This thesis combines experimental and clinical studies on the surgical treatment of adolescent idiopathic scoliosis (AIS). A summary of the answers to the research questions posed in this thesis is presented below. Finally, the results are put into a broader perspective by discussing the implications for current and future surgical treatment of AIS.

PART I

I. What is the effect on intra-operative spinal flexibility of posterior spinal releases?

Chapter 2 presents the results of a study in which sequential posterior releases on human cadaveric spinal specimens were performed and their effect on spinal flexibility was quantified using a spinal motion simulator [1]. The range of motion (ROM) was analysed in flexion, extension, lateral bending and axial rotation. The flexibility in spinal flexion and axial rotation increased significantly after removal of the supraand interspinous ligaments (10.2% and 3.1% respectively), inferior facets (4.1% and 7.7% respectively), and flaval ligament (9.1% and 2.5% respectively). A sequential superior facetectomy provided only some additional increase in flexion flexibility and not in the other planes of motion.

II. What is the effect on the biomechanical properties of the human spine of a new embalming method, impacting our evaluation of new techniques for spinal surgery?

In the study presented in Chapter 3 the new embalming method Fix for Life (F4L) was analysed [2]. F4L combines a lower formaldehyde concentration and components that aim to preserve the mechanical properties of the tissue. For this, fresh frozen human cadaveric spinal specimens were tested at baseline and after F4L embalming. The study showed that the embalming resulted in substantial increases in stiffness (up to 230%) relative to the fresh frozen conditions. Also, the average spinal ROM decreased by 46% in flexion-extension, 56% in lateral bending and 54% in axial rotation compared to baseline fresh frozen.

III. What mechanisms do patients with AIS utilise during gait to compensate for the loss of spinal motion after spinal correction and fusion surgery?

Chapters 4, 5 and 6 of thesis present the data of three studies that aim to clarify the role of the spine during gait in patients with AIS, and to investigate why short-term postoperative effects such as decreased physical function and long-term effects such as adjacent segment degeneration can occur. In Chapter 4 we performed a prospective study on gait analysis in AIS patients treated by posterior spinal correction and fusion (PSF) surgery [3]. In healthy subjects, walking at challenging (high) walking speeds causes an increased relative transversal plane motion between thorax and pelvis and an increased pelvic motion [4,5]. Also, cadence (i.e. steps/min), step length, and motion of the pelvis in the transverse plane increase at higher walking speeds [4,5]. This could pose a problem for AIS patients after PSF surgery, as the fusion limits the motion of the spine, which is the anatomical connection between the thorax and the pelvis. We hypothesized that scoliosis surgery would cause a decrease in transverse plane pelvic ROM and consequently a decrease in step length. Subsequently, to compensate for this loss in step length, we expected the cadence to increase to maintain walking speed. As hypothesized, the studies showed that the thoracic-pelvic and pelvic transverse plane ROM decreased after PSF. This effect was more explicit at higher walking speeds, indicating that the higher speeds elucidated the negative effect of surgery. In contrast to our hypothesis, the step length did not decrease and cadence actually showed a decrease at a constant and high gait speed. Similar to healthy subjects, AIS patients were able to increase step length to accommodate the higher walking speeds.

Because Chapter 4 could not identify a compensatory mechanism in the lower extremities, we proceeded to analyse the upper body in more detail. In Chapter 5 it was hypothesized that an increased motion of the unfused part of the spine compensates for the loss of motion of the fused spinal segments [6]. This would explain the relatively good physical function after surgery and the occurrence of adjacent segment degeneration due to increased stress on the intervertebral disc [7]. To investigate this, a detailed analysis on motions of trunk sections was performed in Chapter 5. This was, to the best of our knowledge, the first study to analyse separate trunk sections in surgically treated AIS patients during a dynamic activity such as gait. The transverse plane ROM of the fused and distally unfused spine showed an overall decrease of 29% at 3 months after PSF. Although of a nearly similar magnitude (26%), this decrease was no longer statistically significant 12 months after PSF. Instead of a compensatory increase, the caudal unfused spinal segments showed a decrease of 32% in ROM at 12 months after PSF. Hence, in contrast to the posed hypothesis, we could not identify a compensatory mechanism in the unfused spine in this
study. In comparison, other studies (based on maximum bending movements during stance) report conflicting results, with some reporting increases in distal adjacent segment motion [8,9] while others contradict this finding [10–14].

Building further on the knowledge gained in Chapter 5, we performed a more in-depth analysis of the relative motion between the shoulders and the thorax in Chapter 6. Thorax-pelvis counter-rotation in the transversal plane is required to limit body axial angular momentum and to thus limit energy expenditure [15,16]. Additionally, thorax-pelvis rotation shifts from a relatively in-phase motion at low walking speed to more out-of-phase at high walking speed in healthy subjects [17]. This counter-rotation is limited after PSF surgery for AIS, as was shown in Chapter 5 and by others [3,10,13,18–20]. In Chapter 6 we hypothesized that, in the transversal plane, the phase difference between shoulders and thorax increases after surgery to maintain the out-of-phase timing between the upper body and the pelvis at higher walking speeds. An additional increase in relative shoulders-thorax ROM was expected. The results of these studies showed that, in contrast to our hypotheses, neither the shoulder-thorax ROM, nor the shoulder-thorax phase difference increased after PSF surgery.

PART II

IV. What steps are needed when introducing a new medical technology into daily clinical practice?

Less invasive and fusionless scoliosis correction has the potential to overcome the negative effects associated to PSF surgery. Part II of this thesis analysed such a fusionless technique. In Chapter 7 a case study is presented on the introduction of a new implant that was designed for the fusionless correction of AIS [21]. With the New Interventions in Clinical Practice guidebook (Nieuwe Interventies in de Klinische Praktijk, NIKP), all the important aspects of the introduction of a new technology were evaluated. An important step in this guidebook is the prospective risk analysis. For Chapter 7 this analysis was performed in a multidisciplinary team consisting of orthopedic surgeons, a trauma surgeon, a clinical physicist, a researcher, a quality employee, the supplier, the manufacturer, a procurement employee, and the physiotherapists. The team identified multiple risks associated with the novel treatment (e.g. correct implant size not available, incorrect surgical technique or faulty execution of postoperative physical exercises). For every identified risk of the new technology a mitigating action was proposed (e.g. training of the attending surgeon, guidance by a physical therapist, etc). With regards to the risk of implant breakage or dislodgement, the team decided that an additional biomechanical in vitro analysis of the implant had to be performed, of which the results are presented in Chapter 8. Based on those results and other insights acquired by following the NIKP guidebook, it was concluded that it was justified to further analyse the use of this new technique in a small prospective clinical study. The preliminary results of this study are presented in Chapter 9.

V. How does a novel periapical concave distraction device for the fusionless correction of AIS affect spinal biomechanical properties?

In Chapter 8 a novel posterior concave periapical distraction device was tested, which was designed to meet the need for a less invasive and fusionless technique for scoliosis surgery [22]. In traditional spinal fusion surgery, rigid implants are used to facilitate fusion of the corrected spine. Failure of these materials can occur if fusion is not achieved and spinal loads are transferred to the implant [23]. Thus, an implant used in fusionless scoliosis surgery should be designed to receive a minimal amount of forces. Therefore, before actual clinical evaluation, the new implant was tested on human and porcine fresh frozen cadaveric spines in a spinal motion simulator and compared to conventional rigid implants. The porcine spines were added to the analysis because human cadaveric spines are mostly from old donors, and porcine spines better represent the flexible adolescent spine [24,25]. The standard rigid instrumentation nearly completely diminished spinal ROM in flexion-extension (human -80.9% and porcine -94.0%), lateral bending (human -75.0% and porcine -92.2%), and axial rotation (human -71.3% and porcine -86.9%). It was hypothesized that the new periapical distraction device would not alter spinal motion due to its mobile connections. However, the results indicated that the periapical distraction device does decrease the average ROM in flexion-extension (human -40.0% and porcine -55.9%), while lateral bending was also slightly affected (human -18.2% and porcine -17.9%).

VI. How effective and safe is the novel periapical concave distraction device for the fusionless surgical correction of AIS?

Based on the results presented in Chapter 7 and Chapter 8, a clinical study was performed to analyse the safety and effectiveness of the periapical distraction device in skeletally immature AIS patients. Chapter 9 presented the preliminary
results of this, at writing of this thesis still ongoing, prospective cohort study with currently 20 enrolled patients. The surgical parameters demonstrate the less-invasive characteristics of this new surgical technique; 5.6 levels were bridged in Lenke 1 curves and 4.2 levels in the Lenke 5 curves, surgery lasted 1 hour, blood loss was minimal, and the incision length was 16 cm. In contrast, in previous studies PSF surgery has been shown to result in approximately 10 fused levels in Lenke 1 curves and 6 levels in Lenke 5 curves, 4 hours surgical time, blood loss around 900 ml, and an incision length of 29 cm [26–29]. With the periapical concave distraction device the average major curve Cobb angle decreased from 44.3 ± 4.1° pre-operatively to 32.4 ± 6.4° in the Lenke 1 curves and from 46.8° ± 5.2° to 32.3° ± 7.6° in the Lenke 5 curves at final follow-up. In comparison, traditional PSF surgery decreases the Cobb angle to 15-25° [30–32]. During the postoperative follow-up period seven revision surgeries were performed due to complications. Nearly all complications were related to the implant, with the most prevalent being the occurrence of osteolysis around one of the pedicle screws. Malalignment of the pedicle screws in the sagittal plane, which limits the polyaxial motion of the screw-rod interface, was more prominent in the patients in whom revision surgery was required. In three out of five patients with osteolysis the cultures of the deep tissue taken during revision surgery showed infections with Propionibacterium Acnes. Lastly, screw breakage occurred in one patient. The total score on the SRS-22r patient reported outcome measure questionnaire significantly improved from 2.5 ± 0.3 to 4.2 ± 0.6. Though, the postoperative SRS-22r score for those patients whom required revision surgery was not available yet at the time of writing.

Implications

The technological advances in surgical strategies and implants of the past decades have significantly improved the treatment of the deformities associated with AIS [33]. Nowadays PSF surgery allows for a reliable correction of the lateral deviation, rotational deformity, and sagittal malalignment of the spine. As a result, the rib hump, waistline asymmetry, and shoulder height difference can be substantially corrected. Still, surgery has remained a highly invasive endeavour associated with prolonged surgical times, blood loss, and lengthy hospital stays. The fusion has a detrimental effect on the motion of the spine. It is associated with long-term complications such as adjacent segment degeneration, adding on, and proximal junctional kyphosis. Lastly, it leaves the patient with a long scar. This thesis aims to improve our understanding of the effect of spinal fusion surgery on biomechanics, while at the same time working towards a radical improvement by evaluating a new fusionless correction technique.

Posterior spinal releases are used to increase intra-operative spinal flexibility and thus facilitate the correction of the scoliotic deformity. Clinical studies on the effectiveness of spinal releases show contradictory results and biomechanical evidence is lacking [34–38]. Our biomechanical study demonstrated that in cadaveric spines the effect of posterior spinal releases on spinal flexibility decreased with each subsequent step. Thus, incremental posterior spinal releases follow the law of diminishing returns: increasing the removal of posterior spinal structures does not result in a linear increase of spinal flexibility. The study was limited by the use of non-scoliotic cadaveric spines from old human cadaveric donors without a full rib cage due to technological restrictions of the experimental setup. The effect of the spinal releases could be different in AIS patients due to altered anatomy and age effects. Also, Ponte et al. recently published an article appropriately titled ‘The True Ponte Osteotomy: By the One Who Developed It’ [39]. The authors correctly pointed out that the posterior releases illustrated in Chapter 2 involved no removal of a part of the lamina and thus do not represent a full Ponte osteotomy. Indeed, removing bone from the lamina could potentially result in more flexibility. But, as the lamina is a bony structure located at the posterior side of the spine, its removal is only beneficial in increasing extension flexibility. Increased flexibility in extension is not needed in AIS surgery as these patients suffer from a hypokyphosis and gaining flexibility in flexion is
more important [40]. Hence, despite the discussion concerning partial or full laminectomy, we conclude that the routine use of full Ponte osteotomies in surgery for AIS patients with moderate curves can be questioned. Limiting the extent of the posterior releases can positively impact blood loss, operative time, and risk of nerve root damage [34,41].

This and other analyses of surgical techniques are often tested on so-called fresh frozen (i.e. not embalmed) human specimens. This poses a risk of infection to the worker and limits the time the specimens can be used for analyses before the tissues deteriorate. Embalming with formaldehyde can overcome these drawbacks, but by significantly altering the tissue stiffness this technique has a negative effect on spinal biomechanics [42]. The new F4L embalming method aims to preserve the biomechanical properties, potentially making it suitable for the analysis of surgical techniques [43]. Unfortunately this thesis shows that, in its current form, this embalming method is not valid for preclinical biomechanical testing of new surgical techniques. As the results are less detrimental than when using traditional formaldehyde embalming (which reduces the ROM by 80% in all loading directions), the technique can still be applied to provide residents and surgeons improved learning opportunities by providing a specimen that better represents natural tissue properties [42]. As other novel techniques also fail to fully preserve biomechanical tissue properties or have not yet been biomechanically tested the search for a suitable embalming technique continues [44,45].

In general, AIS patients recover relatively well after PSF surgery [30–32]. It is often hypothesized that increased motions in the unfused part of the spine occurs to compensate for the loss of motion at the levels of the fusion. This could play a role in the occurrence of long-term complications such as adjacent segment degeneration. In the short-term, it is surprising how relatively well the patients function in daily life after PSF surgery when the presumed key roles of the spine are considered (i.e. a shock absorber, an engine that drives the pelvis, and an important factor to reduce energy consumption) [50–52]. Possibly, mechanisms that compensate for the loss of spinal mobility after fusion explain both these observations. In this thesis three prospective gait analysis studies were performed to identify these possible changes in kinematic patterns that compensate for the local restriction of spinal motion after fusion. Surprisingly, this thesis could not identify the hypothesized compensatory mechanisms in the spatiotemporal parameters or lower body kinematics. Additionally, such mechanisms were neither found in the distally unfused part of the spine (i.e. the kinematics between the fusion mass and the pelvis), nor at the proximal end (i.e. the kinematics between the shoulders and the spinal fusion mass). This contradicts the hypothesis that the increased rate of adjacent segment degeneration after spinal fusion occurs due to increased motion and stress on the non-fused spinal segments, as no such increases were identified.

Instead, the ROM during gait of both the fused and unfused part of the spine was diminished [6]. Possibly this is a mechanism to protect the unfused spinal segments from damage by excessive rotations. On the other hand, this could also negatively affect daily life, because surgically treated AIS patients with lower lumbar spine ROM report lower physical function scores and more time on sick leave due to back pain [46]. Moreover, the loss of spinal flexibility after PSF surgery is the most cited reason by patients for returning to a lower sport activity level or not returning to sport at all [47]. Overall, these findings could indicate a role for physical therapy to regain spinal ROM. However, prospective analyses of the effectiveness of physical rehabilitation programs is currently lacking [48,49].

The lack of finding compensatory mechanisms in the gait studies performed here is surprising. Maybe the spine is not so important for normal gait (in AIS patients) after all? The middle part of the thoracic spine already lacks substantial motion during gait in healthy individuals [53,54] and AIS itself induces another decrease in spinal mobility on top of this [55–57]. A stiff spine at baseline limits the effect of spinal fusion on spinal motion. Or perhaps each patient has a unique compensatory strategy, which is lost due to the averaging of the data across the study group? Additionally, patients could employ combinations of small compensatory mechanisms, which were not analysed in the current studies. Lastly, maybe the reduced counter-rotation in the upper body was compensated by mechanisms not measured with the current study protocol? With the absence of compensatory mechanisms in the upper body, angular momentum peaks during gait can increase. The increased angular momentum could simply result in higher rotational forces between the shoe and floor. Lastly, the increased angular momentum may have been compensated by larger arm swing, which was not analysed in this thesis.
It should be noted that the absence of compensatory mechanisms during gait does not imply that such mechanisms are also absent during other activities. For instance, other authors compared AIS patients 12 months after spinal fusion to controls during a stop-jump exercise to elucidate compensatory mechanisms [58]. They concluded that the increased motion of the lumbar spine and the synchronous movement of the lumbar spine with the lower half of the thoracic spine were a compensation to perform the stop-jump task at a similar level as the healthy controls. Therefore, long-term complications such as adjacent segment degeneration might be related to compensatory lumbar motions during other activities than gait.

Less-invasive and fusionless surgical correction of AIS could potentially overcome the downsides associated with PSF surgery such as blood loss, duration of surgery, long scar, decreased postoperative physical function, and long-term complications [59,60]. Previous studies tried to reduce surgical invasiveness of fusion based surgery. Examples are the use of an anterior thoracoscopic approach or, through a posterior approach, by using three separate incisions and the subsequent subcutaneous passage of the rods [61,62]. The thoracoscopic approach results in fewer fused levels and less blood loss, while incision length decreases with both techniques. Unfortunately both techniques result in a long surgical time [61,62]. Recently, a prospective study was performed in which AIS patients with a double major curve were treated with dual sequential short anterior spinal fusion (ASF) and compared to a group treated by regular PSF surgery [63]. An average of only 7.6 vertebrae were fused after ASF and 12 vertebrae after PSF. A significant downside was that the ASF group was required to undergo surgery twice. These findings highlight that, although we can somewhat decrease the surgical invasiveness of current fusion-based techniques, a fundamental switch to less-invasive non-fusion techniques could provide more substantial improvements in surgical parameters and preservation of spinal flexibility.

Fusionless scoliosis surgery requires major technological developments. Several remarks on such fundamental changes are therefore warranted. As technological advances can provide major improvements in healthcare quality, it is key for new innovations to be readily available to the patient, while at the same time limiting the risks associated to these novel technologies. Multiple examples in the past illustrate that novel treatments can pose serious healthcare risks, especially when the technique is immediately applied in daily clinical practice, thereby exposing many patients to the risks [64–69]. To limit such risks, in this thesis a step-wise approach was applied to evaluate a novel device that was designed for fusionless scoliosis surgery.

Step one in our evaluation of the new periapical concave distraction device for fusionless scoliosis correction was a prospective risk analysis. Based on this evaluation, step two was an evaluation of the device in a biomechanical in vitro study. The periapical distraction device caused less direct postoperative decrease in ROM than rigid pedicle screw based instrumentation, thus possibly resulting in a more physiological spinal movement in vivo. This could lead to better postoperative physical activity and function. However, due to limited space in the testing machine, specimens with only the posterior part of the ribs were used. Removal of the rib cage results in 40-52% increase in ROM and therefore the negative effect of the novel device on in vivo biomechanics could be less [70,71]. Still, spinal ROM was limited (mainly in flexion-extension), indicating that forces from spinal movement could be transferred to the periapical distraction device. During the market approval process (i.e. CE marking) the implant was already tested to failure and demonstrated to be able to withstand higher forces and more loading cycles in comparison to regular pedicle screw based instrumentation (results not presented in this thesis). In total, the risk of implant failure was expected to be present but estimated to be low. Also, if implant failure would occur, regular PSF surgery could be performed as a salvage procedure.

The third and final step of our evaluation was a prospective clinical evaluation of the novel implant in a small group of AIS patients aged 12-17 years with a Lenke 1 or 5 curve and a flexible major curve Cobb angle measuring 40-55°. The preliminary results show that the results of the fusionless treatment with the novel device differ significantly from those of traditional PSF surgery. Duration of surgery, blood loss, number of spinal levels bridged, and length of incision were significantly less compared to PSF [26–29]. On the other hand, the postoperative Cobb angle of the major curve averaged 32°, while traditional PSF surgery results in a substantially better correction by reducing the Cobb angle to 15-25° [30–32]. This limited correction could negatively affect outcome, because a correlation between curve correction and cosmetic outcome has been reported [72], although others contradict this finding [73]. Contrarily, the smaller incision leads to a smaller scar and thus could have a positive influence on cosmetic outcome and patient satisfaction.
Despite a careful prospective risk analysis, a preclinical *in vitro* evaluation, and stringent inclusion criteria several serious adverse events occurred in the prospective clinical study. Most of these were related to the implant. The preliminary results suggest that strict attention must be paid to parallel alignment of the screws in the sagittal plane and screw size. Additionally, in three patients with osteolysis around a pedicle screw *Propionibacterium Acnes* bacteria were cultured from the tissue obtained during revision surgery. This pathogen is also found in prominent bursa tissue in revision surgery of bulky posterior rigid instrumentation using transverse connectors or the Dynesys dynamic stabilisation system [74–76]. Similarly, the periapical distraction device in its current form has prominent pedicle screws. A newer low profile version of the implant is now available and its effect on clinical outcome should be investigated. Still, the clinical implications of the cultures are not fully understood, as *P. Acnes* is commonly present in a normal skin microbiome. Additionally, the pathogen is also frequently discovered in intervertebral discs of patients undergoing microdiscectomy without previous spinal surgery [77]. Furthermore, because the implant negatively affects spinal flexibility, everyday activities can induce micromotions at the screw-bone interface causing osteolysis. Next, the pathogen could spread to the space between the screw and bone. Hence, instead of *P. Acnes* causing osteolysis of the bone around the screws, the positive tissue cultures could simply represent an already present subclinical infection. Lastly, wear of the implant and metallosis was observed in five patients. The clinical relevance of metal debris is not fully understood, especially not in spine surgery. Some reports on its occurrence in spine surgery hypothesize that the titanium particles could act as a stimulus for late-onset inflammatory or infectious complications or osteolysis [78,79].

In very skeletally immature patients, anterior vertebral body tethering and stapling can be used to correct the deformity without spinal fusion. These techniques apply compressive forces on the convexity of the curve to reduce growth rate on the convexity of the curve. Two studies on skeletally immature patients demonstrated that tethering can result in correction rates to below 20° Cobb angle [81,82]. Compared to our experience with the periapical concave distraction, anterior tethering did not result in device related complications. Though, a downside of the tethering technique is the long duration of surgery (4-5 hours). Vertebral body stapling was also shown to be safer, although correction rates were not better than bracing therapy [83]. As such, these techniques appear to be safer than the posterior concave distraction device in its current form and tethering results in higher correction rates, although the follow-up period for both devices is still limited.

Overall, the periapical concave distraction appears to have several advantages: it requires only two anchor points, requires short duration of surgery, and results in minimal blood loss and a small scar. The shortcomings include reduced correction of the deformity compared to traditional surgical techniques and, most notably, the high complication rates in the patient cohort presented here. The effect on functional ROM and/or gait was not investigated in this thesis and is a subject for future work. At the time of writing the inclusion of new patients in the clinical study has been halted due to the high complication rate. The already treated patients will be carefully followed to shed more light on the causes of the observed complications. Doing so we can hopefully identify those patients at risk for complications and in the future only treat those patients who will benefit from this new technique.
Conclusions

In this thesis conventional and novel surgical treatment techniques for adolescent idiopathic scoliosis were evaluated with the use of in vitro and in vivo studies.

Traditionally, outcome assessment of orthopaedic surgery was based on static radiological parameters. However, orthopaedic surgery involves the treatment of deformities that affect everyday dynamic tasks and activities of the patient. Therefore, an increasing emphasis has been put on patient reported outcome measures in the last decade. Although this has led to a major improvement in outcome assessment, the present thesis emphasizes the continuing need for basic science and functional outcome measurements. The gait analyses could not identify mechanisms that compensate for the loss of spinal flexibility after spinal fusion. Instead, posterior spinal fusion surgery resulted in an overall increased body symmetry while at the same time causing an overall decrease in motion. This identifies a possible role for physical rehabilitation programs and underlines the need for motion-preserving fusionless surgical techniques.

The novel posterior concave distraction device studied in this thesis proved unsuitable for fusionless correction of AIS in daily clinical practice in its current form due to high complication rates. Its application remains limited to the evaluation in clinical studies. Clearly, further analysis is needed and improvement in implant design and surgical technique could decrease complication rates. Hopefully, this and other techniques will bring us one step closer to better treatment options for patients suffering from AIS.

References


Chapter 10 | General discussion


