Appendix

References

List of abbreviations

English summary

Acknowledgements (Dankwoord)
References

Appendix

Fairless, R., Williams, S.K. and Diem, R. (2019) Calcium-Binding Proteins as Determinants of
Appendix

sharing a conserved structure with a unique variable domain. Journal of neurochemistry, 92 (3): 554–68.

References

Pang, Z.P., Melicoff, E., Padgett, D., et al. (2006a) Synaptotagmin-2 is essential for survival and contributes to Ca2+ triggering of neurotransmitter release in central and neuromuscular synapses. The Journal of Neuroscience, 26 (52): 13493–
References

Rossi, G., Watson, K., Kennedy, W., et al. (2018) The tomosyn homologue, Sro7, is a direct effector of the Rab GTPase, Sec4, in post-Golgi ves-

Wu, Y., Gu, Y., Morpew, M.K., et al. (2012) All three components of the neuronal SNARE com-

Appendix

List of abbreviations

\([\text{Ca}^{2+}]_e\) - Extracellular \(\text{Ca}^{2+}\) concentration
\([\text{Ca}^{2+}]_i\) - Cytosolic \(\text{Ca}^{2+}\) concentration
ACSF - Artificial cerebrospinal fluid
ADP - Adenosine diphosphate
AMPAR - \(\alpha\)-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor
AP - Action potential
ATP - Adenosine triphosphate
BAPTA - 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid
CC - Coiled-coil
Cdk5 - Cyclin-dependent kinase 5
CICR - \(\text{Ca}^{2+}\) induced \(\text{Ca}^{2+}\) release
DAG - Diacylglycerol
DIV - Days \textit{in vitro}
EGTA - Ethylene glycol-bis(\(\beta\)-aminoethyl ether)-N,N,N',N'-tetraacetic acid
EPSC - Excitatory postsynaptic current
ER - Endoplasmic reticulum
ECEs - Evoked \(\text{Ca}^{2+}\) events
FWHM - Full width at half maximum
\(\text{IP}_3\) - Inositol triphosphate
\(\text{IP}_3\)R - \(\text{IP}_3\) receptor
LDCV - Large dense core vesicle (LDCV)
Lgl - Lethal giant larvae
LTP - Long-term potentiation
mEPSC - Miniature excitatory postsynaptic current
mGluR - Metabotropic glutamate receptors;
NCX - \(\text{Na}^+/\text{Ca}^{2+}\) exchanger
NMDAR - N-methyl-D-aspartate receptor
NMJ - Neuromuscular junction
List of abbreviations

NPY - Neuropeptide Y
NSF - N-ethylmaleimide-sensitive factor
OGB-1 - Oregon Green BAPTA-1
PIP$_2$ - Phosphatidylinositol 4,5-bisphosphate
PKA - cAMP-dependent protein kinase
PLC - Phospholipase C
PM - Plasma membrane
PMCA - PM Ca$^{2+}$-ATPase
PTVs - Piccolo-bassoon transport vesicles
ROCK - Rho-associated serine/threonine kinase (ROCK)
ROIs - Regions of interest
RRP - Readily releasable pool
RyR - Ryanodine receptor
SCE - Spontaneous Ca$^{2+}$ event
SCG - Superior cervical ganglion
SCT - Spontaneous Ca$^{2+}$ transient
SERCA - Sarco/endoplasmic reticulum Ca$^{2+}$-ATPase
SNAP - Soluble NSF Attachment Protein
SNARE - SNAP REceptor
SUMO - Small ubiquitin-like modifier
SV - Synaptic vesicle
syJRex - Synaptophysin-JRex
sypHy - Synaptophysin-pHluorin
syt1 - Synaptotagmin-1
VGCCs - Voltage gated Ca$^{2+}$ channels
English summary

The work described in this thesis provides a tool to analyse Ca\(^{2+}\) imaging data, SICT (Chapter 2) and add new information about the occurrence of spontaneous Ca\(^{2+}\) events (SCE) and synaptic vesicles (SV) release events in cultured neurons (Chapter 3). Further findings on the association of tomosyn with moving synaptic vesicles are reported, which is at odds with the canonical inhibition of SNARE complex formation (Chapter 4).

Chapter 2 describes SICT: supervised inspection of fast Ca\(^{2+}\) transients. SICT is an informatics tool to automatically detect Ca\(^{2+}\) fluctuation events in time-lapse imaging data and to calculate the event parameters. SICT was mainly developed to detect low signal-to-noise fast Ca\(^{2+}\) events (SCTs). Several other Ca\(^{2+}\) waveforms were also detected, although in minor contribution. SICT presents a user-friendly interface which helps to visualise and to categorise Ca\(^{2+}\) events with different features by sorting out events based on different properties and allowing the spatial and temporal visualisation of the ROIs in both raw Ca\(^{2+}\) imaging data and the calculated \(\Delta F/F_0\) signal. This step was validated by four human observers. SICT reduced the time of analysis to 10% compared to manual analysis. As biological application, we used SICT to show that caffeine increases the frequency and duration of SCTs. This demonstrates that SICT is a useful tool to study fast Ca\(^{2+}\) signals in living cells. Moreover, SICT is open source and can be adapted for many other purposes.

Chapter 3 aimed to study the Ca\(^{2+}\) dependence of spontaneous SV release using different procedures. First, we characterised SCTs in absence of an AP. Several Ca\(^{2+}\) indicators were tested and GCaMP6f identified to be the best probe to analyse SCTs compared to OGB-1, GCaMP6s and JReX. SCTs were enriched in synaptic compartments. Consistently, presynaptic targeting of GCaMP6f (called syGCaMP6f) detected more events than the globally expressed Ca\(^{2+}\) indicator. Other than SCTs, several other presynaptic SCEs were observed with different kinetics. The frequency of both SCEs and mEPSC was upregulated by increased \([\text{Ca}^{2+}]_e\) up to 10 mM. When we simultaneously measured presynaptic SCT/ SCEs and mEPSCs at 4 mM \([\text{Ca}^{2+}]_e\), no strict temporal coupling was observed. As an alternative procedure to assess the Ca\(^{2+}\) dependence of spontaneous SV release, syPHyJReX was used. SyPHyJReX was validated to report vesicle fusion and \([\text{Ca}^{2+}]_e\) events with good optical separation of the dual emission channels. It detected Ca\(^{2+}\) events spatiotemporally coupled to spontaneous SV release events. Further analysis is required to evaluate how many events co-occur together, if they belong to a specific neuronal subtype and which Ca\(^{2+}\) pathway they are associated with. Together these results show the complexity of the neuronal Ca\(^{2+}\) pathways and the need to further dissect the role of SCT/ SCE at the presynapse and other neuronal locations. Moreover, our results merged with the literature suggest that spontaneous SV release is regulated by Ca\(^{2+}\) in several ways. Important to discriminate in the future studies will be the neuronal subtypes, the \([\text{Ca}^{2+}]_e\) needed for such events, the Ca\(^{2+}\) sources, and the Ca\(^{2+}\) sensors involved.

In Chapter 4, tomosyn localization was studied in wildtype hippocampal neu-
rons. Tomosyn presented both a cytosolic and punctate distribution, although, it does not contain a transmembrane domain. Tomosyn is expressed in both axons and dendrites and, it co-localized and co-migrated with both SV and LDCV markers, synapsin and NPY respectively. Field stimulation slightly reduced the velocity of the tomosyn puncta. Tomosyn immunoprecipitated together with syntaxin-1A, SNAP25 and syt1. Moreover, the overexpression of several tomosyn mutants showed a consistent vesicular binding which was not inhibited by the absence of syt1. Altogether these results suggest that tomosyn might bind vesicles by redundant mechanisms and this association may be important in regulating vesicle cluster and transport during synaptic plasticity to sustain repetitive stimulations.

In conclusion, the neuronal Ca\(^{2+}\) events happening independently of an AP are diverse and their roles and mechanisms need further elucidation. To this aim and beyond, the standardization of Ca\(^{2+}\) analysis would be advisable to better merge results of different investigations. SypHyJReX is a valuable tool to study the Ca\(^{2+}\)-dependence of spontaneous release and can be used to unravel the Ca\(^{2+}\) pathways, the neuronal subtype or subpopulation of SVs involved. Finally, tomosyn analysis suggests that tomosyn has multiple functions based on its neuronal localization and/or binding partners which might depend on the activity state of a neuron.
Acknowledgements (Dankwoord)

As the end of this book, it is the right moment to pause and express gratitude for the work done, the growth that occurred and the people who supported me in these past years.

The first person I should thank and be proud of for this work is myself. By studying, researching, summarising, looking at details and seeing the whole, clarifying doubts, overcoming many difficulties and dealing with frustrations and disappointment, I grew, became stronger and less susceptible, more tolerant. I realized that life is one and that each of us has their contribution to this world. I learned that collaborations and trust are essential to make world changes and to give meaning to every single life. Of course, I could never produce this work and develop myself without the people and the tools around me.

Thanks to the trust of my supervisors, I was able to penetrate deeply into science and the academic world. Observing them, I learned what it means to be a scientist, and what science means. All of the PIs - in my department and beyond - who I came across on my path have added something unique to my scientific background and my personal growth, thanks to their particular and individual personalities.

I would like to give a special thanks to my family, who gave me the right genetic background and the proper environmental settings to develop the skills needed to finish my PhD. A further thanks to my Dutch family, who welcomed me as a daughter and a sister.

To my student and my colleague’s student. It was a pleasure working with you, I learned a lot from all of you. Some teaching was smoother than others. I hope all our discussions have helped you.

To our technicians, I am very grateful for your supportive role in both the work and personal spheres, and for the fun times together.

My colleagues, my Marie Curie colleagues, my roommates and all PhDs, however close or distant, I felt I established a unique connection with each of you which will always be with me. We always found time for a smile, a joke, a good laugh, a constructive discussion, a true ‘how are you?’ and real support.

Thanks to the community I volunteered for, who gave me the opportunity, by directing my focus, to find an inner balance, to develop different skills and to get in contact with society in a new way.

To all my friends. It would be too personal and too long to share the details of our relationships here. I hope that I will find the moment to thank you personally by telling you how you have been so important to me.

Thanks to my loved ones.

The daily sharing I had with each of you opened my mind. I am grateful for all, who, by questioning, made me think and develop new ideas.
Acknowledgements

Thanks to all who have been part of my path in the last 5 years.