1 Introduction
 1.1 Microscopy 1
 1.2 X-ray microscopy 3
 Lensless X-ray microscopy 5
 Light sources 6
 1.3 Multicolor microscopy 8
 Fourier-transform interferometry 9
 1.4 Outline of this thesis 10

2 A table-top source of coherent extreme ultraviolet light 13
 2.1 High-harmonic generation 13
 The single atom response 13
 Phase matching of high harmonics 15
 2.2 Ultrafast optics 17
 Dispersion management 18
 Ultrafast laser systems 20
 2.3 Amplification of femtosecond optical pulses 21
 Chirped pulse amplification 23
 The pump laser 26
 Non-collinear optical parametric chirped pulse amplification 31

3 Interference and diffraction 35
 3.1 Waves 35
 Fourier transform spectroscopy 38
 3.2 Diffraction 39
 Coherent diffractive imaging: phase retrieval methods 41
 Holography 45
 Monochromaticity as a requirement for CDI 47
Contents

4 Spatially Resolved Fourier Transform Spectroscopy in the Extreme Ultraviolet 51
4.1 Introduction 52
4.2 Experimental setup 53
4.3 Extreme ultraviolet interference: results and analysis 55
 Spatial interference 55
 Temporal interference 56
4.4 Spatially resolved spectroscopy 59
4.5 Conclusion 61
4.6 Supplementary material 61
 Birefringent wedge-based interferometer 61
 High-harmonic generation geometry 62
 Single-shot Fourier Transform interferometry 63

5 Diffractive shear interferometry for extreme ultraviolet high-resolution lensless imaging 65
5.1 Introduction 66
5.2 Spatial shearing interferometry of diffraction patterns 68
 Interference of diffraction patterns 68
 Image reconstruction 70
 Comparison between DSI and single-beam CDI 72
5.3 Experimental demonstration of DSI using high-harmonics 75
 Fourier-transform holography 75
 DSI reconstruction 78
 DSI imaging of complex objects 79
5.4 Conclusions 80
5.5 Appendix: Holography in a DSI setting 81

6 Broadband extreme ultraviolet dispersion measurements using a high-harmonic source 85
6.1 Introduction 86
6.2 Experimental setup 87
6.3 Analysis 89
6.4 Experimental results and discussion 93

7 Outlook on quantitative lensless imaging 97
7.1 Spectral resolution with a wide field of view 98
8 Spectrally resolved single-shot wavefront sensing of broadband high-harmonic sources

8.1 Introduction 104

8.2 Spectrally resolved wavefront characterization 106
 Spectroscopic Hartmann mask design 106
 Measuring HHG wavefront data 108
 SHM diffraction pattern analysis 111
 Wavefront reconstruction 112

8.3 Wavefront characterization of a high-harmonic beam 113
 Wavefront reconstructions of individual harmonics 113
 Spectroscopic wavefront analysis 115
 Detection of HHG pulse front tilts 117

8.4 Conclusions 119

9 Intrinsic wavefront variations in gas-cell-based high-harmonic generation

9.1 Chromatic wavefront variation of high harmonics 121
9.2 The Lund high-power EUV beamline 122
9.3 Measurement analysis 125
9.4 Preliminary results 126
9.5 Outlook 132

Bibliography 135

List of Publications 157

Summary 159

Samenvatting 163

Dankwoord 175