � q  � puq|� d�:

Thus, elements	 P 	 h are of the form

	 puq �
¸

� P� h

	 � puq: (4.6)

R-admissible perturbations. We now return to the relation between crit phq and
constant solutions of (TWN). By construction 	 vanishes in a neighbourhood of
crit phq, so that any critical point of h is a constant solution of (TWN). The reverse
inclusion requires further restrictions upon 	 , as given in the following hypothesis.

De�nition 4.2.4 ( R -admissible perturbations). Given R ¥ 0, a perturbation
	 P 	 h is said to beR-admissible if the constant solutionsz of (TWN) with |z| ¤ R
are in one-to-one correspondence with the critical points ofh inside the ball of radius
R.
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x

upxq

xL xR

x

z�

z�

x
px0 � "; x 0 � "q

Figure 4.2: Construction of the basic perturbation  � ;� . Top: Graph of a curve u : R Ñ R d with
upxq Ñ z� as x Ñ �8 . Lightly shaded area indicates support of � `;z � , and darkly shaded area
indicates support of � `;z � . Middle: The spatial localisers � `;z � (dotted line) and � `;z � (dashed
line). Bottom: The construction of the basic perturbation  �; p� 1 px 0 ;" q;� 2 px 0 ;" qq (solid line), with
� � p `; z � ; z� q. Dotted line depicts � `;z � px � � 1px0 ; " qq. Dashed line depicts � `;z � px � � 2px0 ; " qq.

The following lemma demonstrates thatR-admissible perturbations form open sub-
sets of the spaces of perturbations. In particular, as	 � 0 is obviously R-admissible,
this shows that R-admissible perturbations exist, for any givenR ¥ 0.

Lemma 4.2.5. Let R ¥ 0 and suppose	 0 P 	 h is an R-admissible perturbation.
Then there exists " ¡ 0 such that any 	 P 	 h with }	 � 	 0} 	 h   " is R-admissible.

Proof. If z P crit phq, then � pzq � 	 pzq � � pzq � r ghpzq � 0. On the other hand,
suppose� pzq � 	 pzq � 0 and |z| ¤ R. Let � : crit phq Ñ p0; 8s be as de�ned in (4.4),
and set

� R :� inf
z0 Pcrit phq

|z0 |¤ R

� pz0q:

The de�nition of 	 ensures that 	 pzq � 0 if z is at most a distance � R away from
crit phq. We will now specify a choice of" ¡ 0 for which this is the case. Denote by
B r pv0q �

 
v PR d : |v � v0| ¤ r

(
the closed ball of radiusr around v0 in R d. Now
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set

" :� inf

$
&

%
|� pvq � 	 0pvq| : v PBR p0qr

¤

zPcrit phq

B � R pzq

,
.

-
;

and note that since 	 0 is R-admissible it follows that " ¡ 0. If }	 � 	 0} 	 h   " , we
have

|� pzq � 	 0pzq| ¤ |� pzq � 	 pzq| � | 	 pzq � 	 0pzq| � | 	 pzq � 	 0pzq|

¤ } 	 � 	 0} 	 h   ";

so that per de�nition of " the point z is at most a distance� R away from crit phq. The
de�nition of the perturbation 	 then ensures that 	 pzq � 0, from which it follows
that r ghpzq � � pzq � � pzq � 	 pzq � 0.

4.3 Functional properties

Note that solutions of (TWN) are the zeroes of the map

Bx � � p�q � 	 p�q;

where
� puq � r gSpuqT N rSpuqs � r gF puq:

In this section we will study various functional analytic properties of this map.

4.3.1 Continuity in compact-open topology

We outline some properties of the map

Bx � � p�q � 	 p�q: C1
loc pR ; R dq Ñ C0

loc pR ; R dq:

We start out with a general continuity result for convolution operators.

Lemma 4.3.1. Let m; n PN , and choose

K PL 1pR m ; Mat n � n pR qq; and pK j qj P`1pZ; Mat n � n pR qq;

and p� j qj PZ € R m . For v PL 8 pR m ; R n q de�ne

Krvspxq:�
»

R m
K pyqvpx � yqdy �

¸

j PZ

K j vpx � � j q:

Let k P N Y t 0u, and supposepvj qj € Ck
loc pR m ; R n q is a sequence converging in

Ck
loc pR m ; R n qto v8 . Assume further that supj }vj }W k; 8 pR m ;R n q   8 . Then it follows

that Krvj s Ñ Krv8 s in Ck
loc pR m ; R n q as j Ñ 8 .

Proof. We prove the result for k � 0 and n � 1; the general result follows from this,
�rst for k � 0 and arbitrary n by applying this result elementwise to the matrix-vector
multiplications, and then for arbitrary k by di�erentiation under the integral sign and
repeatedly applying the convergence result forC0

loc pR m ; R n q. The result for k � 0 and
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n � 1 follows from the following slightly more general result. Suppose� is a signed
Radon measure of bounded variation onR m , and for w PL 8 pR m ; R q de�ne

pw � � qpxq:�
»

R m
wpx � yqd� pyq:

We will show that if pwj qj € C0
loc pR m ; R q is a sequence converging inC0

loc pR m ; R q to
w8 , and supj }wj }L 8 pR m ;R q   8 , then wj � � Ñ w8 � � in C0

loc pR m ; R q.

Since� is a signed Radon measure of bounded variation, given� ¡ 0 we may �nd
a compact setF € R m such that

|� |pR m r F q   �;

hence, assupj }wj }L 8 pR m ;R q   8 , we �nd that given " ¡ 0 there exists compact
F € R m such that for all j PN Y t8u

sup
x PR m

�
�
�
�

»

R m r F
wj px � yqd� pyq

�
�
�
�   " {4:

Now let E € R m be another compact subset, and set

E � F :� t x � y : x PE; y PF u € R m :

Then E � F is compact, hence}w8 � wj }L 8 pE � F; R q Ñ 0 as j Ñ 8 . Now

sup
x PE

�
�
�
�

»

F

�
w8 px � yq � wj px � yq

�
d� pyq

�
�
�
� ¤ } w8 � wj }L 8 pE � F; R q|� |pF q;

hence there existsj 0 PN so that

sup
x PE

�
�
�
�

»

F
w8 px � yqd� pyq �

»

F
wj px � yqd� pyq

�
�
�
�   " {2; j ¥ j 0:

Combining these estimates, we conclude that

}w8 � � � wj � � }L 8 pE; R q   " for all j ¥ j 0:

As E and " where chosen arbitrary, we conclude thatpwj � � qj converges inC0
loc pR m ; R q

towards w8 � � .

The term � . We �rst focus on the mapping properties of the map

� : Ck
loc pR ; R dq Ñ Ck

loc pR ; R dq;

for given k P t0; : : : ; 3u.

Lemma 4.3.2. Let k P t0; : : : ; 3u and let pun qn € Ck
loc pR ; R dqbe a sequence converg-

ing Ck
loc pR ; R dq to u8 . Supposesupn }un }W k; 8 pR ;R d q   8 . Then � pun q Ñ � pu8 q in

Ck
loc pR ; R dq.

Proof. The continuity of the nonlocal term N follows from Lemma 4.3.1. Since�
consists of the composition of pointwise evaluations byC3 smooth functions and linear
nonlocal operationsN , the result follows.
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The term 	 . We now collect some mapping properties of

	 : Ck
loc pR ; R dq Ñ Ck � 1

loc pR ; R dq;

for given k PN Y t 0u.

Lemma 4.3.3. Let 	 P 	 h and k P t0; : : : ; 3u, and let pun qn € Ck
loc pR ; R dq be

a sequence which is converging tou8 in Ck
loc pR ; R dq. Suppose in addition that

supn }un }W k; 8 pR ;R d q   8 . Then 	 pun q Ñ 	 pu8 q in Ck � 1
loc pR ; R dq as n Ñ 8 .

Proof. By de�nition of 	 , we have the decomposition

	 puq �
¸

� P� h

	 � puq; 	 � puq|x � � � �  � puq|px;x q :

Di�erentiation under the sum and convolution term are possible by the rapid decay
rate of � � and uniform convergence of the sum. Indeed, inspecting the de�nition of
 � , we see that givenR ¡ 0 there exists CR ¡ 0 so that for k P t0; : : : ; 3u

sup
} u } W k; 8 pR ; R d q¤ R

}Bk
x  � puq}L 8 pR 2 ;R q ¤ CR `k ; where � � p `; z1; z2q P� h :

It is precisely the uniform estimate, combined with the imposed decay rate ofp� � q� ,
which justi�es the di�erentiation under the sum and convolution, yielding

Bk � 1
x 	 puq|x �

¸

� P� h

pr � � q � Bk
x  � puq

�
�
px;x q ;

where the series converges uniformly in}u}W k; 8 pR ;R d q ¤ R. The conclusion of the
lemma then follows by applying Lemma 4.3.1.

Continuity of (TWN) . Finally, we combine all these results to arrive at the follow-
ing continuity theorem.

Theorem 4.3.4. Let k P t0; : : : ; 3u. Supposepun qn is convergent in Ck � 1
loc pR ; R dq,

and supn }un }W k; 8 pR ;R d q   8 , and p	 n qn is convergent in 	 h . Then the sequence

u1
n � � pun q � 	 n pun q

is convergent in Ck
loc pR ; R dq.

Proof. Convergence of the sequencepu1
n � � pun qqn is an immediately consequence of

Lemma 4.3.2. Let 	 8 be the limit point of p	 n qn . Then, for x PR ,

|	 8 pu8 qpxq � 	 n pun qpxq| ¤ |	 8 pu8 qpxq � 	 8 pun qpxq| � | 	 8 pun qpxq � 	 n pun qpxq|

¤ | 	 8 pu8 qpxq � 	 8 pun qpxq| � } 	 8 � 	 n } 	 h :

By Lemma 4.3.3, the �rst term tends to 0 as n Ñ 8 , uniformly for x in compact
subsets ofR . The �nal term converges by assumption. This proves that p	 n pun qqn
converges inC0

loc pR ; R dq towards 	 8 pu8 q. Convergence inCk
loc pR ; R dq is obtained

similarly, exploiting the linear dependence on	 of the term 	 puq.
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4.3.2 Uniform continuity

We now study the restriction of the map Bx � � p�q � 	 p�q to spaces of uniformly
bounded functions. Denote byL 8 pR ; R dq the Banach space of essentially bounded
measurable functionsu : R Ñ R d. For k P N , the Sobolev spaceW k; 8 pR ; R dq
consists of measurable functionsu : R Ñ R d for which the norm

}u}W k; 8 pR ;R d q � } u}L 8 pR ;R d q � }B x u}L 8 pR ;R d q � � � � � }B k
x u}L 8 pR ;R d q

is �nite.

The term � . We �rst focus on the properties of the map � .

Lemma 4.3.5. Given R ¥ 0 there existsCR ¡ 0 such that for k P t0; : : : ; 3u we have
the uniform bound

}� puq}W k; 8 pR ;R d q ¤ CR whenever }u}W k; 8 pR ;R d q ¤ R:

Proof. By Young's convolution inequality, the nonlocal operator N maps bounded
subsets ofW k; 8 pR ; R D q into bounded subsets ofW k; 8 pR ; R D q, for any k PN Y t 0u.
Since the map� consists of the composition of pointwise evaluations byC3 smooth
functions and linear nonlocal operationsN , the result follows readily.

In particular, we obtain a map � : L 8 pR ; R dq Ñ L 8 pR ; R dq. We now inspect the
regularity of this function.

Lemma 4.3.6. The map � : L 8 pR ; R dq Ñ L 8 pR ; R dq is C3.

Proof. The continuity of the nonlocal term N follows from Young's convolution in-
equality. Since � consists of the composition of pointwise evaluations byC3 smooth
functions and linear nonlocal operationsN , the result follows.

The term 	 . We now inspect the map	 .

Lemma 4.3.7. Given R ¥ 0 there exists CR ¡ 0 such that for k P t0; : : : ; 3u and
	 P 	 h we have the uniform bound

}	 puq}W k � 1 ; 8 pR ;R d q ¤ CR }	 } 	 h ; whenever }u}W k; 8 pR ;R d q ¤ R:

Proof. In the proof of Lemma 4.3.3 we derived that, fork P t0; : : : ; 3u, we have the
identity

Bk � 1
x 	 puq|x �

¸

� P� h

pr � � q � Bk
x  � puq

�
�
px;x q :

By Young's convolution inequality it follows that

sup
} u } W k; 8 pR ; R d q¤ R

}Bk � 1
x 	 puq}L 8 pR ;R d q ¤ CR

¸

� �p `;z 1 ;z2 qP� h

`k }r � � }L 1 pR 2 ;Mat d � d pR qq

¤ CR }	 } 	 h :

We thus obtain the function 	 : L 8 pR ; R dq Ñ L 8 pR ; R dq.



4.3. FUNCTIONAL PROPERTIES 147

Lemma 4.3.8. The map 	 : L 8 pR ; R dq Ñ L 8 pR ; R dq is C3.

Proof. As in the proof of Lemma 4.3.3, we make use of the representation

	 puq �
¸

� P� h

	 � puq; 	 � puq|x � � � �  � puq|px;x q :

We note that  � : L 8 pR ; R dq Ñ L 8 pR 2; R q is smooth, and straightforward computa-
tions show that, for any given k P t0; : : : ; 3u and a radius R ¡ 0, there exists CR ¡ 0
such that

sup
} u } L 8 pR ; R d q¤ R

}D k  � puq}L pL 8 pR ;R d qk ;L 8 pR 2 ;R qq ¤ CR lk ; where � � p `; z1; z2q:

The uniformity of this estimate justi�es the di�erentiation under the sum and convo-
lution term appearing in 	 . It follows that

D k 	 puqrv1; : : : ; vk s
�
�
x �

¸

� P� h

� � � D k  � puqrv1; : : : ; vk s
�
�
px;x q

for v1; : : : ; vk PL 8 pR ; R dq, with the estimate

sup
} u } L 8 pR ; R d q¤ R

}D k 	 puq}L pL 8 pR ;R d qk ;L 8 pR ;R d qq ¤ CR

¸

� �p `;z 1 ;z2 qP� h

`k }� � }L 1 pR 2 ;R d q

¤ CR }	 } 	 h :

Continuity of (TWN) . Finally, we combine all these results to arrive at the follow-
ing continuity theorem.

Theorem 4.3.9. The map

W 1;8 pR ; R dq � 	 h Ñ L 8 pR ; R dq; pu; 	 q ÞÑu1 � � puq � 	 puq

is C3.

Proof. The argument is identical to the proof of Theorem 4.3.4, with the only modi-
�cation being the uniform estimate holding over R instead of over compact intervals.

4.3.3 Restriction to path space

Given z� ; z� P crit phq, i.e., hyperbolic constant solutions of (TWN), we de�ne the
path spacePpz� ; z� q to be the W 1;2 Sobolev completion of smooth mapsu : R Ñ R d

with upxq Ñ z� and u1pxq Ñ 0 as x Ñ �8 . Stated di�erently, the path space can be
de�ned as the a�ne Hilbert manifold

Ppz� ; z� q � z � W 1;2pR ; R dq;

where z : R Ñ R d is a chosen smooth path withzpxq � z� for x ¤ � 1 and zpxq � z�

for x ¥ 1.

We now study some of the properties of the mapBx � � p�q � 	 p�qrestricted to the
path spacePpz� ; z� q.
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The map � . We consider the restriction of the map� : C0
loc pR ; R dq Ñ C0

loc pR ; R dq
to the path spacePpz� ; z� q.

Lemma 4.3.10. The function � restricts to a map � : Ppz� ; z� q Ñ L 2pR ; R dq.

Proof. Recall that

r ghpuq � r gSpuqT rN Spuq � r gF puq; rN �
»

R
N pxqdx �

¸

j PZ

N j :

Let z : R Ñ R d be a smooth path with zpxq � z� for x ¤ � 1 and zpxq � z� for
x ¥ 1. Then

r gSpuqT
�

N rSpuqs � rN Spuq



� r gSpuqT
�
N � rN

��
Spuq � Spzq

�
� r gSpuqT Pz ;

Pz �
�
N � rN

�
Spzq:

Now
� puq � r gSpuqT

�
N � rN

��
Spuq � Spzq

�
� r ghpuq � r gSpuqT Pz :

Since z� , z� are hyperbolic critical points of h, the map u ÞÑr ghpuq is C3 smooth
from Ppz� ; z� q into L 2pR ; R dq, see also [90]. So we just have to prove the mapping
property for r gSpuqT

�
N � rN

��
Spuq � Spzq

�
and the remainder term r gSpuqT Pz .

For both these terms, we remark that the prefactor r gSpuqT is a C3 smooth map
from Ppz� ; z� qinto L 8 pR ; Mat d� D pR qq. Indeed, by Morrey's inequality the inclusion
Ppz� ; z� q ãÑ L 8 pR ; R dq is a smooth map. By the hypotheses ong and S, the map
r gSp�qT : R d Ñ Mat d� D pR q is C3 smooth. Hence the Nemytskii operator

r gSp�qT : Ppz� ; z� q Ñ L 8 pR ; Mat d� D pR qq; upxq ÞÑr gSpupxqqT

is C3 smooth. It thus su�ces to check that the functions
�
N � rN

��
Spuq � Spzq

�
and

Pz map Ppz� ; z� q into L 2pR ; R D q.

Let R :� } u � z}L 8 pR ;R d q � } z}L 8 pR ;R d q, and L S;R :� sup|v |¤ R }DSpvq}, so that
by the mean value theorem we obtain the Lipschitz estimate

|Spupxqq � Spzpxqq| ¤ L S;R |upxq � zpxq|:

By Young's convolution inequality, we have
�
� � N � rN

��
Spuq � Spzq

� ��
L 2 pR ;R D q ¤ C}Spuq � Spzq}L 2 pR ;R D q

¤ CLS;R }u � z}L 2 pR ;R d q   8 ;
(4.7)

where
C � } N p�q}L 1 pR ;Mat d pR qq � }p N j qj } ` 1 pZ ;Mat d pR qq � } rN }:

Henceu ÞÑ
�
N � rN

��
Spuq � Spzq

�
maps Ppz� ; z� q into L 2pR ; R D q.

For the remainder term Pz , remark that for any x ¤ � 1 one has

Pzpxq � N rSpzqspxq � rN Spz� q � N rSpzq � Spz� qspxq

�
» x � 1

�8
N pyq

�
Spzpx � yqq � Spz� q

�
dy �

¸

j PZ
� j   x � 1

N j
�
Spzpx � � j qq � Spz� q

�
;
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so that, in light of the exponential localisation of N p�q and pN j qj , we obtain the
estimate }Pz }L 2 pp�8 ;� 1q;R D q   8 . Similarly we obtain }Pz }L 2 pp1;8q ;R D q   8 . Clearly
}Pz }L 2 pp� 1;1q;R D q ¤ 2}Pz }L 8 pp� 1;1q;R D q   8 . We conclude that Pz P L 2pR ; R D q, as
desired.

Lemma 4.3.11. The map � : Ppz� ; z� q Ñ L 2pR ; R dq is C3.

Proof. Again we make use of the decomposition

� puq � r gSpuqT
�
N � rN

��
Spuq � Spzq

�
� r ghpuq � r gSpuqT Pz :

We already remarked that r ghp�q : Ppz� ; z� q Ñ L 2pR ; R dq is C3 smooth. Like-
wise, we argued thatr gSp�qT : Ppz� ; z� q Ñ L 8 pR ; Mat d� D pR qqis C3 smooth. The
remainder Pz is independent ofu hence trivially depends smoothly onu.

Finally, consider the map
�
N � rN

��
Sp�q � Spzq

�
: Ppz� ; z� q Ñ L 2pR ; R D q. Let

R :� 2}u0}L 8 pR ;R d q, and L S;R :� sup|v |¤ R }DSpvq}. Using an estimate identical to
(4.7), we �nd that whenever u PPpz� ; z� qis such that }u� u0}L 8 pR; R d q ¤ } u0}L 8 pR ;R d q,
it follows that

�
�
�
�
�
N � rN

��
Spuq � Spzq

�
�

�
N � rN

��
Spu0q � Spzq

�
�
�
�
�

L 2 pR ;R d q

� }
�
N � rN

��
Spuq � Spu0q

�
}L 2 pR ;R d q

¤ CLS;R }u � u0}L 2 pR ;R d q:

This established continuity. Finally, C3 smoothness of the map
�
N � rN

��
Sp�q � Spzq

�
: Ppz� ; z� q Ñ L 2pR ; R D q

is established by di�erentiation under the integral sign, which is justi�ed by the rapid
decay of the convolution kernels.

The map 	 . By de�nition, any 	 P 	 h is a map 	 : C0
loc pR ; R dq Ñ C1

loc pR ; R dq.
As such, it can be restricted to the path spacePpz� ; z� q. We now consider some of
the properties of this restriction.

Lemma 4.3.12. Any 	 P 	 h restricts to a map 	 : Ppz� ; z� q Ñ L 2pR ; R dq.

Proof. Recall from (4.6) that 	 can be written as

	 puq �
¸

� P� h

	 � puq; 	 � puq|x � � � �  � puq|px;x q ;

where
 � puq|p� 1 ;� 2 q � � `;z 1 puq|� 1

� `;z 2 puq|� 2
; � � p `; z1; z2q P� h :

By de�nition we have 0 ¤ � `;z 2 puq ¤ 1, which allows us to estimate

| 	 � puq|x | ¤ � � � � `;z 1 puq|x ; � � pr q:�
»

R
|� � pr; sq|ds:
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Applying Young's convolution inequality, we have

}	 � puq}L 2 pR ;R d q ¤ } � � � � `;z 1 puq}L 2 pR ;R d q ¤ } � � }L 1 pR 2 ;R d q}� `;z 1 puq}L 2 pR ;R q;

where we used}� � }L 1 pR ;R d q � } � � }L 1 pR 2 ;R d q. We will now bound }� `;z 1 puq}L 2 pR ;R q,
uniformly in ` and z1. Set R :� } u}L 8 pR ;R d q, let � : crit phq Ñ p0; 8s be as given in
(4.4), and de�ne

� R :� inf
zPcrit phq

|z|¤ R

� pzq:

The de�nition of � `;z 1 ensures that, wheneverinf zPcrit phq |upxq � z|   � R , it follows
that � `;z 1 puq|x � 0. Therefore,

}� `;z 1 puq}L 2 pR ;R q ¤

d

vol
�"

x PR : inf
zPcrit phq

|upxq � z| ¥ � R

*

:

The right hand side is �nite since u PPpz� ; z� q. Hence the series	 puq �
°

� P� h
	 � puq

converges inL 2pR ; R dq, and

}	 puq}L 2 pR ;R d q ¤ } 	 } 	 h

d

vol
�"

x PR : inf
zPcrit phq

|upxq � z| ¥ � R

*

:

In fact, this estimate holds uniformly in u, whenever}u}L 8 pR ;R d q ¤ R.

Lemma 4.3.13. The map 	 : Ppz� ; z� q Ñ L 2pR ; R dq is C3.

Proof. Let us �rst address continuity. Let pun qn € Ppz� ; z� qbe a sequence, converg-
ing to u8 PPpz� ; z� q. Then

	 pu8 q|x � 	 pun q|x �
¸

� P� h

� � � p � pu8 q �  � pun qq|px;x q :

Note that, with � � p `; z1; z2q,

p � pu8 q �  � pun qq|p� 1 ;� 2 q � p � `;z 1 pu8 q � � `;z 1 pun qq|� 1
� `;z 2 pu8 q|� 2

� � `;z 1 pun q|� 1
p� `;z 2 pu8 q � � `;z 2 pun qq|� 2

:

As each term in the right hand side is the product of bounded functions in� 1 with
bounded functions in � 2, we may use an identical estimate as the one used in the proof
of Lemma 4.3.12 to derive that

}	 pu8 q � 	 pun q}L 2 pR ;R d q

¤
¸

� �p `;z 1 ;z2 qP� h

}� � }L 1 pR 2 ;R d q}� `;z 1 pu8 q � � `;z 1 pun q}L 2 pR ;R q

�
¸

� �p `;z 1 ;z2 qP� h

}� � }L 1 pR 2 ;R d q}� `;z 2 pu8 q � � `;z 2 pun q}L 2 pR ;R q:

(4.8)

Now remark that the Nemytskii operator

� `;z i p�q: Ppz� ; z� q Ñ L 2pR ; R q; upxq ÞÑ� `;z i pupxqq
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is smooth. This follows from the pointwise smoothness of� `;z i : R d Ñ R , and the
fact that � `;z i maps Ppz� ; z� q into compactly supported functions. We now conclude
from (4.8) that 	 pun q Ñ 	 pu8 q in L 2pR ; R dq as n Ñ 8 .

As for smoothness of	 , recall from Lemma 4.3.8 that 	 : L 8 pR ; R dq Ñ L 8 pR ; R dq
is C3 smooth, with for k P t0; : : : ; 3u

D k 	 puqrv1; : : : ; vk s
�
�
x �

¸

� P� h

� � � D k  � puqrv1; : : : ; vk s
�
�
px;x q (4.9)

for v1; : : : ; vk P L 8 pR ; R dq. It thus su�ces to check that the right hand side of (4.9)
converges inL 2pR ; R dq, whenever u P Ppz� ; z� q and v1; : : : ; vk P W 1;2pR ; R dq, and
depends continuously onu. Here we note that, just as for  � puq|p� 1 ;� 2 q, the expression
D k  � puqrv1; : : : ; vk s

�
�
p� 1 ;� 2 q can be written as (linear combination of) products of com-

pactly supported functions in � 1 and compactly supported functions in � 2. We can
thus apply estimates identical to those used in proving the continuity of 	 to conclude
	 : Ppz� ; z� q Ñ L 2pR ; R dq is C3 smooth.

Smoothness of (TWN) on path space. Combining the previous lemmata, we
obtain the following.

Theorem 4.3.14. The map

Ppz� ; z� q � 	 h Ñ L 2pR ; R dq; pu; 	 q ÞÑu1 � � puq � 	 puq

is C3.

Proof. Smoothness of the mapu ÞÑu1� � puq is already established in Lemma 4.3.11.
By Lemma 4.3.13 the map

Ppz� ; z� q � 	 h Ñ L 2pR ; R dq; pu; 	 q ÞÑ	 puq

is C3 in u. Since this map depends linearly on	 , the C3 smoothness follows from a
diagonal argument, comparable to the proof of Lemma 4.3.4.

4.3.4 Fredholm indices

We will now investigate Fredholm properties of the map

Bx � � p�q � 	 p�q: Ppz� ; z� q Ñ L 2pR ; R dq:

We �rst consider the case wherez� � z� . We recall from De�nition 4.2.2 that a
critical point z P crit phq is said to be hyperbolic if the Hessian matrixHessg hpzq is
nondegenerate.

Lemma 4.3.15. A critical point z Pcrit phq is hyperbolic if and only if

Bx � D � pzq: W 1;2pR ; R dq Ñ L 2pR ; R dq

has a bounded inverse.



152 CHAPTER 4. LARGE FRONTS IN NONLOCALLY COUPLED SYSTEMS

Proof. Using the Fourier transform, solving v1� D � pzqv � w is equivalent to solving

LV � W; x�yVp�q PL 2pR ; Cdq; W PL 2pR ; Cdq; (4.10)

where x� y �
a

1 � | � |2 and L : R Ñ LpCd; Cdq is the multiplication operator de�ned
by

Lp� qv � i�v � r gSpzqT pN p� qrDSpzqvs � Pzv;

with Pz PLpCd; Cdq de�ned by

Pzv �
�
D rr gST spzqv

� rN Spzq � Drr gF spzqv;

and
pN p� q �

»

R
N pxqe� ix� dx �

¸

j PZ

N j e� i� j � :

Exponential localisation in Hypothesis (N ) ensures that pN P W 1;2pR ; Mat D � D pCqq.
Thus by Morrey's inequality pN is continuous and} pN p� q}L 8 pR ;Mat D � D pC qq   8 . Con-
sequently, L is continuous. Invertibility of (4.10) thus implies that Lp0q is invertible.
Now note that

Lp0q � r gSpzqT rN DSpzq �
�
D rr gST spzqr�s

� rN Spzq � Drr gF spzq � Drr ghspzq;

which is invertible if and only if Hessg hpzq is invertible. Thus invertibility of

Bx � D � pzq: W 1;2pR ; R dq Ñ L 2pR ; R dq

implies hyperbolicity of z as a critical point of h.

Now supposez is a hyperbolic critical point of h. As we saw, this is equivalent to
Lp0q being invertible. Then, by a Von Neumann series, there exists" so that Lp� q is
invertible, for |� |   " , with sup|� |  " }Lp� q� 1}   8 . Since by Hypothesis (N ) we have

N pr q � N p� r q, N j � N � j , and � j � � � � j , we �nd that Im pN p� q � 0 for any � P R .
Hence Im Lp� q � � id is a nonzero multiple of the identity for � � 0. Thus Lp� q is
invertible for all values of � P R . SinceLp� q � i� id is uniformly bounded in � P R , it
follows that for large values of|� | the operator Ap� q:� � � 1Lp� qis a small perturbation
of the identity. Hence }Ap� q� 1} ¤ 2 for su�ciently large values of |� |. It follows that
}Lp� q� 1} ¤ 2{| � | for su�ciently large � . We conclude that

}Lp� q� 1} ¤
C

1 � | � |
; � PR

for someC ¡ 0. This implies (4.10) is solvable, hence proves that hyperbolicity ofz
as a critical point of h is su�cient to ensure invertibility of the map Bx � D � pzq.

Since we assumeh is a Morse function, all critical points of h are hyperbolic, so
that by the preceding lemma the linearisation of (TWN) around a constant solution
is always invertible.

The following lemma indicates that Bx � � p�q � 	 p�qand Bx � � p�qbelong to the
same Fredholm region.
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Lemma 4.3.16. For any u PPpz� ; z� q, the linearisation

D 	 puq: W 1;2pR ; R dq Ñ L 2pR ; R dq

is a compact operator.

Proof. By (the proof of) Lemma 4.3.13, we haveD 	 puq �
°

� P� h
D	 � puq, where the

series converges in the operator norm. Hence it su�ces to see thatD 	 � puqis compact.
Now D	 � puq is given by

D 	 � puqv|x � � � �
�
D � puqv

� ��
px;x q ; v PW 1;2pR ; R dq; x PR ;

where the convolution with � � de�nes a bounded linear map from L 2pR 2; R q into
L 2pR 2; R dq. Hence it su�ces to see that D � puq : W 1;2pR ; R dq Ñ L 2pR 2; R q is
compact. With � � p `; z1; z2q, we have

D � puqv|p� 1 ;� 2 q � � `;z 2 puq|� 2

�
D� `;z 1 puqv

� ��
� 1

� � `;z 1 puq|� 1

�
D� `;z 2 puqv

� ��
� 2

: (4.11)

By Morrey's inequality, the function u : R Ñ R d is 1
2 -Hölder continuous. Let

B € R d be a bounded neighbourhood ofupR q. Then, for i P t1; 2u, the function
D� `;z i : R d Ñ LpR d; R q restricts to a smooth bounded Lipschitz map

D� `;z i |B : B Ñ LpR d; R q:

Hence the compositionD� `;z i puq : R Ñ LpR d; R q is 1
2 -Hölder continuous and uni-

formly bounded. Moreover, the fact that upxq Ñ z� as x Ñ �8 , combined with the
de�nition of � `;z i , ensures thatD� `;z i puq is compactly supported.

Now let pvn qn € W 1;2pR ; R dq be a bounded sequence. By Morrey's inequality,
there exists R; L ¡ 0 so that

sup
n

}vn }L 8 pR ;R d q ¤ R; sup
n

|vn pxq � vn pyq| ¤ L |x � y|1{2:

With i P t1; 2u, we now havesupn }D� `;z i puqvn }L 8 pR ;R d q   8 and

|D� `;z i pupxqqvn pxq � D� `;z i pupyqqvn pyq| ¤ } D� `;z i pupxqq}|vn pxq � vn pyq|

� } D� `;z i pupxqq � D� `;z i pupyqq}|vn pyq|

¤ C|x � y|1{2;

for someC ¡ 0 independent of n. Since supppD� `;z i puqvn q € r� r; r s for somer ¡ 0
independent ofn, we now �nd by the Arzelà-Ascoli theorem that pD� `;z i puqvn qn con-
verges uniformly over a subsequence. ConsequentlypD� `;z i puqvn qn converges over a
subsequence inL 2pR ; R q. This shows that the map v ÞÑD� `;z i puqv is compact from
W 1;2pR ; R dq into L 2pR ; R q. Consequently, recalling (4.11), we see that

D � puq: W 1;2pR ; R dq Ñ L 2pR 2; R q

is compact. It follows that D 	 puq : W 1;2pR ; R dq Ñ L 2pR ; R dq is compact, as
claimed.
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We can now establish the Fredholm alternative forBx � � p�q � 	 p�q. We recall that
a nonlinear map f : X Ñ Y, with X , Y connected smooth manifolds, is said to be a
Fredholm map if it is C1 and Df pxq: Tx X Ñ Tf px qY is a Fredholm operator, for each
x PX . By continuity the index is then independent of the basepoint x PX .

Theorem 4.3.17. The function

Bx � � p�q � 	 p�q: Ppz� ; z� q Ñ L 2pR ; R dq

is a Fredholm map, with index given by

ind
�
Bx � � p�q � 	 p�q

�
� mh pz� q � mh pz� q;

where mh denotes the Morse index de�ned in Section 4.2.2.

Proof. Pick arbitrary u P Ppz� ; z� q. By Lemma 4.3.16 the Fredholm properties of
the map Bx � D � puq � D 	 puq are the same as those ofBx � D � puq. The operator

Bx � D � puq: W 1;2pR ; R dq Ñ L 2pR ; R dq

�ts within the framework of [44]. The asymptotic operators Bx � D � pz� q are invert-
ible by Lemma 4.3.15, hence it now follows from [44] thatBx � D � puq is Fredholm.
Furthermore, the index depends only on the asymptotic operatorsD � pz� q, i.e., there
exists a relative index � p�; �q such that

indpBx � D � puqq � � pD � pz� q; D � pz� qq; for all u PPpz� ; z� q:

This shows that linear map Bx � D � puq � D 	 puq is Fredholm, and as the index
only depends on the asymptotic operatorsD � pz� q, the function Bx � � p�q � 	 p�qis a
Fredholm map.

Left to prove is the expression of the Fredholm index in terms of classical Morse
indices. We will show this by means of a continuation argument. For� P r0; 1s de�ne
the linear map T �

� : W 1;2pR ; R dq Ñ L 2pR ; R dq by

T �
� v :� r gSpzqT

�
� N � p 1 � � q rN

��
DSpz� qv

�
� Pz� v;

where
Pz� v �

�
D rr gST spz� qv

� rN Spz� q � Drr gF spz� qv:

Then T �
0 � D � pz� q and T �

1 � D rr ghpz� qs.

Now choose a smooth function� : R Ñ r 0; 1s with � pxq � 1 for x ¤ � 1 and
� pxq � 0 for x ¥ 1, and de�ne the operators T � : W 1;2pR ; R dq Ñ L 2pR ; R dq by

T � rvspxq � T �
� px qrvspxq:

Now the results from [44] are applicable to operatorsBx � T � , showing that Bx � T �

are Fredholm with

indpBx � T � q � � pT �
�8 ; T �

8 q � � pD � pz� q; Drr ghspz� qq:

Classical Morse theory tells us that

indpBx � D rr ghspuqq � mh pz� q � mh pz� q;
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see for instance [85, 90]. By transitivity of the relative index we have

indpBx � D � puqq � � pDrr ghspz� q; Drr ghspz� qq � � pD � pz� q; Drr ghspz� qq

� � pDrr ghspz� q; D � pz� qq

� indpBx � D rr ghspuqq � indpBx � T � q � indpBx � T � q:

Combining there observations yields

indpBx � D � puqq � mh pz� q � mh pz� q � indpBx � T � q � indpBx � T � q:

Left to prove is that indpBx � T � q � 0. The spectral �ow formula developed in
[44] shows that the Fredholm index ofBx � T � is computable by counting the spectral
crossings of the homotopy of operatorspT �

� q� . That is, as we vary � we need to count
roots � of the equation

det
�

i� id � yT �
� p� q



� 0; � PR ; (4.12)

where
yT �

� p� q � r gSpz� qT
�
� pN p� q � p 1 � � q rN

�
DSpz� q � Pz� ;

with
pN p� q � pN p� q �

¸

j PZ

N j e� � j � :

Since by Hypothesis (N ) we haveN pr q � N p� r q, N j � N � j , and � j � � � � j , we �nd
that Im pN p� q � 0 for any � P R . Hence the only possible solution of (4.12) would be
� � 0. Now we note

yT �
� p0q � r gSpz� qT rN DSpz� q � Pz� � D rr ghspz� q;

so that by hyperbolicity of z� and z� we conclude that (4.12) does not have any
solutions. This is true for arbitrary � P r0; 1s, which implies there are no spectral
crossings. It follows from the spectral �ow formula that indpBx � T � q � 0.

4.4 Some convergence results

In this section we will study various convergence and compactness properties of solu-
tions of (TWN) which are bounded in L 8 .

4.4.1 Approximate solutions and Palais�Smale sequences

We start out by de�ning the notion of approximate solutions of (TWN)

De�nition 4.4.1 (Approximate solutions). A function u PC1
loc pR ; R dq is said to

be a � -approximate solution (with � ¡ 0) of (TWN) if

}u1 � � puq � 	 puq}L 8 pR ;R d q ¤ �:

We may also consider sequences of approximate solutions. If� Ñ 0 along such a
sequence, we call it a Palais�Smale sequence.
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De�nition 4.4.2 (Palais�Smale sequences). A sequencepun qn € C1
loc pR ; R dq is

said to be a Palais�Smale sequence provided that

sup
n

}un }L 8 pR ;R d q   8

and

}u1
n � � pun q � 	 pun q}L 8 pR ;R d q Ñ 0; as n Ñ 8 :

We now state a regularity result for approximate solutions of (TWN).

Theorem 4.4.3. Let � ¡ 0 and supposepun qn € C1
loc pR ; R dq is a sequence of� -

approximate solutions of (TWN) . Assume further that

sup
n

}un }L 8 pR ;R d q   8 :

Then

sup
n

}un }W 2; 8 pR ;R d q   8 :

Furthermore, there exists a subsequencepun k qk such that un k Ñ u8 in C1
loc pR ; R dq

as k Ñ 8 , where u8 is another � -approximate solution of (TWN) . If we assume
moreover that pun qn is Palais�Smale, then the limit u8 is a solution of (TWN) .

Proof. In light of Lemma 4.3.5 and Lemma 4.3.7, we �nd that

sup
n

}� pun q � 	 pun q}L 8 pR ;R d q   8 :

Since� u1
n � � pun q � 	 pun q we thus obtain a uniform bound

sup
n

}un }W 1; 8 pR ;R d q   8 :

Applying Lemmata 4.3.5 and 4.3.7 once again, we now obtain a uniform bound

sup
n

}un }W 2; 8 pR ;R d q   8 :

Combining these bootstrap estimates with the Arzelà�Ascoli theorem, we extract a
subsequencepun k qk converging in C1

loc pR ; R dq to u8 . Theorem 4.3.4 implies that, for
any bounded interval I € R , we have

}u1
8 � � pu8 q � 	 pu8 q}L 8 pI; R d q � lim

kÑ8
}u1

n k
� � pun k q � 	 pun k q}L 8 pI; R d q

¤ lim sup
kÑ8

}u1
n k

� � pun k q � 	 pun k q}L 8 pR ;R d q

¤ �:

Henceu8 is a � -approximate solution of (TWN). The statement about Palais�Smale
sequences readily follows from this estimate.
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4.4.2 Asymptotics

As we lack the notion of a phase space, we �rst introduce the notion of� - and ! -limit
sets in our setup.

De�nition 4.4.4 ( � - and ! -limit sets). Given E € C1
loc pR ; R dq, we de�ne � pEq

to be the � -limit set of E with respect to the shift dynamics on C1
loc pR ; R dq. Thus,

� pEq consists of the accumulation points of t � � u : �   0; u PEu. Similarly, the
! -limit set ! pEq is de�ned as the set of accumulation points oft � � u : � ¡ 0; u PEu.

Given a measurable subsetB „ R , we de�ne the restricted kinetic energyEkin p�|B q
by

Ekin pu|B q:�
1
2

»

B
gupx qpu

1pxq; u1pxqqdx:

We are now prepared to study the asymptotic behaviour of approximate solutions with
�nite kinetic energy.

Lemma 4.4.5. Supposeu P C1
loc pR ; R dq is a � -approximate solution of (TWN) ,

which satis�es Ekin pu|p0; 8qq   8 . Then ! puq is nonempty and consists entirely of
� -approximate constant solutions of (TWN) . Likewise, if Ekin pu|p�8 ; 0qq   8 , then
� puq is nonempty and consists of� -approximate constant solutions of (TWN) .

Proof. We discuss here the case whereEkin pu|p0; 8qq   8 ; the argument for the other
case is identical. By de�nition, an element z P ! puq is the limit in C1

loc pR ; R dq of a
sequenceun pxq :� upx � � n q, for some sequencep� n qn € R with � n Ñ 8 as n Ñ 8 .
In light of Theorem 4.4.3 the sequencepun qn has a subsequence converging to a� -
approximate solution u8 of (TWN). Since C1

loc pR ; R dq is Hausdor� it follows that
z � u8 . Thus any element of! puq is a � -approximate solutions of (TWN). The same
argument (using, say, the sequence� n � n) shows that ! puq � H .

To see that any z P ! puq is constant, we further exploit the energy bound. First
we setR :� } u}L 8 pR ;R d q. After recalling that

gu pv1; v2q:�
@
v1; Gpuqv2

D
; v1; v2 PTu R d � R d;

we �nd that

|u1pxq|2 � gupx q
�
u1pxq; Gpupxqq� 1u1pxq

�
¤ sup

|v |¤ R
}Gpvq� 1} gupx qpu

1pxq; u1pxqq:

Consequently

}u1}2
L 2 pp0;8q ;R d q ¤ 2 sup

|v |¤ R
}Gpvq� 1} Ekin pu|p0; 8qq   8 :

Now, for any L ¡ 0

» L

� L
|z1|2 dx � lim

n Ñ8

» L

� L
|u1px � � n q|2 dx ¤ lim

n Ñ8

» 8

� n � L
|u1|2 dx � 0:

As z is C1, it follows that z1 � 0 everywhere. Hencez is a constant � -approximate
solution of (TWN).
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When u is a solution, instead of an approximate solution, we obtain a slightly more
detailed description of the limit sets of u

Lemma 4.4.6. Let R ¥ 0 and suppose	 is R-admissible. Supposeu P C1
loc pR ; R dq

is solution of (TWN) with }u}L 8 pR ;R d q ¤ R and Ekin pu|p0; 8qq   8 . Then there
exists a constant solutionz� of (TWN) such that

�
upxq; u1pxq

�
Ñ

�
z� ; 0

�
; as x Ñ 8 :

Likewise, if Ekin pu|p�8 ; 0qq   8 , there exists a constant solutionz� of (TWN) such
that �

upxq; u1pxq
�

Ñ
�
z� ; 0

�
; as x Ñ �8 :

Proof. We consider only the case thereEkin pu|p0; 8qq   8 ; the argument for the
other case is identical. The proof of Lemma 4.4.5 shows that! puqconsists of constant
solutions of (TWN). We now observe that ! puq is necessarily a path connected subset
of C1

loc pR ; R dq. As ! puq consist of constant solutions of (TWN), the evaluation map

u ÞÑup0q; C1
loc pR ; R dq Ñ R d

sets up a continuous bijection from! puq onto its image. Path connectedness is pre-
served under this identi�cation. Henceforth we consider! puq as subsets ofR d. Since
	 is R-admissible we �nd that ! puq „ crit phq, and sinceh is assumed to be a Morse
function, crit phq is a discrete subset ofR d. Hence! puq is a path connected subset of
a discrete space, which implies that! puq � t z� u.

Decay rates

We have established that bounded solutions of (TWN) with bounded kinetic energy
converge towards constant solutions of (TWN). We now further investigate the rate
at which this convergence takes place. We start out with a convergence result for the
linearised equation.

For the moment, assumeu PL 8 pR ; R dq, without imposing asymptotics asx Ñ �8 .
We de�ne L u : W 1;8 pR ; R dq Ñ L 8 pR ; R dq to be the linearisation of (TWN) around
u,

L u rvspxq:� v1pxq � Drr gF spupxqqvpxq �
�
D rr gST spupxqqvpxq

�
N rSpuqspxq

� r gSpuqT N rDSpuqvspxq �
¸

� P� h

� � �
�
D � puqv

� �
�
px;x q : (4.13)

Before stating the next lemma, we introduce exponentially weightedL p spaces.
Given � P R and a normed vector spaceV , we denote byL p

� pR m ; Vq � L ppd� m ; Vq
the space of functionsf P L 1

loc pR m ; Vq which are p-integrable with respect to the
measured� m pxq � e� |x | d� m pxq, where � m is the m-dimensional Lebesgue measure on
R m . Weighted `p spaces̀ p

� pZ; Vq and Sobolev spacesW k;p
� pR m ; Vq � W k;p pd� m ; Vq

are de�ned in a similar manner.

Lemma 4.4.7. For � P r� � 0; � 0s, where � 0 is as in Hypothesis (N ), the linear map
L u de�ned in (4.13) extends to a bounded linear operator

L u;� : W 1;2
� pR ; R dq Ñ L 2

� pR ; R dq:
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Proof. The term Bx mapsW 1;2
� pR ; R dqcontinuously into L 2

� pR ; R dq. The exponential
weight factors through the multiplication operators Drr gF spup�qqand Drr gST spup�qq,
so that these map W 1;2

� pR ; R dq into the spacesL 2
� pR ; R dq and L 2

� pR ; Mat d� D pR qq,
respectively.

Left to verify is the mapping property of the last two terms appearing in (4.13).
This is slightly more involved, as these terms depend nonlocally onv. Using the
triangle inequality, for any � 1 PR we have

� 1|x| ¤ � 1|x � y| � | � 1||y|:

Hence, for anyw PW 1;2
� 1 pR ; R D q we �nd

e� 1|x | |N rwspxq| ¤
»

R

�
e|� 1|| y |}N pyq}


�
e� 1|x � y | |wpx � yq|



dy

�
¸

j PZ

�
e|� 1|| � j |}N j }


�
e� 1|x � � j | |wpx � � j q|



:

(4.14)

Let � � 0 ¤ � ¤ � 0, set � 1 � � {2, and apply Young's convolution inequality to (4.14) to
obtain

}N rws}L 2
� pR ;R D q ¤ C}w}L 2

� pR ;R D q

where
C � } N }L 1

| � |{ 2 pR ;Mat D � D pR qq � }p N j qn } ` 1
| � |{ 2 pZ ;Mat D � D pR qq:

The decay rate imposed onN p�qand pN j qj in Hypothesis (N ) ensures the constantC
is �nite. With w � DSpuqv, we �nd

}r gSpuqT N rDSpuqvs}L 2
� pR ;R d q ¤ C1}v}L 2

� pR ;R d q

for someC1 ¥ 0 depending continuously onu PL 8 pR ; R dq.

To deal with the �nal term in (4.13), we note that, with � � p `; z1; z2q,

rD � puqvs|p� 1 ;� 2 q � r D� `;z 1 puqvs|� 1
� `;z 2 puq|� 2

� � `;z 1 puq|� 1
rD� `;z 2 puqvs|� 2

:

By de�nition we have 0 ¤ � `;z i puq ¤ 1, which allows us to estimate

| � � � pD � puqvq|px;x q | ¤ � 1;� � | D� `;z 1 puqv||x � � 2;� � | D� `;z 2 puqv||x ;

where

� 1;� pr q:�
»

R
|� � pr; sq|ds; � 2;� pr q:�

»

R
|� � ps; rq|ds:

Incorporating exponential weights into these convolution operators, as we did in (4.14),
and applying Young's convolution inequality, we �nd that

} � � � pD � puqvq|px;x q }L 2
� pR ;R d q ¤ } � � }L 1

| � |{ 2 pR 2 ;R d q}D� `;z 1 puqv}L 2
� pR ;R q

� } � � }L 1
| � |{ 2 pR 2 ;R d q}D� `;z 2 puqv}L 2

� pR ;R q;

where we used that}� i;� }L 1
| � |{ 2 pR ;R d q ¤ } � � }L 1

| � |{ 2 pR 2 ;R d q for i P t1; 2u. Recalling the

de�nition of � �;z i , we �nd that there exists CR ¥ 0, depending onR :� } u}L 8 pR ;R d q,
so that

} � � � pD � puqvq|px;x q }L 2
� pR ;R d q ¤ 2CR `}� � }L 1

| � |{ 2 pR 2 ;R d q}v}L 2
� pR ;R d q
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Hence �
�
�
�
�

¸

� P� h

� � �
�
D � puqv

� �
�
px;x q

�
�
�
�
�

L 2
� pR ;R d q

¤ 2C}	 } 	 h }v}L 2
� pR ;R d q:

This establishes the bounded mapping of the nonlocal parts appearing in (4.13).

Let m� : W k; 2
� pR ; R dq Ñ W k; 2pR ; R dq be the multiplication operator u ÞÑe� x�yu,

where xxy :�
a

1 � | x|2. This de�nes a linear isomorphism, and as such we can relate
L u;� to the conjugate operator

L u p� q:� m� � L u;� � m� � : W 1;2pR ; R dq Ñ L 2pR ; R dq:

The following is then a straighforward consequence of the exponential localisation of
the convolution terms appearing in (4.13).

Lemma 4.4.8. The map

L 8 pR ; R dq � p� � 0; � 0q Ñ LpW 1;2pR ; R dq; L 2pR ; R dqq; pu; � q ÞÑL u p� q

is continuous. Furthermore, for �xed u, the operator L u p� qdepends analytically on� .

Proof. Continuous dependence ofL u;� on u follows with the aid of Young's inequality,
using estimates identical as those in the proofs of Lemma 4.3.10, Lemma 4.3.13, and
Lemma 4.3.12. SinceL u p� q is obtained by conjugating L u;� with a map which is
independent of u, the continuous dependence ofL u p� q on u readily follows. As for
analytic dependence on� , observe that

L u; � � 0 |W 1; 2
� pR ;R d q � L u;� ; for any � P p� � 0; � 0q;

so that
L u p� q � m� � L u; � � 0 � m� � :

Now choose arbitrary v PW 1;2pR ; R dq, w PL 2pR ; R dq, and � 1 P p� � 0; � 0q. Then note
that

xL u p� qv; wyL 2 pR ;R d q �
»

R
m�

�
L u; � � 0 rm� � vspxq

�
� wpxqdx

�
»

R

8̧

n 1 � 0

xxyn 1

n1!
p� � � 1qn 1

�

L u; � � 0

�
8̧

n 2 � 0

�x�y n 2

n2!
p� � � 1qn 2 v

�

pxq

�

� wpxqdx

�
¸

pn 1 ;n 2 qPN 2

1
n1!n2!

p� � � 1qn 1 � n 2

»

R
xxyn 1

�
L u; � � 0 r�x�y n 2 vs pxq

�
� wpxqdx;

henceL u p� q depends analytically on � in the weak operator topology. Analyticity in
the operator norm then follows from standard results in analytic perturbation theory
[65].

Now suppose thatu PL 8 pR ; R dq satis�es
�
upxq; u1pxq

�
Ñ

�
z� ; 0

�
; as x Ñ �8 ;
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where z� , z� are critical points of h. Then for any " there exists u� P Ppz� ; z� q
such that }u � u� }L 8 pR ;R d q   " . In light of Theorem 4.3.17 the operator L u � p0q is
Fredholm, hence by continuity of the Fredholm index, L u p0qis also Fredholm. AsL u;�

is conjugate to L u p� q, and the latter depends continuous on� , we �nd that for small
values of � the operator L u;� belongs to the same Fredholm region asL u p0q. We let
R u € R denote this Fredholm region, i.e., it is the connected neighbourhood around
0 consisting of values� for which the Fredholm index of L u;� is constant.

In fact we can show that the kernel ker L u;� is independent of � P R u . To make
this statement precise, note that for any � 1 ¡ � 2 we have the natural inclusion map

� � 1 ;� 2 : W 1;2
� 1

pR ; R dqãÑ W 1;2
� 2

pR ; R dq:

Lemma 4.4.9. Let � 1; � 2 P R u , and suppose� 1 ¡ � 2. Then the inclusion map � � 1 ;� 2

de�nes a bijection from ker L u;� 1 onto ker L u;� 2 .

Proof. First remark that � � 1 ;� 2 is injective from ker L u;� 1 into ker L u;� 2 . SinceR u is
connected, it thus su�ces to show that dim ker L u;� is locally constant. Essentially
this now follows from analytic dependence ofker L u;� on � .

To obtain such an analytic description of ker L u;� , we make use of a Lyapunov�
Schmidt reduction on the conjugate operatorL u p� q. Pick any � 1 PR u , and let P and
Q be orthogonal projections only ker L u p� 1q and cokerL u p� 1q, respectively. Letting
v0 :� Pv and vh :� p 1 � Pqv, we �nd that solving L u p� qv � 0 for � near � 1 is
equivalent to solving

QL u p� qpv0 � vh q � 0; p1 � QqL u p� qpv0 � vh q � 0:

The second equation allows us to solvevh � Au p� qv0, where Au p� q is analytic and
Au p� 1q � 0. Substituting into the �rst equation, we �nd that

ker L u p� q � t v0 � Au p� qv0 : v0 Pker Bu p� qu;

where Bu p� q � QL u p� qp1 � Ap� qqis a linear map from ker L u p� 1q into cokerL u p� 1q.
This shows that

dim ker L u p� q ¤ dim ker L u p� 1q; � near � 1:

However, by the injectivity of the inclusion � � 1;� for � ¤ � 1 we have

dim ker L u p� q ¥ dim ker L u p� 1q; � ¤ � 1:

Hence dim ker L u p� q � dim ker L u p� 1q for � ¤ � 1. This can only occur if Bu p� q � 0
for � ¤ � 1. By analyticity we �nd that Bu p� q � 0 in a neighbourhood of � 1, hence
dim ker L u p� q is constant in a neighbourhood of� 1. Equivalently, dim ker L u;� is con-
stant in a neighbourhood of � 1. As � 1 PR u was chosen arbitrary the claim follows.

Sinceker L u;� 1 and ker L u;� 2 are �nite dimensional, the inclusion map between the
kernels � � 1 ;� 2 : ker L u;� 1 ãÑ ker L u;� 2 is bijective, with bounded linear inverse. The
norm of the inverse of this map depends, in principle, on the choices ofu, � 1, and � 2.
We now set out to further analyse this dependence.
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Denote by Vu € W 1;8 pR ; R dq the kernel of the map L u considered as an operator
on W 1;8 pR ; R dq, i.e.,

Vu :�
 
v PW 1;8 pR ; R dq : L u v � 0

(
:

Given � P R u with � ¡ 0, de�ne the inclusion W� puq : Vu ãÑ L 8
� pR ; R dq by �rst

choosing� 1 PR u with � 1   0, and then considering the commuting diagram

Vu ker L u;� 1 ker L u;� L 8
� pR ; Rdq:

W � puq

� � 1
�;� 1

The �nal arrow on the bottom row of the diagram is induced by the Sobolev embed-
ding W 1;2pR ; R dqãÑ L 8 pR ; R dqcombined with the isomorphism of weighted Sobolev
spaces induced by the multiplication mapm� .

Lemma 4.4.10. The map W� puq is well-de�ned, i.e., independent of � 1.

Proof. Let � 1; � 2 P R u with � 2   � 1   0. A diagram chase then shows the following
diagram commutes

ker L u;� 1

Vu ker L u;�

ker L u;� 2

� � 1
�;� 1

� � 1;� 2

� � 1
�;� 2

from which the independence ofW� puq from � 1 follows.

We now de�ne w� : W 1;8 pR ; R dq Ñ R by equating w� puq to the operator norm of
the linear map W� puq, and investigate the dependence ofw� puq on u. This is easier
than to study the dependence ofW� puq on u directly, since the domain of de�nition
Vu of W� puq depends onu, possibly in a discontinuous manner, as the dimension of
Vu may vary with u. Supposepun qn € L 8 pR ; R dq converges uniformly towardsu8 ,
with for each n �

un pxq; un pxq
�

Ñ
�
z� ; 0

�
; as x Ñ �8 ;

where z� , z� are critical points of h. Let � P R u 8 with � ¡ 0. By continuity of the
Fredholm index, we then have� P R u n for su�ciently large n. Thus for each suchn,
we have associated a mapw� pun q. This map turns out to be upper semicontinuous.

Lemma 4.4.11. Let pun qn and u8 be as described above. Then, for each� P R u 8

with � ¡ 0, we have
lim sup

n Ñ8
w� pun q ¤ w� pu8 q:

Proof. The norms of the maps

Vu ãÑ ker L u;� 1; keru;� Ñ L 8
� pR ; R dq
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are both independent of u, so that upper semicontinuity of the norm of W� puq is
equivalent to upper semicontinuity of the norm of � � 1

�;� 1 : ker L u;� 1 Ñ ker L u;� . This
in turn is equivalent to upper semicontinuity of the operator norm of the linear map
f u : ker L u p� 1q Ñ ker L u p� q de�ned by f u :� m� � � � 1

�;� 1 � m� � 1. Using a Lyapunov�
Schmidt reduction around u � u8 , � � 0, with notation as in the proof of Lemma 4.4.9,
we obtain maps

Au p� q; Bu p� q: ker L u 8 p0q Ñ cokerL u 8 p0q

and orthogonal projections P and Q onto ker L u 8 p0q and cokerL u 8 p0q, respectively,
such that the following diagram commutes

X u p� 1q X u p� q

ker L u p� 1q ker L u 8 p0q ker L u p� q

ker Bu p� 1q ker Bu p� q

' u

f u

�

id � A u p� 1q

P

id � A u p� q

P

id � A u p� 1q

P

id � A u p� q

P

where
X u p� q � img

�
id � Au p� q

�
:

Here all spaces in the diagram are to be considered subspaces ofW 1;2pR ; R dq. The
map ' u is de�ned by this commuting diagram. The spacesX u p� qand the norm of ' u

depend continuously onu. Note that f u 8 � ' u 8 . Since ker L u p� 1q can be a proper
subspace ofX u p� 1q, we have}f u } ¤ } ' u }, with possibly a strict inequality. It follows
that

lim sup
n Ñ8

}f u n } ¤ lim sup
n Ñ8

} ' u n } � } ' u 8 } � } f u 8 }:

The upper semicontinuity of w� follows from this.

We are now prepared to prove exponential decay of bounded solutions to (TWN).

Theorem 4.4.12. Let z� , z� be critical points of h, and supposeu is a solution of
(TWN) with

�
upxq; u1pxq

�
Ñ

�
z� ; 0

�
as x Ñ �8 . Then for any � P R u with � ¡ 0,

there exists C ¡ 0 such that

|upxq � z� | � | u1pxq| ¤ Ce� � |x | ; x   0;

|upxq � z� | � | u1pxq| ¤ Ce� � |x | ; x ¥ 0:

Furthermore, if pun qn is a sequence of solutions of(TWN) , each of which satisfy-
ing

�
un pxq; u1

n pxq
�

Ñ
�
z� ; 0

�
as x Ñ �8 , and the sequencepun qn is convergent in

L 8 pR ; R dq, then the constant C can be chosen independent ofn.
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Proof. By Theorem 4.4.3, the derivative u1 is bounded in W 1;8 pR ; R dq. Hence u1

lies in the domain of de�nition of W� puq, and we �nd that

}u1}L 8
� pR ;R d q � } W� puqru1s}L 8

� pR ;R d q ¤ w� puq}u1}W 1; 8 pR ;R d q:

Hence u1 P W 1;2
� 2

pR ; R dq, so that u1 P ker L u;� 2 . By Lemma 4.4.9 we conclude that
u1 Pker L u;� 1 , This establishes that

|u1pxq| ¤ e� � |x |w� puq}u1}W 1; 8 pR ;R d q:

In light of this decay estimate the function u1 is integrable over R , hence

upxq � z� �
» x

�8
u1psqds:

Consequently, for x   0 we �nd

|upxq � z� | ¤
» x

�8
|u1psq|ds ¤

�
sup
x PR

e� |x | |u1pxq|

 » x

�8
e� � |s| ds

¤ � � 1e� � |x |w� puq}u1}W 1; 8 pR ;R d q;

and similarly |upxq � z� | ¤ � � 1e� � |x |w� puq}u1}W 1; 8 pR ;R d q for x ¥ 0. This establishes
that

|upxq � z� | � | u1pxq| ¤ C� puqe� � |x | ; x   0;

|upxq � z� | � | u1pxq| ¤ C� puqe� � |x | ; x ¥ 0;

where C� puq � p � � 1 � 1qw� puq}u1}W 1; 8 pR ;R d q. This proves the theorem for a �xed
u. The fact that C can be chosen independent ofn for a convergent sequencepun qn

follows from the upper semicontinuity of w� puq as established in Lemma 4.4.11.

4.4.3 A kinematic estimate on 	 puq

The aim of this section is to estimate theL 2 norm of 	 puqin terms of the kinetic energy
of u, where u is a � -approximate solution of (TWN). Such a kinematic estimate of
	 puq turns out to be fundamental in order to ensure persistence of uniform kinetic
energy bounds and gradient-like behaviour of (TWN) under small perturbations 	 ,
discussed in Section 4.5 and Section 4.6. Looking back at the proof of Lemma 4.3.12,
we see that we are naturally led to study, for given� ¡ 0 and a � -approximate solution
u of (TWN), sets of the type

A � puq:�
"

x PR : inf
zPcrit phq

|upxq � z| ¥ �
*

:

Interpreting x as a time-like variable, the setA � puq consists of the �times� at which u
sojourns a distance larger than� away from the constant solutions of (TWN). Hence
we refer to A � puqas a sojourn set. In this section we will derive estimates on the sizes
of the sojourn sets in terms of kinetic energy. This then allows us to obtainL 2pR ; R dq
bounds on	 puq in terms of kinetic energy.
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Breaking of solutions

Let us now introduce a notion of noncompactness of solutions.

De�nition 4.4.13 (Breaking sequences). Let pun qn € C1
loc pR ; R dq. We say the

sequencepun qn breaks alongp� 0
n qn towards z0 if the following holds:

(1) the translated sequencep� 0
n � un qn converges to a constant functionz0, and

(2) there exists sequencesp� �
n qn ; p� �

n qn € R , with � �
n   � 0

n   � �
n , so that the

sequencesp� �
n � un qn converge over a subsequence towardsv� , with Ekin pv� q ¡ 0,

and

(3)
�
v� pxq; v1

� pxq
�

Ñ
�
z0; 0

�
asx Ñ 8 , whilst

�
v� pxq; v1

� pxq
�

Ñ
�
z0; 0

�
asx Ñ �8 .

The breaking of solutions is of importance in the construction of Conley-Floer
homology, as it is precisely this type of noncompactness which is encoded in the
boundary operator of the chain complex. Usually the breaking of orbits is studied
in the context of gradient-like systems. This we will do towards the end of Section 4.5.
Here, we study the breaking of orbits in a nongeneric setup without exploiting gradient-
like dichotomies.

Given a measurable subsetB „ R , de�ne the convex hull of B by

convpB q:�
£

pa;bq„ R
B „p a;bq

pa; bq:

We now present a result relating the breaking of orbits with the setsA � pun q.

Lemma 4.4.14. Let R ¥ 0 and suppose	 is an R-admissible perturbation. Let
pun qn € C1

loc pR ; R dq be a Palais�Smale sequence. For eachn P N , let Bn „ A � pun q
be a measurable subset. Assume that

sup
n

}un }L 8 pR ;R d q ¤ R; sup
n

Ekin pun | convpBn qq   8 :

Supposelimn Ñ8 diam Bn � 8 . Then there exists p� 0
n qn € R , with � 0

n P convpBn q,
such that pun qn breaks along a subsequence ofp� 0

n qn .

Proof. Let Bn „ A � pun q with limn Ñ8 diam Bn � 8 . Denote by

� L
n :� inf Bn ; � R

n :� supBn ;

so that convpBn q � r � L
n ; � R

n s and � R
n � � L

n Ñ 8 as n Ñ 8 .

First assume there exists a sequencep� 0
n qn € R such that � L

n   � 0
n   � R

n and the
translated sequencep� 0

n � un qn converges over a subsequence to a constant solutionz0

of (TWN). We will then construct sequences p� �
n qn and functions v� satisfy De�ni-

tion 4.4.13, thus showing that pun qn breaks along a subsequence ofp� 0
n qn . Choose

0   �   min

$
'&

'%
�; inf

z� ;z � Pcrit phq
|z� |;|z� |¤ R

|z� � z� |

,
/.

/-
:
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Such a� exists by hyperbolicity of the critical points of h. Then let

� �
n :� sup

 
� PA � pun q : �   � 0

n

(
; � �

n :� inf
 
� PA � pun q : � 0

n   �
(

:

Since

A � pun q X p� L
n ; � 0

n q • A � pun q X p� L
n ; � 0

n q � H ;

A � pun q X p� 0
n ; � R

n q • A � pun q X p� 0
n ; � R

n q � H ;

the supremum and in�mum in the de�nition of � �
n and � �

n , respectively, are �nite.
Recall that, per assumption, p� 0

n � un qn converges toz0 over a subsequence. By The-
orem 4.4.3 the translated sequencesp� �

n � un qn converges over a further subsequence
pnk qk towards solutions v� of (TWN).

Notice that

inf
zPcrit phq

|v� p0q � z| ¥ lim sup
kÑ8

inf
zPcrit phq

|un k p� �
n k

q � z| ¥ � ¡ 0;

henceEkin pv� q ¡ 0. Also note that lim kÑ8 |� �
n k

� � 0
n k

| � 8 . Indeed, if this where not
the case, then at least one of the sequencesp� �

n k
�un k qk or p� �

n k
�un k qk would accumulate

(over a subsequence) ontoz0 as k Ñ 8 , so that v� � z0 or v� � z0, contradicting
Ekin pv� q ¡ 0.

Since � 0
n k

� � �
n k

Ñ 8 as k Ñ 8 and p� �
n k

; � 0
n k

q € convpBn k q, using Fatou's lemma
we obtain the estimate

Ekin pv� |p0; 8qq �
1
2

»

R
lim

kÑ8
1p0;� 0

n k
� � �

n k qg� �
n k �u n k

p� �
n k

� un k ; � �
n k

� un k qdx

¤ lim inf
kÑ8

Ekin p� �
n k

� un k |p0; � 0
n k

� � �
n k

qq

� lim inf
kÑ8

Ekin pun k |p� �
n k

; � 0
n k

qq

¤ lim inf
kÑ8

Ekin pun k | convpBn k qq:

It thus follows from the hypothesis of the lemma that Ekin pv� |p0; 8qq   8 , and sim-
ilarly, Ekin pv� |p�8 ; 0qq   8 . By Lemma 4.4.6

�
v� pxq; v1

� pxq
�

Ñ
�
z1; 0

�
as x Ñ 8

and
�
v� pxq; v1

� pxq
�

Ñ
�
z2; 0

�
as x Ñ �8 , where z1 and z2 are constant solutions of

(TWN).

Left to verify is that z0 � z1 � z2. For any x ¡ 0, we have � �
n k

� x   � 0
n k

for su�ciently large k. By de�nition of p� �
n k

qk we then have � �
n k

� x R A � pun k q.
Consequently

|v� pxq � z0| � lim
kÑ8

|un k p� �
n k

� xq � z0| ¤ �:

Letting x Ñ 8 , we �nd that |z1 � z0| ¤ � . Similarly one shows that |z2 � z0| ¤ � .
Since� is chosen such that the only constant solution of (TWN) in a � -neighbourhood
of z0 is z0 itself, we conclude that z0 � z1 � z2. This shows that p� �

n qn , p� 0
n qn , and v�

satisfy De�nition 4.4.13.

We will now construct the sequencep� 0
n qn . De�ne vn :� � L

n � un . By Theorem 4.4.3
the sequencepvn qn converges over a subsequence (which we again denote bypvn qn ) to
a solution v8 of (TWN). By the max-min inequality

inf
zPcrit phq

|v8 p0q � z| ¥ lim sup
n Ñ8

inf
zPcrit phq

|un p� L
n q � z| ¥ �;
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so that v8 is not a constant solution of (TWN). Since � R
n � � L

n Ñ 8 as k Ñ 8 and
p� L

n ; � R
n q € convpBn q, using Fatou's lemma we obtain the estimate

Ekin pv8 |p0; 8qq �
1
2

»

R
lim

n Ñ8
1p0;� R

n � � L
n qg� L

n �u n k
p� L

n � un ; � L
n � un qdx

¤ lim inf
n Ñ8

Ekin p� L
n � un |p0; � R

n � � L
n qq

¤ lim inf
n Ñ8

Ekin pun | convpBn qq:

By hypothesis of the lemma it now follows that Ekin pv8 |p0; 8qq   8 , hence by
Lemma 4.4.6 we �nd that

�
v8 pxq; v1

8 pxq
�

Ñ
�
z0; 0

�
as x Ñ 8 , for somez0 Pcrit phq.

For given x ¥ 0, by the C1
loc pR ; R dq convergence ofvn towards v8 we may choose

a sequencep� n pxqqn € R such that

� L
n   � n pxq; sup

n
|� n pxq � � L

n |   8 ; lim
n Ñ8

up� n pxqq � vpxq:

Then since � R
n � � L

n Ñ 8 as n Ñ 8 , for �xed x ¥ 0 one has� n pxq PconvpBn q for
all su�ciently large n. Hence, letting x � k where k P N , we may choose a sequence
pnk qk € N so that � n pkq PconvpBn k q for all k P N . We now de�ne the sequence
p� 0

n qn on the subsequencepnk qk by setting � 0
n k

:� � n k pkq. On the complement of the
subsequencepnk qk we may choose� 0

n arbitrary. This establishes the sequencep� 0
n qn

with
� L

n   � 0
n   � R

n ; lim
n Ñ8

|� 0
n � � L

n | � lim
n Ñ8

|� 0
n � � R

n | � 8 ;

such that p� 0
n �un qn converges over the subsequencepnk qk towards the constant solution

z0 of (TWN).

Lemma 4.4.15. Given R1; R2 ¥ 0, � ¡ 0, and an R1-admissible perturbation 	 ,
there exist D ¡ 0, � ¡ 0 such that the following holds. Let u be a � -approximate
solution of (TWN) . SupposeB „ A � puq is a connected subset, and

}u}L 8 pR ;R d q ¤ R1; Ekin pu|B q ¤ R2:

Then diampB q ¤ D.

Proof. Given � ¡ 0, let D � denote the supremum of diampB q, ranging over all
sets B as in the hypothesis of the lemma. Now, arguing by contradiction, suppose
lim sup� Ñ 0 D � � 8 . We then obtain a Palais�Smale sequencepun qn , and connected
subsetsBn „ A � pun q, such that

sup
n

}un }L 8 pR ;R d q ¤ R1; sup
n

Ekin pun |Bn q ¤ R2;

but limn Ñ8 diampBn q � 8 . Then, by Lemma 4.4.14, we obtain a sequencep� 0
n qn with

� 0
n P Bn , such that p� 0

n � un qn converges over a subsequencepnk qk towards a constant
solution z0 of (TWN). However,

inf
zPcrit phq

|z0 � z| ¥ lim sup
kÑ8

inf
zPcrit phq

|un k p� 0
n k

q � z| ¥ � ¡ 0;

since � 0
n P A � pun q. This contradicts with z0 being a constant solution of (TWN). We

conclude that lim sup� Ñ 0 D �   8 , from which the conclusion of the lemma follows.
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Minimal energy quanta

In Lemma 4.4.15 we saw that bounds on kinetic energy of a� -approximate u over an
interval B „ A � puq lead to bounds on the diameter ofB . In this section we will show,
loosely speaking, that given� ¡ 0 there is a minimal amount of energy~ required for
any � -approximate solution of (TWN) to sojourn a distance � away from the constant
solutions of (TWN). This then provides us with �minimal energy quanta� into which
we can decompose the sojourn sets.

Lemma 4.4.16. Given R ¥ 0, r 1; r 2 ¡ 0 with r 1 � r 2, and an R-admissible per-
turbation 	 , there exist � ¡ 0 and " r 1 ;r 2 ¡ 0 such that the following holds. Sup-
poseu is a � -approximate solution of (TWN) , such that }u}L 8 pR ;R d q ¤ R. Suppose
�8 ¤ a   b ¤ 8 are such that

lim
x Ñ a

inf
zPcrit phq

|upxq � z| � r 1; lim
x Ñ b

inf
zPcrit phq

|upxq � z| � r 2:

Then
Ekin pu|pa; bqq ¥ " r 1 ;r 2 :

Proof. First note, if pa; bq � R , it follows from Lemma 4.4.6 that Ekin pu|pa; bqq � 8 .
Now assumepa; bq � R . We will prove the energy estimate assuming thata ¡ �8 ,
which we may do without loss of generality, since in casea � �8 but b   8 the result
can be applied to �upxq:� up� xq. Then, sinceEkin pu|pa; bqq � Ekin pa � u|p0; b� aqq, we
may as well assumea � 0. Let

� : �

$
''&

''%
pu; sq PC1

loc pR ; R dq � r 0; 8s :

}u1 � � puq � 	 puq}L 8 pR ;R d q ¤ �
}u}L 8 pR ;R d q ¤ R

inf zPcrit phq |up0q � z| � r 1

lim x Ñ s inf zPcrit phq |upxq � z| � r 2

,
//.

//-
;

where r0; 8s � r 0; 8q Y t8u is the one-point compacti�cation of r0; 8q . In light of
Theorem 4.4.3, the set� is precompact in C1

loc pR ; R dq � r 0; 8s ; we denote by� the
closure of� . We will show that inf pu;s qP� Ekin pu|p0; sqq ¡ 0.

The key properties for the remainder of the argument are that, in light of The-
orem 4.4.3, � is compact and suppu;s qP� }u}W 1; 8 pR ;R d q   8 . Furthermore, given

pu; sq P� , we claim that u1 � 0 on some open subset ofp0; sq. To see why, we need to
consider two cases,s   8 and s � 8 .

When s   8 , we use the fact that u is the limit in C1
loc pR ; R dq of a sequence

pun qn , whereass is the limit in p0; 8q of a bounded sequencepsn qn . This ensures that
un psn q Ñ upsq, hence

inf
zPcrit phq

|upsq � z| � lim
n Ñ8

inf
zPcrit phq

|un psn q � z| � r 2:

Here we used thatu is uniformly bounded and h is Morse, so that the in�ma are in
fact minima over �nite sets, hence they depend continuously onupsq. Since it also
holds that inf zPcrit phq |up0q � z| � r 1 � r 2, we �nd that up0q � upsq, so that u1 � 0 on
some open subset ofp0; sq.

If, on the other hand, s � 8 , it may happen that lim x Ñ s inf zPcrit phq |upxq � z| � r 2,
or even that this limit does not exist. Thus, in this case, we need a di�erent argument
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to conclude that u1 � 0 on an open subset ofp0; sq. It is at this stage that we specify
the constant � ¡ 0. Using the fact that 	 is R-admissible, we may choose� ¡ 0
su�ciently small such that for any v PR d

|v| ¤ R and |r ghpvq � 	 pvq| ¤ � ùñ inf
zPcrit phq

|v � z|   r 1:

With this choice of � ¡ 0 established, we will now show that u1 � 0 on an open
subset ofp0; sq � p 0; 8q . We argue by contradiction, assumingu1 � 0 on p0; 8q . By
exponential decay of the convolution kernels appearing in the nonlocal operators�
and 	 , we have

� pup0qq � lim
x Ñ8

� puqpxq; 	 pup0qq � lim
x Ñ8

	 puqpxq:

Sincer ghpup0qq � � pup0qq, and using that u is a � -approximate solution of (TWN),
we thus have

|r ghpup0qq � 	 pup0qq| � lim
x Ñ8

|u1pxq � � puqpxq � 	 puqpxq| ¤ �:

But then inf zPcrit phq |up0q � z|   r 1, contradicting the fact that pu; 8q P � . Hence we
conclude that u1 � 0 on an open subset ofp0; 8q .

SinceEkin is not continuous with respect to the topology of C1
loc pR ; R dq, we intro-

duce the regularised energy

En : � Ñ r 0; 8s ; En pu; sq:�
1
2

» s

0

gupx qpu1pxq; u1pxqq
1 � | x|2{n

dx:

By continuity and compactness there existspun ; sn qn € � such that

En pun ; sn q � inf
pu;s qP�

En pu; sq for all n PN :

Sinceu1
n � 0 on some open subset ofp0; sn q, we �nd that En pun ; sn q ¡ 0. Furthermore,

the minimising property of pun ; sn q and the de�nition of En ensure that

En pun ; sn q ¤ En pun � 1; sn � 1q ¤ En � 1pun � 1; sn � 1q for all n PN :

We thus �nd that

inf
pu;s qP�

Ekin pu|p0; sqq ¥ lim
n Ñ8

En pun ; sn q � sup
n

En pun ; sn q ¡ 0:

Lemma 4.4.17. Given R ¥ 0, � 1 ¡ � 2 ¡ 0, and an R-admissible perturbation
	 , there exists � ¡ 0 and ~ ¡ 0 such that the following holds. Supposeu is a
� -approximate solution of (TWN) , with }u}L 8 pR ;R d q ¤ R and Ekin puq   8 . Let
B „ A � {2puq be a connected component and supposeB 1 :� B X A � puq � H . Then

Ekin pu|B r B 1q ¥ ~:

Proof. By Lemma 4.4.5 the limit sets� puqand ! puqconsist of� -approximate constant
solutions of (TWN). Using the fact that 	 is R-admissible, we may choose� ¡ 0
su�ciently small such that for any v PR d

|v| ¤ R and |r ghpvq � 	 pvq| ¤ � ùñ inf
zPcrit phq

|v � z|   � 2:
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� {2

�

inf zPcrit phq |upxq � z|

x

¤ D~I 1; : : : ; I n

Ekin pu|�q ¥ ~

Figure 4.3: Covering the sojourn set by minimal energy quanta I 1 ; : : : ; I n with Ekin pu|I k q � ~.

With this choice of � , we thus �nd

� puq X A � 2 puq � H ; ! puq X A � 2 puq � H :

The de�nition of B , B 1 now ensures there exist�8   a   b ¤ a1   b1   8 such that

pa; bq Y pa1; b1q „ B 1 r B;

and

inf
zPcrit phq

|upbq � z| � inf
zPcrit phq

|upa1q � z| � � 1;

inf
zPcrit phq

|upaq � z| � inf
zPcrit phq

|upb1q � z| � � 2:

After decreasing the value of� ¡ 0, we may apply Lemma 4.4.16, which yields

Ekin pu|B r B 1q ¥ Ekin pu|pa; bqq � Ekin pu|pa1; b1qq ¥ " � 2 ;� 1 � " � 1 ;� 2 ;

with " r 1 ;r 2 as in Lemma 4.4.16. This proves the lemma, with~ � " � 2 ;� 1 � " � 1 ;� 2 .

Bounding the volume of sojourn sets

We are now prepared to derive a fundamental relation between sojourn sets and kinetic
energy.

Theorem 4.4.18. Given R ¥ 0, � ¡ 0, and an R-admissible perturbation 	 , there
exist CR;� ¡ 0 and � ¡ 0 such that the following holds. Supposeu is a � -approximate
solution of (TWN) , and }u}L 8 pR ;R d q ¤ R. Then

volpA � puqq ¤ CR;� Ekin puq:
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Proof. Without loss of generality, assumeEkin puq   8 . Let � ¡ 0 and ~ ¡ 0 be
as speci�ed by Lemma 4.4.17 with � 1 � � and � 2 � � {2. Let B consist of the
connected components ofA � {2puq. Pick B P B, supposeB X A � puq � H , and let
I 1; : : : ; I n € A � {2puq be intervals such that

B X A � puq €
n¤

k � 1

I k € B; Ekin pu|I k q � ~:

See also Figure 4.3. With regards to the maximum numbern of intervals required for
such a covering, we see from Lemma 4.4.17 that

n �
R

1
~

Ekin pu|B X A � puqq
V

¤
R

1
~

�
Ekin pu|B q � ~


V
¤

1
~

Ekin pu|B q:

By Lemma 4.4.15, applied with � {2 instead of � and R2 � ~, there exists a constant
D~ ¡ 0, independent ofu, such that

diampI k q ¤ D~ :

Combining these estimates, we obtain

volpB X A � puqq ¤
n¸

k � 1

diampI k q ¤
D~

~
Ekin pu|B q:

Note that this estimate trivially extends to B PB for which B X A � puq � H . Finally,
sinceA � puq € A � {2puq, we obtain

volpA � puqq �
¸

B PB

volpB X A � puqq ¤
D~

~
Ekin puq:

We remark that the essential ingredient which allows for uniformity in this estimate
is the existence of the lower bound~ for the kinetic energy.

The estimate on 	 puq

Using the bounds on the sojourn set, we now obtain the following kinematic estimate
on 	 puq.

Theorem 4.4.19. Given R ¥ 0 and an R-admissible perturbation 	 0, there exist
CR; 	 0 ¡ 0 and � ¡ 0 such that the following holds. Supposeu is a � -approximate
solution of (TWN) with 	 � 	 0, and }u}L 8 pR ;R d q ¤ R. Then, for any 	 P 	 h we
have

}	 puq}L 2 pR ;R d q ¤ CR; 	 0 }	 } 	 h

a
Ekin puq:

Proof. We recall from Lemma 4.3.12 the estimate

}	 puq}L 2 pR ;R d q ¤ } 	 } 	 h

d

vol
�"

x PR : inf
zPcrit phq

|upxq � z| ¥ � R

*


� } 	 } 	 h

b
volpA � R puqq:

(4.15)

This was derived in the context of path spaces. However, the only point in the proof
of Lemma 4.3.12 where the assumptionu P Ppz� ; z� q is used is to ensure the volume
of the sojourn set A � R puq is �nite. Instead, we now assumeu is a � -approximate
solution of (TWN). The result then follows by combining estimate (4.15) with Theo-
rem 4.4.18.
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4.4.4 Isolating trajectory neighbourhoods

Since Equation (TWN) is not formulated on a phase space, we cannot use the stan-
dard de�nition of isolating neighbourhoods and isolated invariant sets. Therefore, we
introduce here a new notion, that of isolating trajectory neighbourhoods, which isolate
bounded solutions without exploiting pointwise phase space considerations. Results
in Section 4.8 on isolating blocks will show that this is, indeed, an appropriate gener-
alisation of isolating neighbourhoods.

De�nition 4.4.20 (Isolating trajectory neighbourhood). A given subset E of
C1

loc pR ; R dq is said to be an isolating trajectory neighbourhood provided that:

(1) E is translation invariant, and

(2) E is open in the induced topology ofW 1;8 pR ; R dq, and bounded inL 8 pR ; R dq,
and

(3) the closure ofE in C1
loc pR ; R dqcoincides with the closure ofE in W 1;8 pR ; R dq,

and

(4) there exists � ¡ 0 such that E r E does not contain any� -approximate solutions
of (TWN) .

We de�ne the invariant set of E by

InvpEq:�
 
u PE : u1 � � puq � 	 puq � 0

(
:

A set I is called an isolated invariant set if it can be written as I � InvpEq for some
isolating trajectory neighbourhood E.

Remark 4.4.21. The de�nition of an isolating invariant set is rather technical and
warrants some further motivation. The di�culty stems from the fact that the natural
space to deal with compactness issues of(TWN) is C1

loc pR ; R dq. However, open
neighbourhoods in C1

loc pR ; R dq are much too large to allow for localisation around
bounded solutions; for this, uniform bounds are much more appropriate. Thus we need
to relate these modes of convergence. We cannot exploit any pointwise considerations,
and so we need to impose a compatibility conditions between the topologies, which is
done with property (3).

Sets which do not satisfy property (3) are easily constructed. Consider, for exam-
ple, the open annulus

A �
 
u PC1

loc pR ; R dq : r 1   } u}L 8 pR ;R d q   r 2
(

:

The closureA of A in W 1;8 pR ; R dq is the closed annulus, but theC1
loc pR ; R dqclosure

of A is the closed ball of radiusr 2. This is related to a fundamental di�erence in
the characterisation of the boundary components ofA: given u PA, to verify whether
}u}L 8 pR ;R d q � r 2 it su�ces to prove existence of a singlex0 PR such that |upx0q| � r 2;
however, verifying that }u}L 8 pR ;R d q � r 1 requires inspecting |upxq| for all values of
x PR . Property (3) may thus be loosely interpreted as generalising the idea ofE r E
having a localised, almost pointwise, characterisation. l
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Our �rst result is a characterisation of isolated invariant sets.

Lemma 4.4.22. Let

� : �
"

u PC1
loc pR ; R dq :

u1 � � puq � 	 puq � 0
}u}L 8 pR ;R d q   8

*
:

SupposeI „ � is such that:

(1) The set I is invariant under translation, � � u P I for any u P I and � PR .

(2) The set I is bounded and isolated inside� with respect to the topology induced
by L 8 pR ; R dq.

(3) The set I is compact in the topology of C1
loc pR ; R dq.

Then there exists " ¡ 0 so that

E :�
 
v PC1

loc pR ; R dq : Du P I such that }u � v}L 8 pR ;R d q   "
(

is an isolating trajectory neighbourhood, with InvpEq � I .

Proof. It is clear that properties (1) and (2) in the de�nition of an isolating trajectory
neighbourhood are satis�ed. Isolation of I in � ensures that with " ¡ 0 su�ciently
small, the set E r I does not contain any solutions of (TWN). In particular we have
InvpEq � I . Left to prove is that properties (3) and (4) from De�nition 4.4.20 are
satis�ed.

To see why property (3) from De�nition 4.4.20 holds, let pvn qn € E be a se-
quence converging towardsv8 in the topology of C1

loc pR ; R dq. By de�nition of E
we can �nd pun qn € I such that }un � vn }L 8 pR ;R d q   " . By the compactness as-
sumption on I , after choosing a subsequence, we may assumepun qn converges towards
u8 PI in the topology of C1

loc pR ; R dq. Thus the sequencepun � vn qn converges (over
a subsequence) towardsu8 � v8 , again in the topology of C1

loc pR ; R dq. But then
}u8 � v8 }L 8 pR ;R d q ¤ " , hence v8 belongs to the closure ofE in the topology of
W 1;8 pR ; R dq.

Now to prove property (4) from De�nition 4.4.20, �rst de�ne

� :� inf
uPE r E

}v1 � � pvq � 	 pvq}L 8 pR ;R d q;

and let pvn qn € E r E be such that

lim
n Ñ8

}v1
n � � pvn q � 	 pvn q}L 8 pR ;R d q � �: (4.16)

We will prove that � ¡ 0, and argue by contradiction, assuming� � 0. Then (4.16)
tells us that pvn qn is a Palais�Smale sequence. For eachn, there exists sequences
pxn;k qk € R and pun;k qk € I so that

|un;k p0q � vn pxn;k q| Ñ " as k Ñ 8 :
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Moreover, |un;k pxq � vn pxq| ¤ " for any x PR and k PN . Let kn PN be such that

" �
1
n

¤ | un;k p0q � vn pxn;k q| ¤ " for k ¥ kn :

Then let wn :� xn;k n �vn . Now, by translation invariance of (4.16), using that � � 0 per
assumption,pwn qn is a Palais�Smale sequence as well. By Theorem 4.4.3 there exists a
subsequence along whichpwn qn accumulates onto a solutionw8 of (TWN). Moreover,
by compactness ofI there exists a subsequence along whichpun;k n qn accumulates onto
u8 PI . By construction of the sequencespun;k n qn and pwn qn , we then have

|u8 p0q � w8 p0q| � "; and |u8 pxq � w8 pxq| ¤ " for all x PR :

Hence we have constructed a solutionw8 P E r E of (TWN). However, since I is
isolated in � , the set E r I does not contain any solutions of (TWN). We thus arrived
at a contradiction, and must conclude that � ¡ 0.

The downside of this characterisation of isolating trajectory neighbourhoods is that
we need prior knowledge about the invariant setI . In applications we usually do not
have such knowledge. In Section 4.8 we will describe a subclass of isolating trajectory
neighbourhoods for which such prior knowledge is not needed. In the remainder of
this section we present two lemmata which demonstrate the relevance of isolating
trajectory neighbourhoods in the study of moduli spaces.

Lemma 4.4.23. Let E be an isolating trajectory neighbourhood. Then InvpEq is
compact in C1

loc pR ; R dq.

Proof. Let pun qn € InvpEq be an arbitrary sequence. By Theorem 4.4.3 the se-
quencepun qn converges over a subsequence towardsu8 , where u8 is another solution

of (TWN). We need to verify that u8 P InvpEq. Since u8 P E
C 1

loc pR ;R d q
, if fol-

lows by property (3) in the de�nition of an isolating trajectory neighbourhood that

u8 P E
W 1; 8 pR ;R d q

. Since by de�nition E r E does not contain solutions of (TWN),
it follows that u8 PE. Consequently,u8 PInvpEq.

De�nition 4.4.24. A sequence of functionspu! q! P
 is called ans-parameter family if

 „ R s is connected,int 
 � 
 , and ! ÞÑu! is continuous from 
 into W 1;8 pR ; R dq.

Lemma 4.4.25. SupposeE is an isolating trajectory neighbourhood, and pu! q! P
 ,
an s-parameter family of solutions of (TWN) . Then if u! 0 P E for some ! 0 P 
 , it
follows that u! PE for all ! P 
 . In particular, an isolated invariant set is translation
invariant.

Proof. Denote by p : 
 Ñ W 1;8 pR ; R dq the map pp! q :� u! . Sinceu! is a solution

of (TWN) and E is an isolating trajectory neighbourhood, we haveu! P E Y E
C

.

Hencepp
 q „ E Y E
C

. But as 
 is connected andp is continuous, the imagepp
 q is
connected. Furthermore,pp
 q X E � H by assumption. Hencepp
 q „ E , completing
the proof.
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4.5 Heteroclinic solutions

In this section we study conditions on	 that ensure that solutions (TWN) which are
bounded in L 8 are heteroclinics.

4.5.1 Tame solutions and perturbations

We will now introduce the notion of tame solutions and perturbations. These should
be interpreted as a notion of smallness of solutions with respect the perturbation	 ,
and by duality a notion of smallness of the perturbation 	 with respect to solutions,
under which the gradient-like behaviour of (TWN) persists.

De�nition 4.5.1 ( 	 -tame solutions). A subset E € C1
loc pR ; R dq with

R � sup
uPE

}u}L 8 pR ;R d q   8 ;

is called 	 -tame provided

(1) 	 is R-admissible, and

(2) there exist 0 ¤ �   1 and � ¡ 0 such that, for any u PE which satis�es

}u1 � � puq � 	 puq}L 8 pR ;R d q ¤ �

it holds that »

R
|gu p	 puq; u1q|dx ¤ � Ekin puq:

A solution u of (TWN) is called 	 -tame if the singleton set E � t uu is 	 -tame.

Dual to the notion of solutions being 	 -tame, we have the notion of a perturbation
being tame with respect to bounded solutions.

De�nition 4.5.2 ( E -tame perturbations). SupposeE € C1
loc pR ; R dq is such that

sup
uPE

}u}L 8 pR ;R d q   8 :

A perturbation 	 P 	 h is called E-tame provided that the set E is 	 -tame.

In light of Theorem 4.4.19 these conditions are not unreasonable. In Section 4.6.2
we will show that for isolating neigbourhoods E, the E-tame perturbations form an
open subset of the perturbation space	 h . In particular, as clearly any bounded
sequence of solutions corresponding to the unperturbed Equation (TWN) with	 � 0
is tame, this demonstrates that E-tame perturbations are in abundance.

Remark 4.5.3. To retain gradient-like behaviour of (TWN) , it su�ces to have the
estimate »

R
|gu p	 puq; u1q|dx ¤ Ekin puq

for any u P E which is a solution of (TWN) . The reason we require0 ¤ �   1
and � -approximate solutions are taken into consideration is to ensure thatE-tame
perturbations are open in 	 h , see Section 4.6.2. l
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4.5.2 Quasi-Lyapunov function

The fundamental structure which will be studied in this section is the quasi-Lyapunov
function for (TWN).

De�nition 4.5.4 (Quasi-Lyapunov). Let L : W 1;8 pR ; R dq Ñ R be given by

Lpuq:�
�

1
2

Spuq �N rSpuqs � F puq

 �

�
�
�
0

� Bpuq:

Here

Bpuq �
1
2

»

R

» y

0
Spupx � yqq �N pyqDSpupxqqu1pxqdx dy

�
1
2

¸

j PZ

» � j

0
Spupx � � j qq �N j DSpupxqqu1pxqdx:

Furthermore, de�ne L � puq, L � puq by

L � puq:� lim inf
� Ñ�8

Lp� � uq; L � puq:� lim sup
� Ñ8

Lp� � uq:

In light of Theorem 4.4.3 any solution u of (TWN) with }u}L 8 pR ;R d q   8 is in
fact an element ofW 1;8 pR ; R dq. HenceL is de�ned on bounded solutions of (TWN).
We now present an integral identity for (TWN), which is a variation of the nonlocal
Noether theorem developed in Chapter 3 and [16].

Lemma 4.5.5. Supposeu PC1
loc pR ; R dqsolves(TWN) and satis�es }u}L 8 pR ;R d q   8 .

Then the following identity holds:

» b

a
gu

�
u1 � 	 puq; u1

�
dx � Lpa � uq � Lpb� uq; �8   a ¤ b   8 :

Proof. Let

A b
apuq:�

» b

a

�
1
2

Spuq �N rSpuqs � F puq



dx;

where N is as in Hypothesis (N ), i.e.,

N rvspxq �
»

R
N pyqvpx � yqdy �

¸

j PZ

N j vpx � � j q:

Since u is a uniformly bounded solution of (TWN), Theorem 4.4.3 implies that
}u}W 1; 8 pR ;R d q   8 . We are thereby allowed to di�erentiate the map � ÞÑA b

ap� � uq
under the integral sign. Di�erentiating the identity A b

apuq � A b� �
a� � p� � uq with respect
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to � yields

0 � �
�

1
2

Spuq �N rSpuqs � F puq

 �

�
�
�

b

a

�
1
2

» b

a
DSpuqu1 � N rSpuqsdx �

» b

a
DF puqu1dx

�
1
2

» b

a
Spuq �N rDSpuqu1sdx

� �
�

1
2

Spuq �N rSpuqs � F puq

 �

�
�
�

b

a

�
» b

a
DSpuqu1 � N rSpuqsdx �

» b

a
DF puqu1dx

�
1
2

» b

a
Spuq �N rDSpuqu1sdx �

1
2

» b

a
DSpuqu1N rSpuqsdx:

(4.17)

By de�nition of the Riemannian metric g and using that u solves (TWN) we have

» b

a
DSpuqu1 � N rSpuqsdx �

» b

a
DF puqu1dx

�
» b

a
gu

�
r gSpuqT N rSpuqs � r gF puq; u1



dx

� �
» b

a
gu

�
u1 � 	 puq; u1



dx:

Substituting this back into (4.17) and rearranging terms gives

» b

a
gu

�
u1 � 	 puq; u1

�
dx � �

�
1
2

Spuq �N rSpuqs � F puq

 �

�
�
�

b

a
� I |ba puq;

where

I |ba puq:�
1
2

» b

a

»

R
Spupxqq �N pyqDSpupx � yqqu1px � yqdy dx

�
1
2

» b

a

»

R
DSpupxqqu1pxq �N pyqSpupx � yqqdy dx;

�
1
2

» b

a

¸

j PZ

Spupxqq �N j DSpupx � � j qqu1px � � j qdx

�
1
2

» b

a

¸

j PZ

DSpupxqqu1pxq �N j Spupx � � j qqdx:

We thus need to verify that

I |ba puq � Bpb� uq � Bpa � uq:

This can be interpreted as a nonlocal analogue of Green's formula, as in [16, 54].
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The term I |ba puq �ts within the more general class of functions of the form

I � |ba puq:�
1
2

» b

a

»

R
Spupxqq �K pyqDSpupx � yqqu1px � yqd� pyqdx

�
1
2

» b

a

»

R
DSpupxqqu1pxq �K pyqSpupx � yqqd� pyqdx;

where � is a Radon measure onR . In light of the symmetry and decay imposed by
Hypothesis (N ), we may assume� pB q � � p� B q for any Borel set B „ R , and the
map K : R Ñ Mat D � D pR q satis�es

K pyq � K p� yq � K pyqT ;
»

R
p1 � | y|q}K pyq}d� pyq   8 :

Note that by Fubini's theorem and the symmetry imposed on K and � , we have

I � |ba puq �
1
2

»

R

» b

a
Spupxqq �K pyqDSpupx � yqqu1px � yqdx d� pyq

�
1
2

»

R

» b

a
DSpupxqqu1pxq �K pyqSpupx � yqqdx d� pyq;

�
1
2

»

R

» b

a
Spupxqq �K pyqDSpupx � yqqu1px � yqdx d� pyq

�
1
2

»

R

» b

a
Spupx � yqq �K pyqDSpupxqqu1pxqdx d� pyq:

A change of variablesx ; x � y in the �rst term in the right hand side yields

I � |ba puq �
1
2

»

R

� » b� y

a� y
�

» b

a

�

Spupx � yqq �K pyqDSpupxqqu1pxqdx d� pyq:

Note that
� » b� y

a� y
�

» b

a

�

Spupx � yqq �K pyqDSpupxqqupxqdx

�
» b� y

b
Spupx � yqq �K pyqDSpupxqqupxqdx

�
» a� y

a
Spupx � yqq �K pyqDSpupxqqupxqdx:

(4.18)

Since}u}W 1; 8 pR ;R d q   8 , there exists a constantC ¡ 0 so that for any � PR
»

R

�
�
�
�

» � � y

�
Spupx � yqq �K pyqDSpupxqqupxqdx

�
�
�
� d� pyq ¤ C

»

R
|y|}K pyq}d� pyq   8 :

Hence the terms in the right hand side of (4.18) are integrable. We �nd that

I � |ba puq �
1
2

»

R

» b� y

b
Spupx � yqq �K pyqDSpupxqqupxqdx d� pyq

�
1
2

»

R

» a� y

a
Spupx � yqq �K pyqDSpupxqqupxqdx d� pyq

� B� pb� uq � B� pa � uq;
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where

B� puq �
1
2

»

R

» y

0
Spupx � yqq �K pyqDSpupxqqu1pxqdx d� pyq:

We then retrieve I |ba puq � Bpb� uq � Bpa � uq by letting

� � � 1 �
¸

j PZ

� � j ;

where � 1 be the Lebesgue measure onR , and

K pyq �
"

N pyq � N j if y � � j ;
N pyq otherwise:

Lemma 4.5.6. Supposeu is a 	 -tame solution of (TWN) with Ekin puq   8 . Then

Ekin puq ¤ L � puq � L � puq:

Proof. By Lemma 4.5.5 we have
» b

a
gu pu1 � 	 puq; u1qdx � Lpa � uq � Lpb� uq; �8   a ¤ b   8 :

Note that
» b

a
gu pu1; u1qdx �

» b

a
|gu p	 puq; u1q|dx ¤

» b

a
gu pu1 � 	 puq; u1qdx:

Combining these identities, we obtain the inequality
» b

a
gu pu1; u1qdx �

» b

a
|gu p	 puq; u1q|dx ¤ Lpa � uq � Lpb� uq: (4.19)

The integrals on the left hand side are estimated by
» b

a
gu pu1; u1qdx ¤

»

R
gu pu1; u1qdx � 2Ekin puq   8 ;

and » b

a
|gu p	 puq; u1q|dx ¤

»

R
|gu p	 puq; u1q|dx ¤ � Ekin puq   8 ;

where we used the fact thatu is 	 -tame and Ekin puq   8 . These estimates ensure we
can apply the dominated convergence theorem in (4.19) to take the limit inferior as
a Ñ �8 and b Ñ 8 , to �nd

»

R
gu pu1; u1qdx �

»

R
|gu p	 puq; u1q|dx ¤ L � puq � L � puq:

Finally, since u is 	 -tame we have

Ekin puq ¤
»

R
gu pu1; u1qdx �

»

R
|gu p	 puq; u1q|dx:

Combining these estimates yields the desired bound.
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We �nish this section with a continuity result for the quasi-Lyapunov function.

Lemma 4.5.7. Let pun qn € C1
loc pR ; R dq be a convergent sequence, with limit point

u8 , and suppose that
sup

n
}un }W 1; 8 pR ;R d q   8 :

Then
lim

n Ñ8
Lpun q � Lpu8 q:

Proof. Convergence of the sequence
�

1
2 Spun q �N rSpun qs � F pun q


 �
�
�
�
0

follows form

Lemma 4.3.1. To establish the continuity of L , we thus need to prove convergence of
the boundary terms

Bcpun q �
1
2

»

R

» y

0
Spun px � yqq �N pyqDSpun pxqqu1

n pxqdx dy;

and

Bdpun q �
1
2

¸

j PZ

» � j

0
Spun px � � j qq �N j DSpun pxqqu1

n pxqdx:

Using the uniform bound on }un }W 1; 8 pR ;R d q, we �nd there exists C ¡ 0 such that the
inner integral in Bcpun q is bounded by

�
�
�
�

» y

0
Spun px � yqq �N pyqDSpun pxqqu1

n pxqdx

�
�
�
� ¤ C|y|}N pyq};

and similarly the inner integral in Bdpun q is bounded by

�
�
�
�
�

» � j

0
Spun px � � j qq �N j DSpun pxqqu1

n pxq

�
�
�
�
�
¤ C|� j |}N j }:

By Hypothesis (N ) these upper boundsC|y|}N pyq} and C|� j |}N j } are integrable
and summable, respectively. This ensures we can apply the dominated convergence
theorem to take the limit n Ñ 8 under the integral signs and sums appearing in
Bcpun qand Bdpun q. HenceBcpun q Ñ Bcpu8 qand Bdpun q Ñ Bdpu8 q, and consequently
Lpun q Ñ Lpu8 q as n Ñ 8 , as required.

4.5.3 Gradient-like dichotomy

We are now prepared to prove the gradient-like dichotomy for (TWN).

Theorem 4.5.8. Supposeu is a 	 -tame solution of (TWN) with Ekin puq   8 . Then
u is either constant, or there exist constant solutionsz� , z� of (TWN) , with z� � z� ,
such that

�
upxq; u1pxq

�
Ñ

�
z� ; 0

�
asx Ñ �8 . Furthermore, the kinetic energy satis�es

the explicit bound

Ekin puq ¤ Lpz� q � Lpz� q � hpz� q � hpz� q:








































































































	Contents
	Introduction
	Floer homology for travelling waves in RDE
	Introduction

	Spatial Hamiltonian identities
	Large fronts in nonlocally coupled systems
	Summary
	Samenvatting
	Bibliography

