Contents

1 Introduction 1
 1.1 Prologue 1
 1.2 Theory of Rayleigh-Brillouin scattering 2
 1.3 Rayleigh-Brillouin lineshape 6
 1.4 Models for the Rayleigh-Brillouin lineshape 10
 1.4.1 The dilute regime 12
 1.4.2 The continuum regime 17
 1.5 Outline of this thesis 18

2 Experimental setup and procedures 21
 2.1 Rayleigh-Brillouin scattering setup with 403 nm 22
 2.2 Rayleigh-Brillouin scattering setup with 532 nm 22
 2.2.1 Scattering unit 24
 2.2.2 Detection unit 26
 2.3 Experimental data processing 33

3 Rayleigh-Brillouin scattering in SF6 in the kinetic regime 39
 3.1 Introduction 40
 3.2 Experimental 43
 3.3 Results 44
 3.3.1 Comparison with the Tenti-S6 model 45
 3.3.2 Comparison with the rough-sphere model 47
 3.3.3 Comparison with the hydrodynamic model 48
 3.3.4 Difference between experiment and models 48
 3.4 Conclusion 49

4 Rayleigh-Brillouin light scattering spectroscopy of N2O 51
 4.1 Introduction 52
 4.2 Experiment 53
 4.3 Results 55
 4.3.1 The Tenti-S6 model 57

ii
4.3.2 The Grad's six-moment kinetic model 58
4.3.3 The Hammond-Wiggins hydrodynamic model 60
4.3.4 The 'rough-sphere' model 61
4.4 Discussion and Conclusion 62

5 Bulk viscosity of CO₂ from RB-spectroscopy at 532 nm 65
5.1 Introduction 66
5.2 Experiment 68
5.3 RB-scattering and line shape models 70
 5.3.1 The Tenti model 71
 5.3.2 The Hammond–Wiggins model 72
5.4 Results and Discussion 72
 5.4.1 Measurements: Light scattering in CO₂ 72
 5.4.2 Comparison with the two models 74
 5.4.3 Bulk viscosities 75
5.5 Discussion and conclusion 77

6 Rayleigh-Brillouin scattering of binary mixture gases 81
6.1 Introduction 82
6.2 Model description 84
6.3 Experimental setup and results 86
 6.3.1 SF₆ and He 88
 6.3.2 SF₆ and D₂ 89
 6.3.3 SF₆ and H₂ 90
 6.3.4 CO₂ and He 92
 6.3.5 CO₂ and D₂ 93
 6.3.6 Mixtures with CH₄ 94
6.4 Conclusion 95

A Matlab code for Tenti-S6 model 99
B Matlab code for rough-sphere model 105
C Matlab code for Grad’s six-moment model 109
D Matlab code for HW-hydrodynamic model 113

Bibliography 117

Summary 129
Samenvatting 131
CONTENTS

summary (Chinese) 135
Acknowledgements 137